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Motivation

• Problem: embedded code size
– Constraints: cost, area, and power
– Fit program in on-chip memory
– Compilers vs. hand-coded assembly

• Solution: code compression
– Reduce compiled code size
– Take advantage of instruction repetition

• Benefits
– On-chip memory used more effectively
– Trade-off performance for code density
– Systems use cheaper processors with

smaller on-chip memories
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Hardware or software decompression?

• Hardware
– Faster translation
– CodePack, MIPS-16, Thumb

• Software
– Smaller physical area

– Lower cost
– Quicker re-targeting to new compression algorithms

– Rivals HW solutions on some (loopy) benchmarks
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• Overview
– Procedure Compression
– Decompress and execute 1 procedure at a time
– Store decompressed code in procedure cache
– Cache management

• Results
– 60% compression ratio on SPARC
– 166% execution penalty with 64KB procedure cache

Kirovski et al., 1997
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Dictionary compression algorithm

• Dictionary contains unique instructions
• Replace program instructions with short index
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Benchmark Original Dict. Compression LZRW1 Compression
cc1 1,083,168 65.4% 60.4%
vortex 495,248 65.8% 55.5%
go 310,576 69.6% 63.9%
perl 267,568 73.7% 60.2%
ijpeg 198,272 77.2% 61.5%
mpeg2enc 119,600 82.5% 60.5%
pegwit 88,800 79.5% 56.7%

Compression ratio

•

• Compression ratios
– Dictionary: 65% - 82%
– LZRW1: 55% - 63%

sizeoriginal
sizecompressed

rationcompressio ====
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Decompression code

• Simple
– Small static code size: 25 instructions

• Fast
– Less than 3 instructions per output byte

– 74 dynamic instructions per decompressed cache line

• Algorithm
– Invoke decompressor on L1 I-cache miss

– Decompress 1 complete cache line
– For each instruction in cache line

• Read index

• Reference dictionary with index to get instruction
• Put instruction in I-cache

• HW Support
– L1-cache miss exception

– Write into I-cache
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Optimizations

• Partial decompression
– compress from missed instruction to end of cache line

– use a valid bit per word in cache line to mark instructions at beginning of
line as invalid

– avoids decompressing instructions that may not be executed

– up to 12% speedup

• Second register file
– Many embedded processors have an additional register file

– Avoid save/restore of registers when decompressor runs
– 2nd register file with partial decompression: up to 16% speedup
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Simulation environment

• SimpleScalar
– Modified to support compression

• 5 stage, in-order pipeline
– Simple embedded processor

• D-cache
– 8KB, 16B lines, 2-way

• I-cache
– 1 to 64KB, 32B lines, 2-way

• Memory
– 10 cycle latency, 2 cycle rate
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Performance: ijpeg
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Performance summary

• Data from CINT95, MediaBench with several cache sizes
• Control slowdown by optimizing I-cache miss ratio

– Code layout may help
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Performance summary, cont.

• Magnification of previous graph
• Slowdown under 3x when I-miss ratio is under 2%
• Slowdown under 2x when I-miss ratio is under 1%
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Conclusions

• Line-based decompression beats procedure-based
– use normal cache as decompression buffer

– no fragmentation management as in procedure-based decompression
– order of magnitude performance difference

– A previous decompressor with procedure granularity had 100x slowdown
on gcc and go [Kirovski97]

• Compressed code fills gap
– has quick execution of native code

– has small size of interpreted code
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Web page

http://www.eecs.umich.edu/~tnm/compress


