
0018-9162/03/$17.00 © 2003 IEEE December 2003 39

C O V E R F E A T U R E

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

Energy Management
for Commercial
Servers

I n the past, energy-aware computing was pri-
marily associated with mobile and embedded
computing platforms. Servers—high-end, mul-
tiprocessor systems running commercial work-
loads—typically included extensive cooling

systems and resided in custom-built rooms for
high-power delivery. In recent years, however, as
transistor density and demand for computing
resources have rapidly increased, even high-end
systems face energy-use constraints. Moreover,
conventional computers are currently air cooled,
and systems are approaching the limits of what
manufacturers can build without introducing addi-
tional techniques such as liquid cooling. Clearly,
good energy management is becoming important
for all servers.

Power management challenges for commercial
servers differ from those for mobile systems.
Techniques for saving power and energy at the cir-
cuit and microarchitecture levels are well known,1

and other low-power options are specialized to a
server’s particular structure and the nature of its
workload. Although there has been some progress,
a gap still exists between the known solutions and
the energy-management needs of servers.

In light of the trend toward isolating disk
resources in separate cabinets and accessing them
through some form of storage networking, the main
focus of energy management for commercial servers
is conserving power in the memory and micro-
processor subsystems. Because their workloads are
typically structured as multiple-application pro-
grams, system-wide approaches are more applica-

ble to multiprocessor environments in commercial
servers than techniques that are primarily applica-
ble to single-application environments, such as
those based on compiler optimizations.

COMMERCIAL SERVERS
Commercial servers comprise one or more high-

performance processors and their associated caches;
large amounts of dynamic random-access memory
(DRAM) with multiple memory controllers; and
high-speed interface chips for high-memory band-
width, I/O controllers, and high-speed network
interfaces.

Servers with multiple processors typically are
designed as symmetric multiprocessors (SMPs),
which means that the processors share the main
memory and any processor can access any memory
location. This organization has several advantages:

• Multiprocessor systems can scale to much
larger workloads than single-processor sys-
tems.

• Shared memory simplifies workload balancing
across servers.

• The machine naturally supports the shared-
memory programming paradigm that most
developers prefer.

• Because it has a large capacity and high-band-
width memory, a multiprocessor system can effi-
ciently execute memory-intensive workloads.

In commercial servers, memory is hierarchical.
These servers usually have two or three levels of

As power increasingly shapes commercial systems design, commercial
servers can conserve energy by leveraging their unique architecture and
workload characteristics.

Charles
Lefurgy
Karthick
Rajamani
Freeman
Rawson
Wes Felter
Michael
Kistler
Tom W.
Keller
IBM Austin
Research Lab

40 Computer

cache between the processor and the main mem-
ory. Typical high-end commercial servers include
IBM’s p690, HP’s 9000 Superdome, and Sun
Microsystems’ Sun Fire 15K.

Figure 1 shows a high-level organization of
processors and memory in a single multichip mod-
ule (MCM) in an IBM Power4 system. Each Power4
processor contains two processor cores; each core
executes a single program context.

The processor’s two cores contain L1 caches (not
shown) and share an L2 cache, which is the coher-
ence point for the memory hierarchy. Each proces-
sor connects to an L3 cache (off-chip), a memory
controller, and main memory. In some configura-
tions, processors share the L3 caches. The four
processors reside on an MCM and communicate
through dedicated point-to-point links. Larger sys-
tems such as the IBM p690 consist of multiple con-
nected MCMs.

Table 1 shows the power consumption of two con-
figurations of an IBM p670 server, which is a
midrange version of the p690. The top row gives the
power breakdown for a small four-way server (sin-
gle MCM with four single-core chips) with a 128-
Mbyte L3 cache and a 16-Gbyte memory. The
bottom row gives the breakdown for a larger 16-way
server (dual MCM with four dual-core chips) with a
256-Mbyte L3 cache and a 128-Gbyte memory.

The power consumption breakdowns include

• the processors, including the MCMs with
processor cores and L1 and L2 caches, cache
controllers, and directories;

• the memory, consisting of the off-chip L3
caches, DRAM, memory controllers, and high-
bandwidth interface chips between the con-
trollers and DRAM;

• I/O and other nonfan components;
• fans for cooling processors and memory; and
• fans for cooling the I/O components.

We measured the power consumption at idle. A
high-end commercial server typically focuses pri-
marily on performance, and the designs incorpo-
rate few system-level power-management tech-
niques. Consequently, idle and active power con-
sumption are similar.

We estimated fan power consumption from prod-
uct specifications. For the other components of the
small configuration, we measured DC power. We
estimated the power in the larger configuration by
scaling the measurements of the smaller configura-
tion based on relative increases in the component
quantities. Separate measurements were made to
obtain dual-core processor power consumption.

In the small configuration, processor power is
greater than memory power: Processor power
accounts for 24 percent of system power, memory
power for 19 percent. In the larger configuration,
the processors use 28 percent of the power, and
memory uses 41 percent. This suggests the need to
supplement the conventional, processor-centric
approach to energy management with techniques
for managing memory energy.

The high power consumption of the computing
components generates large amounts of heat,
requiring significant cooling capabilities. The fans
driving the cooling system consume additional
power. Fan power consumption, which is relatively
fixed for the system cabinet, dominates the small
configuration at 51 percent, and it is a big compo-
nent of the large configuration at 28 percent.
Reducing the power of computing components

L3
Core Core

L2
Memory
controller

Memory

L3Memory
controller

Memory

MemoryMemory
controller

L3

MemoryMemory
controller

L3

Core Core

L2

Core Core

L2

Core Core

L2

Power4 processor

Multichip module

Figure 1. A single multichip module in a Power4 system. Each processor has two processor cores, each executing a single program context.
Each core contains L1 caches, shares an L2 cache, and connects to an off-chip L3 cache, a memory controller, and main memory.

Table 1. Power consumption breakdown for an IBM p670.

Processor
I/O and I/O

IBM p670 and memory component Total
server Processors Memory other fans fans watts
Small 384 318 90 676 144 1,614
configuration
(watts)
Large 840 1,223 90 676 144 2,972
configuration
(watts)

December 2003 41

would allow a commensurate reduction in cool-
ing capacity, therefore reducing fan power con-
sumption.

We did not separate disk power because the mea-
sured system chiefly used remote storage and
because the number of disks in any configuration
varies dramatically. Current high-performance
SCSI disks typically consume 11 to 18 watts each
when active.

Fortunately, this machine organization suggests
several natural options for power management. For
example, using multiple, discrete processors allows
for mechanisms to turn a subset of the processors
off and on as needed. Similarly, multiple cache
banks, memory controllers, and DRAM modules
provide natural demarcations of power-manage-
able entities in the memory subsystem. In addition,
the processing capabilities of memory controllers,
although limited, can accommodate new power-
management mechanisms.

Energy-management goals
Energy management primarily aims to limit max-

imum power consumption and improve energy effi-
ciency. Although generally consistent with each
other, the two goals are not identical. Some energy-
management techniques address both goals, but
most implementations focus on only one or the
other.

Addressing the power consumption problem is
critical to maintaining reliability and reducing cool-
ing requirements. Traditionally, server designs coun-
tered increased power consumption by improving
the cooling and packaging technology. More
recently, designers have used circuit and microar-
chitectural approaches to reduce thermal stress.

Improving energy efficiency requires either
increasing the number of operations per unit of
energy consumed or decreasing the amount of
energy consumed per operation. Increased energy
efficiency reduces the operational costs for the sys-
tem’s power and cooling needs. Energy efficiency is
particularly important in large installations such as
data centers, where power and cooling costs can be
sizable.

A recent energy management challenge is leak-
age current in semiconductor circuits, which causes
transistors designed for high frequencies to con-
sume power even when they don’t switch. Although
we discuss some technologies that turn off idle com-
ponents, and reduce leakage, the primary ap-
proaches to tackling this problem center on
improvements to circuit technology and microar-
chitecture design.

Server workloads
Commercial server workloads include transac-

tion processing—for Web servers or databases, for
example—and batch processing—for noninterac-
tive, long-running programs. Transaction and batch
processing offer somewhat different power man-
agement opportunities.

As Figure 2 illustrates, transaction-oriented
servers do not always run at peak capacity because
their workloads often vary significantly depending
on the time of day, day of the week, or other exter-
nal factors. Such servers have significant buffer
capacity to maintain performance goals in the event
of unexpected workload increases. Thus, much of
the server capacity remains unutilized during nor-
mal operation.

Transaction servers that run at peak throughput
can impact the latency of individual requests and,
consequently, fail to meet response time goals. Batch
servers, on the other hand, often have less stringent
latency requirements, and they might run at peak
throughput in bursts. However, their more relaxed
latency requirements mean that sometimes running
a large job overnight is sufficient. As a result, both
transaction and batch servers have idleness—or
slack—that designers can exploit to reduce the
energy used.

Server workloads can comprise multiple applica-
tions with varying computational and performance
requirements. The server systems’ organization
often matches this variety. For example, a typical e-
commerce Web site consists of a first tier of simple
page servers organized in a cluster, a second tier of
higher performance servers running Web applica-
tions, and a third tier of high-performance database
servers.

Although such heterogeneous configurations pri-

0
20
40
60
80

100
120
140

Time (hour)(a)

(b)
Re

qu
es

ts
 p

er
 h

ou
r

(th
ou

sa
nd

s)

0

100

200

300

400

500

600

Time (hour)
Re

qu
es

ts
 p

er
 h

ou
r

(th
ou

sa
nd

s)

1 3 5 7 9 11 13 15 17 19 21 23 25

1 3 5 7 9 11 13 15 17 19 21 23 25

Figure 2. Load varia-
tion by hour at (a) a
financial Web site
and (b) the 1998
Olympics Web site in
a one-day period.
The number of
requests received
varies widely
depending on time
of day and other fac-
tors.

42 Computer

marily offer cost and performance benefits,
they also present a power advantage:
Machines optimized for particular tasks and
amenable to workload-specific tuning for
higher energy efficiencies serve each distinct
part of the workload.

PROCESSORS
Processor power and energy management

relies primarily on microarchitectural en-
hancements, but realizing their potential
often requires some form of systems software
support.

Frequency and voltage scaling
CMOS circuits in modern microprocessors con-

sume power in proportion to their frequency and to
the square of their operating voltage. However,
voltage and frequency are not independent of each
other: A CPU can safely operate at a lower voltage
only when it runs at a low enough frequency. Thus,
reducing frequency and voltage together reduces
energy per operation quadratically, but only
decreases performance linearly.

Early work on dynamic frequency and voltage
scaling (DVS)—the ability to dynamically adjust
processor frequency and voltage—proposed that
instead of running at full speed and sitting idle part
of the time, the CPU should dynamically change its
frequency to accommodate the current load and
eliminate slack.2 To select the proper CPU fre-
quency and voltage, the system must predict CPU
use over a future time interval.

Much of the recent work in DVS has sought to
develop prediction heuristics,3,4 but further research
on predicting processor use for server workloads
is needed. Other barriers to implementing DVS on
SMP servers remain. For example, many cache-
coherence protocols assume that all processors run
at the same frequency. Modifying these protocols to
support DVS is nontrivial.

Standard DVS techniques attempt to minimize
the time the processor spends running the operat-
ing system idle loop. Other researchers have
explored the use of DVS to reduce or eliminate the
stall cycles that poor memory access latency causes.
Because memory access time often limits the per-
formance of data-intensive applications, running
the applications at reduced CPU frequency has a
limited impact on performance.

Offline profiling or compiler analysis can deter-
mine the optimal CPU frequency for an application
or application phase. A programmer can insert
operations to change frequency directly into the

application code, or the operating system can per-
form the operations during process scheduling.

Simultaneous multithreading
Unlike DVS, which reduces the number of idle

processor cycles by lowering frequency, simultane-
ous multithreading (SMT) increases the processor
use at a fixed frequency. Single programs exhibit
idle cycles because of stalls on memory accesses or
an application’s inherent lack of instruction-level
parallelism. Therefore, SMT maps multiple pro-
gram contexts (threads) onto the processor con-
currently to provide instructions that use the
otherwise idle resources. This increases performance
by increasing processor use. Because the threads
share resources, single threads are less likely to issue
highly speculative instructions.

Both effects improve energy efficiency because
functional units stay busy executing useful, non-
speculative instructions.5 Support for SMT chiefly
involves duplicating the registers describing the
thread state, which requires much less power over-
head than adding a processor.

Processor packing
Whereas DVS and SMT effectively reduce idle

cycles on single processors, processor packing oper-
ates across multiple processors. Research at IBM
shows that average processor use of real Web
servers is 11 to 50 percent of their peak capacity.4

In SMP servers, this presents an opportunity to
reduce power consumption.

Rather than balancing the load across all proces-
sors, leaving them all lightly loaded, processor
packing concentrates the load onto the smallest
number of processors possible and turns the
remaining processors off. The major challenge to
effectively implementing processor packing is the
current lack of hardware support for turning
processors in SMP servers on and off.

Throughput computing
Certain workload types might offer additional

opportunities to reduce processor power. Servers
typically process many requests, transactions, or jobs
concurrently. If these tasks have internal parallelism,
developers can replace high-performance processors
with a larger number of slower but more energy-effi-
cient processors providing the same throughput.

Piranha6 and our Super-Dense Server7 prototype
are two such systems. The SDS prototype, operat-
ing as a cluster, used half of the energy that a con-
ventional server used on a transaction-processing
workload. However, throughput computing is not

Realizing the
potential of

processor power
and energy

management
often requires

software support.

December 2003 43

suitable for all applications, so server makers must
develop separate systems to provide improved sin-
gle-thread performance.

MEMORY POWER
Server memory is typically double-data rate syn-

chronous dynamic random access memory (DDR
SDRAM), which has two low-power modes:
power-down and self-refresh. In a large server, the
number of memory modules typically surpasses the
number of outstanding memory requests, so mem-
ory modules are often idle. The memory controllers
can put this idle memory into low-power mode
until a processor accesses it.

Switching to power-down mode or back to active
mode takes only one memory cycle and can reduce
idle DRAM power consumption by more than 80
percent. This savings may increase with newer tech-
nology.

Self-refresh mode might achieve even greater
power savings, but it currently requires several hun-
dred cycles to return to active mode. Thus, realiz-
ing this mode’s potential benefits requires more
sophisticated techniques.

Data placement
Data distribution in physical memory determines

which memory devices a particular memory access
uses and consequently the devices’ active and idle
periods. Memory devices with no active data can
operate in a low-power mode.

When a processor accesses memory, memory
controllers can bring powered-down memory into
an active state before proceeding with the access.
To optimize performance, the operating system can
activate the memory that a newly scheduled process
uses during the context switch period, thus largely
hiding the latency of exiting the low-power mode.8,9

Better page allocation policies can also save
energy. Allocating new pages to memory devices
already in use helps reduce the number of active
memory devices.9,10 Intelligent page migration—
moving data from one memory device to another to
reduce the number of active memory devices—can
further reduce energy consumption.9,11

However, minimizing the number of active
memory devices also reduces the memory band-
width available to the application. Some accesses
previously made in parallel to several memory
devices must be made serially to the same mem-
ory device.

Data placement strategies originally targeted
low-end systems; hence, developers must carefully
evaluate them in the context of commercial server

environments, where reduced memory band-
width can substantially impact performance.

Memory address mapping
Server memory systems provide config-

urable address mappings that can be used for
energy efficiency. These systems partition
memory among memory controllers, with
each controller responsible for multiple banks
of physical memory.

Configurable parameters in the system mem-
ory organization determine the interleaving—the
mapping from a memory address to its location in a
physical memory device. This mapping often occurs
at the granularity of the higher-level cache line size.

One possible interleaving allocates consecutive
cache lines to DRAMs that different memory con-
trollers manage, striping the physical memory across
all controllers. Another approach involves mapping
consecutive cache lines to the same controller, using
all the physical memory under one controller before
moving to the next. Under each controller, memory
address interleaving can similarly occur across the
multiple physical memory banks.

Spreading consecutive accesses—or even a single
access—across multiple devices and controllers can
improve memory bandwidth, but it may consume
more power because the server must activate more
memory devices and controllers.

The interactions of interleaving schemes with con-
figurable DRAM parameters such as page-mode
policies and burst length have an additional impact
on memory latencies and power consumption.
Contrary to current practice in which systems come
with a set interleaving scheme, a developer can tune
an interleaving scheme to obtain the desired power
and performance tradeoff for each workload.

Memory compression
An orthogonal approach to reducing the active

physical memory is to use a system with less mem-
ory. IBM researchers have demonstrated that they
can compress the data in a server’s memory to half
its size.12 A modified memory controller compresses
and decompresses data when it accesses the mem-
ory. However, compression adds an extra step to
the memory access, which can be time-consuming.

Adding the 32-Mbyte L3 cache used in the IBM
compression implementation significantly reduces
the traffic to memory, thereby reducing the perfor-
mance loss that compression causes. In fact, a com-
pressed memory server can perform at nearly the
same level as a server with no compression and
double the memory.

Minimizing the
number of active

memory devices also
reduces the memory
bandwidth available
to the application.

44 Computer

Although the modified memory controller and
larger caches need additional power, high memory
capacity servers should expect a net savings.
However, for workloads with the highest memory
bandwidth requirements and working sets exceed-
ing the compression buffer size, this solution may
not be energy efficient. Quantifying compression’s
power and performance benefit requires further
analysis.

Cache coherence
Reducing overhead due to cache coherence traf-

fic can also improve energy efficiency. Shared-mem-
ory servers often use invalidation protocols to
maintain cache coherency. One way to implement
these protocols is to have one cache level (typically
L2 cache) track—or snoop—memory requests
from all processors.

The cache controllers of all processors in the
server share a bus to memory and the other caches.

Each cache controller arrives at the appropriate
coherence action to maintain consistency between
the caches based on its ability to observe memory
traffic to and from all caches, and to snoop remote
caches. Snoop accesses from other processors
greatly increase L2 cache power consumption.

Andreas Moshovos and colleagues introduced a
small cache-like structure they term a Jetty at each
L2 cache to filter incoming snoop requests.13 The
Jetty predicts whether the local cache contains a
requested line with no false negatives. Querying the
Jetty first and forwarding the snoop request to the
L2 cache only when it predicts the line is in the local
cache reduces L2 cache energy for all accesses by
about 30 percent.

Craig Saldanha and Mikko Lipasti propose
replacing parallel snoop accesses with serial
accesses.14 Many snoop cache implementations
broadcast the snoop request in parallel to all caches
on the SMP bus. Snooping other processors’ caches

Power and energy conservation have recently become key con-
cerns for high-performance servers, especially when deployed
in large cluster configurations as in data centers and Web-host-
ing facilities.1

Research teams from Rutgers University2 and Duke Uni-
versity3 have proposed similar strategies for managing energy
in Web-server clusters. The idea is to dynamically distribute the
load offered to a server cluster so that, under light load, the sys-
tem can idle some hardware resources and put them in low-
power modes. Under heavy load, the system should reactivate
the resources and redistribute the load to eliminate performance
degradation. Because Web-server clusters replicate file data at

all nodes, and traditional server hardware has very high base
power—the power consumed when the system is on but idle—
these systems dynamically turn entire nodes on and off, effec-
tively reconfiguring the cluster.

Figure A illustrates the behavior of the Rutgers system for a
seven-node cluster running a real, but accelerated, Web trace.
The figure shows the evolution of the cluster configuration and
offered loads on each resource as a function of time. It plots the
load on each resource as a percentage of the nominal through-
put of the same resource in one node. The figure shows that the
network interface is the bottleneck resource throughout the
entire experiment.

Figure B shows the cluster power consumption for two ver-
sions of the same experiment, again as a function of time. The
lower curve (dynamic configuration) represents the reconfig-

Energy Conservation in Clustered Servers
Ricardo Bianchini, Rutgers University
Ram Rajamony, IBM Austin Research Lab

100

200

300

400

500

600

700

800

900

1,000

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
0

1

2

3

4

5

6

7

8

9

10

Lo
ad

 (p
er

ce
nt

 o
f o

ne
 n

od
e)

Nu
m

be
r o

f n
od

es

Time (seconds)

CPU load
Disk load
Net load
Number of nodes

Figure A. Cluster evolution and per-resource offered loads. The
network interface is the bottleneck resource throughout the entire
experiment.

Figure B. Power under static and dynamic configurations.
Reconfiguration reduces power consumption significantly for most
of the experiment, saving 38 percent in energy.

100

200

300

400

500

600

700

800

Lo
ad

 (p
er

ce
nt

 o
f o

ne
 n

od
e)

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Time (seconds)

Static configuration
Dynamic configuration

December 2003 45

one at a time reduces the total number of snoop
accesses. Although this method can reduce the
energy and maximum power used, it increases the
average cache miss access latency. Therefore, devel-
opers must balance the energy savings in the mem-
ory system against the energy used to keep other
system components active longer.

ENERGY MANAGEMENT MECHANISMS
Most energy management techniques consist of

one or more mechanisms that determine the power
consumption of system hardware components and
a policy that determines the best use of these mech-
anisms.

Although developers can implement some energy-
management techniques completely in hardware,
combining hardware mechanisms with software
policy is beneficial. Placing the policy in software
allows for easier modification and adaptation, as
well as more natural interfaces for users and admin-

istrators. Software policies can also use higher-level
information such as application priorities, work-
load characteristics, and performance goals.

The most commonly used power-management
mechanisms support several operating states with
different levels of power consumption. We broadly
categorize these operating states as

• active, in which the processor or device contin-
ues to operate, but possibly with reduced per-
formance and power consumption. Processors
might have a range of active states with differ-
ent frequency and power characteristics.

• idle, in which the processor or device is not
operating. Idle states vary in power consump-
tion and the latency for returning the compo-
nent to an active state.

The Advanced Configuration and Power
Interface specification (www.acpi.info) provides a

urable version of the system, whereas the higher curve (static
configuration) represents a configuration fixed at seven nodes.
The figure shows that reconfiguration reduces power consump-
tion significantly for most of the experiment, saving 38 percent
in energy.

Karthick Rajamani and Charles Lefurgy4 studied how to
improve the cluster reconfiguration technique’s energy saving
potential by using spare servers and history information about
peak server loads. They also modeled the key system and work-
load parameters that influence this technique.

Mootaz Elnozahy and colleagues5 evaluated different combi-
nations of cluster reconfiguration and two types of dynamic volt-
age scaling—independent and coordinated—for clusters in
which the base power is relatively low. In independent voltage
scaling, each server node makes its own independent decision
about what voltage and frequency to use, depending on the load
it is receiving. In coordinated voltage scaling, nodes coordinate
their voltage and frequency settings. Their simulation results
showed that, while either coordinated voltage scaling or recon-
figuration is the best technique depending on the workload, com-
bining them is always the best approach.

In other research, Mootaz Elnozahy and colleagues6 proposed
using request batching to conserve processor energy under a light
load. In this technique, the network interface processor accu-
mulates incoming requests in memory, while the server’s host
processor is in a low-power state. The system awakens the host
processor when an accumulated request has been pending for
longer than a threshold.

Taliver Heath and colleagues7 considered reconfiguration in
the context of heterogeneous server clusters. Their experimen-
tal results for a cluster of traditional and blade nodes show that
their heterogeneity-conscious server can conserve more than
twice as much energy as a heterogeneity-oblivious reconfigurable
server.

References
1. R. Bianchini and R. Rajamony, Power and Energy Management

for Server Systems, tech. report DCS-TR-528, Dept. Computer
Science, Rutgers Univ., 2003.

2. E. Pinheiro et al., “Dynamic Cluster Reconfiguration for Power
and Performance,” L. Benini, M. Kandemir, and J. Ramanujam,
eds., Compilers and Operating Systems for Low Power, Kluwer
Academic, 2003. Earlier version published in Proc. Workshop
Compilers and Operating Systems for Low Power, 2001.

3. J.S. Chase et al., “Managing Energy and Server Resources in
Hosting Centers,” Proc. 18th ACM Symp. Operating Systems
Principles, ACM Press, 2001, pp. 103-116.

4. K. Rajamani and C. Lefurgy, “On Evaluating Request-
Distribution Schemes for Saving Energy in Server Clusters,”
Proc. 2003 IEEE Int’l Symp. Performance Analysis of Systems
and Software, IEEE Press, 2003, pp. 111-122.

5. E.N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient
Server Clusters,” Proc. 2nd Workshop Power-Aware Computing
Systems, LNCS 2325, Springer, 2003, pp. 179-196.

6. E.N. Elnozahy, M. Kistler, and R. Rajamony, “Energy
Conservation Policies for Web Servers,” Proc. 4th Usenix Symp.
Internet Technologies and Systems, Usenix Assoc., 2003, pp.
99-112.

7. T. Heath et al., “Self-Configuring Heterogeneous Server
Clusters,” Proc. Workshop Compilers and Operating Systems
for Low Power, 2003, 75-84.

Ricardo Bianchini is an assistant professor in the Department
of Computer Science, Rutgers University. Contact him at
ricardob@cs.rutgers.edu.

Ram Rajamony is a research staff member at IBM Austin
Research Lab. Contact him at rajamony@us.ibm.com.

46 Computer

common terminology and a standard set of
interfaces for software power and energy
management mechanisms. ACPI defines up
to 16 active—or performance—states, P0
through P15, and three idle—or power—
states, C1 through C3 (or D1 through D3 for
devices). The specification defines a set of
tables that define the power/performance/
latency characteristics of these states, which
are both processor- and device-dependent.

A simple but powerful approach to defining
power-management policies is to specify a set of
system operating states—compositions of system
component states and modes—and then write a
policy as a mapping from current system state and
application activity to a system operating state in
accordance with desired power and performance
characteristics. Defining policies based on existing
system states such as idle, processing-application,
and processing-interrupt is an efficient and trans-
parent way to introduce power-management poli-
cies without overhauling the entire operating
system.

IBM and MontaVista Software took this ap-
proach in the design of Dynamic Power Manage-
ment, a software architecture that supports
dynamic voltage and frequency scaling for system-
on-chip environments.15 Developers can use DPM
to manipulate processor cores and related bus fre-
quencies according to high-level policies they spec-
ify with optional policy managers.

Although the initial work focuses on dynamic
voltage and frequency scaling in system-on-chip
designs, developing a similar architecture for man-
aging other techniques in high-end server systems
is quite possible.

Early work on software-managed power con-
sumption focused on embedded and laptop sys-
tems, trading performance for energy conservation
and thus extending battery life. Recently,
researchers have argued that operating systems
should implement power-conservation policies and
manage power like other system resources such as
CPU time, memory allocation, and disk access.16

Subsequently, researchers developed prototype
systems that treat energy as a first-class resource
that the operating system manages.17 These proto-
types use an energy abstraction to unify manage-
ment of the power states and system components
including the CPU, disk, and network interface.

Extending such operating systems to manage sig-
nificantly more complex high-end machines and
developing policies suitable for server system
requirements are nontrivial tasks. Key questions

include the frequency, overhead, and complexity
of power measurement and accounting and the
latency and overhead associated with managing
power in large-scale systems.

Although it increases overall complexity, a hyper-
visor—a software layer that lets a single server run
multiple operating systems concurrently—may
facilitate solving the energy-management problems
of high-end systems. The hypervisor, by necessity,
encapsulates the policies for sharing system
resources among execution images. Incorporating
energy-efficiency rules into these policies gives the
hypervisor control of system-wide energy man-
agement. It also allows developers to introduce
energy-management mechanisms and policies that
are specific to the server without requiring changes
in the operating systems running on it.

Because many servers are deployed in clusters,
and because it’s relatively easy to turn entire sys-
tems on and off, several researchers have consid-
ered energy management at the cluster level. For
example, the Muse prototype uses an economic
model that measures the performance value of
adding a server versus its energy cost to determine
the number of active servers the system needs.18

Power-aware request distribution (PARD)
attempts to minimize the number of servers needed
by concentrating load on a few servers and turn-
ing the rest off.19 As server load changes, PARD
turns machines on and off as needed.

Ricardo Bianchini and Ram Rajamony discuss
energy management for clusters further in the
“Energy Conservation in Clustered Servers” sidebar.

FUTURE DIRECTIONS
Three research areas will profoundly impact

server system energy management:

• power-efficient architectures,
• system-wide management of power-manage-

ment techniques and policies, and
• evaluation of power and performance trade-

offs.

Heterogeneous systems have significant poten-
tial as a power-efficient architecture. These systems
consist of multiple processing elements, each
designed for power- and performance-efficient pro-
cessing of particular workload types. For example,
a heterogeneous system for Internet applications
combines network processors with a set of energy-
efficient processors to provide both efficient net-
work-protocol processing and application-level
computation.

Heterogeneous
systems have

significant potential
as a power-efficient

architecture.

December 2003 47

With the increase in transistor densities, hetero-
geneity also extends into the microarchitectural
arena, where a single chip combines several cores,
each suited for efficient processing of a specific
workload. Early work in this area combines mul-
tiple generations of the Alpha processor on a single
chip, using only the core requiring the lowest power
while still offering sufficient performance for the
current workload.20 As the workload changes, sys-
tem software shifts the executing program from
core to core, trying to match the application’s
required performance while minimizing power con-
sumption.

Server systems can employ several energy-man-
agement techniques concurrently. A coordinated
high-level management approach is critical to han-
dling the complexity of multiple techniques and
applications and achieving the desired power and
performance. Specifying high-level power-man-
agement policies and mapping them to available
mechanisms is a key issue that researchers must
address.

Another question concerns where to implement
the various policies and mechanisms: in dedicated
power-management applications, other applica-
tions, middleware, operating systems, hypervisors,
or individual hardware components. Clearly, none
of these alternatives can achieve comprehensive
energy management in isolation. At the very least,
arriving at the right decision requires efficiently
communicating information between the system
layers.

The real challenge is to make such directed
autonomy work correctly and at reasonable over-
head. Heng Zeng and colleagues suggest using
models based on economic principles.17 Another
option is to apply formal feedback-control and pre-
diction techniques to energy management. For
example, Sivakumar Velusamy and colleagues used
control theory to formalize cache power manage-
ment.21 The Clockwork project22 applies predictive
methods to systems-level performance manage-
ment, but less work has been done on using these
methods.

Designers and implementers need techniques to
correctly and conveniently evaluate energy man-
agement solutions. This requires developing bench-
marks that focus not just on peak system
performance but also on delivered performance
with associated power and energy costs. Closely tied
to this is the use of metrics that incorporate power
considerations along with performance. Another
key component is the ability to closely monitor sys-
tem activity and correlate it to energy consumption.

P erformance monitoring has come a long way
in the past few years, with high-end proces-
sors supporting an array of programmable

event-monitoring counters. But system-level power
management requires information about bus-level
transactions and activity in the memory hierarchy.
Much of this information is currently missing.
Equally important is the ability to relate the values
of these counters to both energy consumption and
the actual application-level performance. The ulti-
mate goal, after all, is to achieve a good balance
between application performance and system
energy consumption. ■

Acknowledgment
This work was supported, in part, by the US

Defense Advanced Research Projects Agency
(DARPA) under contract F33615-01-C-1892.

References
1. T. Mudge, “Power: A First-Class Architectural Design

Constraint,” Computer, Apr. 2001, pp. 52-57.
2. M. Weiser et al., “Scheduling for Reduced CPU

Energy,” Proc. 1st Symp. Operating Systems Design
and Implementation, Usenix Assoc., 1994, pp. 13-23.

3. K. Flautner and T. Mudge, “Vertigo: Automatic Per-
formance-Setting for Linux,” Proc. 5th Symp. Oper-
ating Systems Design and Implementation (OSDI),
Usenix Assoc., 2002, pp. 105-116.

4. P. Bohrer et al., “The Case for Power Management
in Web Servers,” Power-Aware Computing, R. Gray-
bill and R. Melhem, eds., Series in Computer Science,
Kluwer/Plenum, 2002.

5. J. Seng, D. Tullsen, and G. Cai, “Power-Sensitive Mul-
tithreaded Architecture,” Proc. 2000 Int’l Conf. Com-
puter Design, IEEE CS Press, 2000, pp. 199-208.

6. L.A. Barroso et al., “Piranha: A Scalable Architec-
ture Based on Single-Chip Multiprocessing,” Proc.
27th ACM Int’l Symp. Computer Architecture, ACM
Press, 2000, pp. 282-293.

7. W. Felter et al., “On the Performance and Use of
Dense Servers,” IBM J. Research and Development,
vol. 47, no. 5/6, 2003, pp. 671-688.

8. V. Delaluz et al., “Scheduler-Based DRAM Energy
Management,” Proc. 39th Design Automation Conf.,
ACM Press, 2002, pp. 697-702.

9. H. Huang, P. Pillai, and K.G. Shin, “Design and
Implementation of Power-Aware Virtual Memory,”
Proc. Usenix 2003 Ann. Technical Conf., Usenix
Assoc., 2003, pp. 57-70.

48 Computer

10. A.R. Lebeck et al., “Power-Aware Page Allocation,”
Proc. Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Systems (ASP-
LOS), ACM Press, 2000, pp. 105-116.

11. V. Delaluz, M. Kandemir, and I. Kolcu, “Automatic
Data Migration for Reducing Energy Consump-
tion in Multi-Bank Memory Systems,” Proc. 39th
Design Automation Conf., ACM Press, 2002, pp.
213-218.

12. R.B. Tremaine et al., “IBM Memory Expansion Tech-
nology (MXT),” IBM J. Research and Development,
vol. 45, no. 2, 2001, pp. 271-286.

13. A. Moshovos et al., “Jetty: Filtering Snoops for
Reduced Energy Consumption in SMP Servers,”
Proc. 7th Int’l Symp. High-Performance Computer
Architecture, IEEE CS Press, 2001, pp. 85-96.

14. C. Saldanha and M. Lipasti, “Power Efficient Cache
Coherence,” High-Performance Memory Systems,
H. Hadimiouglu et al., eds., Springer-Verlag, 2003.

15. B. Brock and K. Rajamani, “Dynamic Power Man-
agement for Embedded Systems,” Proc. IEEE Int’l
SOC Conf., IEEE Press, 2003, pp. 416-419.

16. A. Vahdat, A. Lebeck, and C. Ellis, “Every Joule Is
Precious: The Case for Revisiting Operating System
Design for Energy Efficiency,” Proc. 9th ACM
SIGOPS European Workshop, ACM Press, 2000,
pp. 31-36.

17. H. Zeng et al., “Currentcy: A Unifying Abstraction
for Expressing Energy Management Policies,” Proc.
General Track: 2003 Usenix Ann. Technical Conf.,
Usenix Assoc., 2003, pp. 43-56.

18. J. Chase et al., “Managing Energy and Server
Resources in Hosting Centers,” Proc. 18th Symp.
Operating Systems Principles (SOSP), ACM Press,
2001, pp. 103-116.

19. K. Rajamani and C. Lefurgy, “On Evaluating
Request-Distribution Schemes for Saving Energy in
Server Clusters,” Proc. IEEE Int’l Symp. Perfor-
mance Analysis of Systems and Software, IEEE Press,
2003, pp. 111-122.

20. R. Kumar et al., “A Multi-Core Approach to
Addressing the Energy-Complexity Problem in
Microprocessors,” Proc. Workshop on Complexity-
Effective Design (WCED 2003), 2003; www.ece.
rochester.edu/~albonesi/wced03.

21. S. Velusamy et al., “Adaptive Cache Decay Using For-
mal Feedback Control,” Proc. Workshop on Memory
Performance Issues (held in conjunction with the
29th Int’l Symp. Computer Architecture), ACM
Press, 2002; www.cs.virginia.edu/~skadron/Papers/
wmpi_decay.pdf.

22. L. Russell, S. Morgan, and E. Chron, “Clockwork: A
New Movement in Autonomic Systems,” IBM Sys-
tems J., vol. 42, no. 1, 2003, pp. 77-84.

Charles Lefurgy is a research staff member at the
IBM Austin Research Lab. His research interests
include computer architecture and operating sys-
tems. Lefurgy received a PhD in computer science
and engineering from the University of Michigan.
He is a member of the ACM and the IEEE. Contact
him at lefurgy@us.ibm.com.

Karthick Rajamani is a research staff member in
the Power-Aware Systems Department at the IBM
Austin Research Lab. His research interests include
the design of computer systems and applications
with the focus on power and performance opti-
mizations. Rajamani received a PhD in electrical
and computer engineering from Rice University.
Contact him at karthick@us.ibm.com.

Freeman Rawson is a senior technical staff member
at the IBM Austin Research Lab. His research inter-
ests include operating systems, middleware, and
systems management. Rawson received a PhD in
philosophy from Stanford University. He is a mem-
ber of the IEEE Computer Society, the ACM, and
AAAI. Contact him at frawson@us.ibm.com.

Wes Felter is a researcher at the IBM Austin
Research Lab. His interests include operating sys-
tems, networking, peer-to-peer, and the sociopolit-
ical aspects of computing. Felter received a BS in
computer sciences from the University of Texas at
Austin. He is a member of the ACM. Contact him
at wmf@us.ibm.com.

Michael Kistler is a senior software engineer at the
IBM Austin Research Lab and a PhD candidate in
computer science at the University of Texas at
Austin. His research interests include operating sys-
tems and fault-tolerant computing. Contact him at
mkistler@us.ibm.com.

Tom W. Keller manages the Power-Aware Systems
Department at the IBM Austin Research Lab.
Keller received a PhD in computer sciences from
the University of Texas at Austin. Contact him at
tkeller@us.ibm.com.

