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% Separating the dynamic and leakage power can enable new
optimizations for cloud computing.
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Fig. 6. Leakage power estimation via firmware

¢ FirmLeak accounts for power-gating regions, per-core voltage
domains, and manufacturing variations.
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Chargeback Fig. 9. VDD total power under varying conditions of temperature
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¢ Average Error of ~5%.

VM 2 Leakage Power = Leakage Current * |Voltage

s Leakage power estimation in modern  high-performance
microprocessors, must account for significant manufacturing variation
[2] as well as workload-induced temperature variation.
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Fig. 2. Per core energy for VM energy chargeback

¢ Fan-based power optimization ¢ The information for each device type in the domain, along with
process corner information from test, temperature and voltage
conditions from hardware sensors, technology specific constants
configured in firmware, is passed into a device level leakage power

computation model.
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 Since firmware power management may operate on a longer time
intervals than power-gating of cores or function units, the ability to
derate the leakage estimate to account for the actual power-on time

becomes important.
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¢ Accurate runtime estimation of leakage power from [1, 3] requires
intensive post-silicon power characterization and data collection.
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Fig. 1. FirmLeak Overview

¢ Introduces the use of Process, Voltage and Temperature (PVT)
independent pre-silicon Power Gating domain Leakage Abstracts
(PGLA) in firmware to accurately estimate per-device type
contributions and total runtime leakage power.

¢ Enables significant reduction in post-silicon power characterization.

s Enables power-gating aware estimation by adding accompanying
circuitry to track the time spent in power-gating states.
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Fig. 4. Motivation for using per device type power gating abstracts in the runtime
estimation of leakage power in firmware.
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Fig. 5. Power gating domain leakage abstract (PGLA) table

¢ For each design unit that makes up the hardware block (example:
microprocessor), we generate a leakage abstracts, using techniques

described in [4].

Experimental Setup

Fig. 8. POWERT7+ server

s Power 730/740 class server [5] used for experimental evaluation.
s Uses 32nm POWERTY+ processors.

% 2 socket entry-level SMP server with up to 16 processor cores.
+¢ The system planar supports two POWER 7+ modules.
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Fig. 11. VDD total power under varying conditions of voltage

Average error of ~2 %.
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