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Outline 

 Overview of POWER7 and POWER7+ energy management 

– Feedback control 

– Sensors 

– Actuators 

 Problem #1: Server power capping 

 Problem #2: Excess guardband 
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IBM POWER 750 Express 
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Address variability in hardware and operating environment 
 

 Complex environment 

– Installed component count, ambient temperature, component variability, etc. 

– How to guarantee power management constraints across all possibilities? 

  Feedback-driven control 

– Capability to adapt to environment, workload, varying user requirements. 

– Regulate to desired constraints even with imperfect information. 
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Power management controller 

Guarantee constraints 

Find energy-efficient settings 

Actuate 

Set performance state (e.g. frequency, voltage) 

Set low-power modes (e.g. DRAM power-down) 

Set fan speeds 

Sense 

Real-time monitoring 

Power, temperature, performance,… 

Models  

Estimate unmeasured quantities 

Predict impact of actuators  
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EnergyScale 

 Cooperative hardware and software solution for power management. 

– EnergyScale firmware runs on dedicated microcontroller. 

• DVFS, thermal control, power capping, guardband management, etc. 

– POWER7 microprocessor has hardware accelerators for power management. 

• Sensor gathering, thermal sensor conversion, power proxy calculation, etc. 

 Goals 

– Increase performance. 

– Reduce power consumption while maintaining performance. 
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POWER7 sensors 

 Microarchitecture activity & event counters 

– Provide performance, utilization, and activity measurements 

– Processor core, memory hierarchy, and main memory access 

– Per-thread utilization and per-core memory bandwidth (POWER7+) 

 Digital Thermal Sensors 

– 44 on-chip sense points 

 Critical Path Monitor 

– Detects circuit timing margin 

 Power proxy 

– Estimate core power based on  

event counters 

 System sensors 

– Fan speed 

– Power by voltage domain 

– Temperature by component 

– Ambient temperature 
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Physical Locations of Thermal Sensors 

Off-chip Interconnect 
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POWER7+ power proxies 

 Chip-level and core-level power proxies. 

 Per-core HW computes activity proxy. 

– Based on 50 activity counters. 

– Every 32 ms. 

 Tracks change in voltage, frequency, 

temperature, and workload activity. 

 POWER7+ Vdd power proxy has a mean 

error of 0.2% (2.6% std dev).  
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Actuators 
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Increasing Core Voltage → 

Benefits of Per-Core Frequency 
Scaling on POWER7

8 Cores Run Fmax @ V

1 Core Runs Fmax; 7 Cores Nap Fmax

1 Core Runs Fmax, 7 Cores Run Fmin

1 Core Runs Fmax, 7 Cores Nap Fmin

Relative

power

(8 cores)

30% reduction for 
run-frequency scaling

20% reduction for 
nap-frequency scaling
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 Per-chip voltage selection 

 Per-core frequency control 
– Digital PLL (DPLL) clock source 

supports -50% to +10% of 
nominal frequency 

– 25 MHz resolution 
– Automated fast frequency slew in 

excess of 50 MHz/µs 

 Core + L2 cache and L3 cache 
power gating (POWER7+) 

 Idle modes: nap, sleep, winkle 

 Memory throttling 

 Fan speed 

 Each partition (group of cores) may 
use a different energy-savings policy  

– Highly utilized partitions maintain 
peak performance 

– Less utilized partitions run at 
lower frequencies 
 Note: highest frequency core determines the required voltage 
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Summary 

 POWER7 systems contain a rich set of sensors, actuators, 

and on-chip accelerators which enable the feedback 

controllers that manage energy use. 

 

 POWER7 energy management features combined with new 

energy-saving algorithms show a 50% improvement in 

SPECpower_ssj2008 score over baseline operation. 

 

 Customers can select the best EnergyScale policy to match 

their needs, relying on the system to balance power 

consumption and performance accordingly. 
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Problem #1: Server power capping 

 Servers use redundant power supply units (PSU) for reliability.  

 Example: Each PSU may use at most 60% of its rating. 

 

 

 

 

 

 Allows up to 120% of single-supply power to be used when both PSUs working. 

– Benefit: higher performance than using a single power supply. 

 When a PSU fails, the load shifts to the remaining PSU (up to 120%). 

– Remaining PSU must reduce load to 100% rating quickly, or risk shutdown. 

– Time frame ranges from milliseconds to seconds (depends on PSU specification). 

 Power capping is a method to control peak power consumption. 

– Objective 1: respond quickly to avoid shutdown of remaining PSU. 

– Objective 2: maximize performance within the remaining power supply limits. 
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Power capping controller in POWER7 

 Capping situations. 

1) redundant power supply failure. 

2) customer sets power cap target. 

 Control interval is 8 ms 

– Measure system power and adjust 

processor voltage and frequency to 

meet power cap. 

 Power settles within 120 ms time constraint 

to avoid loss of remaining PSU. 

 Partition-aware capping 

– Objective: Keep performance sensitive 

workloads at high performance. 

– Partitions are sorted based on their 

performance guarantees and current 

core clock frequency. 

– For example, turbo frequency is not 

guaranteed when a PSU fails. 
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Lefurgy et al., ICAC07 
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Walk-through of first power-capping server in the industry 

 IBM HS20 (Intel Xeon) blade, 2006 

– Uses clock throttling to adjust performance 

• 8 performance levels from 12.5% (slowest)  

to 100% (fastest) 

 Settle to within 0.5 W of desired power in 1 second 

– Based on BladeCenter power supply requirements 

 Note: POWER7 uses dynamic voltage and frequency 

scaling instead of throttling. 
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Controller firmware 
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Control options for power capping 

Open-loop 
No measurement of power. 
Chooses fixed processor speed for a power budget. 
Based on worst-case power consumption workload. 

 

 

Ad-hoc 
Measures power and compares to power budget. 
+1/-1 adjustments to processor speed. 

 

 

Proportional-integral-derivative (PID) 
Designed using control theory. 
Guaranteed controller performance. 
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Open loop design 

 P4MAX workload used as basis for open-loop controller 

 Leads to slowdown for all workloads, regardless of actual power consumption. 

– 250 W cap uses 75% performance setting. 
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Proportional controller design 

 Time-domain model 

 

 

“A” parameter converts power difference to speed adjustment. 

• Selected based on average of slopes in prior chart. 

• Provably settles within 1 second. 

 Control interval is 64 ms. 

– Measure power and select new throttle value. 

– Use delta-sigma modulation to achieve finer throttling resolution (units of 0.1%). 

 System diagram 

 

15 
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Why not use ad-hoc control? 

 

16/
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Comparison of controller types 

 Improved ad-hoc controller use 6 W of guardband to avoid violations. 
– Internally, 6 W subtracted from set point. 

 P controller 
– Up to 82% higher performance than open-loop controller. 
– Up to 17% higher performance than ad-hoc controller. 
– Zero steady state error. 
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Power capping summary 

 Power is a 1st class resource that can be managed. 

– Power consumption is no longer the accidental result component configuration, 

manufacturing variation, and workload. 

 Better-than-worst-case design for power supply and cooling. 

– Size for important workloads, not power viruses. 

– Lower manufacturing cost. 

 Power control is a fundamental mechanism managing a power-constrained datacenter. 

– Enables shifting power to critical workloads. 

 Can be applied to server sub-systems (per-voltage regulator, per-core, etc.) 
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Problem #2: Excess guardband 

 The voltage used on a microprocessor is conservative to provide a safe timing margin under 

worst-case conditions 

– workload-induced voltage droops (dI/dt or load line) 

– high temperature 

 Concern: Energy-efficiency is reduced to guarantee reliability. 

 Opportunity: Worst-case conditions rarely occur. Can actual timing margin be controlled? 

Voltage 

Maximum 

frequency 
Nominal guardband 

reliable for worst-case load 

Microprocessor operating points 

Reduced guardband  

with active management 
max min 
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Active guardband management 

 New capability to keep timing margin nearly constant 

– Convert excess timing margin into a voltage reduction 

– Reduce traditional voltage margin when conditions are not worst-case 

(Some voltage margin is retained for aging, calibration inaccuracy, etc.) 

1. Measure excess operational margin with timing margin sensor 

– Difference from a calibrated reference point 

2. Protect timing margin against voltage droop by adjusting frequency 

– Hardware-based timing margin controller 

3. Save energy by converting excess timing margin into voltage reduction 

– Software-based performance controller 

Adjust 
clock 

Critical 
path 

monitor 

Adjust 
voltage 

Frequency  
Target 

Voltage 

Performance 
controller 

Timing  
margin 

controller 

Measured 
frequency 

Timing margin differential 
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Measure timing margin 

 Use Critical Path Monitor (CPM) circuit.  Mimics behavior of real critical path. 

 Each cycle: generate pulse, traverse synthesized critical path and calibrated delay, 

capture in edge detector 

 

 

 

 

 

 Edge detector 12-bit output: (bit 0 = less margin, bit 11 = more margin) 

Edge Detector 

Critical Path Monitor 
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Critical path monitor 

 5 Critical Path Monitors per core in POWER7 (8 core chip) 

 Middle bits of edge detector are forwarded to DPLL 
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Example of critical path monitor output 

 Inject 60 mV droop into Power 755 Express Server (with no load-line) 

– Instruction fetch throttling 

 Critical path sensor follows on-chip voltage reduction 

 Injected Instantaneous voltage droop 
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Protect timing margin 

 Timing margin controller responds to changing operating conditions by adjusting 

frequency to maintain timing margin target. 

– Implemented in hardware of POWER7. 

– Can reduce frequency by -7% in about 5 ns to handle fast voltage droop. 
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Calibration of critical path 

 Teach the chip the desired timing margin to use during field operation 

 Done once during manufacturing of chip 

 Run chip at desired timing margin 

– Set voltage, frequency, and temperature 

– Run stressful workload 

 Find delay setting that places timing edge on position 6 in edge detector 

– Position 6 is the setpoint for the timing margin controller 
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Timing margin controller response time 

 Quick enough to follow voltage droops 
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CPM response to droop event (timing margin control enabled) 

Frequency response to droop event (timing margin control enabled) 
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Save energy 

 Performance controller adjusts voltage to meet desired clock frequency target. 

– Implemented in firmware of on-board microcontroller 

– Frequency is capped at target + 28 MHz (clock resolution) 

• Prevent energy waste 

• Allow for detection of excess timing margin for voltage reduction 

CPM 

DPLL 

+/- freq 
- 

Real frequency 

Adjust 

voltage 

Voltage 

regulator 

Workload, temperature, 

voltage, and frequency 

influence CPM output Core target frequency 

POWER7 Microcontroller 
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Demonstration 
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POWER7+ results 

 IBM Power 780 Server 

– 4-socket 4.1GHz (32 cores) 

– 128 GB 

– 30 C ambient 

 Vdd power reduced by 11% 

 Reduced fan power due to lower 

temperature processor 

 Negligible performance impact 
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Summary of guardband management 

 Demonstration of a new capability to keep timing margin nearly constant 

 Architecture combines two feedback controllers 

– Hardware-based timing margin controller (safety) 

– Software-based performance controller (undervolting) 

 Used in production POWER7+ servers 

– Reduces chip Vdd power by 11% for SPEC CPU2006 

– Improves performance during power capping 

 IP portfolio for licensing 
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