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Abstract

In today’s data centers, precisely controlling server

power consumption is an essential way to avoid system fail-

ures caused by power capacity overload or overheating due

to increasingly high server density. While various power

control strategies have been recently proposed, existing so-

lutions are not scalable to control the power consumption

of an entire large-scale data center, because these solutions

are designed only for a single server or a rack enclosure.

In a modern data center, however, power control needs to

be enforced at three levels: rack enclosure, power distribu-

tion unit, and the entire data center, due to the physical and

contractual power limits at each level. This paper presents

SHIP, a highly scalable hierarchical power control architec-

ture for large-scale data centers. SHIP is designed based

on well-established control theory for analytical assurance

of control accuracy and system stability. Empirical results

on a physical testbed show that our control solution can pro-

vide precise power control, as well as power differentiations

for optimized system performance. In addition, our extensive

simulation results based on a real trace file demonstrate the

efficacy of our control solution in large-scale data centers

composed of thousands of servers.

1 Introduction

Power consumed by computer servers has become a seri-

ous concern in the design of large-scale enterprise data cen-

ters. In addition to high electricity bills and negative envi-

ronmental implications, increased power consumption may

lead to system failures caused by power capacity overload or

system overheating, as data centers increasingly deploy new

high-density servers (e.g., blade servers), while their power

distribution and cooling systems have already approached

the peak capacities. The goal of power control (also called

power capping) is to have runtime measurement and control

of the power consumed by servers, so that we can achieve the

highest system performance while keeping the power con-

sumption lower than a given power budget, which can be de-

termined by various factors such as the capacity of the power

distribution system. Precise power control, combined with
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power differentiation based on server performance needs,

can prevent system failures while allowing data centers to

operate at peak efficiencies for a higher return on investment.

In today’s data centers, power needs to be controlled at

three levels: rack enclosure, Power Distribution Unit (PDU),

and an entire data center, due to the physical and contractual

power limits at each level [1]. For example, if the physi-

cal power limits are violated, overloading of electrical cir-

cuits may cause circuit breakers to trip, resulting in unde-

sired outages. Even though data centers commonly rely on

power provisioning, the actual power consumption of the IT

equipment in a data center may still exceed the power distri-

bution capacity of the facility. A real scenario that many

data centers face is that business needs require deploying

new servers rapidly while upgrades of the power and cool-

ing systems lag far behind. In some geographies, it is ei-

ther impossible or cost-prohibitive to provide more power

from the utility company to the data centers. For example,

the power consumption of National Security Agency (NSA)

headquarters in 2006, which is greater than that of the city

of Annapolis, reached the power limit of the facility [2]. The

agency responded by turning off non-critical equipment. In

2007, the power constraint delayed deployment of new com-

puting equipment and caused planned outages and rolling

brownouts in the NSA data center. Similar incidents are ex-

pected to increasingly occur in the coming years as more data

centers reach their power limits. Therefore, it is important to

control the power consumption of an entire data center.

However, to date, most existing work on server power

control focuses exclusively on controlling the power con-

sumption of a single server. Only a few recently proposed

control strategies are designed for the rack enclosure level

[3, 4, 5]. These centralized solutions cannot be easily ex-

tended to control an entire large-scale data center due to sev-

eral reasons. First, the worst-case computational complexity

of a centralized controller is commonly proportional to the

system size and thus cannot scale well for large-scale sys-

tems [6]. Second, since every server in the data center may

need to communicate with the centralized controller in every

control period, the controller may become a communication

bottleneck. Furthermore, a centralized controller may have

long communication delays in large-scale systems. There-

fore, highly scalable control solutions need to be developed.

In addition, most existing power control solutions heavily

rely on heuristics for decision making. In recent years, feed-



back control theory has been identified as an effective tool

for power control due to its theoretically guaranteed control

accuracy and system stability. Control theory also provides

well-established controller design approaches, e.g., standard

ways to choose the right control parameters, such that ex-

haustive iterations of tuning and testing can be avoided. Fur-

thermore, control theory can be applied to quantitatively an-

alyze control performance (e.g., stability, settling time) even

when the system is suffering unpredictable workload vari-

ations. This rigorous design methodology is in sharp con-

trast to heuristic-based adaptive solutions that heavily rely

on extensive manual tuning. For example, recent work [7, 4]

has shown that control-theoretic power management outper-

forms commonly used heuristic solutions by having more ac-

curate power control and better application performance.

There are several challenges in developing scalable power

control algorithms. First, the global control problem (i.e.,

power control for an entire data center) needs to be decom-

posed into a set of control subproblems for scalability. The

decomposition strategy must comply with the data centers’

power distribution hierarchy. Second, the local controller de-

signed for each decomposed subproblem needs to achieve lo-

cal stability and control accuracy despite significantly vary-

ing workloads. Third, each local controller needs to coordi-

nate with other controllers at different levels for global sta-

bility and control accuracy. Finally, the system performance

of the data center needs to be optimized based on optimal

control theory, subject to various system constraints.

In this paper, we present SHIP, a highly scalable hierar-

chical power control architecture for large-scale data centers

composed of thousands of servers. Our control architecture

is designed based on control theory for theoretically guaran-

teed control accuracy and system stability. Specifically, the

contributions of this paper are three-fold:

• We decompose the problem of power control for a data

center into control subproblems at the three levels of the

common power distribution hierarchy, and then model

the power consumption of each level.

• We design and analyze Multi-Input-Multi-Output

(MIMO) power control algorithms for the three levels

based on Model Predictive Control (MPC) theory to op-

timize system performance, while controlling the total

power to stay within the desired constraints.

• We present empirical results on a physical testbed to

demonstrate that our solution can provide precise power

control and desired power differentiation for optimized

system performance. We also present simulation results

based on a real trace file to show the effectiveness of our

solution in large-scale data centers.

The rest of the paper is organized as follows. Section 2 in-

troduces the overall architecture of our hierarchical power

control solution. Section 3 describes the system modeling,

controller design and analysis of the PDU-level power con-

troller. Section 4 discusses the coordination among con-

trollers at different levels. Section 5 provides the implemen-

tation details of our control architecture. Section 6 presents
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Figure 1. Simplified power distribution hierarchy in
a typical Tier-2 data center.

our empirical results on a physical testbed and simulation

results. Section 7 highlights the distinction of our work by

discussing the related work. Section 8 concludes the paper.

2 Hierarchical Power Control Architecture

In this section, we first introduce the power distribution

hierarchy used in many data centers. We then introduce the

design of our hierarchical power control architecture.

2.1 Power Distribution Hierarchy

Today’s data centers commonly have a three-level power

distribution hierarchy to support hosted computer servers

[1], though the exact distribution architecture may vary from

site to site. Figure 1 shows a simplified illustration of the

three-level hierarchy in a typical 1 MW data center. Power

from the utility grid is fed to an Automatic Transfer Switch

(ATS). The ATS connects to both the utility power grid and

on-site power generators. From there, power is supplied to

Uninterruptible Power Supplies (UPS) via multiple indepen-

dent routes for fault tolerance. Each UPS supplies a series

of Power Distribution Units (PDUs), which are rated on the

order of 75 - 200 kW each. The PDUs further transform the

voltage to support a group of server racks.

A typical data center may house ten or more PDUs. Each

PDU can support approximately 20 to 60 racks while each

rack can include about 10 to 80 computer servers. We as-

sume that the power limit of the upper level (e.g., the data

center) is lower than the sum of the maximum power limits

of all the lower-level units (e.g., PDUs). This assumption is

reasonable because many data centers are rapidly increasing

their number of hosted servers to support new business in the

short-term while infrastructure upgrades happen over much

longer time scales.

2.2 Control Architecture of SHIP

In this section, we provide a high-level description of the

SHIP power control architecture, which features a three-level

power control solution, as shown in Figure 1. First, the rack-

level power controller adaptively manages the power con-
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Figure 2. PDU-level and rack-level power control

loops in the SHIP power control architecture.

sumption of a rack by manipulating the CPU frequency (e.g.,

via Dynamic Voltage and Frequency Scaling (DVFS)) of the

processors of each server in the rack. Second, the PDU-

level power controller manages the total power consumption

of a PDU by manipulating the power budget of each rack

in the PDU. Similar to the PDU-level controller, the data

center-level controller manages the total power consumption

of the entire data center by manipulating the power budget

of each PDU. Our control architecture is directly applicable

to data centers where applications (e.g., scientific computing

and background data processing) can allow degraded perfor-

mance when power must be controlled to stay below a bud-

get at runtime (e.g., due to thermal emergency). For data

centers where applications need to achieve specified service-

level agreements (SLAs) (e.g., response time), our solution

can be integrated with application-level performance control

solutions (e.g., [8][9][10]) for simultaneous control of power

and application performance.

There are several reasons for us to use processor fre-

quency (and voltage) scaling as our actuation method at the

rack level. First, processors commonly contribute a large

portion of the total power consumption of a server [11]. As

a result, the processor power difference between the high-

est and lowest power states is large enough to compensate

for the power variation of other components and can thus

provide an effective way for server power control. Second,

frequency scaling has small overhead while some other ac-

tuation methods like turning on/off servers may lead to ser-

vice interruption and undesired long delays. Finally, most

today’s processors support frequency scaling by DVFS or

clock modulation [7], while there are still very few real disks

or memory devices that are designed for servers and allow

runtime transition among different active power modes. We

plan to include other actuation methods in our future work.

As shown in Figure 2, the key components in a rack-level

control loop include a power controller and a power mon-

itor at the rack level, as well as a CPU utilization monitor

and a CPU frequency modulator on each server. The control

loop is invoked periodically and its period is chosen based

on a trade-off between actuation overhead and system set-

tling time. The following steps are invoked at the end of ev-

ery control period: 1) The power monitor (e.g., a power me-

ter) measures the average value of the total power consump-

tion of all the servers in the last control period and sends the

value to the controller. The total power consumption is the

controlled variable of the control loop. 2) The utilization

monitor on each server sends its CPU utilization in the last

control period to the controller. The utilization values can

be used by the controller to optimize system performance

by allowing servers with higher utilizations to run at higher

CPU frequencies. Please note that application-level perfor-

mance metrics such as response time and throughput can also

be used in place of CPU utilization to optimize power allo-

cation in our solution. 3) The controller computes the new

CPU frequency level for the processors of each server, and

then sends the level to the CPU frequency modulator on each

server. The levels are the manipulated variables of the con-

trol loop. 4) The CPU frequency modulator on each server

changes the CPU frequency (and voltage if using DVFS) of

the processors accordingly. The rack-level power controller

is designed based on the power control algorithm presented

in [4]. The focus of this paper is on the power control loops at

the PDU and data center levels and the coordination among

controllers at different levels.

The key components in a PDU-level power control loop

include a power controller and a power monitor at the PDU

level, as well as the rack-level power controllers and the uti-

lization monitors of all the racks located within the PDU.

The control loop is invoked periodically to change the power

budgets of the rack-level control loops of all the racks in the

PDU. Therefore, to minimize the impact on the stability of a

rack-level control loop, the control period of the PDU-level

loop is selected to be longer than the settling time of the rack-

level control loop. This guarantees that the rack-level con-

trol loop can always enter its steady state within one control

period of the PDU-level loop, so that the two control loops

are decoupled and can be designed independently. The fol-

lowing steps are invoked at the end of every control period

of the PDU-level loop: 1) The PDU-level power controller

receives the power consumption of the entire PDU in the

last control period from the PDU-level power monitor. The

power consumption is the controlled variable of this control

loop. 2) The PDU-level controller also receives the average

CPU utilization of each rack from the rack-level utilization

monitor. The utilizations are used to optimize system per-

formance by allocating higher power budgets to racks with

higher utilizations. 3) The PDU-level controller then com-

putes the power budget for each rack to have in the next con-

trol period based on control theory. The power budgets are

the manipulated variables of the control loop. 4) The power

budget of each rack is then sent to the rack-level power con-

troller of that rack. Since the rack-level power controller is

in its steady state at the end of each control period of the

PDU-level controller, the desired power budget of each rack

can be achieved by the rack-level controller by the end of the

next control period of the PDU-level controller.

Similar to the PDU-level control loop, the data center-

level power control loop controls the power consumption of



the entire data center by manipulating the power budgets of

the PDU-level power control loops of all the PDUs in the

data center. The control period of the data center-level power

control loop is selected in the same way to be longer than the

settling time of each PDU-level control loop.

3 PDU-level Power Controller

In this section, we introduce the design and analysis of the

PDU-level power controller. The data center-level controller

is designed in the same way.

3.1 Problem Formulation

PDU-level power control can be formulated as a dynamic

optimization problem. In this section, we analytically model

the power consumption of a PDU. We first introduce the

following notation. Tp is the control period. pri(k) is the

power consumption of Rack i in the kth control period.

∆pri(k) is the power consumption change of Rack i, i.e.,

∆pri(k) = pri(k + 1) − pri(k). bri(k) is the power bud-

get of Rack i in the kth control period. ∆bri(k) is the power

budget change of Rack i, i.e., ∆bri(k) = bri(k+1)−bri(k).
uri(k) is the average CPU utilization of all the servers in

Rack i in the kth control period. N is the total number of

racks in the PDU. pp(k) is the aggregated power consump-

tion of the PDU. Ps is the power set point, i.e., the desired

power constraint of the PDU.

Given a control error, pp(k) − Ps, the control goal

at the kth control point (i.e., time kTp) is to dynami-

cally choose a power budget change vector ∆br(k) =
[∆br1(k) . . . ∆brN (k)]T to minimize the difference between

the power consumption of the PDU in the next control period

and the desired power set point:

min
{∆brj(k)|1≤j≤N}

(pp(k + 1) − Ps)
2 (1)

This optimization problem is subject to three constraints.

First, the power budget of each rack should be within an

allowed range, which is estimated based on the number of

servers in that rack and the maximum and minimum possi-

ble power consumption of each server. This constraint is to

prevent the controller from allocating a power budget that is

infeasible for the rack-level power controller to achieve. Sec-

ond, power differentiation can be enforced for two or more

racks. For example, in some commercial data centers that

host server racks for different clients, racks may have differ-

ent priorities for power budget allocation. As power is di-

rectly related to application performance, the power budget

allocated to one rack may be required to be n (e.g., 1.2) times

that allocated to another rack. This is referred to as propor-

tional power differentiation. The differentiation is particu-

larly important when the entire data center is experiencing

temporary power budget reduction. In that case, with power

differentiation, premium clients may have just slightly worse

application performance while ordinary clients may suffer

significant performance degradation. Finally, the total power

consumption should not be higher than the desired power

constraint. The three constraints are modeled as:

Pmin,j ≤ ∆brj(k) + brj(k) ≤ Pmax,j (1 ≤ j ≤ N)

∆bri(k) + bri(k) = n(∆brj(k) + brj(k)) (1 ≤ i 6= j ≤ N)

pp(k + 1) ≤ Ps

where Pmin,j and Pmax,j are the estimated minimum and

maximum power consumption of a rack. The two values are

estimated based on the number of servers in the rack and the

estimated maximum and minimum power consumption of a

server when it is running a nominal workload. The two val-

ues may be different in a real system due to different server

configurations and workloads, which could cause the con-

troller to allocate a power budget that is infeasible (e.g., too

high or too low) for a rack-level controller to achieve. This

uncertainty is modeled in the system model described in the

next subsection. Therefore, PDU-level power management

has been formulated as a constrained MIMO optimal control

problem.

3.2 System Modeling

We now consider the total power consumption of a PDU.

The total power consumption in the (k+1)th control period,

pp(k+1), is the result of the power consumption of the PDU

in the previous control period, pp(k), plus the sum of the

power consumption changes of all the racks in the PDU.

pp(k + 1) = pp(k) +

N
∑

i=1

∆pri(k) (2)

As introduced in Section 2, the control period of the PDU-

level controller is longer than the settling time of the rack-

level controller. As a result, at the end of each control pe-

riod of the PDU-level controller, the desired power budget

of each rack should have already been achieved by the corre-

sponding rack-level controller, i.e., the power consumption

change ∆pri(k) should be equal to the power budget change

∆bri(k). However, there could be situations that a rack may

fail to achieve a given power budget because it is infeasible

to do so. For example, a rack may fail to reach a given high

power budget because its current workload is not as power-

intensive as the nominal workload used to estimate the max-

imum power consumption of a rack used in constraint (2).

As a result, the current workload may not be enough for the

rack to achieve the given power budget even when all the

servers in the rack are running at their highest frequencies.

In that case, the power consumption change of the rack may

become a function of the change of its assigned budget, i.e.,

∆pri(k) = gi∆bri(k), where gi is the system gain, which

is also called the power change ratio. Note that gi is used

to model the uncertainties of the PDU-level power controller

and its value is unknown at design time. Our model is not

limited to constant gi. When gi varies along time, we can

identify a range of gi for which there exists a common Lya-

punov function for all gis. As a result, our model can handle

time varying gi without any change. The literature has dis-

cussion for time-varying systems in more detail [6].



In general, the relationship between the power consump-

tion of all the servers in a PDU and the power budget change

of each rack in the PDU can be modeled as follows.

pp(k + 1) = pp(k) + G∆br(k) (3)

where G =
[

g1 . . . gN

]

, and ∆br(k) =
[

∆br1(k) . . . ∆brN (k)
]T

.

3.3 Controller Design and Analysis

We apply Model Predictive Control (MPC) theory [12]

to design the controller. MPC is an advanced control tech-

nique that can deal with MIMO control problems with con-

straints on the plant and the actuators. This characteristic

makes MPC well suited for power control in data centers.

A model predictive controller optimizes a cost function

defined over a time interval in the future. The controller uses

a system model to predict the control behavior over P control

periods, called the prediction horizon. The control objective

is to select an input trajectory that minimizes the cost func-

tion while satisfying the constraints. An input trajectory in-

cludes the control inputs in the following M control periods,

∆br(k), ∆br(k + 1|k), . . . ∆br(k + M − 1|k), where

M is called the control horizon. The notation x(k + i|k)
means that the value of variable x at time (k + i)Tp de-

pends on the conditions at time kTp. Once the input trajec-

tory is computed, only the first element ∆br(k) is applied

as the control input to the system. At the end of the next

control period, the prediction horizon slides one control pe-

riod and the input is computed again based on the feedback

pp(k) from the power monitor. Note that it is important to

re-compute the control input because the original prediction

may be incorrect due to uncertainties and inaccuracies in the

system model used by the controller. MPC combines perfor-

mance prediction, optimization, constraint satisfaction, and

feedback control into a single algorithm.

The MPC controller includes a least squares solver, a cost

function, a reference trajectory, and a system model. At the

end of every control period, the controller computes the con-

trol input ∆br(k) that minimizes the following cost func-

tion under constraints.

V (k) =
∑P

i=1 ‖pp(k + i|k) − ref(k + i|k)‖2
Q(i)

+
∑M−1

i=0 ‖∆br(k + i|k) + br(k + i|k) − Pmax‖
2
R(i)(4)

where P is the prediction horizon, and M is the control hori-

zon. Q(i) is the tracking error weight, and R(i) is the con-

trol penalty weight vector. The first term in the cost func-

tion represents the tracking error, i.e., the difference be-

tween the total power pp(k + i|k) and a reference trajectory

ref(k+i|k). The reference trajectory defines an ideal trajec-

tory along which the total power pp(k + i|k) should change

from the current value pp(k) to the set point Ps (i.e., power

budget of the PDU). Our controller is designed to track the

following exponential reference trajectory so that the closed-

loop system behaves like a linear system.

ref(k + i|k) = Ps − e
−

Tp

Tref
i
(Ps − pp(k)) (5)

where Tref is the time constant that specifies the speed of

system response. A smaller Tref causes the system to con-

verge faster to the set point but may lead to larger overshoot.

By minimizing the tracking error, the closed-loop system

will converge to the power set point Ps if the system is stable.

The second term in the cost function (4) represents the

control penalty. The control penalty term causes the con-

troller to optimize system performance by minimizing the

difference between the estimated maximum power consump-

tions, Pmax = [Pmax,1 . . . Pmax,N ]T and the new power

budgets, br(k + i + 1|k) = ∆br(k + i|k) + br(k + i|k)
along the control horizon. The control weight vector, R(i),
can be tuned to represent preference among servers. For ex-

ample, a higher weight may be assigned to a rack if it has

heavier or more important workloads, so that the controller

can give preference to increasing its power budget. As a re-

sult, the overall system performance can be optimized. In

our experiments, we use the average CPU utilization of all

the servers in each rack as an example weight to optimize

system performance.

We have established a system model (3) for the PDU-level

power consumption in Section 3.2. However, the model can-

not be directly used by the controller because the system

gains G are unknown at design time. In our controller de-

sign, we assume that gi = 1, (1 < i < N), i.e., all the

racks can achieve their desired power budget changes in the

next control period. Hence, our controller solves the con-

strained optimization based on the following estimated sys-

tem model:

pp(k + 1) = pp(k) + [1 . . . 1]∆br(k). (6)

In a real system that has different server configurations or

is running a different workload, the actual value of gi may

become different than 1. As a result, the closed-loop sys-

tem may behave differently. A fundamental benefit of the

control-theoretic approach is that it gives us theoretical con-

fidence for system stability, even when the estimated system

model (6) may change for different workloads. In MPC, we

say that a system is stable if the total power pp(k) converges

to the desired set point Ps, that is, limk→∞ pp (k) = Ps. In

an extended version of this paper [13], we prove that a sys-

tem controlled by the controller designed with the assump-

tion gi = 1 can remain stable as long as the actual system

gain 0 < gi < 14.8. This range is established using stability

analysis of the closed-loop system by considering the model

variations. To handle systems with an actual gi that is out-

side the established stability range, an online model estima-

tor implemented in our previous work [14] can be adopted

to dynamically correct the system model based on the real

power measurements, such that the system stability can be

guaranteed despite significant model variations.

This control problem is subject to the three constraints

introduced in Section 3.1. The controller must minimize

the cost function (4) under the three constraints. This con-

strained optimization problem can be transformed to a stan-

dard constrained least-squares problem. The transformation



is similar to that in [15] and not shown due to space limita-

tions. The controller can then use a standard least-squares

solver to solve the optimization problem on-line. In our

system, we implement the controller based on the lsqlin

solver in Matlab. lsqlin uses an active set method similar

to that described in [16]. The computational complexity of

lsqlin is polynomial in the number of racks in the PDU

and the control and prediction horizons. The overhead mea-

surement of lsqlin can be found in [15].

4 Coordination with Rack-level Controller

As discussed in Section 2, to achieve global stability, the

period of an upper-level (e.g., PDU) control loop is preferred

to be longer than the settling time of a lower-level (e.g., rack)

control loop. This guarantees that the lower-level loop can

always enter its steady state within one control period of the

upper-level control loop, so that the two control loops are

decoupled and can be designed independently. As long as the

two controllers are stable individually, the combined system

is stable. Note that the configuration of settling time is a

sufficient but not necessary condition for achieving global

stability. In other words, global stability can be achieved in

some cases even when the control period is shorter than the

settling time of the lower-level control loop [17].

We now analyze the settling times of the PDU-level con-

trol loop and the rack-level control loop. The settling time

analysis includes three general steps. First, we compute

the feedback and feedforward matrices for the controller by

solving the control input based on the system model (e.g.,

(3)) of a specific system and the reference trajectory (e.g.,

(5)). The analysis needs to consider the composite system

consisting of the dynamics of the original system and the

controller. Second, we derive the closed-loop model of the

composite system by substituting the control inputs derived

in the first step into the actual system model. Finally, we

calculate the dominant pole (i.e., the pole with the largest

magnitude) of the closed-loop system. According to control

theory, the dominant pole determines the system’s transient

response such as settling time.

As an example, we follow the above steps to analyze the

settling times of the PDU-level controller and a rack-level

controller used in our experiments. The PDU-level controller

has a nominal gain vector G = [1, 1, 1]. Our results show

that the magnitude of the dominant pole of of the closed-loop

system is 0.479. As a result, the number of control periods

for the PDU-level loop to settle is 6. Similarly, the number

of control periods for the rack-level loop to settle is 16.

Note that the selection of control periods is also related

to the sampling period of the adopted power monitor. Since

the shortest period for the power meters used in our testbed

to sample power is 1 second, the control period of the rack-

level control loops is set to 5 seconds to eliminate instan-

taneous reading errors by having averaged values. Accord-

ing to the settling time analysis, the control period of the

PDU-level control loop is set to 80 seconds in our exper-

iments. It is important to note that our control loops are

not restricted to such long control periods. When equipped

with high-precision power monitors that can sample power

in a significantly shorter period (e.g., 1 millisecond [7]), our

control solution can quickly react to sudden power budget

violations caused by unexpected demand spikes at different

levels. In a real data center where such power monitors are

equipped, the control periods should be derived to ensure

that the settling times of the controllers are shorter than the

manufacturer-specified time interval for the power supplies

to sustain a power overload [7].

5 System Implementation

In this section, we first introduce the physical testbed and

benchmark used in our experiments, as well as the imple-

mentation details of the control components. We then intro-

duce our simulation environment.

5.1 Testbed

Our testbed includes 9 Linux servers to run workloads

and a Linux machine to run the controllers. The 9 servers

are divided into 3 groups with 3 servers in each group. Each

group emulates a rack while the whole testbed emulates a

PDU. Server 1 to Server 4 are equipped with 2.4GHz AMD

Athlon 64 3800+ processors and run openSUSE 11.0 with

kernel 2.6.25. Server 5 to Server 8 are equipped with 2.2GHz

AMD Athlon 64 X2 4200+ processors and run openSUSE

10.3 with kernel 2.6.22. Server 9 is equipped with 2.3GHz

AMD Athlon 64 X2 4400+ processors and runs openSUSE

10.3. All the servers have 1GB RAM and 512KB L2 cache.

Rack 1 includes Server 1 to Server 3. Rack 2 includes Server

4 to Server 6. Rack 3 includes Server 7 to Server 9. The con-

troller machine is equipped with 3.00GHz Intel Xeon Pro-

cessor 5160 and 8GB RAM, and runs openSUSE 10.3. All

the machines are connected via an internal Ethernet switch.

In our experiments on the testbed, we run the High Per-

formance Computing Linpack Benchmark (HPL) (V1.0a) on

each server as our workload. HPL is a software package that

solves a (random) dense linear system in double precision

(64 bits) arithmetic. The problem size of HPL is configured

to be 10, 000 × 10, 000 and the block size is set as 64 in

all experiments unless otherwise noted. We use HPL as our

workload because it provides a standard way to quantify the

performance improvement achieved by our control solution.

We have tested our control architecture using other commer-

cial benchmarks. The results are similar and can be found in

the extended version [13].

We now introduce the implementation details of each

component in our power control architecture.

Power Monitor. The power consumptions of the emu-

lated PDU and three racks are measured with 4 WattsUp Pro

power meters, which have an accuracy of 1.5% of the mea-

sured value. The power meters sample the power data ev-

ery second and then send the readings to the 4 controllers

through system files /dev/ttyUSB0 to ttyUSB3.

Utilization Monitor. The utilization monitor uses the

/proc/stat file in Linux to estimate the CPU utilization in



each control period. The file records the number of jiffies

(usually 10ms in Linux) when the CPU is in user mode, user

mode with low priority (nice), system mode, and when used

by the idle task, since the system starts. At the end of each

sampling period, the utilization monitor reads the counters,

and estimates the CPU utilization as 1 minus the number of

jiffies used by the idle task divided by the total number of

jiffies in the last control period.

Power Controllers. Each rack-level power controller re-

ceives the power reading of the corresponding rack and the

CPU utilizations of all the servers in the rack in the last con-

trol period. The controller then executes the control algo-

rithm presented in [4] to compute new CPU frequency levels

for the servers. The new levels are then sent to the CPU fre-

quency modulators on the servers. The PDU-level controller

receives the power measurement of the PDU and the aver-

age CPU utilizations of all the racks in the PDU in the last

control period. The PDU controller then executes the control

algorithm presented in Section 3 to compute new power bud-

gets for the racks. The budgets are then sent to the rack-level

controllers. The MPC controller parameters used in the ex-

periments include the prediction horizon as 8 and the control

horizon as 2. The time constant Tref/Tp used in (5) is set as

2 to avoid overshoot while having a relatively short settling

time.

CPU Frequency Modulator. We use AMD’s

Cool’n’Quiet technology to enforce the new frequency

(and voltage) level by DVFS. The AMD microprocessors

have 4 or 5 discrete DVFS levels. To change CPU frequency,

one needs to install the cpufreq package and then use the root

privilege to write the new frequency level into the system

file /sys/devices/system/cpu/cpu0/cpufreq/scaling setspeed.

Since the new CPU frequency level received from the

rack-level power controller is normally a fractional value,

the modulator code must resolve this to a series of discrete

frequency values to approximate the fractional value. For

example, to approximate 3.2 during a control period, the

modulator would output the sequence 3, 3, 3, 3, 4, 3, 3, 3,

3, 4, etc on a smaller time scale. The first-order delta-sigma

modulator introduced in [7] is used to implement this. The

actuation overhead is analyzed in [4]

5.2 Simulation Environment

To stress test the hierarchical control architecture in large-

scale data centers, we have developed a C++ simulator that

uses a trace file from real-world data centers to simulate the

CPU utilization variations. The trace file includes the utiliza-

tion data of 5, 415 servers from ten large companies cover-

ing manufacturing, telecommunications, financial, and retail

sectors. The trace file records the average CPU utilization

of each server in every 15 minutes from 00:00 on July 14th

(Monday) to 23:45 on July 20th (Sunday) in 2008. We gen-

erate several data center configurations. In each configura-

tion, we group the servers into 6 to 8 PDUs with each PDU

including 20 to 60 racks and each rack including 10 to 30

servers. Based on the specifications of the real servers used
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Figure 3. A typical run of the SHIP hierarchical con-

trol solution on the physical testbed.

in our testbed, each server is randomly configured to have

a minimum power consumption between 90W and 110W,

a maximum power consumption between 150W and 170W,

and a lowest relative frequency level between 0.3 and 0.5.

More details of the simualtor can be found in [13].

6 Experimentation

In this section, we first present our empirical results on

the testbed. We then describe our simulation results in large-

scale data centers based on the real trace file.

6.1 Empirical Results

We first demonstrate that the SHIP hierarchical control

solution can provide precise power control for different

power set points. We then examine the capability of SHIP

to provide desired power differentiation.

6.1.1 Precise Power Control
In this experiment, we run the HPL benchmark on each of

the 9 servers. The power set point of the PDU is 960W. Fig-

ure 3 shows a typical run of the SHIP hierarchical control

solution. At the beginning of the run, the total power of the

PDU is lower than the set point because all the servers are

initially running at the lowest frequency levels. The PDU-

level controller responds by giving more power budgets to

all the three racks. The rack-level controllers then step up the

servers’ frequency levels to achieve the new power budgets

within one control period of the PDU-level loop. After four

control periods, the power consumption of the PDU has been

precisely controlled at the desired set point, without causing

an undesired overshoot. After the transient state, as shown

in Figure 3(b), the power budget allocated to each rack is

kept at a stable value with only minor variations. The power

consumption of each rack has also been precisely controlled

at their respective allocated budgets. As discussed in Sec-

tion 3.3, the PDU controller tries to minimize the difference
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Figure 5. Power differentiation based on perfor-

mance needs. Rack 3 has the lowest utilization.

between the estimated maximum power consumption (i.e.,

Pmax,j) and the allocated power budget for each rack in its

cost function. Specifically, the maximum power consump-

tion for Racks 1 to 3 is 339W, 347.5W, and 364.5W, respec-

tively. Since all the racks have the same weight (100% CPU

utilization), their budgets are allocated to have the same dis-

tance with their maximum power consumptions.

In a data center, a PDU may be given different power set

points at different times. For example, a data center may

need to deploy a new PDU before an upgrade of its power

distribution capacity can be done. As a result, the power set

points of all other PDUs need to be reduced to accommodate

the new PDU. Therefore, it is important to precisely control

power for different power set points. We test our control

solution for different set points (from 800W to 980W). Fig-

ure 4 plots the average power consumption of the emulated

PDU with the standard deviation on the top of each bar. Each

value is the average of 20 power measurements of the PDU

after the PDU-level controller enters its steady state. The

maximum standard deviation is only 1.08W around the de-

sired set point. This experiment demonstrates that SHIP can

provide precise power control.

6.1.2 Power Differentiation

In data centers, it is commonly important for servers to have

differentiated power budgets, especially when the available

power resource is not enough for all the servers to run at their

highest CPU frequency levels. For example, higher budgets

can be given to servers running heavier workloads for im-

proved overall system performance.

In this experiment, we differentiate server racks by giv-

ing higher weights (i.e., R(i)) in the controller’s cost func-

tion (4) to racks that have heavier workloads. Specifically,

the weights are assigned proportionally to the racks’ aver-

age CPU utilizations. Since running HPL on a server always

leads to a 100% CPU utilization, we slightly modify the orig-

inal HPL workload by inserting a sleep function at the end

of each iteration in its computation loop, such that we can

achieve different utilizations such as 80%, 50% for different

servers. In the modified version of HPL, the problem size is

configured to be 4, 000×4, 000 and the block size is set as 1.

Note that the modified HPL benchmark is used only in this

experiment. The power set point of the PDU is set to 810W.

At the beginning of the run, we use the original HPL on all

the servers so that all the racks have an average CPU utiliza-

tion of 100%. As a result, all the racks are given the same

weight. At time 1120s, we dynamically change the work-

load only on the servers in Racks 1 and 3 to run the modified

HPL, so that the average CPU utilizations of Racks 1 and 3

become approximately 80% and 50%, respectively. Figure 5

shows that the controller responds to the workload variations

by giving a higher power budget to a rack with a higher av-

erage CPU utilization. Rack 3 has the lowest budget because

it has the lowest average utilization (i.e., 50%). Note that

application-level performance metrics such as response time

and throughput can also be used to optimize power alloca-

tion in our solution. The results demonstrate that SHIP can

provide power differentiation for the consideration of overall

system performance.

6.2 Simulation Results in Large-Scale
Data Centers

In this section, we test SHIP in large-scale data centers

using the trace file introduced in Section 5.2, which has the

utilization data of 5, 415 servers from real-world data cen-

ters.

Figure 6 is a typical run of SHIP in a data center that is

generated based on the method introduced in Section 5. This

data center has 6 PDUs and 270 racks. The power set point

of the data center is 750kW. As shown in Figure 6, the power

of the data center precisely converges to the desired set point

in two control periods of the data center-level control loop.

Figure 7 plots the average power consumptions of three ran-

domly generated data centers under a wide range of power

set points from 600kW to 780kW. It is clear that SHIP can

achieve the desired set point for the three large-scale data

centers. The maximum standard deviation of all the data

centers under all the power set points is only 0.72kW.

We then examine the capability of SHIP to differenti-

ate PDUs based on the utilization data from the trace file.

According to the controller design in Section 3.3, the data

center-level controller tries to minimize the difference be-

tween the estimated maximum power consumption and the

power budget for each PDU. Therefore, a PDU with a higher

average CPU utilization should have a smaller difference

because of its higher weight in the controller’s cost func-

tion. Figure 9(a) shows the average CPU utilizations of the 6

PDUs in the experiment, while Figure 9(b) shows the differ-

ence (i.e., the estimated maximum power consumption mi-

nus the power budget) for each PDU. We can see that the

difference order of the PDUs is consistent with the order of
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ferent data centers and power set points.

their average CPU utilizations. For example, PDU 2 has the

highest average CPU utilization and thus the smallest dif-

ference. The results demonstrate that SHIP can effectively

achieve the desired control objectives in large-scale data cen-

ters.

The key advantage of the SHIP hierarchical control solu-

tion is that it decomposes the global control problem into a

set of control subproblems at the three levels of the power

distribution hierarchy in a data center. As a result, the over-

head of each individual controller is bounded by the max-

imum number of units possibly controlled by a controller,

which is 60 (racks in a PDU) in our simulations. Figure 8

shows that the average execution time of a centralized MPC

controller (in 3 randomly generated data centers) increases

dramatically when the number of directly controlled servers

increases. Given that the control period of a data center-level

power controller usually should be shorter than several min-

utes, a centralized MPC controller can only control 500 or

fewer servers at the data center level. In addition, a central-

ized controller normally has undesired long communication

delays in large-scale systems, resulting in degraded control

performance. Therefore, centralized control solutions are

not suitable for large-scale data centers.
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7 Related Work

Power is one of the most important design constraints for

enterprise servers. Much of the prior work has attempted

to reduce power consumption by improving the energy-

efficiency of individual server components [18]. There has

been some work on system-level power and thermal manage-

ment [19, 20, 21]. For example, Nathuji et al. have proposed

heuristic solutions for power budgeting in virtualized envi-

ronments [22]. In contrast to existing work, which relies on

heuristic-based control schemes, we adopt a rigorous design

methodology that features a control-theoretic framework for

systematically developing control strategies with analytical

assurance of control accuracy and system stability.

Several research projects [23, 7, 24] have successfully ap-

plied control theory to explicitly control power or temper-

ature of a single enterprise server. Some recent work has

proposed heuristic-based control strategies at the rack level

[3, 25]. Control-theoretic solutions have also been designed

to control rack-level power consumption for optimized sys-

tem performance [4]. However, those solutions cannot be

directly applied to control a PDU or an entire data center

because the overhead of their centralized control schemes

becomes prohibitive when the system size increases to a cer-

tain extent. In contrast, our hierarchical control architecture

is highly scalable for large-scale data centers.

A recent study [5] indicates the possibility of having a

general group power manager that can be extended to control

a data center. Our work is different in three aspects: 1) our

control scheme is designed specifically based on data cen-

ters’ three-level power supply hierarchy, 2) our solution fea-

tures a MIMO control strategy with rigorous stability anal-

ysis, and 3) our work is evaluated on a physical testbed,

while only simulation results are presented in [5]. In addi-

tion, we also present simulation results in large-scale data

centers with a trace file of 5, 415 servers while only 180
servers are simulated in [5]. At the PDU level, Govindan

et al. [26] propose statistical profiling-based techniques to

provision servers under a power constraint. At the data cen-

ter level, Fan et al. [1] investigate the aggregate power us-

age characteristics of a warehouse-sized data center. In con-

trast, we dynamically control the power consumption of an

entire data center and optimize system performance by shift-

ing power among racks and PDUs.

Some prior work has been proposed to use power as a

tool for application-level performance requirements at the

OS level. For example, Horvath et al. [8] use dynamic volt-

age scaling (DVS) to control end-to-end delay in multi-tier

web servers. Sharma et al. [27] effectively apply control

theory to control application-level quality of service require-

ments. Chen et al. [9] also present a feedback controller to

manage the response time in a server cluster. Although they

all use control theory to manage power consumption, power

is only used as a knob to control application-level perfor-

mance. As a result, they do not provide any absolute guaran-

tee to the power consumption of a computing system. In this

paper, we explicitly control the power consumption to ad-
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Figure 9. Power budget differentiation based on average CPU utilizations.

here to a given constraint. Our solution is complementary to

OS-level power management schemes and can be combined

for increased adaptation capability and simultaneous control

of power and system performance.

8 Conclusions

Power control for an entire data center has become in-

creasingly important. However, existing server power con-

trol solutions are not scalable for large-scale data centers

because they are designed for a single server or a rack en-

closure. In this paper, we presented SHIP, a highly scalable

hierarchical control architecture that controls the total power

consumption of a large-scale data center to stay within a con-

straint imposed by its power distribution capacity. The con-

trol architecture is designed based on rigorous control theory

for analytical assurance of control accuracy and system sta-

bility. Empirical results on a physical testbed show that our

control solution can provide precise power control, as well

as power differentiations for optimized system performance.

In addition, our extensive simulation results based on a real

trace file demonstrate the efficacy of our control solution in

large-scale data centers composed of thousands of servers.
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