
Fast Software-managed Code
Decompression

Charles Lefurgy and Trevor Mudge

Advanced Computer Architecture Laboratory
Electrical Engineering and Computer Science Dept.

The University of Michigan, Ann Arbor

Compiler and Architecture Support for Embedded Systems (CASES)

October 1-3, 1999



2

Motivation

• Problem: embedded code size
– Constraints: cost, area, and power
– Fit program in on-chip memory
– Compilers vs. hand-coded assembly

• Solution: code compression
– Reduce compiled code size
– Take advantage of instruction repetition

• Benefits
– On-chip memory used more effectively
– Trade-off performance for code density
– Systems use cheaper processors with

smaller on-chip memories

Embedded Systems

Original Program

ROM
Program

RAM

I/O

CPU

Compressed Program

R
O

MRAM

I/O

CPU



3

Hardware or software decompression?

• Hardware
– Faster translation
– CodePack, MIPS-16, Thumb

• Software
– Smaller physical area

– Lower cost
– Quicker re-targeting to new compression algorithms

– Rivals HW solutions on some (loopy) benchmarks



4

• Overview
– Procedure Compression
– Decompress and execute 1 procedure at a time
– Store decompressed code in procedure cache
– Cache management

• Results
– 60% compression ratio on SPARC
– 166% execution penalty with 64KB procedure cache

Kirovski et al., 1997

Native

F: load r5,4
...

Compile LZ Compress Decompressor

P-cache
manager

Native

G: addi r7,8
...

HLL

F() {...}

HLL

G() {...}

LZ

F: 10010...

LZ

G: 00101...



5

Dictionary compression algorithm

• Dictionary contains unique instructions
• Replace program instructions with short index

Add r1,r2,r3

Add r1,r2,r3

Add r1,r2,r4

Add r1,r2,r4

Add r1,r2,r4

32 bits

.text segment

Original program

5

5

30

30

30

16 bits

.text segment (contains indices)

Compressed program

Add r1,r2,r3

Add r1,r2,r4

32 bits

.dictionary segment



6

Benchmark Original Dict. Compression LZRW1 Compression
cc1 1,083,168 65.4% 60.4%
vortex 495,248 65.8% 55.5%
go 310,576 69.6% 63.9%
perl 267,568 73.7% 60.2%
ijpeg 198,272 77.2% 61.5%
mpeg2enc 119,600 82.5% 60.5%
pegwit 88,800 79.5% 56.7%

Compression ratio

•

• Compression ratios
– Dictionary: 65% - 82%
– LZRW1: 55% - 63%

sizeoriginal
sizecompressed

rationcompressio ====



7

Decompression code

• Simple
– Small static code size: 25 instructions

• Fast
– Less than 3 instructions per output byte

– 74 dynamic instructions per decompressed cache line

• Algorithm
– Invoke decompressor on L1 I-cache miss

– Decompress 1 complete cache line
– For each instruction in cache line

• Read index

• Reference dictionary with index to get instruction
• Put instruction in I-cache

• HW Support
– L1-cache miss exception

– Write into I-cache



8

Optimizations

• Partial decompression
– compress from missed instruction to end of cache line

– use a valid bit per word in cache line to mark instructions at beginning of
line as invalid

– avoids decompressing instructions that may not be executed

– up to 12% speedup

• Second register file
– Many embedded processors have an additional register file

– Avoid save/restore of registers when decompressor runs
– 2nd register file with partial decompression: up to 16% speedup



9

Simulation environment

• SimpleScalar
– Modified to support compression

• 5 stage, in-order pipeline
– Simple embedded processor

• D-cache
– 8KB, 16B lines, 2-way

• I-cache
– 1 to 64KB, 32B lines, 2-way

• Memory
– 10 cycle latency, 2 cycle rate



10

0

1

2

3

4

5

6

1KB 4KB 16KB 64KB

I-cache size (KB)

Slowdown
relative to

native code

compressed
partial
partial+regfile
native

Performance: cc1



11

Performance: ijpeg

0

1

2

3

4

5

6

1KB 4KB 16KB 64KB

I-cache size (KB)

compressed

partial

partial+regfile

nativeSlowdown
relative to

native code



12

Performance summary

• Data from CINT95, MediaBench with several cache sizes
• Control slowdown by optimizing I-cache miss ratio

– Code layout may help

0

1

2

3

4

5

6

0% 5% 10% 15%

I-cache miss ratio

Slowdown
relative to

native code compressed

partial

partial+regfile



13

Performance summary, cont.

• Magnification of previous graph
• Slowdown under 3x when I-miss ratio is under 2%
• Slowdown under 2x when I-miss ratio is under 1%

0

1

2

3

4

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%

I-cache miss ratio

Slowdown
relative to

native code
compressed
partial
partial+regfile



14

Conclusions

• Line-based decompression beats procedure-based
– use normal cache as decompression buffer

– no fragmentation management as in procedure-based decompression
– order of magnitude performance difference

– A previous decompressor with procedure granularity had 100x slowdown
on gcc and go [Kirovski97]

• Compressed code fills gap
– has quick execution of native code

– has small size of interpreted code



15

Web page

http://www.eecs.umich.edu/~tnm/compress


