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— Extended Abstract —
Abstract
Compressing the instructions of an embedded pro-

gram is important for cost-sensitive low-power control-
oriented embedded computing. Several hardware decom-
pression architectures have been proposed. In this paper,
we present a method of decompressing programs using
software. One interesting aspect of our method is that it
relies on using a software-managed instruction cache
under control of the decompressor. In addition, our solu-
tion is an order of magnitude faster than a previous soft-
ware-managed decompression system.

1 Introduction

Many recent code compression studies have sug-
gested that custom on-chip hardware be used to decom-
press programs. In this paper, we explore doing
decompression in software. Software decompression
schemes are interesting because they reduce hardware
complexity and allow greater choice of compression algo-
rithms late in the product design cycle. Software-managed
decompression allows separate programs to use entirely
different compression methods. Newly developed com-
pression methods are not constrained to use old decom-
pression hardware. In addition, decompressors can be
cheaply implemented on a wide variety of architectures
and instruction sets with little effort. The primary chal-
lenge in software decompression is to minimize the
increased execution time due to running the decompres-
sion software. Our technique is an order of magnitude
faster than a previously proposed system.

The organization of this paper is as follows. Section 2
reviews previous work in code compression. We present
our compression method in section 3. Our simulation envi-
ronment is presented in section 4. In section 5, we discuss
our experimental results. Finally, section 6 contains our
conclusions.

2 Previous work

There have been many recent publications about code
compression. The Compressed Code RISC Processor
[Wolfe92, Kozuch94, Benes98] is a MIPS processor that
decompresses instruction cache lines which have been

Huffman encoded. Dictionary compression method
[Bell90] have been studied for several processors [Liao9
Lefurgy97]. IBM uses dictionary compression in embed
ded PowerPC microprocessors [IBM97]. Compressio
algorithms based on operand factorization and Mark
models have been examined [Ernst97]. More complicat
compression algorithms have combined operand factori
tion with Huffman and arithmetic coding [Lekatsas98
Aranjo98]. Compression methods for distributing pro
grams over a network have been proposed [Fraser
Ernst97, Franz97].

Our work is most comparable to a software-manag
compression scheme proposed by Kirovski et a
[Kirovski97]. They use a software-managed procedur
cache to hold decompressed procedures. This meth
requires 1) that the procedure cache be large enough
completely hold the largest procedure and 2) defragmen
tion be supported when not enough free-space is availab
Their compression algorithm is LWRZ1 [Williams91], an
adaptive Ziv-Lempel model.

In contrast, our compression scheme works on t
granularity of cache lines and can be used with caches
any size and functions of any size. It is faster because
avoids decompressing code that is not executed, does
need to manage cache fragmentation, and uses a sim
decompression algorithm.

3 Compression architecture

We use the instruction cache as a decompress
buffer. On a cache miss, compressed instructions are r
from main memory, decompressed, and placed in t
cache. The instruction cache contents appear identical t
system without compression. This allows the CPU to b
unaware of compression. In addition, code performs
native speeds once it is brought into the cache.

To support software-managed decompression,
require a method to invoke the decompressor on a cac
miss and a way to put decompressed instructions into
instruction cache. We can accomplish these by making t
modifications to the instruction set architecture. First, th
instruction cache miss must raise an exception whi
invokes the decompression software. Second, there m
exist an instruction to modify the contents of the cach
Presented at CASES’99, October 1-3, 1999 1
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We believe that it is reasonable to expect new processors
to provide such capability. These mechanisms have uses
beyond just code compression. Jacob et al. proposes using
such features so that software-managed address translation
may completely replace hardware-translation performed
by the translation-lookaside buffer [Jacob97]. Jacob fur-
ther suggests using software-managed caches to provide
fast, deterministic memories in embedded systems
[Jacob99]. We believe that software-managed caches may
also be useful for dynamic compilation and high-perfor-
mance interpreters.

Our compression scheme [Lefurgy98] takes advan-
tage of the observation that the instructions in programs
are highly repetitive. Each unique 32-bit instruction word
in the original program is put in adictionary. Each instruc-
tion in the original program is then replaced with a 16-bit
index into the dictionary. Because the instruction words
are replaced with a short index and because the dictionary
overhead is usually small compared to the program size,
the compressed version is smaller than the original.
Instructions that only appear once in the program are prob-
lematic. The index plus the original instruction in the dic-
tionary are larger than the single original instruction,
causing a slight expansion from the native representation.
Figure 1 illustrates the compression method. The indices
and the dictionary reside in main memory at the position
of the original .text segment.

We use 16-bit indices which limits the dictionary to
contain only 64K unique instructions. In practice, this is
sufficient for many interesting programs, including our
benchmarks. However, programs that use more instruc-
tions can be accommodated. Such programs are divided
into a compressed region and a native code region. When
the dictionary is filled the remainder of the program is left
in the native code region. An extra flag in the page table
entry could identify compressed and native code regions.
A cache miss in the native region would use the usual
cache controller, but a cache miss in the compressed

region would invoke the decompressor. Such a scheme
used in CodePack [IBM97].

4 Simulation environment

We perform our compression experiments on the Sim
pleScalar 3.0 simulator [Burger97] after modifying it to
support compressed code. Our benchmarks come from
SPEC CINT95 and MediaBench suites [SPEC95, Lee9
The benchmarks are compiled with GCC 2.6.3 using th
optimizations “-O3 -funroll-loops” and are statically
linked with library code. We shortened the input sets s
that the benchmarks would complete in a reasonab
amount of time. We run these shortened programs to co
pletion.

SimpleScalar has 64-bit instructions which ar
loosely encoded, and therefore highly compressible. So
to not exaggerate our compression results, we wanted
instruction set more closely resembling those used in cu
rent microprocessors and used by code compress
researchers. Therefore, we re-encoded the SimpleSc
instructions to fit within 32 bits. Our encoding is straight
forward and resembles the MIPS IV encoding. Most of th
effort involved removing unused bits in the 64-bit instruc
tions.

For our baseline simulations we choose a simp
architecture that is likely to be found in a low-end proces
sor for an embedded system. This is modeled as a sin
issue, in-order, 5-stage pipeline. We simulate only L
caches and main memory. Main memory has a 64-bit bu
The first access takes 10 cycles and successive acce
take 2 cycles. Table 1 shows the simulation parameters.

The L1 miss handler (decompressor) is very simp
and shown in Figure 2. The handler runs 74 instructions
decompress a cache line of 8 4-byte instructions. T
decompression requires less than 3 SimpleScalar instr
tions per instructionbytedecoded. In comparison, LZRW1
has a hand-optimized decompressor for 68000 which ex
cutes 4 instructions on average per outputbyte
[Williams91].

Figure 1: Compressed program

Original Program Compressed Program

32 bits 16 bits 32 bits

.dictionary segment

.text segment

add r1,r2,r4

add r1,r2,r3

add r1,r2,r3

add r1,r2,r4

add r1,r2,r3

5

30

30

add r1,r2,r3 30

(contains indices)
.text segment

add r1,r2,r4 5

SimpleScalar parameters Baseline

fetch queue size 1

decode width 1

issue width 1 in-order

commit width 1

LSQ 2

FUs alu:1, mult:1, memport:1, fpalu:1, fpmult:1

branch pred bimode 2048 entries

L1 D-cache 8KB, 32B lines, 2-assoc, LRU

L1 I-cache 1KB - 64KB, 16B lines, 2-assoc, LRU

memory latency 10 cycle latency, 2 cycle rate

memory width 64 bits

Table 1: Simulation Parameters
Presented at CASES’99, October 1-3, 1999 2
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We add two instructions to SimpleScalar to support
software decompression. First,swic Rx,n(Ry) stores
the word in Rx to the I-cache address Ry+n. Second,
iret returns from the exception handler to the missed
instruction.

It is important that the decompressor not be in danger
of replacing itself when it modifies the contents of the

instruction cache. Therefore, we assume that the deco
pressor is locked down in fast memory so that it never h
a cache-miss itself. Our simulations put the exception ha
dler in its own small on-chip RAM accessed in paralle
with the instruction cache. It could also be put in th
instruction cache if the cache has the ability to load an
lock lines.

5 Results

All results include both application and library code
Compression ratiois used to measure the size of the pro
gram remaining after compression.

(Eq. 1)

The size of the native and compressed programs a
given in Table 2. The compressed program size is the su
of the dictionary and index bytes.

The performance of the benchmarks is shown
Figure 3. The y-axis shows the execution times of th
benchmarks scaled to the execution time of the native no
compressed program. For brevity, we only report resu
for the benchmarkscc1, go, and mpeg2enc. We usecc1
and go because they are among the worst performin
benchmarks due to high cache miss ratio. We u
mpeg2encas an example of a benchmark with a bette
cache miss ratio.

In addition to the native and compressed program
we consider two optimizations for the decompressor.

First, we consider only decompressing from th
missed instruction until the end of the cache line. We ca
this partial decompression. This avoids work to decom-
press instructions at the beginning of the cache line whi
may not actually be executed. Since only part of the cac
line is filled on a miss, the CPU must have a method
distinguish valid and invalid instructions in the line. Ou
simulations assume that the usual cache line valid bit
replaced with a valid bit for each instruction. When a ne
cache line is allocated, all valid bits are set tofalse. As we
decompress, theswic instruction sets the valid bits to
true. The cost is a slight expansion in cache size. Anoth

# Load L1 I-cache line with 8 instructions

# Register Use
# r9 : index address
# r10: base address of dictionary
# r11: index into dictionary
# r12: next cache line addr. (loop halt value)
# r26: indices base and decompressed insn
# r27: insn address to decompress

# Save regs to user stack
# r26,r27 are reserved for OS, do not require saving.

sw $9,-4($sp)
sw $10,-8($sp)
sw $11,-12($sp)
sw $12,-16($sp)

# Load system register inputs into general registers
mfc0 $27,c0[BADVA] # the faulting PC
mfc0 $26,c0[0] # indices base (== .text base)
mfc0 $10,c0[1] # dictionary base

# Zero low 5 bits to get cache line addr.
srl $27,$27,5
sll $27,$27,5 # r27 now has the cache line address

# index_address = (C0[0] - C0[BADVA]) << 1 + C0[0]
sub $9,$27,$26 # get offset into .text
srl $9,$9,1 # transform to offset into indices
add $9,$26,$9 # load r9 with index

# calculate next line address (stop when we reach it)
add $12,$27,32

loop:
lhu $11,0($9) # Put index in r11
add $9,$9,2 # index_address++
sll $11,$11,2 # scale for 4B dictionary entry
lw $26,($11+$10) # r26 holds the instruction
swic $26,0($27) # store word in cache
add $27,$27,4 # advance insn address
bne $27,$12,loop

# 7. Restore registers and return
lw $9,-4($sp)
lw $10,-8($sp)
lw $11,-12($sp)
lw $12,-16($sp)
iret # return from exception handler

Figure 2: L1 miss exception handler

compression ratio compressed size
original size

--------------------------------------=

Bench
Dynamic Insns

(millions)
Cache miss ratio
for 16KB cache

Original size
(bytes)

Compressed size
(bytes)

Dictionary compression ratio
(smaller is better)

LZRW1
Compression ratio

cc1 121 2.9% 1,083,168 654,999 65.4% 60.4%

vortex 154 2.1% 495,248 274,420 65.8% 55.5%

go 133 2.0% 310,576 182,602 69.6% 63.9%

perl 109 1.6% 267,568 162,045 73.7% 60.2%

ijpeg 124 0.1% 198,272 118,131 77.2% 61.5%

mpeg2enc 137 0.01% 119,600 98,688 82.5% 60.5%

pegwit 115 0.02% 88,800 70,608 79.5% 56.7%

Table 2: Compression ratio of .text section
Presented at CASES’99, October 1-3, 1999 3
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method that would not expand the cache size would be to
fill the entire cache line with copies of a special instruction
when the line is allocated. This special instruction would
signal a cache miss whenever it is executed allowing the
exception handler to fill the request.

Second, we assume that the CPU has a second regi
file that the decompressor can use. During an exceptio
all instructions use the second register file. This allows u
to avoid set-up instructions for saving and re-loading re
isters. In addition, we can store the dictionary and indic
base pointers in this second general register file and av
reloading them each time from system registers.

Partial decompression and the additional register fi
help most in the 1KB cache simulations due to the hig
number of instruction cache misses. The partial decom
pression improves the baseline decompression perf
mance at most 10%. Partial decompression plus t
additional register file improve the baseline decompre
sion performance at most 22%.

For all benchmarks, the performance cost is no mo
than 5.1 times the original execution time with a sma
1KB cache. The optimized version with a second regist
file and partial decompression is no worse than 4.2 tim
slower than the original using 1KB cache. Increasin
cache size effectively controls this slowdown. The opt
mized decompression with a 64KB cache allows the slow
est program (go) to run with a 54% increase in execution
time and the fastest programs (ijpeg, mpeg2enc,andpeg-
wit) to run with less than a 2% increase in execution time

In comparison, the decompression used by Kirovski
al. has a much wider variance in performance. They rep
slowdowns that range from marginal to over 100 time
slower (for cc1 and go) than the original programs for
1KB to 64KB sized caches. Our decompression meth
shows more stability in performance over this range
cache sizes. However, the LZRW1 compression attai
better compression ratios. Table 2 shows the compress
ratios for LZRW1 when compressing the entire .text se
tion as one unit. LZRW1 has 5-25% better compressio
ratios on SimpleScalar code compared to our dictiona
compression.

Decompression only occurs during a cache mis
Therefore, the instruction cache miss ratio has a stro
effect on the performance of the compressed progra
Figure 4 shows this effect by plotting the instruction cach
miss ratio against the execution time using all of our sim
lation results for each benchmark and cache size. The k
to improving performance of a compressed program is
reduce the instruction cache misses. This can be acco
plished in several ways. For example, enlarging the cach
applying code layout optimizations, or applying classica
optimizations that improve the native code size. Ou
results show that once the instruction cache miss ratio
below 1.5%, all decompression implementations perfor
no worse than twice as slow as the native programs.

Another effective way of controlling loss of execution
speed is to useselective compression. Highly used proce-
dures should be left un-compressed so that they do n

Figure 3: Performance results. Y-axis shows perfor-
mance scaled to native code results. Native: the native
non-compressed program. Compressed: The compressed
program decompressed with the exception handler in
Figure 2. Partial: Decompressor optimized to only decom-
press from missed instruction to end of cache line. Par-
tial+regfile: Decompressor optimized with partial
decompression and use of a second register file.

(a) cc1

(b) go

(c) mpeg2enc
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invoke the decompressor. This technique is used in exist-
ing compressed code systems [ARM95, IBM98].

6 Conclusions

We have presented a technique of using software-
managed caches to support code decompression. In this
study we have focused on designing a fast decompressor
(rather than generating the smallest code size) in the inter-
est of performance. In some cases, our decompressor is an
order of magnitude faster than a previous software decom-
pression scheme at a cost of 5-25% in the compression
ratio.

Performance loss due to compression can be miti-
gated by improving the instruction cache miss ratio. Opti-
mizing the CPU with sub-block valid bits in the
instruction cache or by adding a second register file can
improve the performance of the decompressor. Software
decompression allows the designer to easily use code com-
pression in a range of instruction sets and use better com-
pression algorithms as they become available.
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Figure 4: Effect of I-cache miss ratio on
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