
RC25680 (AUS1711-001) March 28, 2018
Computer Science

 Research Division
 Almaden – Austin – Beijing – Cambridge – Dublin - Haifa – India – Melbourne - T.J. Watson – Tokyo - Zurich

LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. It has been issued as a Research Report for
early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After
outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g., payment of royalties). Many reports are available at http://domino.watson.ibm.com/library/CyberDig.nsf/home.

IBM Research Report

CapMaestro: Exploiting Power Redundancy, Data Center-
Wide Priorities, and Stranded Power for Boosting Data Center

Performance

Yang Li1, Charles Lefurgy1, Karthick Rajamani1, Malcolm Allen-
Ware2, Guillermo J. Silva1, Daniel D. Heimsoth3, Saugata Ghose4,

Onur Mutlu5

1IBM Research Division

Austin Research Laboratory
11501 Burnet Road
Austin, TX 78758

USA

2IBM Tucson 3IBM Raleigh
 9000 S Rita Road 4205 South Miami Boulevard

Tucson, AZ 85744 Durham, NC 2770
USA USA

4Carnegie Mellon University 5ETH Zurich

 School of Computer Science Rämistrasse 101
 5000 Forbes Avenue 8092 Zürich
 Pittsburgh, PA 15213 Switzerland

 USA

1

CapMaestro: Exploiting Power Redundancy, Data Center-Wide Priorities,
and Stranded Power for Boosting Data Center Performance

Yang Li+´, Charles Lefurgy+, Karthick Rajamani+, Malcolm Allen-Ware+,

Guillermo J. Silva+, Daniel D. Heimsoth+, Saugata Ghose´, and Onur Mutlu´Ù

 +IBM ´Carnegie Mellon Univeristy ÙETH Zürich

ABSTRACT—Power infrastructure is a critical component

of cloud and HPC data centers, and costs as much as tens of
millions of US dollars for a large data center. The infrastruc-
ture must be highly reliable and must tolerate load variation,
which traditionally requires significant redundancy and over-
provisioning. This redundant and overprovisioned capacity is
significantly underutilized during normal operation (typical
load, non-failure mode). Power capping reduces underutiliza-
tion by adding more servers to the existing power infrastruc-
ture, and throttling power consumption in the infrequent cases
where demand exceeds the provisioned capacity. However,
state-of-the-art power capping solutions are (1) not practical
for the properties of real-world redundant power infrastructure
in highly-available data centers, and (2) oblivious to differing
priorities of workloads across the entire data center when
power consumption needs to be throttled. As a result, these
solutions are inefficient and can even be unsafe.

In this work, we present CapMaestro, a new power man-
agement architecture for cloud and HPC data centers. Cap-
Maestro has three major new contributions. First, CapMaestro
is designed to work with multiple power feeds, and exploits
server power capping to independently cap the load on each
feed of a server. It exploits the underutilized redundant power
infrastructure commonly employed in data centers to safely
accommodate a much greater number of servers. Second,
CapMaestro uses a scalable, distributed, multi-level power
capping approach, which accounts for power capacity at each
level of power distribution hierarchy. It is global priority-
aware, ensuring that no high-priority server anywhere in the
data center is throttled before all lower-priority servers in the
data center are throttled, as long as this can be achieved safely.
Third, CapMaestro exploits stranded power (i.e., power budg-
ets that are not utilized) in redundant power infrastructure to
boost the performance of applications running in the data cen-
ter. We deploy CapMaestro in our cloud data center control
plane to demonstrate its effectiveness on real-world machines.
We then simulate a data center with thousands of servers using
published load distribution data, and demonstrate that Cap-
Maestro safely increases the number of servers under the ex-
isting power infrastructure by 50%.

I. INTRODUCTION
Power infrastructure is a critical part of data centers, both in

terms of its cost (tens of millions of US dollars) and its impact

on availability. For highly-available data centers, the power
distribution infrastructure often relies on redundancy at each
level of the power distribution hierarchy to ensure reliable
power delivery, spanning from multiple power supplies within
individual servers up to multiple utility feeds into the data cen-
ter, as shown in Figure 1. This redundancy within the power
distribution infrastructure, referred to as N+N power delivery
design, ensures continued availability of the full power demand
in the event of the failure of half the power devices at each
level. If a data center’s total power consumption exhibits wide
variations, or cannot be well anticipated (such as in a public
cloud), each side of the power infrastructure (i.e., A-side/B-
side power feed in Figure 1) is conventionally overprovisioned
to meet the maximum possible power consumption (including
uncertainty) and avoid risking failures. During normal
operation, the data center’s total power consumption may be
much lower than its peak power, and maximum power loads
rarely occur, resulting in underutilized infrastructure.
Additionally, the extra power capacity from redundant feeds is
not utilized during normal operation.

Power capping, introduced a decade ago [1], throttles the
amount of power consumed by servers. It can be used to reduce
the amount of power load applied on the power infrastructure
during periods of peak demand. With the gradual, industry-
wide adoption of server power capping, today’s data centers
have the means to shape power consumption in real time, so

Figure 1. Example power delivery layout in a data center.

30A, 3-phase

Power Supply

Server

Power Supply

A-Side Power Feed B-Side Power Feed

Utility

UPS UPS
…

480V

400/230V

RPP

CDU

RPP
…

…

Power Supply

Server

Power Supply

1-phase

Rack CDU

Utility

UPSUPS
…

RPP

CDU

225A, 3-phase

RPP
…

1260kVA

…CDU

ATSATS Gen.

…

1-phase

1-phase 1-phase

… …

2

that potential excursions above the power capacity of the
infrastructure can be avoided [3-5, 22-24, 28-31, 39, 40]. This
lets us more efficiently utilize the existing power infrastructure
by increasing server capacity (i.e., housing more servers) in the
data center based on their typical load and/or quality-of-service
(QoS), rather than overprovisioning the power infrastructure to
meet infrequently-occurring maximum possible loads.

Unfortunately, existing power capping solutions face three
serious challenges, which prevent them from guaranteeing
safety and effectively increasing server capacity for highly-
available data centers. First, in highly-available data centers, a
server draws power from multiple power supplies, each
connected to a different power feed. We find that there is typi-
cally an imbalance in the power drawn from each supply (see
Section III.A). In such cases, power capping must ensure that
the power consumed by each power supply does not exceed the
supply’s power budget. State-of-the-art controllers cannot do
this today, and enforce only a single combined budget across
all power supplies of a server. These controllers cannot ensure
that the budgets for individual power supplies are respected,
which can cause one of the power feeds to become overloaded,
leading to tripped circuit breakers and power loss on the over-
loaded feed.

Second, when existing power capping techniques are
invoked during periods of high demand, they are oblivious to
the importance of each workload globally across the entire data
center (at best, they may be aware of the workload importance
within a limited local group of servers, e.g., [5]). As a result,
existing techniques may inadvertently cap a critical (i.e., high-
priority) workload in one group of servers unnecessarily, even
though lower-priority workloads in another group remain
uncapped. Without capturing priority across the entire data
center, a power capping solution may not redistribute power
budgets to critical workloads, unnecessarily hurting their
performance.

Third, existing power capping techniques cannot guarantee
the power budgets allocated to different power supplies of a
server exactly match the power load sharing between these
supplies (see Section III.C and VI.C). As a result, some power
supply budget(s) may not be fully utilized, leaving the
unutilized budget becoming stranded power.

To address these challenges, we propose CapMaestro, a
new power capping architecture for cloud and HPC data cen-
ters that can control an arbitrary, multi-level, redundant power
infrastructure. CapMaestro unlocks the unused power capacity
of a highly-available data center, which is provisioned for peak
power and redundancy, to power more servers under a fixed
power budget, while still protecting every level of the power
infrastructure from overload. Our architecture performs effi-
cient global priority-aware budget allocation, and includes an
optional optimization that adjusts the budget to redistribute
stranded power throughout the data center. CapMaestro per-
forms budget allocation using a distributed algorithm with
multiple coordinated power controllers, which enables fault-
tolerant and scalable capping, and reduces communication and
dependencies between the controllers.

We implement CapMaestro as a scalable, managed control
plane service within our cloud data center and demonstrate its
effectiveness for capping multi-feed power infrastructure with
global priorities. To evaluate its effectiveness for increasing
data center server capacity, we study the impact of CapMaestro
on the power infrastructure of a data center using a detailed
simulation model. Based on the load data for a Google data
center [27], we find that for a typical shared data center where
we designate 30% of the servers as high-priority, CapMaestro
can enable the data center to support 50% more servers than if
power capping were not employed, and can support 20% more
servers than a state-of-the-art power capping controller [5] that
we modify to support multiple power feeds. This increased
server capacity negligibly impacts the performance of high-
priority workloads even during a worst-case power emergency,
and negligibly impacts all workloads during normal conditions.

Importantly, our solution is designed to be applicable with
minimal changes to existing data centers. For example, our
design integrates with conventional baseboard management
controller (BMC) based server infrastructure management [33].
Our solution can also handle (1) load imbalances on different
power feeds that can otherwise lead to stranded power, and (2)
a shared power distribution hierarchy where some of the
infrastructure does not have power capping technology.

We make the following key contributions in this work:
• CapMaestro is a new architecture for data center power

management with distributed, coordinated power controllers
that enforce power limits at all levels of the power
infrastructure. We propose and implement a global priority-
aware algorithm for the first time.

• We design the first closed-loop, feedback power controller
for servers with multiple power supplies. This allows us to
manage the power consumption at each supply in response
to the unique power loads and limits seen at each upstream
circuit breaker. This enables CapMaestro to manage multi-
feed power hierarchies in the data center.

• We provide a mechanism that can reduce stranded power
within the power infrastructure, by shifting the stranded
power to servers that are currently throttled and thus
improve performance.

• We implement our solution in a cloud control plane and
demonstrate its functionality and effectiveness. Also, we
perform simulations with real data center measurements to
estimate how much we improve the performance (by in-
creasing the number of servers) of large-scale power-
constrained data centers.

II. BACKGROUND
In this section, we review the typical design of the power

infrastructure and then discuss power capping techniques at the
server and data center levels.

A. Data Center Power Delivery
Figure 1 illustrates the power infrastructure for a typical

data center. Power from the utility is delivered to the building
at 12.5kV, and is stepped down to 480V for distribution. On-

3

site generators provide power through the ATS (Automatic
Transfer Switch) if the utility feed fails. Another layer of
transformers steps the voltage down further to 400V.1 RPPs
(Remote Power Panel) are 42-pole boxes with CBs (Circuit
Breaker) that connect to Cabinet Distribution Units (CDUs) in
the racks. 3-phase power is delivered to the CDUs from the
RPPs. The outlets on the CDU receive power at 230V from one
of the three phases.

At each branch of a distribution point, there are CBs that
limit the amount of current, to protect the power infrastructure
and guard against cascading upstream failures from short
circuits and overload conditions. In this paper, we use the
distribution point power limit to refer to the maximum amount
of power that the corresponding CB2 or transformer allows.
When CBs trips, downstream power delivery is interrupted,
potentially causing server power outage.

Redundant power feeds provide higher availability and
resilience against power interruption. Servers rely on two or
more power supplies connected to independent power feeds.
Even if one of the power feeds or supplies fails, the remaining
keep(s) the server operational. Ideally, power supplies equally
share the server power load. In practice, load varies from
supply to supply (see Section III.A).

Conventional practice in data centers is to not have
sustained power load exceed 80% of the maximum rating for
CBs and transformers [21] to avoid risk of damaging the power
infrastructure. For example, a 30A 3-phase breaker may only
be loaded to 24 A on each phase. When a power feed fails, its
power load shifts to the remaining power feed, whose CB will
see double the load. The server power connections must ensure
that this doubled load doesn’t exceed 80% of the CB rating.
Otherwise, the CB may trip during the failure, and the servers
downstream of the CB will lose power [5]. In our example with
redundant (dual) 30A feeds, the per-phase load on each feed
would need to be limited to 12A (40% of 30A) to ensure that
the load during a failure is limited to 24A (80%).

In our work, we load CBs up to 80% under normal
conditions because we employ power capping. When a feed
fails, the breaker on the redundant feed becomes overloaded to
160%. The time it takes for a CB to trip depends on the amount
of overload. For example, CBs covered under the UL 489
standard (a widely-adopted CB industry standard) will operate
for a minimum of 30 seconds before tripping when under
160% load [11][17]. Within that 30-second window, our
capping solution throttles the associated servers to ensure the
load comes down to within 80% of the rating, which thus
avoids tripping the CB.

B. Server Power Capping
In the past decade, power capping has become a common

feature in servers to keep the server within a power limit
[6][7][8][25]. Typically, the power controller measures the
server power and throttles the CPU (scaling its voltage and

1 400V is the line-to-line voltage of the 3-phase power. The corre-
sponding line or phase voltage is 230V.
2 CBs are rated in terms of maximum current, but we convert them to
their equivalent power values.

frequency) and other components to enforce the power limit.
Prior work has shown that such controllers can generally per-
form decisions within a few seconds [6].

The range of power control can be characterized by running
the most power-demanding workload at the highest and lowest
performance states of the server at the highest allowed ambient
temperature. 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 is the power consumed by the
server at the lowest performance state. 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 is the
power at the highest performance state. Any power budgeted to
the server above 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 is wasted, and capping
cannot guarantee adherence to any budget below
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛.

Capping server power consumption allows us to directly
control the power load seen by CBs and transformers. The
timescale of power capping is an order of magnitude faster
than the trip time of CBs. This allows server power capping to
adequately protect against tripping of CBs.

III. DESIGN GOALS
CapMaestro addresses three key challenges in leveraging

server power capping for power management: (1) accounting
for multiple power feeds, (2) applying priorities globally in
power capping decisions, and (3) capturing stranded power in
a redundant power infrastructure. These are important to
address for highly-available data centers but have not been
addressed in prior works.

A. Power Capping for Multiple Power Feeds
The power load across multiple power feeds is not perfectly

balanced. We observe this at all levels of the infrastructure for
three reasons. First, servers with multiple power supplies do
not split their power load equally between their power supplies.
In our servers with two power supplies there can be as much as
15% mismatch across the two supplies, with either A-side or
B-side feed dominating across all power load levels. This pow-
er mismatch varies from server to server and is an intrinsic
property of servers (i.e., is independent of the workloads), and
cannot be adjusted during use. Additional data is available in
Section 0. Second, power device failures (e.g., failed power
supplies or power feeds) may also lead to imbalanced load
between different power feeds. Third, some servers now have
an energy efficiency mode that puts a redundant supply in
standby (drawing no power) when the server load is below a
certain level [34].

An imbalanced load between different power feeds forces
power managers to assign and regulate separate budget for
each power supply of a server. For example, a server with two
power supplies (Supply A and Supply B) may get a budget of
200W on Supply A (which is connected to the A-side feed) and
only 100W on Supply B (which is connected to the B-side
feed), because other servers exert a greater power load on the
B-side feed, leaving less power available to assign to Supply B.
However, existing server power capping solutions, which only
limit the combined load across all power supplies, do not
consider this need for individual per-supply power budgets,
and therefore may not adequately protect the upstream circuit
breaker for each power supply. To tackle this challenge, we

4

propose a server power controller that enforces an individual
power budget per supply in Section IV.B.

B. Global Priority-Aware Power Capping
In a data center, some workloads can be more important

than others (e.g., due to different SLAs, pricing, workload het-
erogeneity, or service function). We want to prioritize these
workloads globally (across the entire data center) and give
them sufficient power during a power emergency, by letting
them borrow power from lower-priority workloads on a
common power feed, regardless of the physical server location.

Existing priority-based power allocation schemes cannot do
this, as they consider priorities only between local groups of
servers under a single power constraint (e.g., a branch circuit),
and are unable to incorporate priority across higher levels of
power limits in the data center (e.g., the servers attached to a
common RPP in our power delivery layout) [4][5]. This limits
the ability to truly share power across the entire data center.

Figure 2 shows an example with four servers SA, SB, SC,
and SD under a total power budget of 1240W for a single
power feed. The servers connect to a power feed of three CBs:
a top-level CB rated at 1400W, and two child CBs rated at
750W each, which we call Left CB and Right CB. These four
servers have an equal power demand of 430W each, and a
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of 270W. Suppose SA has high priority, while
the other servers have low priority. Table 1 shows how much
power each server is budgeted under a local priority-aware
power capping policy, and how power would be budgeted if
the policy is instead global priority-aware. At the top level, the
local priority-aware policy splits the total power budget equally
across the Left and Right CBs, as only the lowest-level CBs
have the knowledge of and enforce server priorities. Therefore,
under a total power budget of 1240W, both Left CB and Right
CB are assigned a power budget of 620W. As SB can at most
be throttled down to 270W (𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛), SA can only
receive a power budget of 350W (i.e., 620W – 270W), even
though it demanded 430W. In contrast, a global priority-aware
policy knows at the top level that one of the servers under Left
CB has high priority. As a result, the policy allocates more
power to Left CB, allowing SA to be budgeted the full 430W
that it demands. A global priority-aware policy ensures that a
higher priority server is not throttled when lower priority

servers anywhere in the data center can be capped to meet the
concerned power constraint. We introduce a global priority-
aware power capping algorithm in Section IV.C.

C. Stranded Power in Redundant Power Feeds
For servers with redundant power supplies, it is possible

that the available power on the power feed to each power
supply may not be matched (Section III.A). This could be the
result of different set of loads on either feed. If the load sharing
of the server across its feeds does not match available power on
those feeds, the available power on one of the feeds would be
left stranded (i.e. unutilized). It is desirable to reallocate the
stranded power to other power-constrained servers to improve
their performance. To perform power reallocation, we propose
a stranded power optimization mechanism in Section IV.D.

IV. DESIGN OVERVIEW
CapMaestro is a new scalable power management solution

for data centers that achieves the three design goals described
in Section III. At a high level, CapMaestro employs a light-
weight power control framework to efficiently collect power
demand information and enforce power budgets for each node
in the power infrastructure hierarchy, including each individual
server power supply (Sections IV.A and IV.B). CapMaestro
uses the collected power demand information to determine
power budgets for each node based on a new global priority-
aware power capping algorithm (Section IV.C). Once global
priority-aware allocation finishes, CapMaestro can optimize
stranded power by identifying the nodes where assigned power
is underutilized, and then reassigning this power elsewhere in
the hierarchy (Section IV.D).

A. System Overview
CapMaestro uses a power control tree (shown in Figure 3)

that mirrors the hierarchy of the power infrastructure. At the
bottom of the tree, capping controllers manage the power of
individual server/IT equipment using the built-in server power
capping mechanism (see Section IV.B). At each higher level of
the tree, we use a power shifting controller that distributes the
power budget at that level among the nodes fed from that
distribution point. Each shifting controller is mapped to a sin-
gle physical device, and adheres to the device’s power limit

Server SA SB SC SD
Priority (1 = high, 0 = low) 1 0 0 0
Power Demand (W) 430 430 430 430
Budget with Local Priority (W) 350 270 310 310
Budget with Global Priority (W) 430 270 270 270

Table 1. Power budget assignments using local per-CB vs.
global priorities.

Figure 3. Mapping physical equipment to control tree.

30 A, 3-phase

PSU
1-phase

Server
PSU

Physical View

480 V
400/230 V

Utility

UPSUPS …

RPP

CDU

225 A, 3-phase
RPP …

1260 kVA

…CDU

ATS Gen.

shifting
controller

Contractual
budget

…

…

…

Logical View
(Control Tree)

Runtime View
(Worker VMs)

… …

room
worker

rack
worker

shifting
controller

shifting
controller

shifting
controller

capping
controller

rack
workers

Figure 2. Example I: power feed with various server priorities.

Left	CB	(750W	Limit)

SA	(High	Priority) SB	(Low	Priority) SC	(Low	Priority) SD	(Low	Priority)

Right	CB	(750W	Limit)

Top	CB	(1400W	Limit)1240W Budget

5

(e.g., maximum power allowed by a transformer, RPP, or
CDU) or contractual budget (i.e., the maximum power that a
data center has negotiated to draw in total across all of its
utility feeds).

To account for redundant power infrastructure, we replicate
the power control tree for each power feed of the data center.
We also replicate the power control tree for each phase of
power delivery to protect each phase independently, since
loading on each phase is not always uniform. In our example in
Figure 3, our power control framework (two power feeds with
three phases each) has six control trees. The shifting controllers
on one power feed operate independently from shifting
controllers on the other feed, while each server has a single
capping controller that is shared across multiple trees.3

Each server can have a specific priority level.4 Its capping
controller generates metrics (e.g., power demand) for the
server, which flow upstream in the control trees to the shifting
controllers in the next level up. Each shifting controller
produces priority-based metrics summarizing the sub-tree that
it controls, based on the metrics that the shifting controller
receives from its child nodes. To perform global priority-aware
power capping, a key insight is that we need to convey
upstream only the metrics summarized by priority level, and
not individual server metrics for all servers in a sub-tree. In
practice, we expect a data center to have only a small number
of priority levels (on the order of 10); thus, the priority-based
summaries provide us with a compact way to represent metrics
for thousands of servers. This allows the shifting controller at
the root node to efficiently have a global view of the power
demand across the entire data center. With this view, the root
shifting controller easily routes power (by assigning power
budgets to its child nodes) towards the most critical servers by
comparing priority-based metrics from each of its child nodes,
while respecting the power limits of the intervening CBs and
transformers along the control tree. These budgets flow
downstream, and are recursively allocated until the budgets
reach the capping controllers (see Section IV.C for algorithm
details). After a power budget is assigned to a capping
controller, the controller (Section IV.B) ensures that for each
power supply of the server, the per-supply power budget is not
exceeded by the power consumption on that supply.

Our control trees mirror the physical electrical connections
of the data center, allowing us to model situations unique to
each data center or portions of it. For example, CapMaestro
can (1) manage both multiple- and single-corded devices;
(2) deal with equipment that does not include power capping
technology, by setting the metrics to assign a fixed maximum
power for that equipment; (3) capture servers plugged into
multiple phases of power; and (4) work with shifting

3 For a server with multiple power supplies, its capping controller
adjusts the frequency/voltage of the entire server, impacting the load
on all of the server’s power supplies. As a result, different control
trees need to share a single capping controller per server.
4 For cloud platforms that run VMs or containers with different prior-
ities, one could set server priority based on the priorities of the set of
VMs/containers assigned to a server and further assign
VMs/containers to servers based on their priorities.

controllers that accept power budgets based on restrictions
aside from physical equipment limits, e.g., contractual budgets.

B. Power Supply Budget Enforcement
To protect the independent power feeds of the redundant

power infrastructure, we design a proportional-integral (PI)
[15] feedback controller for CapMaestro that guarantees
adherence to AC power budgets on the power consumption of
each power supply in a server. Our controller utilizes the server
power capping controls of Intel Node Manager [7], which caps
only the total DC power of the server. The input to our
controller is the external AC power budget for each power
supply. These budgets are determined by the power capping
algorithm that protects each power feed. The budgets for the
power supplies of a server may have unequal values,
depending on the load on each power feed. The controller
determines the proper DC power cap for Node Manager to
adhere to the given AC power budgets for all supplies.

Figure 4 shows our control diagram. First, each control
iteration calculates an error for each power supply by
subtracting its measured power from its budget value. This
error quantifies how close the AC power is to the AC budget
on each power supply. After that, the minimum error is
selected as how much we should adjust for the AC power on
every supply, and passed to the next stage. This ensures that
the power supply that the minimum error corresponds to will
settle to its desired budget and the remaining ones will be at or
below their budgets5. Second, the error is scaled by the power
supply efficiency (k) to transform from AC power domain to
DC power domain (k can be determined from the power supply
specification manual), and then further scaled by the number of
working6 power supplies (M) to account for how much DC
power the full system power needs to be adjusted by. Third, the
scaled error is added to the integrator (which stores the
previously desired DC cap) to form the currently desired DC
power cap. After clipping to the server’s controllable range, the
currently desired DC power cap is sent to Node Manager
which then manages the frequency and voltage of the processor
to meet the DC power cap.

5 The stranded power optimization mechanism will later shift the
unused power budgets to other servers for better utilization.
6 Working power supplies refer to ones with non-zero power con-
sumption. If a power supply fails, we ignore the quantities associated
with it and decrease M in the capping controller.

Figure 4. Power capping controller (“PS” means power supply).

+

×"×#minimum

Budget1(t)

PS_power_in1(t) (AC W)

bound

DC
capper PS1

PSM

Server

+
BudgetM(t)

-

-

DC cap min

DC cap max

DC load

Throttle(t)
error(t)

cap (DC W)

PS_power_inM(t) (AC W)

$
�

�

6

C. Global Priority-Aware Power Capping Algorithm
CapMaestro’s global priority-aware power capping

algorithm allocates power budgets across a tree of shifting and
capping controllers, respecting the data center contractual
budgets and the power limits of multiple levels of CBs and
transformers while safely trying to satisfy as much of the
power demands of the servers. Both single and redundant
power distribution environments can use this algorithm. In both
cases, each control tree runs this algorithm independently.

Our algorithm runs iteratively, with each iteration consist-
ing of two phases. First, in the metrics gathering phase, each
shifting controller receives power allocation requests (and
other metrics) from its child nodes. These metrics are tagged
by the priority value j. The shifting controller then aggregates
these metrics from all its children by priority value, and sends
the aggregated metrics upstream to its parent node. Second, in
the budgeting phase, each shifting controller receives its
power budget from its parent node, and then computes and
sends power budgets downstream for its child nodes based on
the power budget assigned to the controller and the priority-
based metrics of its child nodes. At the bottom, each capping
controller receives an individual budget for each of its power
supplies (from the corresponding leaf shifting controller), and
uses the method discussed in Section IV.B to set a power cap
for the corresponding server.

1) Metrics Gathering Phase
CapMaestro computes the following metrics at each node

(a node may correspond to a shifting or capping controller):
• 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗): the minimum total power budget that must be

allocated to servers with priority j under the node.
• 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗): the total power demand of all servers under the

node with priority j, without power capping. This metric is
workload-dependent. For example, the metric will be larger
if these servers run more power-hungry workloads.

• 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗): the maximum total power budget that can be
safely allocated to servers with priority j under the node to
satisfy their total power demand. If the node corresponds to
a capping controller, this will be 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗). If the node
corresponds to a shifting controller, this may be lower than
𝐷𝑒𝑚𝑎𝑛𝑑(𝑗). This metric accounts for the power limit of the
node, other requested power at higher priority, and the
minimum power budget for lower priorities, all of which
reduce the power budget available to this priority class.

• 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡: the upper limit for power budgeted to a node
across all priority classes. It is limited by the power limit of
the node, power limits for downstream shifting controllers
and 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 for downstream capping controllers.
The computation of these metrics differs between the

capping and shifting controllers. At each capping controller,
we calculate the metrics for each power supply of the server
governed by the controller as:

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) = 𝑟	 × 	𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛
𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) = 𝑟	 × 	𝑚𝑎𝑥{𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑,		𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛}

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗)

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑟	 × 	𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥
where j is the server priority, r is the fraction of the server load
borne by that power supply (nominally 1/M, where M is the
number of working power supplies; we adjust it in practice
based on how the load is actually split between the working
power supplies of the server), 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 and
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑎𝑥 are the minimum and maximum controllable
AC power budgets for the server, and 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 is the
amount of power that workloads running on the server
consume at full performance (we discuss how to estimate it in
Section 0). When we calculate 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗), we choose the
maximum of 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 and 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 and then
scale it with r. This is because if the server is running light
workloads, 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 may be below the minimum
power budget 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛. In this scenario, our power
capping algorithm needs to ensure that the aggregate power
budget allocated to the server across its power supplies stays
within the controllable range; otherwise, the power cap on the
server may not be enforceable if the server load suddenly
increases later. For j not equal to the server priority, the
corresponding metric values are zero.

At each shifting controller, we calculate the metrics, in de-
scending order of priority (i.e., highest priority first) as:

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) = Σ?𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)
𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) = Σ?𝐷𝑒𝑚𝑎𝑛𝑑?(𝑗)

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) 		= 𝑚𝑖𝑛 @
𝑙𝑖𝑚𝑖𝑡 − 	ΣDEF	𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ) 	− 	ΣHIF	𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙),

Σ? 	𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
J

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑚𝑖𝑛{𝑙𝑖𝑚𝑖𝑡,		Σ?𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡?}
where i is a child node index, and j, h, and l are priorities, and
𝑙𝑖𝑚𝑖𝑡 is the power limit of the shifting controller. For
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) and 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) , the corresponding metrics
𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗) and 𝐷𝑒𝑚𝑎𝑛𝑑?(𝑗)) are aggregated across all the
child nodes. For 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡, either the power limit of this
node or the sum of the constraints of the child nodes may limit
the maximum budget for this controller. For 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗), it is
first limited by the total power requests from the child nodes
(Σ?𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)). There is no reason to request more power at
this controller than the controllers downstream can consume
for this priority class. Second, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) is also limited by
the power limit of the controller. For the sake of priority-aware
power capping, we need to deduct the total power allocation
requests for higher priorities h (ΣDEF 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)). We also
deduct the total minimum power allocation for lower
priorities l (ΣHIF 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙)), as capping cannot restrict their
consumption below their 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙).

2) Budgeting Phase
The budgeting phase at each shifting controller distributes

its budget among its child nodes in four steps:
1. Allocate a minimum budget to each child i that is the sum

of the child’s 𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)𝑠 over all its priorities.

2. Iterate over the priority levels (j) from highest to lowest, to
further allocate the portion of power requested above the
minimum budget (i.e., 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗) − 𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)) to each
child (i) from the controller’s budget. If the power remain-
ing in the controller’s budget is not enough to meet the

7

power requested for any priority level during this step go
to Step 3, else go to Step 4.

3. For the last priority j whose power demand could not be
completely fulfilled in Step 2, proportionally give the re-
maining budget to each child (i) based on its power de-
mand over minimum power budget (𝐷𝑒𝑚𝑎𝑛𝑑?(𝑗) −
𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)).

4. If there is still some remaining power budget, assign it to
the child nodes up to their constraints (𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡?).
We have rigorously proved that our global priority-aware

power capping algorithm allows servers with high priority to
always be throttled after servers with lower priorities, as long
as the power limits in the data center allow. The proof is in
Section 0.

D. Stranded Power Optimization (SPO) Mechanism
As Section III.A points out, imbalanced loads may exist

between different power feeds of a data center. We observe this
causes a server to receive mismatched power budgets for its
power supplies, such that the power budget for one of them
may be underutilized, i.e., stranded. It is desirable to shift this
stranded budget to other servers on the same power feed whose
power supplies are constrained. To achieve this, we propose a
stranded power optimization mechanism.

Our SPO mechanism runs after CapMaestro performs the
global priority-aware power capping algorithm. With SPO,
CapMaestro does not apply those budgets immediately.
Instead, based on each power supply’s budget, and the power
sharing between them, we lower the requested power on the
side with stranded power and run the power capping algorithm
again. This allows the server to “return” its underutilized
budget to the higher-level shifting controllers, and shift this
extra power budget to other servers that are being capped.

V. IMPLEMENTATION
We implement a prototype of CapMaestro as an integral

service in a cloud data center control plane. We group and run
the shifting and capping controllers of CapMaestro in VMs
called workers (shown in Figure 3). A worker communicates
with other upstream or downstream workers to exchange
metrics and budgets. This communication is on the order of
milliseconds. We read server sensors via IPMI [26], and use
these readings to generate server metrics proposed in Section
IV.C. We use Intel Node Manager [7] to control server power
based on the DC server power caps determined by CapMaes-
tro. Our detailed implementation, including how to read and
control power, how to estimate power demand, and how to
ensure reliability, is described in Section 0.

Scalability analysis. Our solution has a negligible
hardware cost. We deploy a rack-level worker for each rack of
servers to protect its CDU, and a room-level worker for the two
power feeds to protect their RPPs, transformers, and contractu-
al power budget. We reserve one core per rack (each rack has
1260 cores) to run the rack-level worker, which consists of 6
shifting controllers (2 feeds x 3 phases) and 45 server capping
controllers. For the entire data center, we use four additional
cores to operate 1 room-level worker and 3 redundant manager

VMs (which are used to ensure reliability; details are provided
in Section 0). The computation logic for these controllers in the
rack-level worker takes less than 10 milliseconds. We estimate
the computation time for a room-level worker shifting across
500 racks to be well under 300 milliseconds (based on the fact
that the computation time of a shifting controller grows linearly
with the number of its child controllers and the room-level
worker has no capping controllers). In total, CapMaestro uses
less than 0.1% of the data center’s resources, regardless of the
number of racks in the data center. Due to these negligible
costs, we expect that our design will scale well even for very
large data centers.

VI. EXPERIMENTAL RESULTS
In this section, we demonstrate our approach can

successfully (a) enforce different budgets for multiple power
supplies of a server using server power capping (Section VI.A),
(b) implement global priority-aware power capping across
hierarchical power constraints across the data center (Sec-
tion VI.B), and (c) implement stranded power optimization for
redundant power feeds (Section VI.C) based on real system
experiments. Our servers run Apache HTTP Server [18] as a
representative cloud workload (with separate client cluster
running the Apache benchmarking tool ab [19]). Finally, we
perform a data center-scale simulation based on characteristics
of our real servers. We report the effectiveness of our solution
for server capacity increase (Section VI.D).

A. Results for Server Power Cap Enforcement
Figure 5 shows that our controller in Section IV.B enforces

power budgets on the individual power supplies (labeled PS1
and PS2 in the figure) of a server. At the beginning, the
budgets for both supplies are higher than the loads, and there is
no throttling. At t=30s, we lower the budget for PS2 to 200W.
Our controller responds by computing and applying the
resulting DC cap for the server that would lower the PS2’s
power down to the new budget. The Node Manager then
applies the DC cap to the server, which lowers the load on both
PS1 and PS2. At t=110s, an even smaller budget of 150W is
placed on PS1, making it the more constrained of the two
power supplies. Our controller computes and applies the
corresponding DC cap to bring down PS1’s power
consumption. In both cases, our controller recognizes which of
the power supplies has the more constrained budget, and
ensures that the server load is lowered enough so that the
power supply loads satisfy the more constrained budget.
Overall, the power settles to within 5% of the assigned budgets

Figure 5. Power capping for redundant power supplies (PS).
Throttling refers to power cap throttling (see Section 0).

0 50 100 150 200
Time (second)

140

160

180

200

220

240

260

280

P
o
w
e
r

(
W
)

PS1 Budget PS1 Power
PS2 Budget PS2 Power

0 100 200100

200

300

400

500

Time (second)

P
o
w
e
r

(
W
)

0 100 200 0

20

40

60

80

T
h
r
o
t
t
l
i
n
g

(
%
)

DC Cap Throttling

8

within two control periods (16 s; the details of control period is
in Section 0).

B. Example I: Global Priority-Aware Power Capping
We use four servers, set up as shown in Figure 2, to

evaluate the conceptual example we described in Section III.B.
Please note these servers are powered by a single power feed –
this is an important power failure scenario in redundant power
infrastructures where the other power feed fails. Each server
runs the same workload and consumes an average of 420W
without capping. Each server has a 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of 270W.
The total power budget is 1240W. Since this does not cover the
full power demanded by all four of the servers, we need to
perform power capping. Server SA is assigned high priority,
and the other three servers (SB, SC, and SD) are assigned low
priority. We evaluate the power allocated to each server under
three different power capping polices: 1) No Priority: after
guaranteeing that each server receives 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 ,
distribute the remaining power proportionally to each server
based on (𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛) ; 2) Local
Priority: enforce the notion of priority only at the lowest
controller level, while the higher-level controllers distribute
power to each branch using No Priority policy. This policy is
an extension of Facebook’s Dynamo [5], the most advanced
data center power capping solution as far as we know that has
been deployed in a production environment. We extend
Dynamo to handle redundant power infrastructure; 3)
CapMaestro’s Global Priority: enforce a common priority
system at every power controller (Section IV.C).

Table 2 shows the results for these three policies when the
workloads are in a steady state. Similar to the conceptual
example in Section III.B, our Global Priority policy lets the
high-priority server SA consume 419W, which is very close to
its full power demand (420W), while neither the Local Priority
or No Priority policy can achieve this. This allows the
workload running on SA to achieve a higher throughput and
lower latency with Global Priority than with the Local Priority
or No Priority policies. Figures 6(a) shows the detailed

throughput normalized to an ideal baseline where no power
capping takes place. For SA, No Priority results in 18% lower
throughput (and 21% higher latency) relative to the uncapped
performance of SA; while Local Priority results in 13% lower
throughput (and 15% higher latency) than the uncapped
performance. With Global Priority, SA achieves the same
throughput (and latency) as if it were uncapped.

Figure 6(b) shows the total power consumption at the Top,
Left, and Right CBs under our Global Priority policy. We
observe that the total power consumption is below the
respective limits at the Top CB (1240W), and at Left and Right
CBs (750W). This demonstrates that our policy can
successfully redistribute power for better performance at high-
priority servers when power constrained while ensuring the
power consumption respects power limits and budgets in data
center, guaranteeing power safety.

C. Example II: Stranded Power Optimization
We now demonstrate our policy’s capability of utilizing

stranded power in redundant power feeds with four servers
(SA, SB, SC, and SD) connected to two power feeds. The
configuration of the servers, and their power distribution
hierarchy, is shown in Figure 7(a). SA has high priority, while
the other servers have low priority. We assume that the B-side
power supply of SA and the A-side supply of SB have failed.
SC and SD have two healthy power supplies, so they draw
power from both power feeds (though not in equal amounts,
due to the power split mismatch). Each power feed has a
budget of 700W (i.e., the total budget is 1400W), and the
Top/Bottom CB is rated at 1400W, the Left/Right CB at 750W.

Table 3 shows the allocated power budgets and the power
each server consumes on the A-side and B-side power feeds,
under different power capping policies. If we use our Global
Priority policy without our proposed SPO mechanism (i.e.,
Global Priority w/o SPO), SC and SD receive a power budget
of 164W and 187W on the B-side, respectively. However, the
servers can consume only 137W and 158W respectively, due to
their more limited A-side budgets. This leaves 27W and 29W
stranded on the B-side for SC and SD, respectively. If we apply
our SPO mechanism (i.e., Global Priority w/ SPO), SC and SD
lower their B-side power budgets, and CapMaestro shifts 67W
of underutilized power to SB in Figure 7(c). Without SPO, SB
has a 12% lower throughput (and 14% higher latency) relative
to its uncapped performance. With SPO, SB now performs
similar to its uncapped performance, as shown in Figures 7(b),

(a) (b)

Figure 6. Example I: (a) Throughput normalized to uncapped cases;
(b) Power at each CB.

0.0

0.2

0.4

0.6

0.8

1.0

SA (High
Priority)

SB (Low
Priority)

SC (Low
Priority)

SD (Low
Priority)

No Priority Local Priority Global Priority

82%
87%

100%

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0 30 60 90 120150180
Time (second)

400
600
800
1000
1200
1400
1600

Po
we

r
(W

)

1240 W 750W

Top CB Left CB
Right CB

Server SA SB SC SD
Priority (1 = high, 0 = low) 1 0 0 0
Power Demand (W) 420 413 417 423
Budget with No Priority (W) 314 306 311 316
Budget with Local Priority (W) 344 274 314 317
Budget with Global Priority (W) 419 276 275 275

Table 2. Server power for Example I.

Server SA SB SC SD
Priority 1 0 0 0
Demand 414 415 433 439
No Priority
w/o SPO

Budget 342/0 0/344 188/164 167/189
Consumption 345/0 0/348 189/166 168/190

Local Priority
w/o SPO

Budget 342/0 0/345 187/166 169/187
Consumption 345/0 0/348 189/166 167/190

Global Priority
w/o SPO

Budget 415/0 0/346 152/164 132/187
Consumption 413/0 0/348 156/137 135/158

Global Priority
w/ SPO

Budget 416/0 0/413 152/132 132/155
Consumption 413/0 0/412 153/134 133/156

Table 3. Server power budgets and actual power consumption for
Example II (a/b is respectively for the A-side/B-side feed).

9

even though SPO did not take away any power actually
consumed by SC and SD.

Combining our Global Priority policy with SPO,
CapMaestro can successfully avoid unnecessary reductions in
performance when power capping is employed.

D. Impacts on Data Center Performance
We perform a simulation to study the data center

performance improvement (number of servers the data center
can support) when a power management system is employed
under different conditions and policies. Our simulations model
a production data center infrastructure as shown in Figure 1,
with the parameters summarized in Table 4. The data center
has 2 power feeds (A and B), 4 transformers, 36 RPPs, 324
CDUs, for a total of 162 racks (2 CDUs from different power
feeds power 1 rack). In our simulation, we vary the total
number of servers deployed by changing the number of servers
in each phase of a CDU (from 2 servers to 15 servers), while
keeping the rest of the infrastructure constant. We load the CBs
and transformers to 80% of the rated power. The contractual
budget for the data center is 700kW per phase, 2.1MW in total.
We use 95% loading for this contractual budget, and reserve
5% as margin to tolerate errors (e.g., server parameter error,

power measurement error). Without employing a power
management system, each phase of the CDU can contain at
most 8 servers (700kW x 95% / 490W / 162CDU = 8.4) to
accommodate peak power demand, resulting in a total of 3888
servers deployed in the data center.

For the simulations, we consider both normal condition
which is typical load and fully operational dual-feed power
infrastructure and worst-case condition which has all the
servers at maximum power and one entire power feed down.
For our baseline results, we assume 30% of servers are high-
priority and perform full data center Monte Carlo simulations
with random assignments of priorities to servers. For the
typical load for the normal case, we use a published load
profile from Google (Figure 9) [27], giving the distribution of
average CPU utilization of a shared data center across time.
We perform 20k Monte Carlo simulations for every data point
in our results for the normal case. In each simulation, we draw
an average CPU utilization for the data center from the
distribution, and let the CPU utilization of each server
randomly vary around it. Each server has a power demand
between its idle power and maximum power, determined by its
CPU utilization based on [2]. (We expect our conclusions still
hold if we use other methods to generate server power demand
from CPU utilization.) For the worst case, since load is fixed
(maximum), we can converge with 1k Monte Carlo simulations
for every data point (there is still random variation of server
priorities). As a measure of capping impact on performance,
we define a metric called cap ratio, which is the percentage of
the server’s dynamic power demand that is capped (𝐶𝑎𝑝𝑅𝑎𝑡𝑖𝑜 =
(𝐷𝑒𝑚𝑎𝑛𝑑 − 𝐶𝑎𝑝)/(𝐷𝑒𝑚𝑎𝑛𝑑 − 𝑆𝑒𝑟𝑣𝑒𝑟𝐼𝑑𝑙𝑒𝑃𝑜𝑤𝑒𝑟)). This metric
enables us to have an application-neutral way of characterizing
the potential impact on performance imposed by capping.

Figure 8 shows the average cap ratio during the normal
case and the worst case for the three policies as number of

contractual budget* transformer rating* RPP rating* CDU rating*

700kW 420kW 52kW 6.9kW
ServerPcapmin ServerPcapmax ServerIdlePower
270W 490W 160W

transformers per
power feed

RPP per transformer CDU per
RPP

servers per CDU
2 9 9 From 6 to 45

Table 4. Data center parameters (* means rating per phase;
contractual budget is shared by the two power feeds - if a feed fails,
the remaining feed consumes the full contractual budget.

 (a) No Priority (b) Local Priority (c) Global Priority

Figure 8. Average cap ratio for all servers and high-priority servers during normal case and worst-case power emergency.

1k 2k 3k 4k 5k 6k 7k
Total Servers Deployed

0

20

40

60

80

Ca
p
Ra
ti
o
(%
)

1k 2k 3k 4k 5k 6k 7k
Total Servers Deployed

0

20

40

60

80
Ca
p
Ra
ti
o
(%
)

1k 2k 3k 4k 5k 6k 7k
Total Servers Deployed

0

20

40

60

80

Ca
p
Ra
ti
o
(%
)

For All Servers (Normal Case) For High Priority (Normal Case) For All Servers (Worst Case) For High Priority (Worst Case)

3888	HP	(WC)	

6318	All	(NC)	

4860	HP	(WC)	

6318	All	(NC)	

5832	HP	(WC)	

6318	All	(NC)	

For	All	Servers	(Normal	Case)	 For	High	Priority	(Normal	Case)	 For	All	Servers	(Worst	Case)	 For	High	Priority	(Worst	Case)	

 (a) (b) (c)

Figure 7. Example II: stranded power optimization. (a) Power feed organization; (b) Throughput normalized to uncapped case;
(c) Total power of the B-side power feed with/without SPO under the Global Priority policy.

Left CB (750W Limit)

SA SB SC SD

Right CB (750W Limit)

Top CB (1400W Limit)

Left CB (750W Limit) Right CB (750W Limit)

Bottom CB (1400W Limit)

700W Budget

700W Budget

A-Side Power Feed

B-Side Power Feed

0.0

0.2

0.4

0.6

0.8

1.0

SA (High
Priority)

SB (Low
Priority)

SC (Low
Priority)

SD (Low
Priority)

No Priority w/o SPO Local Priority w/o SPO
Global Priority w/o SPO Global Priority w/ SPO

>99% >99%
88% 88%

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

0 30 60 90 120 150 180
600

650

700

750

Time (second)

P
o
w
e
r

(
W
)

w/ S.P.O. w/o S.P.O.

10

servers are increased. The x-axis shows the number of servers
and y-axis shows the corresponding Cap Ratio. Cap Ratio for
high-priority servers and all servers are shown. The Cap Ratios
grow with the number of servers deployed in the data center.
For the priority-aware policies, high-priority servers are
throttled last, therefore they will have a lower Cap Ratio
compared with the average for all servers. Comparing Figure
8(b) and (c), we can see that with Global Priority, high-priority
servers have a better performance compared with the Local
Priority case, as Global Priority lets high-priority servers take
power from low-priority servers even under other shifting
controllers (while with Low Priority that is restricted to same
shifting controller). The differences are stark under worst-case
load and small for normal operations at this typical load.

In this study, our goal is to increase server count while
negligibly impacting the average performance for all the
servers during the normal case, and the average performance
for high-priority servers during the worst case. Thus, we use
1% average cap ratio as the limit to determine the number of
servers from the all servers curve for the normal case and from
the high-priority servers curve for the worst case. Figure 8 (and
10) shows that to guarantee the performance for high-priority
servers for worst-case, Global Priority can deploy up to 5832
servers in the data center, while Local Priority and No Priority
can only support up to 4860 and 3888 servers, because it better
differentiates servers with different priorities while capping.
Figure 8 (and 10) also shows the three policies support the
same number of servers (up to 6318 servers) during the normal
case – this is because the normal condition criteria is impact for
all servers which is priority agnostic. If we used a priority-
sensitive impact criteria, we might also see higher numbers for
priority-aware schemes for the normal case. If the typical load
was much higher, the number of servers that can be supported
for the normal case (requires negligible impact on all the
servers) can be lower than those that can be supported for the
worst case (requires negligible impact on just high-priority
servers). Thus, to achieve our performance goals for both the
normal and worst cases, we need to pick the minimum of the
number of servers that can be deployed for the normal case and
the worst case (shown as third set of bars in Figure 10).
CapMaestro’s Global Priority can support up to 5832 servers,
which is 20% better than Local Priority (i.e., Facebook’s
Dynamo [5] with our extension to support multiple power
feeds) does (4860 servers). Finally, compared to a data center

with no power capping, Global Priority achieves a 50%
improvement in the number of servers (5832 vs. 3888 servers).
Additional results: We performed a sensitivity study on the
impact of key data center parameters including 1) the percent-
age of high-priority servers, 2) 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛, and 3) the data
center contractual budget.
 First, we varied the percentage of high-priority servers to
see its impact, as shown in Figure 11. With zero high-priority
servers, the three polices can deploy the same number of
servers. As the percentage of high-priority servers increases,
the number of servers that can be deployed by No Priority
quickly falls to 3888 servers, which is the number of servers
that are provisioned by their maximum power. This is because
No Priority cannot differentiate server priority in power
capping. In order to guarantee the performance for high-
priority servers, priority-agnostic No Priority needs to make
sure all the servers suffer from negligible power capping. We
can see that the number of servers for Global Priority and
Local Priority are higher but decrease as the percentage of
high-priority servers increase. The decrease is because fewer
percentage of low-priority servers are available to take power
from during the worst-case scenario. For the most cases,
Global Priority outperforms Local Priority till high-priority
servers are 90% of the mix.

Second, we lowered 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 from 270W
(minimum frequency of 1.2GHz) down to 160W (idle power)
to gauge the effect of an extended capping range where
individual server performance can be taken close to zero. In the
normal case, since we would like all servers to have negligible
capping, extending capping range (i.e., lowering
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛) does not impact the number of servers that
data center can support in the normal case. However, lowering
𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 allows data center to accommodate more
servers during the worst case (when low-priority servers can be
capped to 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 , while high-priory servers have
negligible capping) - using 30% high-priority servers (same as
for the main study), we can support 7290 servers for Global
priority and 5832 servers for Local Priority. Since No Priority
is priority agnostic, it cannot treat high-priority servers
differently and therefore can support only 3888 servers (no
impact from lowering 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛).

Third, we studied the impact of the data center contractual
budget. For normal operation, the additional capacity of the
redundant feeds can be used to drive server loads even higher.
Our above analysis used a contractual budget equal to the
maximum consumption of one side of the data center. If the

Figure 11. Total servers deployed under various ratios of high-priority
servers.

0 10 20 30 40 50 60 70 80 90 100
Ratio of High Priority (%)

3500
4000
4500
5000
5500
6000
6500

T
o
t
a
l

S
e
r
v
e
r
s No Priority

Local Priority
Global Priority

Figure 9. Distribution of average Figure 10. Total servers deployed
 CPU utilization for (30% high-priority servers).
 a Google data center.

0 20 40 60 80 100
CPU Utilization (%)
0

1

2

3

4

5

Fr
ac
ti
on
 o
f
Ti
me
 (
%)

6318

3888 3888
6318 4860 4860

6318 5832 5832

Normal Case Worst Case Min of
Normal

& Worst Case

No Priority Local Priority
Global Priority

11

contractual budget was higher, then more servers could be
deployed for use during the normal case at the risk of deeper
throttling required during failure events. This trade-off applies
to all policies. For example, the number of servers can go up to
9720 for a budget of 3.3MW compared to 6318 for a budget of
2.1MW (Figure 10). Average data center load across these
simulations came to 2.6MW (>2.52MW single feed capacity
with 80% derating). If a feed fails while the actual load is
higher than the capacity of the remaining feed, then servers
will be capped. In this case, the average cap ratio may exceed
1% (our earlier criteria for worst case). When one feed fails,
the different policies exhibit different extents of capping. No
Priority will cap all classes equally (52% cap ratio), and the
priority-aware schemes will cap the higher priority class less –
0.68% cap ratio for Global Priority and 4.2% for Local Priority
(assuming a 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of 160W).

VII. RELATED WORK
To our knowledge, our paper is the first work to (1)

propose a power management system that can handle data
centers with multiple power feeds; (2) design a global priority-
aware power capping system that enables high-priority servers
to borrow power from a low-priority server anywhere in the
data center; and (3) propose a mechanism to make use of the
stranded power that exists in redundant power infrastructure.

Server & Data Center Power Capping: Power capping
first appeared in server products in 2006 [1]. Around the same
time, Fan et al. observed that data centers rarely consumed
their maximum peak power, and could allow up to 39% more
servers in the same power infrastructure without throttling [2].
They recommended using power capping as a safety valve,
using some amount of throttling to allow for the deployment of
an even greater number of servers. Since then, several works
on data center power capping [3, 4, 5, 10, 11, 14, 20, 32] have
been proposed to effectively increase the server capacity of
data centers. These works require server power capping [6-8]
as the underlying mechanism to enable power capping for data
centers. However, these server power capping mechanisms
control only the sum of power consumption across all power
supplies of a server and does not enforce separate power caps
on individual power supplies. Therefore, they are inadequate to
protect upstream power feeds in redundant power topologies
(see Section III.A). As a result, these prior data center power
capping methods [3, 4, 5, 10, 11, 14, 20, 32], which rely solely
on traditional server power capping mechanisms and do not
have the context of the redundant power topology, cannot
safely control highly-available data centers with multiple
power feeds, which is one of the important challenges we
resolved in this paper. Moreover, we proposed a mechanism to
effectively utilize the stranded power that is caused by the
imbalanced load between different power feeds in redundant
power infrastructure (see Section VI.D). This stranded power is
different from what prior work [9] intended to utilize, which is
caused by imbalanced load between different CBs in single-
feed power infrastructure.

Priority-aware Capping: Prior works have included some
notion of prioritizing budgets in power capping controllers

[1][4][5]. However, such priorities are local to the individual
controller. For example, in Dynamo, the workloads are known
in advance and have assigned priorities. The priority
mechanism works only at the leaf controller level, which at
most covers “a few hundred” servers [5]. Our proposed
solution provides the ability for multiple levels of the capping
hierarchy to capture the priority of all child nodes, enabling the
comparison of priorities across the entire data center for
smarter capping decisions.

Other Knobs for Boosting Server Capacity: Kontorinis
et al. [35] proposed using energy storage devices to shave peak
power demand and allow an increase in server capacity. Wang
et al. [36], Hsu et al. [37], Wallace et al. [38] proposed to effi-
ciently utilize the power infrastructure capacity by workload
scheduling to boost server capacity. These methods are
orthogonal to ours and can be combined with our proposal.
However, using only these methods may not be cost-effective
to increasing the server capacity of a data center. Energy
storage devices come with additional cost and space needs, and
may need to be replaced after a certain number of
charge/discharge cycles. In addition, an energy storage-only
solution cannot handle power peaks that last longer than a few
hours. On the other hand, power-aware workload scheduling
puts additional requirements on workloads, such as requiring
them to be short-lived [36] or repetitive [38], or bear a power
consumption pattern lasting for several days [37]. In contrast,
CapMaestro is designed for existing power infrastructures
without imposing requirements on workload characteristics.

VIII. CONCLUSION
Power capping provides the means to actively limit load in

the cloud and HPC data center, to avoid going over the rating
limits of CBs, transformer capacity, or user-set contractual
budget. We build CapMaestro, a distributed, fault-tolerant data
center power management architecture that employs power
capping and protects against oversubscription at every level of
the power distribution hierarchy. CapMaestro includes novel
controllers to manage power for servers with multiple power
supplies. Our distributed algorithm respects both power limits
in the hierarchy and server priority levels, while mitigating
stranded power in data centers with redundant power feeds. We
safely utilize the traditional gap between the provisioned data
center power and the actual load of servers to support more
servers within the existing power infrastructure. We evaluate a
prototype of CapMaestro on real cloud servers to validate its
guarantees, and simulate CapMaestro’s performance on a
large-scale data center environment. We find that for a typical
data center where 30% of randomly-selected servers are high-
priority, CapMaestro supports 50% more servers than a data
center without power capping, and 20% more servers than a
data center that uses a state-of-the-art power capping technolo-
gy that we modify to support redundant power feeds.

12

REFERENCES
[1] P. Ranganathan, P. Leech, D. Irwin, and J. Chase, “Ensemble-level

Power Management for Dense Blade Servers,” in Intl. Symp. on
Computer Architecture (ISCA), 2006.

[2] X. Fan, W. Weber, and L. Barroso, “Power Provisioning for A
Warehouse-Sized Computer,” in Intl. Symp. on Computer Architecture
(ISCA), 2007.

[3] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
"Power" Struggles: Coordinated Multi-Level Power Management for the
Data Center,” in Intl. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2008.

[4] X. Wang, M. Chen, C. Lefurgy, and T. Keller, “SHIP: A Scalable
Hierarchical Power Control Architecture for Large-Scale Data Centers,”
IEEE Trans. on Parallel and Distributed Systems, 2012.

[5] Q. Wu, Q. Deng, L. Ganesh, C. H. Hsu, Y. Jin, S. Kumar, B. Li, J.
Meza, and Y. J. Song, “Dynamo: Facebook’s Data Center-Wide Power
Management System,” in Intl. Symp. on Computer Architecture (ISCA),
2016.

[6] C. Lefurgy, X. Wang and M. Allen-Ware, “Power Capping: A Prelude
to Power Shifting,” Cluster Computing 11 (2008): 183-195.

[7] Intel, “Intel® Intelligent Power Node Manager 3.0 External Interface
Specification Using IPMI,” Document Number 332200-001US, March
2015.

[8] Intel, “Intel® 64 and IA-32 Architectures Software Developer’s
Manual,” Volume 3B: System Programming Guide, Part 2, Document
number 253669-060US, Sept. 2016.

[9] L. Ganesh, J. Liu, S. Nath, and F. Zhao, “Unleash Stranded Power in
Data Centers with RackPacker,” in Workshop on Energy-Efficient
Design, 2009.

[10] A. Bhattacharya, D. Culler, A. Kansal, S. Govindan, S. Sankar, “The
Need for Speed and Stability in Data Center Power Capping,” in
International Green Computing Conference (IGCC), 2012.

[11] X. Fu, X. Wang, and C. Lefurgy, "How Much Power Oversubscription
is Safe and Allowed in Data Centers?", in International Conference on
Autonomic Computing (ICAC), 2011.

[12] National Fire Protection Association, “National Electrical Code,” 2008.
[13] Rockwell Automation Inc., “Bulletin 1489 Circuit Breakers Selection

Guide,”
http://literature.rockwellautomation.com/idc/groups/literature/document
s/sg/1489-sg001_-en-p.pdf, 2010.

[14] S. Govindan, J. Choi, B. Urgaonkar, A. Sivasubramaniam, and A.
Baldini, “Statistical Profiling-Based Techniques for Effective Power
Provisioning in Data Centers,” in ACM European Conference on
Computer Systems (Eurosys), 2009.

[15] K.J. Åström, and T. Hägglund, “Advanced PID Control,” ISA-The
Instrumentation, Systems and Automation Society, 2006.

[16] M. Govindan, C. Lefurgy, and A. Dholakia, “Using On-line Power
Modeling for Server Power Capping,” in Workshop on Energy Efficient
Design, 2009.

[17] UL, “UL 489 Molded-Case Circuit Breakers, Molded-Case Switches,
and Circuit Breaker Enclosures,” 13th Edition, October 14, 2016.

[18] Apache HTTP server, https://httpd.apache.org/.
[19] Apache HTTP server benchmarking tools,

https://httpd.apache.org/docs/2.4/programs/ab.html.
[20] R. Azimi, M. Badiei, X. Zhan, N. Li, and S. Reda, “Fast Decentralized

Power Capping for Server Clusters,” in IEEE Symposium on High-
Performance Computer Architecture (HPCA), 2017.

[21] National Fire Protection Association, “National Electrical Code,” 2016.
[22] H. Lim, A. Kansal, and J. Liu, “Power Budgeting for Virtualized Data

Centers,” in USENIX annual technical conference (USENIX ATC),
2011.

[23] D. Wang, S. Govindan, A. Sivasubramaniam, A. Kansal, J. Liu, and B.
Khessib, “Underprovisioning Backup Power Infrastructure for
Datacenters,” in Intl. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2014.

[24] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing Throughput
of Overprovisioned HPC Data Centers under A Strict Power Budget,” in
Intl. Conference for High Performance Computing, Networking, Storage
and Analysis (SC), 2014.

[25] H. Zhang and H. Hoffmann, “Maximizing Performance under A Power
Cap: A Comparison of Hardware, Software, and Hybrid Techniques,” in
Intl. Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016.

[26] Intel, Hewlett-Packard, NEC, Dell, “Intelligent Platform Management
Interface (IPMI) Specification v2.0 rev. 1.1,” 2013.

[27] L. A. Barroso, J. Clidaras, and U. Hölzle. "The Datacenter as a
Computer: An Introduction to the Design of Warehouse-scale
Machines," in Synthesis lectures on computer architecture, 2013.

[28] M. Alian, A. H. M. O. Abulila, L. Jindal, D. Kim and N. S. Kim,
"NCAP: Network-Driven, Packet Context-Aware Power Management
for Client-Server Architecture," in IEEE International Symposium on
High Performance Computer Architecture (HPCA), 2017.

[29] H. Yang, Q. Chen, M. Riaz, Z. Luan, L. Tang, and J. Mars,
“PowerChief: Intelligent Power Allocation for Multi-Stage Applications
to Improve Responsiveness on Power Constrained CMP,” in
International Symposium on Computer Architecture (ISCA), 2017.

[30] Y. Li, D. Wang, S. Ghose, J. Liu, S. Govindan, S. James, E. Peterson, J.
Siegler, R. Ausavarungnirun, and O. Mutlu, “SizeCap: Efficiently
Handling Power Surges in Fuel Cell Powered Data Centers,” in IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2016.

[31] C. Li, R. Zhou, and T. Li, “Enabling Distributed Generation Powered
Sustainable High-Performance Data Center,” in IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2013.

[32] Z. Tang, H. Zhou, Y. Zhu, R. Tian and J. Yao, "Quantitative
Availability Analysis of Hierarchical Datacenter under Power
Oversubscription," IEEE International Conference on Smart Computing
(SMARTCOMP), 2017.

[33] Supermicro, “Embedded BMC/IPMI User’s Guide Revision 2.0”, 2012.
[34] M. Muccini, W. Cook, “Power Consumption Reduction: Hot Spare,”

Dell, white paper, 2012.
[35] V. Kontorinis, L. E. Zhang, B. Aksanli, J. Sampson, H. Homayoun, E.

Pettis, D. Tullsen, T. S. Rosing, “Managing Distributed UPS Energy for
Effective Power Capping in Data Centers”, in Intl. Symp. on Computer
Architecture (ISCA), 2012.

[36] G. Wang, S. Wang, B. Luo, W. Shi, Y. Zhu, W. Yang, D. Hu, L. Huang,
X. Jin, W. Xu, “Increasing Large-Scale Data Center Capacity by
Statistical Power Control.”, in ACM European Conference on Computer
Systems (Eurosys), 2016.

[37] C. Hsu, Q. Deng, J. Mars, L. Tang, “SmoothOperator: Reducing Power
Fragmentation and Improving Power Utilization in Large-scale
Datacenters”, in Intl. Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2018.

[38] S. Wallace, X. Yang, V. Vishwanath, W. E. Allcock, S. Coghlan, M. E.
Papka, Z. Lan, “A Data Driven Scheduling Approach for Power
Management on HPC Systems”, in Intl. Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2016.

[39] P. E. Bailey, A. Marathe, D. K. Lowenthal, B. Rountree, M. Schulz,
“Finding the Limits of Power-Constrained Application Performance”, in
in Intl. Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2015.

[40] D. A. Ellsworth, A. D. Malony, B. Rountree, M. Schulz, “Dynamic
Power Sharing for Higher Job Throughput”, in Intl. Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2015.

13

APPENDIX

A. ARTIFACT DESCRIPTION
In our study, we have implemented CapMaestro as a real-

system prototype running in the control plane of a proprietary
cloud data center. Our implementation has two major
components, called manager and worker. We run instances of
the two components in the data center as independent virtual
machines (VM). In this appendix, we describe the implementa-
tion details of these components within our power management
system.

A.1 Manager Component
The manager component is responsible for ensuring that

each controller in the power control framework is covered by a
worker component. Periodically, the manager checks a
database containing the inventory of the data center and its
electrical connections (provisioned by the data center operator).
Each entry of the database contains a list of controllers that are
run within a single worker instance. The manager assigns the
controllers of a newly discovered entry to a worker instance,
and let the worker instance run the control operations described
in Section IV. The manager also checks the health of each
worker instance every 2 seconds. If a worker has failed, the
manager removes the failed worker VM and assigns its work to
a spare worker instance within a 2-second period. For
reliability, multiple (typically three) copies of the manager VM
are run.

A.2 Worker Component
The worker component is responsible for running the

controllers that are assigned by manager. On startup, the
worker receives a list of controllers. A worker communicates
with other upstream or downstream workers to exchange
metrics and budgets. This communication is on the order of
milliseconds. Our system is flexible in terms of how to map
controllers to the worker VMs and the number of layers in the
worker hierarchy. A good mapping should be based on the
number of servers deployed and the configuration of power
delivery hierarchy in the data center. In a deployment of our
prototype for a cloud data center, each rack of servers has a
corresponding rack-level worker which consists of 6 CDU-
level shifting controllers (2 power feeds x 3 phases) and all the
capping controllers for servers within the rack. We also employ
a room-level worker for the two power feeds to contain their
RPP-level, transformer-level, and data center-level shifting
controllers. For our real-system experiments in Section VI, our
prototype is deployed over 4 servers. Here we use a single
worker that consists of 4 capping controllers and two levels of
shifting controllers. The controllers in the single worker
faithfully executes all the details of our mechanisms.

Each capping controller reads sensors for the server under
its control every second through IPMI [26]. The sensors
include AC power monitors for the two power supplies and the
power cap throttling level. Power cap throttling is an Intel
Node Manager [7] metric that quantifies the percentage of
server voltage/ frequency throttling.

Each capping controller averages the per-second readings
over an 8-second interval for computing its metrics. Each
capping controller sets the DC power cap for the server under
its control every 8 seconds (i.e., control period is 8 seconds)
based on budgets allocated to the server’s power supplies. By
averaging the readings for the metrics at this granularity, the
resulting cap is a response to more stable changes yet fast
enough to address failures in the infrastructure. The capping
controller sends the power cap to the Node Manager through
the server’s baseboard management controller [33] via IPMI
[26]. Node Manager then ensures that the server power is
within the cap in 6 seconds.

Each capping controller computes the power demand
(𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑) for the server using a regression method [16].
The capping controller obtains the server power consumption
and power cap throttling over the last 16 seconds and builds a
model relating server power and throttling to estimate the
server power at 0% throttling as the 𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑. If power
is measured during an interval when power cap throttling is 0%
(i.e., full performance), then the measured power is used
instead of the forecast. Alternatively, any suitable approach to
estimate demand could be used.

B. POWER SPLIT BETWEEN POWER SUPPLIES
A server with multiple power supplies may not split its

power consumption equally across its power supplies. Figure
12 shows how the power is split between the two power
supplies of our servers (Server SA, SB, SC, and SD) across a

range of power loads (idle to full). We observe that there can
be as much as 15% mismatch in the power consumed by the
two supplies.

C. PROPERTY PROOFS FOR ALGORITHM
In this section, we prove the global priority-aware power

capping algorithm achieves the following properties for both
data centers with a single power feed and data centers with
redundant power feeds:
• Theorem 1: Guaranteed Safety

The algorithm ensures the safety condition: (1) the data
center contractual budget and all the power limits (such as the
power rating of CBs and the power capacity of transformers)
are not exceeded by the total power budget assigned to the
servers under them7; and (2) each server receives a power
budget no less than the server’s 𝑃𝑐𝑎𝑝𝑚𝑖𝑛 at each power feed8.

7 Our capping controller ensures that the power consumption of each
power supply of a server does not exceed the power supply’s power

Figure 12. Power Split for Servers with 2 power supplies.

50 100 150 20050

100

150

200

250

Power of Power Supply 1 (W)

Po
w

er
 o

f
Po

w
er

 S
up

pl
y

2
(W

)

Server SA
Server SC
Even Split

Server SB
Server SD

14

• Theorem 2: Respecting Server Priority
After allocating the power budgets for each server using the

proposed algorithm, it is impossible to find a server being
throttled to lower performance state due to an enforced power
cap, such that we can increase its power budget and decrease
the power budgets of other servers with lower priorities at
either one or multiple power feeds without violating the safety
condition9.

C.1 Definitions and Notations
In the control framework, we define priority level 1 as the

lowest priority, and priority level N as the highest priority.
Each shifting controller has metrics for every priority level
between 1 and N. However, if there is no server with a certain
priority level (𝑗) under the shifting controller, the
corresponding metrics for that priority level at the shifting
controller (𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗), 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗), 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)) will be zero.
Each capping controller has metrics for a single priority, which
is the priority for the server governed by the capping controller.

In the design of data center, we need to ensure that every
power limit should be greater than or equal to the total
𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of all the servers under it, otherwise there will be
safety issue. This is the fundamental requirement for designing
data center - any data center equipped with power capping
system (including ours) should follow. Therefore,

𝑙𝑖𝑚𝑖𝑡 ≥R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)
F

where 𝑙𝑖𝑚𝑖𝑡 is the power limit that is protected by a shifting
controller; 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) is the minimum power budget for
priority 𝑗 at the shifting controller.

C.2 Proof for Theorem 1
We will first prove Lemmas 1.1, 1.2, and 1.3, before using

them to prove Theorem 1.
Lemma 1.1: At any shifting controller, the total requested

power by the controller itself for all the priorities is less than or
equal to the power limit of the shifting controller. i.e.,
∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡FUV , where 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) is the requested
power for priority 𝑗 at the shifting controller, 𝑙𝑖𝑚𝑖𝑡 is the
power limit of the shifting controller.

Proof for Lemma 1.1: As defined in Section 4.3.1,

budget. Therefore, by ensuring the data center contractual budget and
the power limits of circuit breakers and transformers are not exceed-
ed by the total power budget assigned to the servers under them, a
power capping algorithm can guarantee that they will not be exceed-
ed by the power consumption under them.
8 This implies the power cap for the server will be greater than or
equal to the 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of the server, and therefore it is en-
forceable, as shown in the proof.
9 This is a formal and equivalent interpretation for the claim that
“the proposed algorithm allows servers with high priority to always
be throttled after servers with lower priorities, as long as the power
limits in the data center allow.”

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	 ,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X

Therefore,
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF

(ℎ) −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

Hence,

R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DUF

≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

Let 𝑗 = 1, then we have

R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DUV

≤ 𝑙𝑖𝑚𝑖𝑡

Equivalently,

R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)
FUV

≤ 𝑙𝑖𝑚𝑖𝑡

Lemma 1.1 is proved.

Lemma 1.2: At any shifting controller or capping con-
troller, the requested power for a priority is greater than or
equal to the minimum power budget for the priority, i.e.,
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗).

Proof for Lemma 1.2:
Use mathematical induction to prove the lemma.
Assign a number 𝑛 to each level of the hierarchy in the

control tree (please note the control tree is balanced). The leaf
nodes in the control tree are assigned the smallest number; the
top node in the control tree, which corresponds to the per-phase
contractual budget for a power feed, is assigned the largest
number. For example, for a data center shown in Figure 1 in
the paper, shifting controllers corresponding to per-phase
contractual budget, RPP, and CDU is assigned a level number
of 4, 3, and 2 respectively. The capping controllers, which
correspond to servers, are assigned a level number of 1.

Step A for proving Lemma 1.2
For any controller with a level number 𝑛 = 1 (i.e, capping

controllers) with priority 𝑗,
As defined in Section 4.3.1,

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗)

𝐷𝑒𝑚𝑎𝑛𝑑(𝑗) = 𝑟 × 𝑚𝑎𝑥{𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑,	 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛}

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) = 𝑟 × 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛

where r is the fraction of the server load borne by a power
supply of the server.

Therefore,
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐷𝑒𝑚𝑎𝑛𝑑(𝑗)

													= 𝑟	 × 	𝑚𝑎𝑥{𝑆𝑒𝑟𝑣𝑒𝑟𝐷𝑒𝑚𝑎𝑛𝑑,	 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛}
≥ 𝑟	 × 	𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛																																		
	= 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)																																																				

15

Hence, Lemma 1.2 holds for any controller with a level
number 𝑛 = 1.

Step B for proving Lemma 1.2
Assuming Lemma 1.2 holds for any controller with a level

number 𝑛 ≤ 𝑘, let’s prove the lemma holds for any controller
with a level number 𝑛 = 𝑘 + 1 (i.e., a shifting controller).

As Lemma 1.2 holds for any controller with a level number
𝑛 ≤ 𝑘, for any child node (with an index 𝑖) of a controller with
a level number 𝑛 = 𝑘 + 1,

𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)

Therefore, if we sum over all the child nodes of this controller,
we will have

	R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

≥R𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)
?

As defined in Section 4.3.1,

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) =R𝑃𝑐𝑎𝑝𝑚𝑖𝑛?(𝑗)
?

Hence,
R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)																											(1)

As defined in Section 4.3.1,

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	 ,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X

Hence,
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF

(ℎ)

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

, for any	𝑗

For 𝟏 ≤ 𝒋 ≤ 𝑵− 𝟏 (priority level N is the highest priority, and
priority level 1 is the lowest priority), using (𝑗 + 1) to
substitute 𝑗 in the above inequality, we have
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1) ≤ 𝑙𝑖𝑚𝑖𝑡 − R 𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF_V

(ℎ)− R 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF_V

Therefore,
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡

DEF

(ℎ)+ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1)

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

− 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)

Subtract 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗 + 1) from both sides and solve for
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗), we have

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡
DEF

(ℎ) −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

,	

for 1 ≤ 𝑗 ≤ 𝑁 − 1																																																				(2)

For 𝒋 = 𝑵, as the power limit should be greater than or equal to
the total 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙) at the controller, we have

𝑙𝑖𝑚𝑖𝑡 ≤R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙)
Hab

Hence,
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑁) =R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)

Hab

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIb

≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙)
HIb

Further as 𝑁 is the highest priority,
R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEb

= 0

We have
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑁) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)

HIb

																																																	

= 𝑙𝑖𝑚𝑖𝑡 − R 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEb

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIb

						(3)

Based on (2) and (3), we will have

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡
DEF

(ℎ) −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

,	

for any	𝑗																																																																						(4)

If 𝑙𝑖𝑚𝑖𝑡 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)DEF − ∑ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)HIF 	≤ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?? (𝑗),

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X										

														= 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

Further based on equation (4),
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)

DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)																																		

If 𝑙𝑖𝑚𝑖𝑡 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)DEF − ∑ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)HIF 	≥ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?? (𝑗),

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑚𝑖𝑛W𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(ℎ)
DEF

−R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑙)
HIF

	 ,R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)	X

=R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?
?

(𝑗)																											

Further based on (1),
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) =R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?

?

(𝑗) 	≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)

In either case,
𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)

Therefore, Lemma 1.2 holds for any controller with a level
number 𝑛 = 𝑘 + 1.

Hence, based on Step A and Step B for proving Lemma
1.2, we conclude that for any shifting controller and capping
controller, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗). Lemma 1.2 is proved.

Lemma 1.3: At any shifting controller, the constraint (the
maximum power budget that is safe to allocate to this

16

controller) is less than or equal to the power limit of the
controller, i.e., 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡.

 Proof for Lemma 1.3: As defined in Section 4.3.1, at any
shifting controller,

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = 𝑚𝑖𝑛f𝑙𝑖𝑚𝑖𝑡,	 R𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡?
?

g

Therefore,
𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡

Lemma 1.3 is proved.

 Proof for Theorem 1: At Step 1 of the budgeting phase,
each child controller (no matter whether it is a shifting
controller or capping controller) receives a budget of
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) at each of its priority 𝑗. At later steps (Step 2, 3,
and 4), each child controller may receive additional non-
negative power budget (Lemma 1.2 guarantees the power
budget assigned at Step 2 is non-negative, as 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≥
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)). Therefore, every server in the data center must at
least receive its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) as budget from each of its
working power supply. In other words, if we use 𝐵𝑢𝑑𝑔𝑒𝑡V, …,
𝐵𝑢𝑑𝑔𝑒𝑡j to denote these power budgets (the server has M
working power supplies), we have

																														𝐵𝑢𝑑𝑔𝑒𝑡? ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)?, 𝑖 = 1,… ,𝑀
here 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)? is the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗) for the power supply 𝑖.

As defined in Section 4.3.1,
																								𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)? = 𝑟? × 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛,	 𝑖 = 1,… ,𝑀
where 𝑟? is the ratio of power supply load at power supply 𝑖,
we can set a power cap (𝐶𝑎𝑝) to the server that respects its
power budgets and satisfies

						𝐶𝑎𝑝 = 𝑚𝑖𝑛@
𝐵𝑢𝑑𝑔𝑒𝑡V

𝑟V
, … ,

𝐵𝑢𝑑𝑔𝑒𝑡b
𝑟b

	J																									

								≥ 𝑚𝑖𝑛 m
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)V

𝑟V
, … ,

𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)j
𝑟j

	n

≥ 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛																																			
Therefore, the power cap for each server is greater than or
equal to the 𝑆𝑒𝑟𝑣𝑒𝑟𝑃𝑐𝑎𝑝𝑚𝑖𝑛 of the server, and thus it is
enforceable.

Our algorithm makes sure that: at each shifting controller,
the power budget that the controller receives is greater than or
equal to the total power budget that the controller assigns to its
child controllers10. Therefore, at any shifting controller, the
total power budget received by the controller is greater than or
equal to the total power budget assigned to the servers under
the shifting controller. Hence, the data center contractual
budget (which is the power budget received by the top shifting
controller) is not exceeded by the total power budget of the
servers in the data center. And due to the same reason, in order
to prove each power limit in the data center (which is protected
by other shifting controllers) is not exceeded by the total power

10 This will be true if the data center contractual budget and all the
power limits are greater than or equal to the total minimum power
budget of the servers under them, which is the fundamental require-
ment for the data center design equipped with power capping system.

budget assigned to the servers under it, we just need to prove
each power limit is not exceeded by the power budget received
by the shifting controller that protects the power limit (because
the power budget received by this shifting controller is greater
than or equal to the total power budget assigned to the servers
under the power limit), i.e., 𝐵𝑢𝑑𝑔𝑒𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡.

At any shifting controller (including the top shifting
controller), the power budget allocated to a child controller at
each priority 𝑗 at Step 1 of the budgeting phase is
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗). At Step 2 and 3 of the budgeting phase, the child
controller may receive additional power budget up to
(𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) − 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑗)). Therefore, the aggregate budget
that the child controller receives at each priority 𝑗 at Step 1, 2
and 3 is at most 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗). If we further sum over all the
priorities of the child controller, the total budget that the child
controller receives at Step 1, 2, and 3 is at most ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)F .
Further based on Lemma 1.1, since ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤ 𝑙𝑖𝑚𝑖𝑡FUV ,
the total power budget that the child controller receives at Step
1, 2, and 3 does not violate the power limit of the child
controller. At Step 4 of the budgeting phase, the child
controller may receive extra power budget. However, if the
child controller receives the extra power budget, the total
budget that the child controller receives at Step 1, 2, 3, and 4 is
up to the 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 of the child controller. Based on Lemma
1.3, 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ≤ 𝑙𝑖𝑚𝑖𝑡. Therefore, the total budget that the
child controller receives at Step 1, 2, 3, and 4 is no larger than
𝑙𝑖𝑚𝑖𝑡. In conclusion, the child controller receives a total power
budget that does not exceed the power limit of the child
controller.

Hence, Theorem 1 is proved.

C.3 Proof for Theorem 2
We will first prove Lemma 2.1 and Corollary 2.2, and then

use them to prove Theorem 2.

Lemma 2.1: At any shifting controller, the aggregate
power budget received by the controller at Step 1, 2, and 3 of
the budgeting phase for a priority, is equal to the total power
budget that this controller assigns to its child controllers for
this priority at Step 1, 2, and 3 of the budgeting phase.

 Proof for Lemma 2.1: Use proof by contradiction. Let’s
make the following assumption: Suppose at a shifting
controller, priority j is the highest priority such that the
aggregate power budget for priority 𝑗 that this controller
receives at Step 1, 2, and 3 (i.e., 𝐵𝑢𝑑𝑔𝑒𝑡(𝑗)) is not equal to the
total power budget that this controller assigns to its child
controllers for this priority at Step 1, 2, and 3 (i.e.,
∑ 𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)? ; 𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗) is the aggregate power budget that
this controller assigns to its child controller 𝑖 for priority 𝑗 at
Step 1, 2, and 3). In other words,

𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≠R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)
?

	

Based on how the power budget is assigned at Step 1, 2, and 3
of the budgeting phase, it is obvious that

𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗)
Based on the definition of 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗), it is obvious that

17

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) ≤R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

Therefore,
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≤R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)

?

Further because for any priority higher than 𝑗,
𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) =R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑘)

?

, for any 𝑘 > 𝑗	

we can realize the proposed algorithm is able to distribute
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) fully to the child controllers of this shifting
controller as their budgets for priority 𝑗 at Step 1, 2, and 3. In
other words,

𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≤R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)
?

	

Since
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) ≠R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)

?

	

Hence,
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) <R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)

?

	

Therefore, when the shifting controller assigns 𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗), it
must borrow some power from the power budgets that it
receives for lower priorities (i.e., 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘), for 𝑘 < 𝑗).
Hence, at some lower priority 𝑙 (𝑙 < 𝑗), the shifting controller
must receive a budget larger than its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙). As the
budgeting phase always tries to match budget with requested
power from high priority to low priority, this implies that

𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),									for	𝑘 ≥ 𝑗

If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)? , because

𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗) ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
we have
R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)
?

≤R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)
?

= 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝐵𝑢𝑑𝑔𝑒𝑡(𝑗)

which contradicts
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) <R𝐵𝑢𝑑𝑔𝑒𝑡?(𝑗)

?

	

If 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) < ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝑗)? , as defined in Section 4.3.1,

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑗) = 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIF

−R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘)
rEF

As
𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) = 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),									for	𝑘 ≥ 𝑗

we have
𝐵𝑢𝑑𝑔𝑒𝑡(𝑗) = 𝑙𝑖𝑚𝑖𝑡 −R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)

rIF

−R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘)
rEF

Therefore,
R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘)	+R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑘)

rIF

=
rUF

𝑙𝑖𝑚𝑖𝑡

As at a priority 𝑙 (𝑙 < 𝑗), the shifting controller receives a
budget larger than its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑙), we have

R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) >
r

R𝐵𝑢𝑑𝑔𝑒𝑡(𝑘)	+R𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑘)
rIF

=
rUF

𝑙𝑖𝑚𝑖𝑡

which contradicts the safety condition.

Therefore, the assumption we made in the beginning of this
proof does not hold. And hence, Lemma 2.1 is proved.

Corollary 2.2: At any shifting controller, the aggregate
power budget received by the controller at Step 1, 2, and 3 of
the budgeting phase for a priority, is equal to the total power
budget that the servers with this priority under this controller
received (from the power feed that this controller resides) at
Step 1, 2, and 3 of the budgeting phase.

 Proof for Corollary 2.2: At any shifting controller, we can
recursively apply Lemma 2.1 on this shifting controller and
any shifting controllers below it (in the control tree where this
shifting controller resides), and then we can see Corollary 2.2
holds.

 Proof for Theorem 2: Use proof by contradiction. Let’s
make the following assumption: Suppose there are two servers
- SA and SB. SA has a high priority A. SB has a lower priority
B. After the algorithm allocates power budgets to the servers in
the data center, SA is under power capping (i.e., throttled).
Assume we can increase the power budget for SA and decrease
the power budgets for SB and potentially other servers with
lower priorities at one or multiple power feeds, without
violating the safety condition.

Then let’s look at the shifting controller under which both
SA and SB resides. We call this controller as Controller C.
Let’s assume the total power budget for servers with priority 𝑘
under this controller is 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) after using our algorithm to
make budgets, and is 𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) after adjusting the server
power budgets on top of the budgeting decision made by our
algorithm (“adjusting the server power budgets” refer to
increasing the power budgets for SA and decrease the power
budgets for SB and potentially other servers with lower
priorities). Then,

𝐵𝑢𝑑𝑔𝑒𝑡s(𝐴) > 	𝐵𝑢𝑑𝑔𝑒𝑡(𝐴)
𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) = 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘),		for any	𝑘 > 𝐴

In the case that SB receives a power budget greater than its
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 3 of the budgeting phase, the
priority B of Controller C must receive a power budget greater
than the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller C at Step 1, 2, and 3 of the
budgeting phase. Otherwise, the priority B of Controller C will
receive a power budget equal to the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller
C at Step 1, 2, and 3. Based on Corollary 2.2, as the power
budget received by the priority B of Controller C at Step 1, 2,
and 3 is equal to the total power budget received by servers
with priority B under Controller C (from the power feed that
Controller C resides) at Step 1, 2, and 3, the total power budget
received by the servers with priority B under Controller C at
Step 1, 2, and 3 is equal to the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller C,
which is further equal to the total 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of these
servers. Further as all the servers under Controller C receive a
power budget no less than their 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and
3, every server with priority B under Controller C must receive
a budget equal to its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 3, which
contradicts with the fact that SB receives a power budget
greater than its 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2, and 3. Therefore, the
priority B of Controller C must receive a power budget greater

18

than the 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) of Controller C at Step 1, 2, and 3 of the
budgeting phase.

As our algorithm always prioritize the power allocation for
priority A over priority B at Step 1, 2 and 3 of the budgeting
phase, we can realize that Controller C must receive a power
budget for priority A that is equal to the requested power of
priority A (𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴)) at Step 1, 2 and 3.

In the case that SB receives a power budget equal to its
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵) at Step 1, 2 and 3 of the budgeting phase, it must
receive some extra power at Step 4, otherwise its total power
budget received at Step 1, 2, and 3 will not be greater than its
𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝐵). Therefore, Controller C must receive some extra
power budget from its parent controller at Step 4. Otherwise, as
the power budget received by Controller C for each priority at
Step 1, 2, and 3 is always equal to the total power budget
allocated for the servers with the same priority at Step 1, 2 and
3 (based on Corollary 2), SB will receive no extra power
budget at Step 4, which is a contradiction. As Controller C
receives some extra power budget at Step 4, the priority A of
Controller C must receive a power budget equal to its
𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) at Step 1, 2, and 3 of the budgeting phase.

In either case, priority A at Controller C must receive a
power budget that is equal to its 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) at Step 1, 2, and
3 of the budgeting phase. Therefore, for any priority k higher
than A at Controller C, it must also receive a power budget that
is equal to its 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘) at Step 1, 2 and 3 of the budgeting
phase.

Therefore, we have (please note 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) captures the
power budget that priority k of Controller C receives at Step 1,
2, 3, and 4):

 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘), for any 𝑘 ≥ 𝐴																		(5)
As

𝐵𝑢𝑑𝑔𝑒𝑡s(𝐴) > 	𝐵𝑢𝑑𝑔𝑒𝑡(𝐴)
𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) = 𝐵𝑢𝑑𝑔𝑒𝑡(𝑘),		 for any	𝑘 > 𝐴

We have
																																				𝐵𝑢𝑑𝑔𝑒𝑡s(𝐴) > 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴),																											(6)
																									𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘),	 for any 𝑘 > 𝐴, (7)
In order to satisfy the safety condition,
																									𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛(𝑘),	 for any 𝑘 < 𝐴,							(8)

If 𝑙𝑖𝑚𝑖𝑡 − ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡rEy (𝑘) − ∑ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)rIy ≤ ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)?
(𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴) is the requested power for priority A at the child
controller 𝑖 of controller C), then

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) = 𝑙𝑖𝑚𝑖𝑡 −R 𝑅𝑒𝑞𝑢𝑒𝑠𝑡
rEy

(𝑘) −R 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIy

Therefore, further based on equation (6)(7)(8),

R𝐵𝑢𝑑𝑔𝑒𝑡s(𝑘)
r

> R𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑘)
rUy

+R𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIy

= 𝑙𝑖𝑚𝑖𝑡

which violates the safety condition.
Therefore,

𝑙𝑖𝑚𝑖𝑡 −R𝑅𝑒𝑞𝑢𝑒𝑠𝑡
rEy

(𝑘) −R 𝑃𝑐𝑎𝑝𝑚𝑖𝑛	(𝑘)
rIy

>R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)
?

And hence,

𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) =R𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)
?

Priority A at Controller C receives a power budget equal to
the 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) of Controller C at Step 1, 2, and 3 of the
budgeting phase. This budget is fully given to the child
controllers of Controller C as budgets for priority A at Step 1,
2, and 3 (based on Lemma 2.1). As each child receives a
budget for priority A up to 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴) at Step 1, 2, and 3 of
the budgeting phase, and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝐴) = ∑ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴)? , we
can realize that each child receives a budget for priority A
equal to its 𝑅𝑒𝑞𝑢𝑒𝑠𝑡?(𝐴) at Step 1, 2, and 3 of the budgeting
phase.

Let Controller C1 be the child controller of Controller C
that contains server SA under it. Assume the total power
budget for servers with priority 𝑘 under this controller is
𝐵𝑢𝑑𝑔𝑒𝑡zV(𝑘) after using our algorithm to make power budgets,
and is 𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) after adjusting the server power budgets
on top of the budgeting decision made by our algorithm. Then
we have

𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝐴) >	𝐵𝑢𝑑𝑔𝑒𝑡zV(𝐴)
𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) = 𝐵𝑢𝑑𝑔𝑒𝑡zV(𝑘), for any	𝑘 > 𝐴

As priority A of C1 receives a budget equal to the
𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝐴) of Controller C1 at Step 1, 2, and 3 of the
budgeting phase, and as our algorithm allocates power from
high priority to low priority at Step 1, 2, and 3 of the budgeting
phase, we have

 	𝐵𝑢𝑑𝑔𝑒𝑡zV(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝑘), for any	𝑘 ≥ 𝐴,										(9)
Therefore,
																																			𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝐴) >	𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝐴),																						(10)

																		𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡zV(𝑘),	 for any 𝑘 > 𝐴,									(11)

In order to satisfy the safety condition,
																		𝐵𝑢𝑑𝑔𝑒𝑡zVs (𝑘) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛zV(𝑘),	 for any 𝑘 < 𝐴,								(12)
Please note equation (9), (10), (11), and (12) are the same as
equation (5) ,(6), (7), and (8), except that equation (9), (10),
(11), and (12) characterize the relations at Controller C1.
Therefore, based on the similar reasoning process, we can
realize that at Controller C2, which is the child controller of
Controller C1 that contains server SA under it, we have the
following relations,
																				𝐵𝑢𝑑𝑔𝑒𝑡z|(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡z|(𝑘), for any	𝑘 ≥ 𝐴,								(13)
																																𝐵𝑢𝑑𝑔𝑒𝑡z|s (𝐴) > 	𝑅𝑒𝑞𝑢𝑒𝑠𝑡z|(𝐴),																									(14)
																			𝐵𝑢𝑑𝑔𝑒𝑡z|s (𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡z|(𝑘),	 for any 𝑘 > 𝐴,							(15)
																			𝐵𝑢𝑑𝑔𝑒𝑡z|s (𝑘) ≥ 𝑃𝑐𝑎𝑝𝑚𝑖𝑛z|(𝑘),	 for any 𝑘 < 𝐴,						(16)

Apply this reasoning process recursively on the child
controllers that contains server SA under them, eventually we
can prove that at server SA,

					𝐵𝑢𝑑𝑔𝑒𝑡}y(𝑘) ≥ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡}y(𝑘), for any	𝑘 ≥ 𝐴
However, as we know that SA is under power capping, so

𝐵𝑢𝑑𝑔𝑒𝑡}y(𝐴) < 𝐷𝑒𝑚𝑎𝑛𝑑}y(𝐴) ≤ 𝑅𝑒𝑞𝑢𝑒𝑠𝑡}y(𝑘)
Hence, there is a contradiction.

Therefore, the assumption we made in the beginning of this
proof does not hold. And hence, Theorem 2 is proved.

	RC25680 Cover Sheet.pdf
	SDP Tech Report maw.pdf

