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ABSTRACT—Power infrastructure is a critical component 

of cloud and HPC data centers, and costs as much as tens of 
millions of US dollars for a large data center. The infrastruc-
ture must be highly reliable and must tolerate load variation, 
which traditionally requires significant redundancy and over-
provisioning. This redundant and overprovisioned capacity is 
significantly underutilized during normal operation (typical 
load, non-failure mode). Power capping reduces underutiliza-
tion by adding more servers to the existing power infrastruc-
ture, and throttling power consumption in the infrequent cases 
where demand exceeds the provisioned capacity. However, 
state-of-the-art power capping solutions are (1) not practical 
for the properties of real-world redundant power infrastructure 
in highly-available data centers, and (2) oblivious to differing 
priorities of workloads across the entire data center when 
power consumption needs to be throttled. As a result, these 
solutions are inefficient and can even be unsafe. 

In this work, we present CapMaestro, a new power man-
agement architecture for cloud and HPC data centers. Cap-
Maestro has three major new contributions. First, CapMaestro 
is designed to work with multiple power feeds, and exploits 
server power capping to independently cap the load on each 
feed of a server. It exploits the underutilized redundant power 
infrastructure commonly employed in data centers to safely 
accommodate a much greater number of servers. Second, 
CapMaestro uses a scalable, distributed, multi-level power 
capping approach, which accounts for power capacity at each 
level of power distribution hierarchy. It is global priority-
aware, ensuring that no high-priority server anywhere in the 
data center is throttled before all lower-priority servers in the 
data center are throttled, as long as this can be achieved safely. 
Third, CapMaestro exploits stranded power (i.e., power budg-
ets that are not utilized) in redundant power infrastructure to 
boost the performance of applications running in the data cen-
ter. We deploy CapMaestro in our cloud data center control 
plane to demonstrate its effectiveness on real-world machines. 
We then simulate a data center with thousands of servers using 
published load distribution data, and demonstrate that Cap-
Maestro safely increases the number of servers under the ex-
isting power infrastructure by 50%. 

I. INTRODUCTION 
Power infrastructure is a critical part of data centers, both in 

terms of its cost (tens of millions of US dollars) and its impact 

on availability. For highly-available data centers, the power 
distribution infrastructure often relies on redundancy at each 
level of the power distribution hierarchy to ensure reliable 
power delivery, spanning from multiple power supplies within 
individual servers up to multiple utility feeds into the data cen-
ter, as shown in Figure 1. This redundancy within the power 
distribution infrastructure, referred to as N+N power delivery 
design, ensures continued availability of the full power demand 
in the event of the failure of half the power devices at each 
level. If a data center’s total power consumption exhibits wide 
variations, or cannot be well anticipated (such as in a public 
cloud), each side of the power infrastructure (i.e., A-side/B-
side power feed in Figure 1) is conventionally overprovisioned 
to meet the maximum possible power consumption (including 
uncertainty) and avoid risking failures. During normal 
operation, the data center’s total power consumption may be 
much lower than its peak power, and maximum power loads 
rarely occur, resulting in underutilized infrastructure. 
Additionally, the extra power capacity from redundant feeds is 
not utilized during normal operation. 

Power capping, introduced a decade ago [1], throttles the 
amount of power consumed by servers. It can be used to reduce 
the amount of power load applied on the power infrastructure 
during periods of peak demand. With the gradual, industry-
wide adoption of server power capping, today’s data centers 
have the means to shape power consumption in real time, so 

 
Figure 1. Example power delivery layout in a data center. 
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that potential excursions above the power capacity of the 
infrastructure can be avoided [3-5, 22-24, 28-31, 39, 40]. This 
lets us more efficiently utilize the existing power infrastructure 
by increasing server capacity (i.e., housing more servers) in the 
data center based on their typical load and/or quality-of-service 
(QoS), rather than overprovisioning the power infrastructure to 
meet infrequently-occurring maximum possible loads.  

Unfortunately, existing power capping solutions face three 
serious challenges, which prevent them from guaranteeing 
safety and effectively increasing server capacity for highly-
available data centers. First, in highly-available data centers, a 
server draws power from multiple power supplies, each 
connected to a different power feed. We find that there is typi-
cally an imbalance in the power drawn from each supply (see 
Section III.A). In such cases, power capping must ensure that 
the power consumed by each power supply does not exceed the 
supply’s power budget. State-of-the-art controllers cannot do 
this today, and enforce only a single combined budget across 
all power supplies of a server. These controllers cannot ensure 
that the budgets for individual power supplies are respected, 
which can cause one of the power feeds to become overloaded, 
leading to tripped circuit breakers and power loss on the over-
loaded feed. 

Second, when existing power capping techniques are 
invoked during periods of high demand, they are oblivious to 
the importance of each workload globally across the entire data 
center (at best, they may be aware of the workload importance 
within a limited local group of servers, e.g., [5]). As a result, 
existing techniques may inadvertently cap a critical (i.e., high-
priority) workload in one group of servers unnecessarily, even 
though lower-priority workloads in another group remain 
uncapped. Without capturing priority across the entire data 
center, a power capping solution may not redistribute power 
budgets to critical workloads, unnecessarily hurting their 
performance. 

Third, existing power capping techniques cannot guarantee 
the power budgets allocated to different power supplies of a 
server exactly match the power load sharing between these 
supplies (see Section III.C and VI.C). As a result, some power 
supply budget(s) may not be fully utilized, leaving the 
unutilized budget becoming stranded power.  

To address these challenges, we propose CapMaestro, a 
new power capping architecture for cloud and HPC data cen-
ters that can control an arbitrary, multi-level, redundant power 
infrastructure. CapMaestro unlocks the unused power capacity 
of a highly-available data center, which is provisioned for peak 
power and redundancy, to power more servers under a fixed 
power budget, while still protecting every level of the power 
infrastructure from overload. Our architecture performs effi-
cient global priority-aware budget allocation, and includes an 
optional optimization that adjusts the budget to redistribute 
stranded power throughout the data center. CapMaestro per-
forms budget allocation using a distributed algorithm with 
multiple coordinated power controllers, which enables fault-
tolerant and scalable capping, and reduces communication and 
dependencies between the controllers.  

We implement CapMaestro as a scalable, managed control 
plane service within our cloud data center and demonstrate its 
effectiveness for capping multi-feed power infrastructure with 
global priorities. To evaluate its effectiveness for increasing 
data center server capacity, we study the impact of CapMaestro 
on the power infrastructure of a data center using a detailed 
simulation model. Based on the load data for a Google data 
center [27], we find that for a typical shared data center where 
we designate 30% of the servers as high-priority, CapMaestro 
can enable the data center to support 50% more servers than if 
power capping were not employed, and can support 20% more 
servers than a state-of-the-art power capping controller [5] that 
we modify to support multiple power feeds. This increased 
server capacity negligibly impacts the performance of high-
priority workloads even during a worst-case power emergency, 
and negligibly impacts all workloads during normal conditions.  

Importantly, our solution is designed to be applicable with 
minimal changes to existing data centers. For example, our 
design integrates with conventional baseboard management 
controller (BMC) based server infrastructure management [33]. 
Our solution can also handle (1) load imbalances on different 
power feeds that can otherwise lead to stranded power, and (2) 
a shared power distribution hierarchy where some of the 
infrastructure does not have power capping technology. 

We make the following key contributions in this work: 
• CapMaestro is a new architecture for data center power 

management with distributed, coordinated power controllers 
that enforce power limits at all levels of the power 
infrastructure. We propose and implement a global priority-
aware algorithm for the first time. 

• We design the first closed-loop, feedback power controller 
for servers with multiple power supplies. This allows us to 
manage the power consumption at each supply in response 
to the unique power loads and limits seen at each upstream 
circuit breaker. This enables CapMaestro to manage multi-
feed power hierarchies in the data center. 

• We provide a mechanism that can reduce stranded power 
within the power infrastructure, by shifting the stranded 
power to servers that are currently throttled and thus 
improve performance. 

• We implement our solution in a cloud control plane and 
demonstrate its functionality and effectiveness. Also, we 
perform simulations with real data center measurements to 
estimate how much we improve the performance (by in-
creasing the number of servers) of large-scale power-
constrained data centers. 

II. BACKGROUND 
In this section, we review the typical design of the power 

infrastructure and then discuss power capping techniques at the 
server and data center levels. 

A. Data Center Power Delivery 
Figure 1 illustrates the power infrastructure for a typical 

data center. Power from the utility is delivered to the building 
at 12.5kV, and is stepped down to 480V for distribution. On-
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site generators provide power through the ATS (Automatic 
Transfer Switch) if the utility feed fails. Another layer of 
transformers steps the voltage down further to 400V.1 RPPs 
(Remote Power Panel) are 42-pole boxes with CBs (Circuit 
Breaker) that connect to Cabinet Distribution Units (CDUs) in 
the racks. 3-phase power is delivered to the CDUs from the 
RPPs. The outlets on the CDU receive power at 230V from one 
of the three phases.  

At each branch of a distribution point, there are CBs that 
limit the amount of current, to protect the power infrastructure 
and guard against cascading upstream failures from short 
circuits and overload conditions. In this paper, we use the 
distribution point power limit to refer to the maximum amount 
of power that the corresponding CB2 or transformer allows. 
When CBs trips, downstream power delivery is interrupted, 
potentially causing server power outage.  

Redundant power feeds provide higher availability and 
resilience against power interruption. Servers rely on two or 
more power supplies connected to independent power feeds. 
Even if one of the power feeds or supplies fails, the remaining 
keep(s) the server operational. Ideally, power supplies equally 
share the server power load. In practice, load varies from 
supply to supply (see Section III.A). 

Conventional practice in data centers is to not have 
sustained power load exceed 80% of the maximum rating for 
CBs and transformers [21] to avoid risk of damaging the power 
infrastructure. For example, a 30A 3-phase breaker may only 
be loaded to 24 A on each phase. When a power feed fails, its 
power load shifts to the remaining power feed, whose CB will 
see double the load. The server power connections must ensure 
that this doubled load doesn’t exceed 80% of the CB rating. 
Otherwise, the CB may trip during the failure, and the servers 
downstream of the CB will lose power [5]. In our example with 
redundant (dual) 30A feeds, the per-phase load on each feed 
would need to be limited to 12A (40% of 30A) to ensure that 
the load during a failure is limited to 24A (80%). 

In our work, we load CBs up to 80% under normal 
conditions because we employ power capping. When a feed 
fails, the breaker on the redundant feed becomes overloaded to 
160%. The time it takes for a CB to trip depends on the amount 
of overload. For example, CBs covered under the UL 489 
standard (a widely-adopted CB industry standard) will operate 
for a minimum of 30 seconds before tripping when under 
160% load [11][17]. Within that 30-second window, our 
capping solution throttles the associated servers to ensure the 
load comes down to within 80% of the rating, which thus 
avoids tripping the CB. 

B. Server Power Capping 
In the past decade, power capping has become a common 

feature in servers to keep the server within a power limit 
[6][7][8][25]. Typically, the power controller measures the 
server power and throttles the CPU (scaling its voltage and 

                                                
1 400V is the line-to-line voltage of the 3-phase power. The corre-
sponding line or phase voltage is 230V. 
2 CBs are rated in terms of maximum current, but we convert them to 
their equivalent power values. 

frequency) and other components to enforce the power limit. 
Prior work has shown that such controllers can generally per-
form decisions within a few seconds [6].  

The range of power control can be characterized by running 
the most power-demanding workload at the highest and lowest 
performance states of the server at the highest allowed ambient 
temperature. 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 is the power consumed by the 
server at the lowest performance state. 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 is the 
power at the highest performance state. Any power budgeted to 
the server above 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥  is wasted, and capping 
cannot guarantee adherence to any budget below 
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛. 

Capping server power consumption allows us to directly 
control the power load seen by CBs and transformers. The 
timescale of power capping is an order of magnitude faster 
than the trip time of CBs. This allows server power capping to 
adequately protect against tripping of CBs. 

III.  DESIGN GOALS  
CapMaestro addresses three key challenges in leveraging 

server power capping for power management: (1) accounting 
for multiple power feeds, (2) applying priorities globally in 
power capping decisions, and (3) capturing stranded power in 
a redundant power infrastructure. These are important to 
address for highly-available data centers but have not been 
addressed in prior works.  

A. Power Capping for Multiple Power Feeds 
The power load across multiple power feeds is not perfectly 

balanced. We observe this at all levels of the infrastructure for 
three reasons. First, servers with multiple power supplies do 
not split their power load equally between their power supplies. 
In our servers with two power supplies there can be as much as 
15% mismatch across the two supplies, with either A-side or 
B-side feed dominating across all power load levels. This pow-
er mismatch varies from server to server and is an intrinsic 
property of servers (i.e., is independent of the workloads), and 
cannot be adjusted during use. Additional data is available in 
Section 0. Second, power device failures (e.g., failed power 
supplies or power feeds) may also lead to imbalanced load 
between different power feeds. Third, some servers now have 
an energy efficiency mode that puts a redundant supply in 
standby (drawing no power) when the server load is below a 
certain level [34]. 

An imbalanced load between different power feeds forces 
power managers to assign and regulate separate budget for 
each power supply of a server. For example, a server with two 
power supplies (Supply A and Supply B) may get a budget of 
200W on Supply A (which is connected to the A-side feed) and 
only 100W on Supply B (which is connected to the B-side 
feed), because other servers exert a greater power load on the 
B-side feed, leaving less power available to assign to Supply B. 
However, existing server power capping solutions, which only 
limit the combined load across all power supplies, do not 
consider this need for individual per-supply power budgets, 
and therefore may not adequately protect the upstream circuit 
breaker for each power supply. To tackle this challenge, we 
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propose a server power controller that enforces an individual 
power budget per supply in Section IV.B.  

B. Global Priority-Aware Power Capping 
In a data center, some workloads can be more important 

than others (e.g., due to different SLAs, pricing, workload het-
erogeneity, or service function). We want to prioritize these 
workloads globally (across the entire data center) and give 
them sufficient power during a power emergency, by letting 
them borrow power from lower-priority workloads on a 
common power feed, regardless of the physical server location. 

Existing priority-based power allocation schemes cannot do 
this, as they consider priorities only between local groups of 
servers under a single power constraint (e.g., a branch circuit), 
and are unable to incorporate priority across higher levels of 
power limits in the data center (e.g., the servers attached to a 
common RPP in our power delivery layout) [4][5]. This limits 
the ability to truly share power across the entire data center.   

Figure 2 shows an example with four servers SA, SB, SC, 
and SD under a total power budget of 1240W for a single 
power feed. The servers connect to a power feed of three CBs: 
a top-level CB rated at 1400W, and two child CBs rated at 
750W each, which we call Left CB and Right CB. These four 
servers have an equal power demand of 430W each, and a 
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of 270W. Suppose SA has high priority, while 
the other servers have low priority. Table 1 shows how much 
power each server is budgeted under a local priority-aware 
power capping policy, and how power would be budgeted if 
the policy is instead global priority-aware. At the top level, the 
local priority-aware policy splits the total power budget equally 
across the Left and Right CBs, as only the lowest-level CBs 
have the knowledge of and enforce server priorities. Therefore, 
under a total power budget of 1240W, both Left CB and Right 
CB are assigned a power budget of 620W. As SB can at most 
be throttled down to 270W (𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛), SA can only 
receive a power budget of 350W (i.e., 620W – 270W), even 
though it demanded 430W. In contrast, a global priority-aware 
policy knows at the top level that one of the servers under Left 
CB has high priority. As a result, the policy allocates more 
power to Left CB, allowing SA to be budgeted the full 430W 
that it demands. A global priority-aware policy ensures that a 
higher priority server is not throttled when lower priority 

servers anywhere in the data center can be capped to meet the 
concerned power constraint. We introduce a global priority-
aware power capping algorithm in Section IV.C. 

C. Stranded Power in Redundant Power Feeds 
For servers with redundant power supplies, it is possible 

that the available power on the power feed to each power 
supply may not be matched (Section III.A). This could be the 
result of different set of loads on either feed. If the load sharing 
of the server across its feeds does not match available power on 
those feeds, the available power on one of the feeds would be 
left stranded (i.e. unutilized). It is desirable to reallocate the 
stranded power to other power-constrained servers to improve 
their performance. To perform power reallocation, we propose 
a stranded power optimization mechanism in Section IV.D. 

IV. DESIGN OVERVIEW 
CapMaestro is a new scalable power management solution 

for data centers that achieves the three design goals described 
in Section III. At a high level, CapMaestro employs a light-
weight power control framework to efficiently collect power 
demand information and enforce power budgets for each node 
in the power infrastructure hierarchy, including each individual 
server power supply (Sections IV.A and IV.B). CapMaestro 
uses the collected power demand information to determine 
power budgets for each node based on a new global priority-
aware power capping algorithm (Section IV.C). Once global 
priority-aware allocation finishes, CapMaestro can optimize 
stranded power by identifying the nodes where assigned power 
is underutilized, and then reassigning this power elsewhere in 
the hierarchy (Section IV.D).  

A. System Overview 
CapMaestro uses a power control tree (shown in Figure 3) 

that mirrors the hierarchy of the power infrastructure. At the 
bottom of the tree, capping controllers manage the power of 
individual server/IT equipment using the built-in server power 
capping mechanism (see Section IV.B). At each higher level of 
the tree, we use a power shifting controller that distributes the 
power budget at that level among the nodes fed from that 
distribution point. Each shifting controller is mapped to a sin-
gle physical device, and adheres to the device’s power limit 

Server SA SB SC SD 
Priority (1 = high, 0 = low) 1 0 0 0 
Power Demand (W) 430 430 430 430 
Budget with Local Priority (W) 350 270 310 310 
Budget with Global Priority (W) 430 270 270 270 

Table 1. Power budget assignments using local per-CB vs.     
global priorities. 

 

 
Figure 3. Mapping physical equipment to control tree. 
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(e.g., maximum power allowed by a transformer, RPP, or 
CDU) or contractual budget (i.e., the maximum power that a 
data center has negotiated to draw in total across all of its 
utility feeds). 

To account for redundant power infrastructure, we replicate 
the power control tree for each power feed of the data center. 
We also replicate the power control tree for each phase of 
power delivery to protect each phase independently, since 
loading on each phase is not always uniform. In our example in 
Figure 3, our power control framework (two power feeds with 
three phases each) has six control trees. The shifting controllers 
on one power feed operate independently from shifting 
controllers on the other feed, while each server has a single 
capping controller that is shared across multiple trees.3 

Each server can have a specific priority level.4 Its capping 
controller generates metrics (e.g., power demand) for the 
server, which flow upstream in the control trees to the shifting 
controllers in the next level up. Each shifting controller 
produces priority-based metrics summarizing the sub-tree that 
it controls, based on the metrics that the shifting controller 
receives from its child nodes. To perform global priority-aware 
power capping, a key insight is that we need to convey 
upstream only the metrics summarized by priority level, and 
not individual server metrics for all servers in a sub-tree. In 
practice, we expect a data center to have only a small number 
of priority levels (on the order of 10); thus, the priority-based 
summaries provide us with a compact way to represent metrics 
for thousands of servers. This allows the shifting controller at 
the root node to efficiently have a global view of the power 
demand across the entire data center. With this view, the root 
shifting controller easily routes power (by assigning power 
budgets to its child nodes) towards the most critical servers by 
comparing priority-based metrics from each of its child nodes, 
while respecting the power limits of the intervening CBs and 
transformers along the control tree. These budgets flow 
downstream, and are recursively allocated until the budgets 
reach the capping controllers (see Section IV.C for algorithm 
details). After a power budget is assigned to a capping 
controller, the controller (Section IV.B) ensures that for each 
power supply of the server, the per-supply power budget is not 
exceeded by the power consumption on that supply.  

Our control trees mirror the physical electrical connections 
of the data center, allowing us to model situations unique to 
each data center or portions of it. For example, CapMaestro 
can (1) manage both multiple- and single-corded devices; 
(2) deal with equipment that does not include power capping 
technology, by setting the metrics to assign a fixed maximum 
power for that equipment; (3) capture servers plugged into 
multiple phases of power; and (4) work with shifting 

                                                
3 For a server with multiple power supplies, its capping controller 
adjusts the frequency/voltage of the entire server, impacting the load 
on all of the server’s power supplies. As a result, different control 
trees need to share a single capping controller per server. 
4 For cloud platforms that run VMs or containers with different prior-
ities, one could set server priority based on the priorities of the set of 
VMs/containers assigned to a server and further assign 
VMs/containers to servers based on their priorities. 

controllers that accept power budgets based on restrictions 
aside from physical equipment limits, e.g., contractual budgets. 

B. Power Supply Budget Enforcement  
To protect the independent power feeds of the redundant 

power infrastructure, we design a proportional-integral (PI) 
[15] feedback controller for CapMaestro that guarantees 
adherence to AC power budgets on the power consumption of 
each power supply in a server. Our controller utilizes the server 
power capping controls of Intel Node Manager [7], which caps 
only the total DC power of the server. The input to our 
controller is the external AC power budget for each power 
supply. These budgets are determined by the power capping 
algorithm that protects each power feed. The budgets for the 
power supplies of a server may have unequal values, 
depending on the load on each power feed. The controller 
determines the proper DC power cap for Node Manager to 
adhere to the given AC power budgets for all supplies. 

Figure 4 shows our control diagram. First, each control 
iteration calculates an error for each power supply by 
subtracting its measured power from its budget value. This 
error quantifies how close the AC power is to the AC budget 
on each power supply. After that, the minimum error is 
selected as how much we should adjust for the AC power on 
every supply, and passed to the next stage. This ensures that 
the power supply that the minimum error corresponds to will 
settle to its desired budget and the remaining ones will be at or 
below their budgets5. Second, the error is scaled by the power 
supply efficiency (k) to transform from AC power domain to 
DC power domain (k can be determined from the power supply 
specification manual), and then further scaled by the number of 
working6 power supplies (M) to account for how much DC 
power the full system power needs to be adjusted by. Third, the 
scaled error is added to the integrator (which stores the 
previously desired DC cap) to form the currently desired DC 
power cap. After clipping to the server’s controllable range, the 
currently desired DC power cap is sent to Node Manager 
which then manages the frequency and voltage of the processor 
to meet the DC power cap. 

                                                
5 The stranded power optimization mechanism will later shift the 
unused power budgets to other servers for better utilization. 
6 Working power supplies refer to ones with non-zero power con-
sumption. If a power supply fails, we ignore the quantities associated 
with it and decrease M in the capping controller. 

 
Figure 4. Power capping controller (“PS” means power supply). 
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C. Global Priority-Aware Power Capping Algorithm 
CapMaestro’s global priority-aware power capping 

algorithm allocates power budgets across a tree of shifting and 
capping controllers, respecting the data center contractual 
budgets and the power limits of multiple levels of CBs and 
transformers while safely trying to satisfy as much of the 
power demands of the servers. Both single and redundant 
power distribution environments can use this algorithm. In both 
cases, each control tree runs this algorithm independently.  

Our algorithm runs iteratively, with each iteration consist-
ing of two phases. First, in the metrics gathering phase, each 
shifting controller receives power allocation requests (and 
other metrics) from its child nodes. These metrics are tagged 
by the priority value j. The shifting controller then aggregates 
these metrics from all its children by priority value, and sends 
the aggregated metrics upstream to its parent node. Second, in 
the budgeting phase, each shifting controller receives its 
power budget from its parent node, and then computes and 
sends power budgets downstream for its child nodes based on 
the power budget assigned to the controller and the priority-
based metrics of its child nodes. At the bottom, each capping 
controller receives an individual budget for each of its power 
supplies (from the corresponding leaf shifting controller), and 
uses the method discussed in Section IV.B to set a power cap 
for the corresponding server. 

1) Metrics Gathering Phase 
CapMaestro computes the following metrics at each node 

(a node may correspond to a shifting or capping controller): 
• 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗): the minimum total power budget that must be 

allocated to servers with priority j under the node. 
• 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗): the total power demand of all servers under the 

node with priority j, without power capping. This metric is 
workload-dependent. For example, the metric will be larger 
if these servers run more power-hungry workloads.  

• 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗): the maximum total power budget that can be 
safely allocated to servers with priority j under the node to 
satisfy their total power demand. If the node corresponds to 
a capping controller, this will be 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗). If the node 
corresponds to a shifting controller, this may be lower than 
𝐷𝑒𝑚𝑎𝑛𝑑(𝑗). This metric accounts for the power limit of the 
node, other requested power at higher priority, and the 
minimum power budget for lower priorities, all of which 
reduce the power budget available to this priority class. 

• 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: the upper limit for power budgeted to a node 
across all priority classes. It is limited by the power limit of 
the node, power limits for downstream shifting controllers 
and 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 for downstream capping controllers.  
The computation of these metrics differs between the 

capping and shifting controllers. At each capping controller, 
we calculate the metrics for each power supply of the server 
governed by the controller as: 

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) = 𝑟	 × 	𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 
𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) = 𝑟	 × 	𝑚𝑎𝑥{𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑,		𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛} 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑟	 × 	𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 
where j is the server priority, r is the fraction of the server load 
borne by that power supply (nominally 1/M, where M is the 
number of working power supplies; we adjust it in practice 
based on how the load is actually split between the working 
power supplies of the server), 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛  and 
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 are the minimum and maximum controllable 
AC power budgets for the server, and 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 is the 
amount of power that workloads running on the server 
consume at full performance (we discuss how to estimate it in 
Section 0). When we calculate 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗), we choose the 
maximum of 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 and 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 and then 
scale it with r. This is because if the server is running light 
workloads, 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑  may be below the minimum 
power budget 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛. In this scenario, our power 
capping algorithm needs to ensure that the aggregate power 
budget allocated to the server across its power supplies stays 
within the controllable range; otherwise, the power cap on the 
server may not be enforceable if the server load suddenly 
increases later. For j not equal to the server priority, the 
corresponding metric values are zero.    

At each shifting controller, we calculate the metrics, in de-
scending order of priority (i.e., highest priority first) as: 

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) = Σ?𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗) 
𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) = Σ?𝐷𝑒𝑚𝑎𝑛𝑑?(𝑗) 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) 		= 𝑚𝑖𝑛 @
𝑙𝑖𝑚𝑖𝑡 − 	ΣDEF	𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ) 	− 	ΣHIF	𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙),

Σ? 	𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
J 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑚𝑖𝑛{𝑙𝑖𝑚𝑖𝑡,		Σ?𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡?} 
where i is a child node index, and j, h, and l are priorities, and 
𝑙𝑖𝑚𝑖𝑡  is the power limit of the shifting controller. For 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)  and 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) , the corresponding metrics 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗) and 𝐷𝑒𝑚𝑎𝑛𝑑?(𝑗)) are aggregated across all the 
child nodes. For 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, either the power limit of this 
node or the sum of the constraints of the child nodes may limit 
the maximum budget for this controller. For 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗), it is 
first limited by the total power requests from the child nodes 
(Σ?𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)). There is no reason to request more power at 
this controller than the controllers downstream can consume 
for this priority class. Second, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) is also limited by 
the power limit of the controller. For the sake of priority-aware 
power capping, we need to deduct the total power allocation 
requests for higher priorities h (ΣDEF  𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)). We also 
deduct the total minimum power allocation for lower 
priorities l (ΣHIF  𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙)), as capping cannot restrict their 
consumption below their 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙). 

2) Budgeting Phase 
The budgeting phase at each shifting controller distributes 

its budget among its child nodes in four steps: 
1. Allocate a minimum budget to each child i that is the sum 

of the child’s 𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)𝑠 over all its priorities. 
 

2. Iterate over the priority levels (j) from highest to lowest, to 
further allocate the portion of power requested above the 
minimum budget (i.e., 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗) − 𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)) to each 
child (i) from the controller’s budget. If the power remain-
ing in the controller’s budget is not enough to meet the 
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power requested for any priority level during this step go 
to Step 3, else go to Step 4. 

 

3. For the last priority j whose power demand could not be 
completely fulfilled in Step 2, proportionally give the re-
maining budget to each child (i) based on its power de-
mand over minimum power budget ( 𝐷𝑒𝑚𝑎𝑛𝑑?(𝑗) −
𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)). 

 

4. If there is still some remaining power budget, assign it to 
the child nodes up to their constraints (𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡?).  
We have rigorously proved that our global priority-aware 

power capping algorithm allows servers with high priority to 
always be throttled after servers with lower priorities, as long 
as the power limits in the data center allow. The proof is in 
Section 0. 

D. Stranded Power Optimization (SPO) Mechanism 
As Section III.A points out, imbalanced loads may exist 

between different power feeds of a data center. We observe this 
causes a server to receive mismatched power budgets for its 
power supplies, such that the power budget for one of them 
may be underutilized, i.e., stranded. It is desirable to shift this 
stranded budget to other servers on the same power feed whose 
power supplies are constrained. To achieve this, we propose a 
stranded power optimization mechanism.  

Our SPO mechanism runs after CapMaestro performs the 
global priority-aware power capping algorithm. With SPO, 
CapMaestro does not apply those budgets immediately. 
Instead, based on each power supply’s budget, and the power 
sharing between them, we lower the requested power on the 
side with stranded power and run the power capping algorithm 
again. This allows the server to “return” its underutilized 
budget to the higher-level shifting controllers, and shift this 
extra power budget to other servers that are being capped.  

V. IMPLEMENTATION 
We implement a prototype of CapMaestro as an integral 

service in a cloud data center control plane. We group and run 
the shifting and capping controllers of CapMaestro in VMs 
called workers (shown in Figure 3). A worker communicates 
with other upstream or downstream workers to exchange 
metrics and budgets. This communication is on the order of 
milliseconds. We read server sensors via IPMI [26], and use 
these readings to generate server metrics proposed in Section 
IV.C. We use Intel Node Manager [7] to control server power 
based on the DC server power caps determined by CapMaes-
tro. Our detailed implementation, including how to read and 
control power, how to estimate power demand, and how to 
ensure reliability, is described in Section 0.        

Scalability analysis. Our solution has a negligible 
hardware cost. We deploy a rack-level worker for each rack of 
servers to protect its CDU, and a room-level worker for the two 
power feeds to protect their RPPs, transformers, and contractu-
al power budget. We reserve one core per rack (each rack has 
1260 cores) to run the rack-level worker, which consists of 6 
shifting controllers (2 feeds x 3 phases) and 45 server capping 
controllers. For the entire data center, we use four additional 
cores to operate 1 room-level worker and 3 redundant manager 

VMs (which are used to ensure reliability; details are provided 
in Section 0). The computation logic for these controllers in the 
rack-level worker takes less than 10 milliseconds. We estimate 
the computation time for a room-level worker shifting across 
500 racks to be well under 300 milliseconds (based on the fact 
that the computation time of a shifting controller grows linearly 
with the number of its child controllers and the room-level 
worker has no capping controllers). In total, CapMaestro uses 
less than 0.1% of the data center’s resources, regardless of the 
number of racks in the data center. Due to these negligible 
costs, we expect that our design will scale well even for very 
large data centers. 

VI. EXPERIMENTAL RESULTS 
In this section, we demonstrate our approach can 

successfully (a) enforce different budgets for multiple power 
supplies of a server using server power capping (Section VI.A), 
(b) implement global priority-aware power capping across 
hierarchical power constraints across the data center (Sec-
tion VI.B), and (c) implement stranded power optimization for 
redundant power feeds (Section VI.C) based on real system 
experiments. Our servers run Apache HTTP Server [18] as a 
representative cloud workload (with separate client cluster 
running the Apache benchmarking tool ab [19]). Finally, we 
perform a data center-scale simulation based on characteristics 
of our real servers. We report the effectiveness of our solution 
for server capacity increase (Section VI.D).   

A. Results for Server Power Cap Enforcement 
Figure 5 shows that our controller in Section IV.B enforces 

power budgets on the individual power supplies (labeled PS1 
and PS2 in the figure) of a server. At the beginning, the 
budgets for both supplies are higher than the loads, and there is 
no throttling. At t=30s, we lower the budget for PS2 to 200W. 
Our controller responds by computing and applying the 
resulting DC cap for the server that would lower the PS2’s 
power down to the new budget. The Node Manager then 
applies the DC cap to the server, which lowers the load on both 
PS1 and PS2. At t=110s, an even smaller budget of 150W is 
placed on PS1, making it the more constrained of the two 
power supplies. Our controller computes and applies the 
corresponding DC cap to bring down PS1’s power 
consumption. In both cases, our controller recognizes which of 
the power supplies has the more constrained budget, and 
ensures that the server load is lowered enough so that the 
power supply loads satisfy the more constrained budget. 
Overall, the power settles to within 5% of the assigned budgets 

              
 

Figure 5. Power capping for redundant power supplies (PS). 
Throttling refers to power cap throttling (see Section 0). 
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within two control periods (16 s; the details of control period is 
in Section 0). 

B. Example I: Global Priority-Aware Power Capping 
We use four servers, set up as shown in Figure 2, to 

evaluate the conceptual example we described in Section III.B. 
Please note these servers are powered by a single power feed – 
this is an important power failure scenario in redundant power 
infrastructures where the other power feed fails. Each server 
runs the same workload and consumes an average of 420W 
without capping. Each server has a 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of 270W. 
The total power budget is 1240W. Since this does not cover the 
full power demanded by all four of the servers, we need to 
perform power capping. Server SA is assigned high priority, 
and the other three servers (SB, SC, and SD) are assigned low 
priority. We evaluate the power allocated to each server under 
three different power capping polices: 1) No Priority: after 
guaranteeing that each server receives 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 , 
distribute the remaining power proportionally to each server 
based on (𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛) ; 2) Local 
Priority: enforce the notion of priority only at the lowest 
controller level, while the higher-level controllers distribute 
power to each branch using No Priority policy. This policy is 
an extension of Facebook’s Dynamo [5], the most advanced 
data center power capping solution as far as we know that has 
been deployed in a production environment. We extend 
Dynamo to handle redundant power infrastructure; 3) 
CapMaestro’s Global Priority: enforce a common priority 
system at every power controller (Section IV.C).   

Table 2 shows the results for these three policies when the 
workloads are in a steady state. Similar to the conceptual 
example in Section III.B, our Global Priority policy lets the 
high-priority server SA consume 419W, which is very close to 
its full power demand (420W), while neither the Local Priority 
or No Priority policy can achieve this. This allows the 
workload running on SA to achieve a higher throughput and 
lower latency with Global Priority than with the Local Priority 
or No Priority policies. Figures 6(a) shows the detailed 

throughput normalized to an ideal baseline where no power 
capping takes place. For SA, No Priority results in 18% lower 
throughput (and 21% higher latency) relative to the uncapped 
performance of SA; while Local Priority results in 13% lower 
throughput (and 15% higher latency) than the uncapped 
performance. With Global Priority, SA achieves the same 
throughput (and latency) as if it were uncapped.  

Figure 6(b) shows the total power consumption at the Top, 
Left, and Right CBs under our Global Priority policy. We 
observe that the total power consumption is below the 
respective limits at the Top CB (1240W), and at Left and Right 
CBs (750W). This demonstrates that our policy can 
successfully redistribute power for better performance at high-
priority servers when power constrained while ensuring the 
power consumption respects power limits and budgets in data 
center, guaranteeing power safety.  

C. Example II: Stranded Power Optimization 
We now demonstrate our policy’s capability of utilizing 

stranded power in redundant power feeds with four servers 
(SA, SB, SC, and SD) connected to two power feeds. The 
configuration of the servers, and their power distribution 
hierarchy, is shown in Figure 7(a). SA has high priority, while 
the other servers have low priority. We assume that the B-side 
power supply of SA and the A-side supply of SB have failed. 
SC and SD have two healthy power supplies, so they draw 
power from both power feeds (though not in equal amounts, 
due to the power split mismatch). Each power feed has a 
budget of 700W (i.e., the total budget is 1400W), and the 
Top/Bottom CB is rated at 1400W, the Left/Right CB at 750W.    

Table 3 shows the allocated power budgets and the power 
each server consumes on the A-side and B-side power feeds, 
under different power capping policies. If we use our Global 
Priority policy without our proposed SPO mechanism (i.e., 
Global Priority w/o SPO), SC and SD receive a power budget 
of 164W and 187W on the B-side, respectively. However, the 
servers can consume only 137W and 158W respectively, due to 
their more limited A-side budgets. This leaves 27W and 29W 
stranded on the B-side for SC and SD, respectively. If we apply 
our SPO mechanism (i.e., Global Priority w/ SPO), SC and SD 
lower their B-side power budgets, and CapMaestro shifts 67W 
of underutilized power to SB in Figure 7(c). Without SPO, SB 
has a 12% lower throughput (and 14% higher latency) relative 
to its uncapped performance. With SPO, SB now performs 
similar to its uncapped performance, as shown in Figures 7(b), 

 
(a)                              (b)               

Figure 6. Example I: (a) Throughput normalized to uncapped cases; 
(b) Power at each CB. 
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Server SA SB SC SD 
Priority (1 = high, 0 = low) 1 0 0 0 
Power Demand (W) 420 413 417 423 
Budget with No Priority (W) 314 306 311 316 
Budget with Local Priority (W) 344 274 314 317 
Budget with Global Priority (W) 419 276 275 275 

Table 2. Server power for Example I. 

 

Server SA SB SC SD 
Priority 1 0 0 0 
Demand 414 415 433 439 
No Priority  
w/o SPO 

Budget 342/0 0/344 188/164 167/189 
Consumption 345/0 0/348 189/166 168/190 

Local Priority 
w/o SPO 

Budget 342/0 0/345 187/166 169/187 
Consumption 345/0 0/348 189/166 167/190 

Global Priority 
w/o SPO 

Budget 415/0 0/346 152/164 132/187 
Consumption 413/0 0/348 156/137 135/158 

Global Priority 
w/ SPO 

Budget 416/0 0/413 152/132 132/155 
Consumption 413/0 0/412 153/134 133/156 

Table 3. Server power budgets and actual power consumption for 
Example II (a/b is respectively for the A-side/B-side feed). 
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even though SPO did not take away any power actually 
consumed by SC and SD. 

Combining our Global Priority policy with SPO, 
CapMaestro can successfully avoid unnecessary reductions in 
performance when power capping is employed.    

D. Impacts on Data Center Performance 
We perform a simulation to study the data center 

performance improvement (number of servers the data center 
can support) when a power management system is employed 
under different conditions and policies. Our simulations model 
a production data center infrastructure as shown in Figure 1, 
with the parameters summarized in Table 4. The data center 
has 2 power feeds (A and B), 4 transformers, 36 RPPs, 324 
CDUs, for a total of 162 racks (2 CDUs from different power 
feeds power 1 rack). In our simulation, we vary the total 
number of servers deployed by changing the number of servers 
in each phase of a CDU (from 2 servers to 15 servers), while 
keeping the rest of the infrastructure constant. We load the CBs 
and transformers to 80% of the rated power. The contractual 
budget for the data center is 700kW per phase, 2.1MW in total. 
We use 95% loading for this contractual budget, and reserve 
5% as margin to tolerate errors (e.g., server parameter error, 

power measurement error). Without employing a power 
management system, each phase of the CDU can contain at 
most 8 servers (700kW x 95% / 490W / 162CDU = 8.4) to 
accommodate peak power demand, resulting in a total of 3888 
servers deployed in the data center.    

For the simulations, we consider both normal condition 
which is typical load and fully operational dual-feed power 
infrastructure and worst-case condition which has all the 
servers at maximum power and one entire power feed down. 
For our baseline results, we assume 30% of servers are high-
priority and perform full data center Monte Carlo simulations 
with random assignments of priorities to servers. For the 
typical load for the normal case, we use a published load 
profile from Google (Figure 9) [27], giving the distribution of 
average CPU utilization of a shared data center across time. 
We perform 20k Monte Carlo simulations for every data point 
in our results for the normal case. In each simulation, we draw 
an average CPU utilization for the data center from the 
distribution, and let the CPU utilization of each server 
randomly vary around it. Each server has a power demand 
between its idle power and maximum power, determined by its 
CPU utilization based on [2]. (We expect our conclusions still 
hold if we use other methods to generate server power demand 
from CPU utilization.) For the worst case, since load is fixed 
(maximum), we can converge with 1k Monte Carlo simulations 
for every data point (there is still random variation of server 
priorities). As a measure of capping impact on performance, 
we define a metric called cap ratio, which is the percentage of 
the server’s dynamic power demand that is capped (𝐶𝑎𝑝𝑅𝑎𝑡𝑖𝑜 =
(𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐶𝑎𝑝)/(𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑑𝑙𝑒𝑃𝑜𝑤𝑒𝑟) ). This metric 
enables us to have an application-neutral way of characterizing 
the potential impact on performance imposed by capping.   

Figure 8 shows the average cap ratio during the normal 
case and the worst case for the three policies as number of 

contractual budget*  transformer rating* RPP rating*  CDU rating* 

700kW 420kW 52kW 6.9kW 
ServerPcapmin ServerPcapmax ServerIdlePower 
270W 490W 160W     

transformers per 
power feed 

RPP per transformer CDU per 
RPP 

servers per CDU 
2 9 9 From 6 to 45 

Table 4. Data center parameters (* means rating per phase; 
contractual budget is shared by the two power feeds - if a feed fails, 
the remaining feed consumes the full contractual budget. 
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Figure 8. Average cap ratio for all servers and high-priority servers during normal case and worst-case power emergency. 
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Figure 7. Example II: stranded power optimization. (a) Power feed organization; (b) Throughput normalized to uncapped case;  
(c) Total power of the B-side power feed with/without SPO under the Global Priority policy. 
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servers are increased. The x-axis shows the number of servers 
and y-axis shows the corresponding Cap Ratio. Cap Ratio for 
high-priority servers and all servers are shown. The Cap Ratios 
grow with the number of servers deployed in the data center. 
For the priority-aware policies, high-priority servers are 
throttled last, therefore they will have a lower Cap Ratio 
compared with the average for all servers. Comparing Figure 
8(b) and (c), we can see that with Global Priority, high-priority 
servers have a better performance compared with the Local 
Priority case, as Global Priority lets high-priority servers take 
power from low-priority servers even under other shifting 
controllers (while with Low Priority that is restricted to same 
shifting controller). The differences are stark under worst-case 
load and small for normal operations at this typical load.    

In this study, our goal is to increase server count while 
negligibly impacting the average performance for all the 
servers during the normal case, and the average performance 
for high-priority servers during the worst case. Thus, we use 
1% average cap ratio as the limit to determine the number of 
servers from the all servers curve for the normal case and from 
the high-priority servers curve for the worst case. Figure 8 (and 
10) shows that to guarantee the performance for high-priority 
servers for worst-case, Global Priority can deploy up to 5832 
servers in the data center, while Local Priority and No Priority 
can only support up to 4860 and 3888 servers, because it better 
differentiates servers with different priorities while capping. 
Figure 8 (and 10) also shows the three policies support the 
same number of servers (up to 6318 servers) during the normal 
case – this is because the normal condition criteria is impact for 
all servers which is priority agnostic. If we used a priority-
sensitive impact criteria, we might also see higher numbers for 
priority-aware schemes for the normal case. If the typical load 
was much higher, the number of servers that can be supported 
for the normal case (requires negligible impact on all the 
servers) can be lower than those that can be supported for the 
worst case (requires negligible impact on just high-priority 
servers). Thus, to achieve our performance goals for both the 
normal and worst cases, we need to pick the minimum of the 
number of servers that can be deployed for the normal case and 
the worst case (shown as third set of bars in Figure 10). 
CapMaestro’s Global Priority can support up to 5832 servers, 
which is 20% better than Local Priority (i.e., Facebook’s 
Dynamo [5] with our extension to support multiple power 
feeds) does (4860 servers). Finally, compared to a data center 

with no power capping, Global Priority achieves a 50% 
improvement in the number of servers (5832 vs. 3888 servers). 
Additional results: We performed a sensitivity study on the 
impact of key data center parameters including 1) the percent-
age of high-priority servers, 2) 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛, and 3) the data 
center contractual budget.  
   First, we varied the percentage of high-priority servers to 
see its impact, as shown in Figure 11. With zero high-priority 
servers, the three polices can deploy the same number of 
servers. As the percentage of high-priority servers increases, 
the number of servers that can be deployed by No Priority 
quickly falls to 3888 servers, which is the number of servers 
that are provisioned by their maximum power. This is because 
No Priority cannot differentiate server priority in power 
capping. In order to guarantee the performance for high-
priority servers, priority-agnostic No Priority needs to make 
sure all the servers suffer from negligible power capping. We 
can see that the number of servers for Global Priority and 
Local Priority are higher but decrease as the percentage of 
high-priority servers increase. The decrease is because fewer 
percentage of low-priority servers are available to take power 
from during the worst-case scenario. For the most cases, 
Global Priority outperforms Local Priority till high-priority 
servers are 90% of the mix. 

Second, we lowered 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛  from 270W 
(minimum frequency of 1.2GHz) down to 160W (idle power) 
to gauge the effect of an extended capping range where 
individual server performance can be taken close to zero. In the 
normal case, since we would like all servers to have negligible 
capping, extending capping range (i.e., lowering 
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛) does not impact the number of servers that 
data center can support in the normal case. However, lowering 
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛  allows data center to accommodate more 
servers during the worst case (when low-priority servers can be 
capped to 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 , while high-priory servers have 
negligible capping) - using 30% high-priority servers (same as 
for the main study), we can support 7290 servers for Global 
priority and 5832 servers for Local Priority. Since No Priority 
is priority agnostic, it cannot treat high-priority servers 
differently and therefore can support only 3888 servers (no 
impact from lowering 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛). 

Third, we studied the impact of the data center contractual 
budget. For normal operation, the additional capacity of the 
redundant feeds can be used to drive server loads even higher. 
Our above analysis used a contractual budget equal to the 
maximum consumption of one side of the data center. If the 

 
Figure 11. Total servers deployed under various ratios of high-priority 
servers. 
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contractual budget was higher, then more servers could be 
deployed for use during the normal case at the risk of deeper 
throttling required during failure events. This trade-off applies 
to all policies. For example, the number of servers can go up to 
9720 for a budget of 3.3MW compared to 6318 for a budget of 
2.1MW (Figure 10). Average data center load across these 
simulations came to 2.6MW (>2.52MW single feed capacity 
with 80% derating). If a feed fails while the actual load is 
higher than the capacity of the remaining feed, then servers 
will be capped. In this case, the average cap ratio may exceed 
1% (our earlier criteria for worst case). When one feed fails, 
the different policies exhibit different extents of capping. No 
Priority will cap all classes equally (52% cap ratio), and the 
priority-aware schemes will cap the higher priority class less – 
0.68% cap ratio for Global Priority and 4.2% for Local Priority 
(assuming a 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of 160W).  

VII. RELATED WORK 
To our knowledge, our paper is the first work to (1) 

propose a power management system that can handle data 
centers with multiple power feeds; (2) design a global priority-
aware power capping system that enables high-priority servers 
to borrow power from a low-priority server anywhere in the 
data center; and (3) propose a mechanism to make use of the 
stranded power that exists in redundant power infrastructure. 

Server & Data Center Power Capping: Power capping 
first appeared in server products in 2006 [1]. Around the same 
time, Fan et al. observed that data centers rarely consumed 
their maximum peak power, and could allow up to 39% more 
servers in the same power infrastructure without throttling [2]. 
They recommended using power capping as a safety valve, 
using some amount of throttling to allow for the deployment of 
an even greater number of servers. Since then, several works 
on data center power capping [3, 4, 5, 10, 11, 14, 20, 32] have 
been proposed to effectively increase the server capacity of 
data centers. These works require server power capping [6-8] 
as the underlying mechanism to enable power capping for data 
centers. However, these server power capping mechanisms 
control only the sum of power consumption across all power 
supplies of a server and does not enforce separate power caps 
on individual power supplies. Therefore, they are inadequate to 
protect upstream power feeds in redundant power topologies 
(see Section III.A). As a result, these prior data center power 
capping methods [3, 4, 5, 10, 11, 14, 20, 32], which rely solely 
on traditional server power capping mechanisms and do not 
have the context of the redundant power topology, cannot 
safely control highly-available data centers with multiple 
power feeds, which is one of the important challenges we 
resolved in this paper. Moreover, we proposed a mechanism to 
effectively utilize the stranded power that is caused by the 
imbalanced load between different power feeds in redundant 
power infrastructure (see Section VI.D). This stranded power is 
different from what prior work [9] intended to utilize, which is 
caused by imbalanced load between different CBs in single-
feed power infrastructure. 

Priority-aware Capping: Prior works have included some 
notion of prioritizing budgets in power capping controllers 

[1][4][5]. However, such priorities are local to the individual 
controller. For example, in Dynamo, the workloads are known 
in advance and have assigned priorities. The priority 
mechanism works only at the leaf controller level, which at 
most covers “a few hundred” servers [5]. Our proposed 
solution provides the ability for multiple levels of the capping 
hierarchy to capture the priority of all child nodes, enabling the 
comparison of priorities across the entire data center for 
smarter capping decisions. 

Other Knobs for Boosting Server Capacity: Kontorinis 
et al. [35] proposed using energy storage devices to shave peak 
power demand and allow an increase in server capacity. Wang 
et al. [36], Hsu et al. [37], Wallace et al. [38] proposed to effi-
ciently utilize the power infrastructure capacity by workload 
scheduling to boost server capacity. These methods are 
orthogonal to ours and can be combined with our proposal. 
However, using only these methods may not be cost-effective 
to increasing the server capacity of a data center. Energy 
storage devices come with additional cost and space needs, and 
may need to be replaced after a certain number of 
charge/discharge cycles. In addition, an energy storage-only 
solution cannot handle power peaks that last longer than a few 
hours. On the other hand, power-aware workload scheduling 
puts additional requirements on workloads, such as requiring 
them to be short-lived [36] or repetitive [38], or bear a power 
consumption pattern lasting for several days [37]. In contrast, 
CapMaestro is designed for existing power infrastructures 
without imposing requirements on workload characteristics. 

VIII. CONCLUSION 
Power capping provides the means to actively limit load in 

the cloud and HPC data center, to avoid going over the rating 
limits of CBs, transformer capacity, or user-set contractual 
budget. We build CapMaestro, a distributed, fault-tolerant data 
center power management architecture that employs power 
capping and protects against oversubscription at every level of 
the power distribution hierarchy. CapMaestro includes novel 
controllers to manage power for servers with multiple power 
supplies. Our distributed algorithm respects both power limits 
in the hierarchy and server priority levels, while mitigating 
stranded power in data centers with redundant power feeds. We 
safely utilize the traditional gap between the provisioned data 
center power and the actual load of servers to support more 
servers within the existing power infrastructure. We evaluate a 
prototype of CapMaestro on real cloud servers to validate its 
guarantees, and simulate CapMaestro’s performance on a 
large-scale data center environment. We find that for a typical 
data center where 30% of randomly-selected servers are high-
priority, CapMaestro supports 50% more servers than a data 
center without power capping, and 20% more servers than a 
data center that uses a state-of-the-art power capping technolo-
gy that we modify to support redundant power feeds. 
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APPENDIX  

A. ARTIFACT DESCRIPTION 
In our study, we have implemented CapMaestro as a real-

system prototype running in the control plane of a proprietary 
cloud data center. Our implementation has two major 
components, called manager and worker. We run instances of 
the two components in the data center as independent virtual 
machines (VM). In this appendix, we describe the implementa-
tion details of these components within our power management 
system. 

A.1 Manager Component 
The manager component is responsible for ensuring that 

each controller in the power control framework is covered by a 
worker component. Periodically, the manager checks a 
database containing the inventory of the data center and its 
electrical connections (provisioned by the data center operator). 
Each entry of the database contains a list of controllers that are 
run within a single worker instance. The manager assigns the 
controllers of a newly discovered entry to a worker instance, 
and let the worker instance run the control operations described 
in Section IV. The manager also checks the health of each 
worker instance every 2 seconds. If a worker has failed, the 
manager removes the failed worker VM and assigns its work to 
a spare worker instance within a 2-second period. For 
reliability, multiple (typically three) copies of the manager VM 
are run.  

A.2 Worker Component 
The worker component is responsible for running the 

controllers that are assigned by manager. On startup, the 
worker receives a list of controllers. A worker communicates 
with other upstream or downstream workers to exchange 
metrics and budgets. This communication is on the order of 
milliseconds. Our system is flexible in terms of how to map 
controllers to the worker VMs and the number of layers in the 
worker hierarchy. A good mapping should be based on the 
number of servers deployed and the configuration of power 
delivery hierarchy in the data center. In a deployment of our 
prototype for a cloud data center, each rack of servers has a 
corresponding rack-level worker which consists of 6 CDU-
level shifting controllers (2 power feeds x 3 phases) and all the 
capping controllers for servers within the rack. We also employ 
a room-level worker for the two power feeds to contain their 
RPP-level, transformer-level, and data center-level shifting 
controllers. For our real-system experiments in Section VI, our 
prototype is deployed over 4 servers. Here we use a single 
worker that consists of 4 capping controllers and two levels of 
shifting controllers. The controllers in the single worker 
faithfully executes all the details of our mechanisms. 

Each capping controller reads sensors for the server under 
its control every second through IPMI [26]. The sensors 
include AC power monitors for the two power supplies and the 
power cap throttling level. Power cap throttling is an Intel 
Node Manager [7] metric that quantifies the percentage of 
server voltage/ frequency throttling. 

Each capping controller averages the per-second readings 
over an 8-second interval for computing its metrics. Each 
capping controller sets the DC power cap for the server under 
its control every 8 seconds (i.e., control period is 8 seconds) 
based on budgets allocated to the server’s power supplies. By 
averaging the readings for the metrics at this granularity, the 
resulting cap is a response to more stable changes yet fast 
enough to address failures in the infrastructure. The capping 
controller sends the power cap to the Node Manager through 
the server’s baseboard management controller [33] via IPMI 
[26]. Node Manager then ensures that the server power is 
within the cap in 6 seconds. 

Each capping controller computes the power demand 
(𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑) for the server using a regression method [16]. 
The capping controller obtains the server power consumption 
and power cap throttling over the last 16 seconds and builds a 
model relating server power and throttling to estimate the 
server power at 0% throttling as the 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑. If power 
is measured during an interval when power cap throttling is 0% 
(i.e., full performance), then the measured power is used 
instead of the forecast. Alternatively, any suitable approach to 
estimate demand could be used. 

B. POWER SPLIT BETWEEN POWER SUPPLIES 
A server with multiple power supplies may not split its 

power consumption equally across its power supplies. Figure 
12 shows how the power is split between the two power 
supplies of our servers (Server SA, SB, SC, and SD) across a 

range of power loads (idle to full). We observe that there can 
be as much as 15% mismatch in the power consumed by the 
two supplies. 

C. PROPERTY PROOFS FOR ALGORITHM 
In this section, we prove the global priority-aware power 

capping algorithm achieves the following properties for both 
data centers with a single power feed and data centers with 
redundant power feeds: 
• Theorem 1: Guaranteed Safety  

The algorithm ensures the safety condition: (1) the data 
center contractual budget and all the power limits (such as the 
power rating of CBs and the power capacity of transformers) 
are not exceeded by the total power budget assigned to the 
servers under them7; and (2) each server receives a power 
budget no less than the server’s 𝑃𝑐𝑎𝑝𝑚𝑖𝑛 at each power feed8. 
                                                
7 Our capping controller ensures that the power consumption of each 
power supply of a server does not exceed the power supply’s power 

 
Figure 12. Power Split for Servers with 2 power supplies. 
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• Theorem 2: Respecting Server Priority 
After allocating the power budgets for each server using the 

proposed algorithm, it is impossible to find a server being 
throttled to lower performance state due to an enforced power 
cap, such that we can increase its power budget and decrease 
the power budgets of other servers with lower priorities at 
either one or multiple power feeds without violating the safety 
condition9. 

C.1 Definitions and Notations  
In the control framework, we define priority level 1 as the 

lowest priority, and priority level N as the highest priority. 
Each shifting controller has metrics for every priority level 
between 1 and N. However, if there is no server with a certain 
priority level ( 𝑗 ) under the shifting controller, the 
corresponding metrics for that priority level at the shifting 
controller (𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗), 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗), 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)) will be zero. 
Each capping controller has metrics for a single priority, which 
is the priority for the server governed by the capping controller. 

In the design of data center, we need to ensure that every 
power limit should be greater than or equal to the total 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of all the servers under it, otherwise there will be 
safety issue. This is the fundamental requirement for designing 
data center - any data center equipped with power capping 
system (including ours) should follow. Therefore,  

𝑙𝑖𝑚𝑖𝑡 ≥R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)
F

 

where 𝑙𝑖𝑚𝑖𝑡 is the power limit that is protected by a shifting 
controller; 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)  is the minimum power budget for 
priority 𝑗 at the shifting controller. 

C.2 Proof for Theorem 1  
We will first prove Lemmas 1.1, 1.2, and 1.3, before using 

them to prove Theorem 1. 
Lemma 1.1: At any shifting controller, the total requested 

power by the controller itself for all the priorities is less than or 
equal to the power limit of the shifting controller. i.e., 
∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡FUV , where 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)  is the requested 
power for priority 𝑗 at the shifting controller, 𝑙𝑖𝑚𝑖𝑡 is the 
power limit of the shifting controller. 

Proof for Lemma 1.1: As defined in Section 4.3.1,      

                                                                                  
budget. Therefore, by ensuring the data center contractual budget and 
the power limits of circuit breakers and transformers are not exceed-
ed by the total power budget assigned to the servers under them, a 
power capping algorithm can guarantee that they will not be exceed-
ed by the power consumption under them. 
8 This implies the power cap for the server will be greater than or 
equal to the 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of the server, and therefore it is en-
forceable, as shown in the proof. 
9 This is a formal and equivalent interpretation for the claim that 
“the proposed algorithm allows servers with high priority to always 
be throttled after servers with lower priorities, as long as the power 
limits in the data center allow.” 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	 ,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X 

Therefore, 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF

(ℎ) −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

 

Hence,  

R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DUF

≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

 

 
Let 𝑗 = 1, then we have 

R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DUV

≤ 𝑙𝑖𝑚𝑖𝑡 

Equivalently, 

R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)
FUV

≤ 𝑙𝑖𝑚𝑖𝑡 

Lemma 1.1 is proved. 

Lemma 1.2: At any shifting controller or capping con-
troller, the requested power for a priority is greater than or 
equal to the minimum power budget for the priority, i.e., 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗). 

Proof for Lemma 1.2:  
Use mathematical induction to prove the lemma.  
Assign a number 𝑛 to each level of the hierarchy in the 

control tree (please note the control tree is balanced). The leaf 
nodes in the control tree are assigned the smallest number; the 
top node in the control tree, which corresponds to the per-phase 
contractual budget for a power feed, is assigned the largest 
number. For example, for a data center shown in Figure 1 in 
the paper, shifting controllers corresponding to per-phase 
contractual budget, RPP, and CDU is assigned a level number 
of 4, 3, and 2 respectively. The capping controllers, which 
correspond to servers, are assigned a level number of 1. 

Step A for proving Lemma 1.2 
For any controller with a level number 𝑛 = 1 (i.e, capping 

controllers) with priority 𝑗, 
As defined in Section 4.3.1, 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) 

𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) = 𝑟 ×  𝑚𝑎𝑥{𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑,	  𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛} 

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) = 𝑟 ×  𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 

where r is the fraction of the server load borne by a power 
supply of the server. 

Therefore,                                            
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) 

													= 𝑟	 × 	𝑚𝑎𝑥{𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑,	  𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛} 
≥ 𝑟	 × 	𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛																																		 
	= 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)																																																				 



 

 
 

15 

Hence, Lemma 1.2 holds for any controller with a level 
number 𝑛 = 1. 

Step B for proving Lemma 1.2 
Assuming Lemma 1.2 holds for any controller with a level 

number 𝑛 ≤ 𝑘, let’s prove the lemma holds for any controller 
with a level number 𝑛 = 𝑘 + 1 (i.e., a shifting controller). 
 

As Lemma 1.2 holds for any controller with a level number 
𝑛 ≤ 𝑘, for any child node (with an index 𝑖) of a controller with 
a level number 𝑛 = 𝑘 + 1, 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗) 
 

Therefore, if we sum over all the child nodes of this controller, 
we will have 

	R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

≥R𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)
?

 

 
As defined in Section 4.3.1, 

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) =R𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)
?

 

Hence, 
R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)																											(1) 

As defined in Section 4.3.1, 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	 ,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X 

Hence, 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF

(ℎ)

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

,        for any	𝑗 

For 𝟏 ≤ 𝒋 ≤ 𝑵− 𝟏 (priority level N is the highest priority, and 
priority level 1 is the lowest priority), using (𝑗 + 1)  to 
substitute 𝑗 in the above inequality, we have 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1) ≤ 𝑙𝑖𝑚𝑖𝑡 − R 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF_V

(ℎ)− R 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF_V

 

Therefore, 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF

(ℎ)+ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1)

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

− 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) 

Subtract 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1)  from both sides and solve for 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗), we have 

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡
DEF

(ℎ) −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

,	    

for 1 ≤ 𝑗 ≤ 𝑁 − 1																																																				(2) 
 
For 𝒋 = 𝑵, as the power limit should be greater than or equal to 
the total 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙) at the controller, we have 

𝑙𝑖𝑚𝑖𝑡 ≤R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙)
Hab

 

Hence, 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑁) =R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)

Hab

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIb

 

≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙)
HIb

 

Further as 𝑁 is the highest priority,  
R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEb

= 0 

We have  
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑁) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)

HIb

																																																	 

= 𝑙𝑖𝑚𝑖𝑡 − R 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEb

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIb

						(3) 

 
Based on (2) and (3), we will have 

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡
DEF

(ℎ) −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

,	    

for any	𝑗																																																																						(4) 
 

If 𝑙𝑖𝑚𝑖𝑡 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)DEF − ∑ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)HIF 	≤ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?? (𝑗), 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X										 

														= 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

 

Further based on equation (4), 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)

DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

 

≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)																																		 
                                                                        
If 𝑙𝑖𝑚𝑖𝑡 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)DEF − ∑ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)HIF 	≥ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?? (𝑗), 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	 ,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X 

=R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)																											 

Further based on (1), 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) =R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?

?

(𝑗) 	≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) 

In either case, 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) 

Therefore, Lemma 1.2 holds for any controller with a level 
number 𝑛 = 𝑘 + 1. 

Hence, based on Step A and Step B for proving Lemma 
1.2, we conclude that for any shifting controller and capping 
controller, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗). Lemma 1.2 is proved. 

Lemma 1.3: At any shifting controller, the constraint (the 
maximum power budget that is safe to allocate to this 
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controller) is less than or equal to the power limit of the 
controller, i.e., 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡. 

 Proof for Lemma 1.3: As defined in Section 4.3.1, at any 
shifting controller, 

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑚𝑖𝑛f𝑙𝑖𝑚𝑖𝑡,	 R𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡?
?

g 

Therefore, 
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡 

Lemma 1.3 is proved. 
 

 Proof for Theorem 1: At Step 1 of the budgeting phase, 
each child controller (no matter whether it is a shifting 
controller or capping controller) receives a budget of 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) at each of its priority 𝑗. At later steps (Step 2, 3, 
and 4), each child controller may receive additional non-
negative power budget (Lemma 1.2 guarantees the power 
budget assigned at Step 2 is non-negative, as 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≥
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)). Therefore, every server in the data center must at 
least receive its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)  as budget from each of its 
working power supply. In other words, if we use 𝐵𝑢𝑑𝑔𝑒𝑡V, …, 
𝐵𝑢𝑑𝑔𝑒𝑡j to denote these power budgets (the server has M 
working power supplies), we have 

																														𝐵𝑢𝑑𝑔𝑒𝑡? ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)?,           𝑖 = 1,… ,𝑀 
here 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)? is the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) for the power supply 𝑖. 
 

As defined in Section 4.3.1, 
																								𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)? = 𝑟? × 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛,	      𝑖 = 1,… ,𝑀 
where 𝑟? is the ratio of power supply load at power supply 𝑖, 
we can set a power cap (𝐶𝑎𝑝) to the server that respects its 
power budgets and satisfies 

						𝐶𝑎𝑝 = 𝑚𝑖𝑛@
𝐵𝑢𝑑𝑔𝑒𝑡V

𝑟V
, … ,

𝐵𝑢𝑑𝑔𝑒𝑡b
𝑟b

	J																									 

								≥ 𝑚𝑖𝑛 m
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)V

𝑟V
, … ,

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)j
𝑟j

	n 

≥ 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛																																			 
Therefore, the power cap for each server is greater than or 
equal to the 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛  of the server, and thus it is 
enforceable. 

Our algorithm makes sure that: at each shifting controller, 
the power budget that the controller receives is greater than or 
equal to the total power budget that the controller assigns to its 
child controllers10. Therefore, at any shifting controller, the 
total power budget received by the controller is greater than or 
equal to the total power budget assigned to the servers under 
the shifting controller. Hence, the data center contractual 
budget (which is the power budget received by the top shifting 
controller) is not exceeded by the total power budget of the 
servers in the data center. And due to the same reason, in order 
to prove each power limit in the data center (which is protected 
by other shifting controllers) is not exceeded by the total power 

                                                
10 This will be true if the data center contractual budget and all the 
power limits are greater than or equal to the total minimum power 
budget of the servers under them, which is the fundamental require-
ment for the data center design equipped with power capping system. 

budget assigned to the servers under it, we just need to prove 
each power limit is not exceeded by the power budget received 
by the shifting controller that protects the power limit (because 
the power budget received by this shifting controller is greater 
than or equal to the total power budget assigned to the servers 
under the power limit), i.e., 𝐵𝑢𝑑𝑔𝑒𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡. 

At any shifting controller (including the top shifting 
controller), the power budget allocated to a child controller at 
each priority 𝑗  at Step 1 of the budgeting phase is 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗). At Step 2 and 3 of the budgeting phase, the child 
controller may receive additional power budget up to 
(𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) − 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)). Therefore, the aggregate budget 
that the child controller receives at each priority 𝑗 at Step 1, 2 
and 3 is at most 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗). If we further sum over all the 
priorities of the child controller, the total budget that the child 
controller receives at Step 1, 2, and 3 is at most ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)F . 
Further based on Lemma 1.1, since ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡FUV , 
the total power budget that the child controller receives at Step 
1, 2, and 3 does not violate the power limit of the child 
controller. At Step 4 of the budgeting phase, the child 
controller may receive extra power budget. However, if the 
child controller receives the extra power budget, the total 
budget that the child controller receives at Step 1, 2, 3, and 4 is 
up to the 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 of the child controller. Based on Lemma 
1.3, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡. Therefore, the total budget that the 
child controller receives at Step 1, 2, 3, and 4 is no larger than 
𝑙𝑖𝑚𝑖𝑡. In conclusion, the child controller receives a total power 
budget that does not exceed the power limit of the child 
controller. 

Hence, Theorem 1 is proved. 

C.3 Proof for Theorem 2 
We will first prove Lemma 2.1 and Corollary 2.2, and then 

use them to prove Theorem 2. 

Lemma 2.1: At any shifting controller, the aggregate 
power budget received by the controller at Step 1, 2, and 3 of 
the budgeting phase for a priority, is equal to the total power 
budget that this controller assigns to its child controllers for 
this priority at Step 1, 2, and 3 of the budgeting phase.    

 Proof for Lemma 2.1: Use proof by contradiction. Let’s 
make the following assumption: Suppose at a shifting 
controller, priority j is the highest priority such that the 
aggregate power budget for priority 𝑗  that this controller 
receives at Step 1, 2, and 3 (i.e., 𝐵𝑢𝑑𝑔𝑒𝑡(𝑗)) is not equal to the 
total power budget that this controller assigns to its child 
controllers for this priority at Step 1, 2, and 3 (i.e., 
∑ 𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)? ; 𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗) is the aggregate power budget that 
this controller assigns to its child controller 𝑖 for priority 𝑗 at 
Step 1, 2, and 3). In other words, 

𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≠R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)
?

	 

Based on how the power budget is assigned at Step 1, 2, and 3 
of the budgeting phase, it is obvious that 

𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) 
Based on the definition of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗), it is obvious that 
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𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

 

Therefore, 
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≤R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)

?

 

Further because for any priority higher than 𝑗,  
𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) =R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑘)

?

,         for any 𝑘 > 𝑗	

we can realize the proposed algorithm is able to distribute 
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗)  fully to the child controllers of this shifting 
controller as their budgets for priority 𝑗 at Step 1, 2, and 3. In 
other words, 

𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≤R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)
?

	 

Since 
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≠R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)

?

	 

Hence, 
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) <R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)

?

	 

Therefore, when the shifting controller assigns 𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗), it 
must borrow some power from the power budgets that it 
receives for lower priorities (i.e., 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘),   for 𝑘 < 𝑗 ). 
Hence, at some lower priority 𝑙 (𝑙 < 𝑗), the shifting controller 
must receive a budget larger than its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙). As the 
budgeting phase always tries to match budget with requested 
power from high priority to low priority, this implies that 

𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),									for	𝑘 ≥ 𝑗 
 
If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)? , because 

𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗) ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗) 
we have 
R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)
?

≤R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) 

which contradicts  
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) <R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)

?

	 

 
If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) < ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)? , as defined in Section 4.3.1, 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIF

−R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘)
rEF

 

As  
𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),									for	𝑘 ≥ 𝑗 

we have 
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) = 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)

rIF

−R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘)
rEF

 

Therefore, 
R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘)	+R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑘)

rIF

=
rUF

𝑙𝑖𝑚𝑖𝑡 

As at a priority 𝑙 (𝑙 < 𝑗), the shifting controller receives a 
budget larger than its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙), we have  

R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) >
r

R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘)	+R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑘)
rIF

=
rUF

𝑙𝑖𝑚𝑖𝑡 

which contradicts the safety condition. 

Therefore, the assumption we made in the beginning of this 
proof does not hold. And hence, Lemma 2.1 is proved. 

Corollary 2.2: At any shifting controller, the aggregate 
power budget received by the controller at Step 1, 2, and 3 of 
the budgeting phase for a priority, is equal to the total power 
budget that the servers with this priority under this controller 
received (from the power feed that this controller resides) at 
Step 1, 2, and 3 of the budgeting phase. 

 Proof for Corollary 2.2: At any shifting controller, we can 
recursively apply Lemma 2.1 on this shifting controller and 
any shifting controllers below it (in the control tree where this 
shifting controller resides), and then we can see Corollary 2.2 
holds. 

 Proof for Theorem 2: Use proof by contradiction. Let’s 
make the following assumption: Suppose there are two servers 
- SA and SB. SA has a high priority A. SB has a lower priority 
B. After the algorithm allocates power budgets to the servers in 
the data center, SA is under power capping (i.e., throttled). 
Assume we can increase the power budget for SA and decrease 
the power budgets for SB and potentially other servers with 
lower priorities at one or multiple power feeds, without 
violating the safety condition. 

Then let’s look at the shifting controller under which both 
SA and SB resides. We call this controller as Controller C. 
Let’s assume the total power budget for servers with priority 𝑘 
under this controller is 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) after using our algorithm to 
make budgets, and is 𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) after adjusting the server 
power budgets on top of the budgeting decision made by our 
algorithm (“adjusting the server power budgets” refer to 
increasing the power budgets for SA and decrease the power 
budgets for SB and potentially other servers with lower 
priorities). Then, 

𝐵𝑢𝑑𝑔𝑒𝑡s(𝐴) > 	𝐵𝑢𝑑𝑔𝑒𝑡(𝐴) 
𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) = 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘),		for any	𝑘 > 𝐴 

In the case that SB receives a power budget greater than its 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 3 of the budgeting phase, the 
priority B of Controller C must receive a power budget greater 
than the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller C at Step 1, 2, and 3 of the 
budgeting phase. Otherwise, the priority B of Controller C will 
receive a power budget equal to the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller 
C at Step 1, 2, and 3. Based on Corollary 2.2, as the power 
budget received by the priority B of Controller C at Step 1, 2, 
and 3 is equal to the total power budget received by servers 
with priority B under Controller C (from the power feed that 
Controller C resides) at Step 1, 2, and 3, the total power budget 
received by the servers with priority B under Controller C at 
Step 1, 2, and 3 is equal to the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller C, 
which is further equal to the total 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵)  of these 
servers. Further as all the servers under Controller C receive a 
power budget no less than their 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 
3, every server with priority B under Controller C must receive 
a budget equal to its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 3, which 
contradicts with the fact that SB receives a power budget 
greater than its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 3. Therefore, the 
priority B of Controller C must receive a power budget greater 
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than the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller C at Step 1, 2, and 3 of the 
budgeting phase. 

As our algorithm always prioritize the power allocation for 
priority A over priority B at Step 1, 2 and 3 of the budgeting 
phase, we can realize that Controller C must receive a power 
budget for priority A that is equal to the requested power of 
priority A (𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴)) at Step 1, 2 and 3. 

In the case that SB receives a power budget equal to its 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2 and 3 of the budgeting phase, it must 
receive some extra power at Step 4, otherwise its total power 
budget received at Step 1, 2, and 3 will not be greater than its 
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵). Therefore, Controller C must receive some extra 
power budget from its parent controller at Step 4. Otherwise, as 
the power budget received by Controller C for each priority at 
Step 1, 2, and 3 is always equal to the total power budget 
allocated for the servers with the same priority at Step 1, 2 and 
3 (based on Corollary 2), SB will receive no extra power 
budget at Step 4, which is a contradiction. As Controller C 
receives some extra power budget at Step 4, the priority A of 
Controller C must receive a power budget equal to its 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) at Step 1, 2, and 3 of the budgeting phase. 

In either case, priority A at Controller C must receive a 
power budget that is equal to its 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) at Step 1, 2, and 
3 of the budgeting phase. Therefore, for any priority k higher 
than A at Controller C, it must also receive a power budget that 
is equal to its 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘) at Step 1, 2 and 3 of the budgeting 
phase. 

Therefore, we have (please note 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) captures the 
power budget that priority k of Controller C receives at Step 1, 
2, 3, and 4): 

     𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),     for any 𝑘 ≥ 𝐴																		(5)           
As 

𝐵𝑢𝑑𝑔𝑒𝑡s(𝐴) > 	𝐵𝑢𝑑𝑔𝑒𝑡(𝐴) 
𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) = 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘),		    for any	𝑘 > 𝐴 

We have 
																																				𝐵𝑢𝑑𝑔𝑒𝑡s(𝐴) > 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴),																											(6) 
																									𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),	    for any 𝑘 > 𝐴, (7) 
In order to satisfy the safety condition, 
																									𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑘),	    for any 𝑘 < 𝐴,							(8) 

If 𝑙𝑖𝑚𝑖𝑡 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡rEy (𝑘) − ∑ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)rIy ≤ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)?  
(𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴) is the requested power for priority A at the child 
controller 𝑖 of controller C), then 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) = 𝑙𝑖𝑚𝑖𝑡 −R 𝑅𝑒𝑞𝑢𝑒𝑠𝑡
rEy

(𝑘) −R 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIy

 

Therefore, further based on equation (6)(7)(8), 

R𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘)
r

> R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘)
rUy

+R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIy

= 𝑙𝑖𝑚𝑖𝑡 

which violates the safety condition. 
Therefore, 

𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡
rEy

(𝑘) −R 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIy

>R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)
?

 

And hence, 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) =R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)
?

 

Priority A at Controller C receives a power budget equal to 
the 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) of Controller C at Step 1, 2, and 3 of the 
budgeting phase. This budget is fully given to the child 
controllers of Controller C as budgets for priority A at Step 1, 
2, and 3 (based on Lemma 2.1). As each child receives a 
budget for priority A up to 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴) at Step 1, 2, and 3 of 
the budgeting phase, and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) = ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)? , we 
can realize that each child receives a budget for priority A 
equal to its 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴) at Step 1, 2, and 3 of the budgeting 
phase. 

Let Controller C1 be the child controller of Controller C 
that contains server SA under it. Assume the total power 
budget for servers with priority 𝑘  under this controller is 
𝐵𝑢𝑑𝑔𝑒𝑡zV(𝑘) after using our algorithm to make power budgets, 
and is 𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) after adjusting the server power budgets 
on top of the budgeting decision made by our algorithm. Then 
we have 

𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝐴) >	𝐵𝑢𝑑𝑔𝑒𝑡zV(𝐴) 
𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) = 𝐵𝑢𝑑𝑔𝑒𝑡zV(𝑘),           for any	𝑘 > 𝐴 

As priority A of C1 receives a budget equal to the 
𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝐴) of Controller C1 at Step 1, 2, and 3 of the 
budgeting phase, and as our algorithm allocates power from 
high priority to low priority at Step 1, 2, and 3 of the budgeting 
phase, we have 

     	𝐵𝑢𝑑𝑔𝑒𝑡zV(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝑘),    for any	𝑘 ≥ 𝐴,										(9)                                                    
Therefore,                                                       
																																			𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝐴) >	𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝐴),																						(10) 

																		𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝑘),	    for any 𝑘 > 𝐴,									(11)                                                                                                         

In order to satisfy the safety condition, 
																		𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛zV(𝑘),	   for any 𝑘 < 𝐴,								(12)                                    
Please note equation (9), (10), (11), and (12) are the same as 
equation (5) ,(6), (7), and (8), except that equation (9), (10), 
(11), and (12) characterize the relations at Controller C1. 
Therefore, based on the similar reasoning process, we can 
realize that at Controller C2, which is the child controller of 
Controller C1 that contains server SA under it, we have the 
following relations, 
																				𝐵𝑢𝑑𝑔𝑒𝑡z|(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡z|(𝑘),    for any	𝑘 ≥ 𝐴,								(13) 
																																𝐵𝑢𝑑𝑔𝑒𝑡z|s (𝐴) > 	𝑅𝑒𝑞𝑢𝑒𝑠𝑡z|(𝐴),																									(14) 
																			𝐵𝑢𝑑𝑔𝑒𝑡z|s (𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡z|(𝑘),	    for any 𝑘 > 𝐴,							(15) 
																			𝐵𝑢𝑑𝑔𝑒𝑡z|s (𝑘) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛z|(𝑘),	   for any 𝑘 < 𝐴,						(16) 

Apply this reasoning process recursively on the child 
controllers that contains server SA under them, eventually we 
can prove that at server SA, 

					𝐵𝑢𝑑𝑔𝑒𝑡}y(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡}y(𝑘),    for any	𝑘 ≥ 𝐴 
However, as we know that SA is under power capping, so  

𝐵𝑢𝑑𝑔𝑒𝑡}y(𝐴) < 𝐷𝑒𝑚𝑎𝑛𝑑}y(𝐴) ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡}y(𝑘) 
Hence, there is a contradiction. 

Therefore, the assumption we made in the beginning of this 
proof does not hold. And hence, Theorem 2 is proved. 
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