
Zeilaehr. 1. mdh. XWik und Crundlagen d. Minth. 
Bd. 21, S. 123-134 (1975) 

A SPECTRUM HIERARCHY 

by RONALD FAGIN in Yorktown Heights, N.Y. (U.S.A.)l) 

1. Introduction 

Let 9 be a finite similarity type, that is, a finite set of (nonlogical) predicate sym- 
bols. By an 9’-structure, we mean a relational structure suitable for 9. Let 6 be a 
first-order sentence (with equality), and let Pl , . . . , P ,  be those (nonlogical) predicate 
symbols in 6 which are not in 9’ (these are the extra predicate symbols). Let 6’ be 
the existential second-order sentence 3Pl . . . 3Pm6. The 9’-spectrum (or generalized 
spectrum) of b’ is the class of finite 9’-structures in which CT‘ is true. This corresponds 
to TARSKI’S [7] notion of PC, where we restrict our attention to the class of finite 
structures, When 9’ = 8, we can identify the 9’-spectrum of 6’ with the set of cardi- 
nalities of finite structures in which cs is true. This set, called the spectrum of 6, was 
first considered by H .  SCIIOLZ [6]. 

We show that for each spectrum A,  there is a positive integer k such that {nk: n E A)  
is a spectrum involving only one binary predicate symbol. We use this to show that 
if there are spectra with certain properties, then there are spectra involving only one 
binary predicate symbol which have those properties. 

Define Fk(9’) to be the class of those 9-spectra in which all of the extra predicate 
symbols are k-ary. We show that there is an exact trade-off between the degree of the 
extra predicate symbols and the cardinality of an “extra universe”. I n  the case of 
spectra, we find that if A is a set of positive integers, and if k 2 2,  then A is in 9k+1(0) 
iff (n[n1lk]: neA} is in Fk(0) ,  where [x] is the greatest integer not exceeding x. We 
use the trade-off to show that if FP(9) = Fp+l(.Y), then s k ( 9 )  = Fp(Y) for each 
k 2 p .  It is an open problem as to whether there is any spectrum not in F2(9’), or, 
indeed, whether there is any 9-spectrum not obtainable by using only one extra 
binary predicate symbol. 

2. Definitions 

Denote the set of positive integers {1,2, 3, . . .> by Z+, and the set (0, . . ., n - l} 
by n. If A is a set, then A is the cardinality of the set. Denote the set of k-tuples 
<al I . . . , ak) of members of A by A k .  

If 9’ is a finite similarity type and % is an Y-structure (both defined earlier), then 
we denote the universe of % by I%], the cardinality of 1%1 by card(%), and the inter- 
pretation (in %) of P in % by PH. If card(%) is finite, then we call % a finite 9’-struc- 
ture. Denote the class of finite 9’-structures by Pin(9).  

I n  addition to  the usual types of predicate symbols (unary, binary, etc.), we will 
allow a special type of predicate symbol, a graph predicate symbol. If P E 9’ and P is 
a graph predicate symbol, then for 8 to be an 9’-structure, Pa must be a graph (i.e., 
irreflexive and symmetric), or, equivalently, a set of unordered pairs of members of 181. 

l) This paper is based on a part of the author’s doctoral dissertation [2] in the Department of 
Mathematics at the University of California, Berkeley. Part of this work was carried out while the 
author was a National Science Foundation Graduate Fellow; also, part of this work was supported 
by NSF Grant No. GP-24532. 

The author is grateful to ROBERT VAUCIIT and WILLIAM CRAIG for useful suggestions which 
improved readability. 
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Assume that Y and F are disjoint finite similarity types, that 8 is an 9' u F- 
structure, and that 8 is an 9'-structure. Then 8 is an expansion of 8 (to Y u F), 
written B = 8 rY, if IBI = 181, and Pa = P" for each P in 9. 

Assume that 8 and 8 are 9'-structures (and, for convenience, that Y contains no 
graph predicate symbols). Then b is a substructure of B (written 8), if 1231 181, 
and P@ = P u n  181k for each k-ary predicate symbol P in Y.  

If % and 8 are isomorphic 9'-structures, then we write W E 8. If .d is a class of 
structures, then by Isom(&), we mean the closure of d under isomorphism, that is, 

Let p be a first-order formula. If each nonlogical symbol appearing in p is in 9, 
then we call p an 9'-formula. If .F = { P 1 ,  . . ., P,,,}, then by 3 Y y ,  we mean the ex- 
istential second-order formula 3P1 . . . 3P,p. The formula 3 ! x p  (read: "there is ex- 
actly one x such that p") is defined as usual. For ease in readability, we will often 
abbreviate first-order formulas by their English equivalents, in quotation marks. If r 
is a finite set of formulas, then by A {p: p Er}, we mean the conjunction of the 
formulas of r; similarly for V { y :  p E I'}. 

If xl, . . . , x ,  are (individual) variables, then we will sometimes write x as an ab- 
breviation for the m-tuple ( x l ,  . . . , x,>, when this will lead to  no confusibn. We may 
write V x p  for Vx, . . . Vx,p. 

Let p be a first-order formula with free variables x ,  vl, . . . , v,, where we single 
out the free variable x. We will define the relativizution y' for first-order formulas y, 
by induction on formulas. If y is atomic, then y' = y ;  in addition, 

{%: (3B E d )  (8 E 8)}. 

(-y)" = ( y 9 ,  (Yl A yz)' = YT A yg, (VYY)" = V Z ( d Z 2  v17 . . ?  V " J  + Y ( 4 )  9 

where y(z, vl, . . . , v,) (respectively, y(z)) is the result of replacing each occurrence 
of x in p (respectively, y in y) by a new variable z, chosen by some fixed rule. 

Let Y be fixed, and let u be a sentence with all of its (nonlogical) predicate symbols 
in 9'. If u is true in 8, then we write B t a, and we say that B is a model of U. 

By Mod,a, we mean the class of all finite Y-structures which are models of U.  

Define Fk(9') as before. Let BIN(Y) be the class of all Y-spectra involving only 
one extra graph predicate symbol. Thus, if at = Mod, ~ P u ,  where P is a graph pred- 
icate symbol, where a is first-order, and where 9 contains every nonlogical symbol 
in u except P, then at E BIN(9'). Obviously, BIN(Y) F2(Y). We abbreviate S k ( 0 )  
and BIN(0) by Fk and BIN. 

3. A reduction 
In  this section, we show (Theorem 3) that for each spectrum S there is a positive 

integer k such that {nk: n E S }  is in BIN. Theorem 3 is a useful tool for showing that 
if there is a counterexample to  certain conjectures about spectra, then a counter- 
example occurs in BIN, the lowest interesting level of the spectrum hierarchy (it is 
well-known that by an elimination-of-quantifiers argument, Fl can be shown to 
contain only finite and cofinite sets). 

In  1955, ASSER [I] posed the question of whether the complement of every spectrum 
is a spectrum. We will show that it follows from Theorem 3 that if there is a spectrum 
whose complement is not a spectrum, then there is such a spectrum in BIN. Actually, 
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this result is improved by the author in [2] and [3], where Theorem 3 is used to find 
a particular spectrum in BIN whose complement is a spectrum iff the complement of 
every spectrum is a spectrum. Similarly, from the result in [a] and [3] that there is 
a spectrum S such that {n:  2“ E S }  is not a spectrum, it is shown there that there is 
such a spectrum S in BIN. 

If d and 33 are subsets of F i n ( Y ) ,  then we say that a i s  a finite modification of d 
if for some constant N ,  whenever % ~ P i n ( 9 )  and card(%) 2 N ,  then % E &  iff 
8 E 33. The following well-known simple lemma is very useful. 

Lemma 1. I f  d is an Y-spectrum and 33 i s  a finite modification of d, then 33 is 
a n  Y-spectrum with the same extra predicate symbob. 

Proof. It is well-known that for each i% in Pin(Y) ,  there is a first-order Y-sen- 
tence u, such that if 8 E F i n ( Y ) ,  then B LZ % iff b C u. The lemma now follows 
easily. 

We will now begin our analysis of the hierarchy ( F k ( 9 ) :  k E z+). If d is an 9’- 
spectrum, then there is k such that d E F k ( y )  : this follows from well-known techni- 
ques of simulating (k - I)-ary relations by k-ary relations. 

Let % = ( A ;  Q1, . . ., Q,) be a finite 9’-structure, and let f :  Z+ + Z+ be a func- 
tion with f(n) 2 n for each n. We will define a new 9’-structure f(%) as follows. Let 
B be a set of cardinality f(A), such that A B ;  for definiteness, we could say that 
B = A v C, where C is the set of the first f(2) - A positive integers which are not 
in A .  Then we let /(a) = ( B ;  Q1, . . ., Q,). The structure /(a) can be thought of as 
the structure %, along with an extra universe of cardinality /(card(%)) - card(%). 
The old universe is not named. 

The following lemma is straightforward to prove. 

Lemma 2 .  Assume that f :  Z+ + Z+ is a one-one function with f(n) 2 n for each n. 
Then f :  Fin(9’) + P i n ( Y )  is essentially one-one, in the sense that if /(%) LZ /(B), then 
% E B. 

We will now prove that if k 2 2 and S E s k ,  then {nh: n E S }  is in BIN. It will 
be no more work to prove the generalization to 9’-spectra; we will utilize the gen- 
eralization later. 

Theorem 3. Let f k :  Z+ + Z+ be the function n t+ nk. Assume that d E Fk(g), with 
k 2 2 .  Then Isom({$$I): % ~ d } )  is in BIN(Y). 

Proof .  Assume that d = Hoda 39-0, where 9 is a set of t distinct k-ary predicate 
symbols PI, . . . , Pt . Let P be a graph predicate symbol. We will now write {PI- 
formulas yl,  . . . , vgk  that define 2k “levels ’’ Ll , . . . , L.& which partition the universe 
into 2k sets. Let r be the least integer exceeding log, (2k - 1). Let y1 be the formula 

v (210 = vJ, where vo, . . ., v, are distinct variables; yl(vo) defines the level L1. The 

levels L:, , . . . , Luc are defined by stating how their points relate (via P) to the points 

in L1. Specifically, let @ be the set of 2’ formulas - yl A A y i ,  where y i  can be either 

Pvov, or -Pv& (1 5 i 5 r ) .  The set @ contains a t  least 2k - 1 distinct formulas, 
since r 2 log, (2k - 1). Let y2, . . . , y2k-l be distinct formulas in @, and let ynk be 

r 

i = l  

r 

i = i  
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the disjunction of the remaining formulas in @. If x is a variable, then by y,(x) ,  for 
1 5 i 6 2k ,  we mean the result of substituting x in yi  for a. (of course, a,, . . . , v, 
are also free). As promised, the levels L,, . . . , L2k (L,  defined by yL(x )  for each i) 
partition the universe, when the values of v l ,  . . . , v, are distinct and are held fixed. 

We now write a formula t (with a l ,  . . . , v, free) which forces the universe to be of 
cardinality nk, where n is the cardinality of L2. Let t be the conjunction of the follow- 
ing formulas: 

“L1 contains exactly r points”. 

“There is a one-one correspondence between pairs (2, y }  of points in L, and points 

A “There i s  a one-one correspondence between pairs {x ,  y }  (where x E L2 and 

z in Lp ,  where the correspondence is given by Pxz A Pyz”. 
k-1 

m=2 

y E LZm-1), and points z in LZm+]. , given by Pxz A Pyz”. 
k-1 

m=2 
A “There is a one-one correspondence between points x in L2m-1 and y in LZm, 

given by Pxy”. 
“There is a set X of exactly r points in L2k-1, for which there is a one-one corre- 

spondence between points x in (LZk-1 - x) and points y in .I?&) given by Pxy”. 
Then t forces L, to contain exactly r points, and it forces L3 to  have cardinality 
n(n - 1)/2, where n is the cardinality of L,; we can show inductively on m that t 
forces L2m+l and L2m+2 to each have cardinality (nm+l - nm)/2,  for 1 s m s k - 1, 
except that L2k is forced to have cardinality (nk - nk-l)/2 - r .  so  altogether, t forces 
the universe to have cardinality nk. 

We think of L, as constituting a small universe, and we simulate Paxl . . . xk, where 
x l ,  . . ., xk run through L2,  by a {P}-formula pl,xl. . . X k )  1 6 s 5 t .  The approach is 
modeled after that of RABIN and SCOTT [5].  Essentially, vsxl . . . xk says that for some 
yl , yz , . . . in LPk, the situation in Figure 1 occurs, where a and b are joined by a line 
segment if Pab holds (we assume in Figure 1 that k = 4). 

Specifically, let Q?, be 3yp,, where ps is the conjunction of the following formulas: 
k 8 + 1  

i = l  i ij i = l  
A YZXi 7 A YZkYi A A ’t’2,cy:j’) A Pyzyi+l A pYa+,Yl> 

If 2, , . . . ) Zk are variables, then by rp,(z17 . . . , z k ) )  we mean the result of substituting zi 
for xi in q8, 1 5 i I: k (ys also has free variables v l ,  . . . , v,). Let 0’ be the result of 
replacing P,zl . . . zk in the relativization I J ~ ~ ( ~ )  by pl& . . . z k ,  for each s and each 
variable z l ,  . . ., zk .  

For each Q in 9, if Q is m-ary then let aQ be the formula Vx, . . . Vx,(Qq . . . X ,  + 

3 A yzzJ. Let a = Mod, 3P(3vl . . . 3v,(t A c’ A A OLQ)),  and let a’ = Isom ({a%): 
1=1 Q E Y  

8 ELZ‘}). Then, it is fairly straightforward to check that 3Y’ is a finite modification 
of a. The only difficulty lies in seeing that there are enough points in L* to carry 
out the construction typified by Figure 1. Referring to Figure 1 (and assuming that 

m 
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k = a), we pick a set of new points y (each in Lzk) for each trip.!e (xl, x2, x3) of points 
in L2 , where we plan to simulate Psxlx2x3x4, Psxlx2x3x~ , and Psxlx2x3x~ by the con- 
struction of Figure 2. 

A simple estimate shows that the number of these extra points y needed is bounded 
by a polynomial in n of degree k - 1 ;  since the number of points in Lzk is a poly- 
nomial in n of degree k, the construction is possible for sufficiently large n.  

Since 9l E BIN(Y) and 9’ is a finite modification of 9?, it follows from Lemma 1 
that B’ e BIN(Y), which was to be shown. 

Y5 
Figure 1 

Figure 2 

Corol lary 4. Let S be a spectrum. Then {nk: n E S }  is in BIN, for some positive 

Proof. Immediate from Theorem 3. 
We remark that although we do not need it, we can strengthen Corollary 4 as fol- 

lows: Let S be a spectrum. Then there is a positive integer k, such that for each pos- 
itive integer k 2 k,, the set (nk: n E S }  is in BIN. 

integer k .  

We are now almost prepared to  prove the following theorem. 

Theorem 5 .  The complement of every spectrum is a spectrum iff for each A in BIN, 

We need the following lemma. 

Lemma 6. Let k be a positive integer and S a spectrum. Then ( n :  nk E S }  is a spec- 

the set A i s  a spectrum. 

trum. 
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Proof. Assume that S = {n: (n> k ~Fo}, where F is a finite set of predicate sym- 
bols. Let F’ be a new set of predicate symbols obtained from 9- by replacing each 
r-ary predicate symbol Q in Y by an (rk)-ary predicate symbol Q’. Let X = {x , :  
1 5 i 5 m} be the set of variables that occur in o (assume that x, and xJ are distinct 
unless i = j). Let {x;: 1 k} be another set of variables, where x: 
and x,”: are distinct variables unless i = i‘ and j = j‘. For each first-order 9--formula y 
with all variables in X ,  we define a Y’-formula q*, by induction on formulas: 

i 5 m, 1 5 j 

k 
( x l  = x,)* is A (2: = z;), 

s = 1  

(Qzl l .  . . qP)* is Q’xi‘, . . . xi,x12. I< 1 . . x l l .  1. . . xIr 1 . . . r t ,  
(yl A pz)* is q$ A y;7 (-p)* is - ( y * ) ,  (Vx,y)* is VX;. . . ~4f‘g,*. 

It is easy to see that {n: nk E S }  = {n: (n) 1 3F’u*}. The set of k-tuples effectively 
serve as an “imaginary universe”. 

We remark that Lemma 6 can be strengthened as follows. Let S be a spectrum, 
and let p be any polynomial with rational coefficients. Then {n: p ( n )  E S} is a spec- 
trum. 

Proof of Theorem 5 .  
-: Obvious. 
e : Let S be a spectrum. Find k from Corollary 4 such that T = {nk: n E S }  is in 

BIN. Since n ++ nk is one-one, it is dear that = {n:  n k  E T}. Now T is a spectrum 
by hypothesis. So by Lemma 6, so is 9. 

We improve Theorem 5 in [2] and [3], by showing that BIN contains a “complete” 
spectrum (a spectrum S such that f l  is a spectrum iff the complement of every spec- 
trum is a spectrum); to show this, we again make use of Corollary 4. At this stage, 
we could prove an analog of Theorem 5 for generalized spectra. However, in [2] and [3] 
we prove the much stronger result that there is a “complete” generalized spectrum 
(whose complement is a generalized spectrum iff the complement of every generalized 
spectrum is a generalized spectrum) which is monadic, that is, all of whose extra pred- 
icate symbols are unary. This generalized spectrum is Mod, 3U Vx 3 !y(Pxy A u y ) ,  
where P is a binary predicate symbol and U is a unary predicate symbol. Note that 
it is too much to  hope for a complete (ordinary) spectrum which is monadic, since as 
remarked earlier, if A E then A is either finite or cofinite. We also remark that 
it is shown in [2] and [4] that there is a monadic generalized spectrum (the class of 
all nonconnected graphs) whose complement is not a monadic generalized spectrum. 

4. A hierarchy of extra predicate symbols 
In  this section we show that there is an exact trade-off between the degree of the 

extra predicate symbols and the cardinality of an “extra universe”. As a consequence 
,of the trade-off, we show that if p 2 2 and Fp(9’) = Ftp+l(9’), then F k ( 9 )  = Sp(9) 
for each k 2 p.  

Theorem 7. Let gk be the function n H n[n“k], where [ X I  is the greatest integer not 
exceeding x .  Assume that d is a class of 9’-structures which is closed under isomorphism, 
and that k 2 2. Then at’ i s  in 9=k+l(9’) iff Isom((gk(2): 3 ~ d } )  is in S k ( 9 ) .  
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The intuitive idea of the theorem (although it is not used specifically in the proof) 
is that with a ( k  + 1)-ary relation over a universe of cardinality n, we can encode 
nk+l “bits of information” - a given (k  + 1)-tuple may or may not be in the rela- 
tion; with a k-ary relation over a universe of cardinality roughly d k + l ) l k ,  we can again 
encode roughly (n(k+l)’k)k = nk+l bits of information. 

Incidentally, in the case k = 1, it is also $rue (and we will show) that if 
Isom ({(c(%): % €a’}) is in .Fl(9’), then d is in S2(9’). However, for every 9, the 
converse is false. For, we can essentially reduce to the case 9’ = 0 by only consider- 
ing cardinalities of structures. And, the set of even positive integers fs in Sz, whereas 
the set of squares of even positive integers (gl(n) = n2) is not in 9,, since as already 
mentioned, Fl = S1(0) contains only finite and cofinite sets. 

We will make use of the following concept. Assume that 9- is a finite similarity 
type, that U and V are unary predicate symbols with U $F, V #9-, that u is a first- 
order 9- v { U ,  7’)-sentence, and that f :  Z+ + Z+. Then we say that 39-0 defines f 
(with respect to U and 7) if for each finite { U ,  7}-structure 3 with > 0 and 
- - 
P > 0. 

We call f binary-definable if there is some F which contains only binary predicate 
symbols and some U ,  V, u such that 39-u defines f with respect to U and V .  Of course, 
F may be allowed to contain unary predicate symbols also, since a unary predicate 
symbol can be simulated by a binary predicate symbol. 

We remark that our notion of definability is similar to that of TRAHTENBROT [8], 
but that there are very essential differences. 

Lemma 8. Assume that f l  and f a  are binary-definable. Then so are the sum f l  + f z  
and the product f l  * f z .  I f  also fl(n) 2 n for each n, then the cmposi twn f l  o f e  is  binary- 
&f inable. 

Proof .  Assume that 3F’,ui(Ui, Vi) defines f i  with respect to Ui and Vi  (i = 1,2) ;  
we can assume that 9-, and F2 are disjoint, and that neither contains U ,  Y ,  U1 , Uz, 
V,, or V z .  Then 

wl 3 F a  3u1 3 U2(al( u1, V )  A uz( Uz , V )  A “ u is the disjoint union of U1 and U2”) 
clearly defines f l  + f z  with respect to U and V.  

W 1 3 9 - 2  3P 3 Q 3 U1 3 Uz(al( U ,  , V )  A az( U z  , V )  A “there is a one-one correspondence 
between pairs (ul, uz> with u1 in Ul , u2 in U2 and points u in U via (Puu, A Quuz) ”) 

clearly defines f l  * f z  with respect to U and V .  
Finally, if fl(n) 2 n for each n, then 3f1 3 T z  3V1(uz( Vl ,  V )  A ul(U, V,)) clearly 

defines f l  0 f z  with respect to U and V.  
Lemma 9. Let p be a nonzero polynomial with nonnegative integral coefficients. Then 

p is binary-definable. 
Proof. Clearly, the nonzero constant functions are binary-definable, as is the iden- 

tity function n I+ n. But, p can be obtained from these functions by repeated multi- 
plication and addition. So by Lemma 8, p is binary-definable. 

%l=3FcT iff v“=f(F). 

Let P and Q be new binary predicate symbols. Then 

9 Ztschr. f. math. Logik 
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Lemma 10. For each positive integer k, the function n H [nilk] is binary-definable 
(151 is the greatest integer not exceeding z). 

Proof .  Let pl be the polynomial n +, nk of degree k, and let p2 be the polynomial 
n t+ ( (n  + l)k - nk) of degree k - 1. Then by Lemma 9, p1 and p s  are binary-defin- 
able. Assume that 3F,u,(U, ,  V,) defines p ,  with respect to U ,  and V ,  (i = 1,2);  we 
can assume that F, and F2 are disjoint, and that neither contains U ,  V, U 1 ,  U 2 ,  V,, 
or vz. Let a be a,( ul, u) A uz( u2, U )  A Vx( vx c, (U,x v U,X)) A 3 ~ (  U,X A U,x). 
We will show that it is “ alnost ” true that 3 F l  3 F 2  3 U1 3 U26 defines n H with 
respect to U and V, and we will explain the meaning of the word “almost”. 

Assume that % is a finite F1 uY2 u { U , ,  U 2 ,  V)-structure with % I. a and with 
U X  > 0 and > 0. Let u = p, v = VE, u1 = e, and v1 = v?. We want to 
show that u = [vllk], that is, that uk 2 v and (u + l)k > v. We know that u1 = uk, 

and that u2 = (u + l)k - uk. Since U y  5 p, it follows that u, v, and so uk 5 v, 
which we wanted to  show. Now (u + l)k = u1 + u2. Since F = U y  u Uf, and since 
U F n  U: + 0,  we know that u1 + u2 > v. So (u + 

and 
v = Va. It is easy to see that we can find b such that ?I3 r { U ,  V} = 8 and b k u, 
as long as pz(u) 5 v. The polynomial p2 is of degree k - 1, and so if u is sufficiently 
large, then pz(u) < uk 6 v, as desired. So for sufficiently large u, there is no problem; 
this is the meaning of “almost”. We can take care of the finite number of cases when 
u is small by an obvious “finite modification” of u. 

We can now prove Theorem 7. Since the proof is long, we will split the theorem 
into two halves, Theorem 11 and Theorem 12. 

Theorem 11. Assume that k 2 2, that gk is  as in Theorem 7, and that d E Sk+,(9’). 
The% Isom({z(%): % ~ d } )  is i n  F k ( 9 ) .  

Proof. Let 9? = Isom({z(%): % €at’}). We want to show that 9? €gk(9’). The 
essential idea is as follows. Assume that d = Mod, 3Fu, where F is a set of t dis- 
tinct k-ary predicate symbols R1 , . . . , R, not in 9’. Assume that ?I3 E @. We want to 
simulate Rx,  . . . xk+l, for each R in Y, where each x, runs through a subuniverse A 
of 181 of cardinality n. We let variables v i  run through a yet smaller universe B of 
cardinality [ n l l k ] ,  and let variables y1 run through the large universe U of 23 of cardi- 
nality n[n”k]. We essentially set up (with a modification to be described soon) a one- 
one correspondence between points in A and k-tuples of points in B, and a one-one 
correspondence between pairs (a ,  b )  where a E A ,  b E B, and points in U .  For each 
(k + 1)-ary predicate symbol R, we let R be a new k-ary predicate symbol. We simulate 
Rx ,  . . . xk+l by Ry, . . . yk, where xk+, corresponds (in the one-one correspondence) to 
(v,, . . . , vk), and {xl, v,) corresponds to y, (1 i 5 k). A slight modification is called 
for, since B k  may be less than A:  we use two different correspondences between points 
in A and certain k-tuples of points in B, so that we can “double-use” some of the 
k-tuples; this takes care of the problem. since we will see that 2[n11kJk 2 n for suf- 
ficiently large n. Because of this modification, we will need to  make slight technical 
adjustments. We now begin the formal construction. 

Let u, A , ,  A , ,  A,  and B be new unary predicate symbols; Xi, . . ., S i ,  and T ,  new 
binary predicate symbols (i = 1,2) ;  G, and G, new k-ary predicate symbols; F’ a 
certain finite set of new binary predicate symbols defined below; a set of new 
k-ary predicate symbols &, . . . , Ri; and y2 a set of t new k-ary predicate s p b o l s  

_ _  - - - - - - 

- > v, as desired. 
Now assume that 8 is a finite { U ,  V}-structure with u = [vllk], where u = - 
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R! ,  . . ., Rf.  Let Yo be the set of all these new symbols; we assume that they are 
distinct and differ from the symbols in 9 and F. 

Assume that ?F‘zl defines n ++ [nilk] with respect to  B and A ;  this is possible by 
Lemma 10. Let z2 be the sentence 

“There is a one-one correspondence between pairs (a ,  b) with a in A and b in B, 
and points u in U ,  via ( T , m  A Tzub)”. 

Then 3 F ’  3B 3T1 3Tz(zl A t2) defines n H n[nl’k] with respect to  U and A .  
As before, for each P in 9, if P is r-ary, then let ocp be the sentence 

r 

V Z ~  . . . Vx,(Pz1 . . . Z, + A h i ) .  
i = l  Let z3 be the sentence 

“ A  is the disjoint union of A ,  and A z ,  and there is a one-one correspondence be- 
tween points x in A ,  and k-tuples (vl, . . . , ‘Uk) of points in B for which G1vl . . . ?)/:, 

via A S~,,xv, ( i  = 1, 2)”. 
k 

m = l  

Let yl be the following formula: 
2 k k 

i = l  J = 1  j = 1  

so, yl says that x in A corresponds to the k-tuple (vl, . . . , vk) of points in B. 
Let y2 be the formula Ax A Bv A Tlyx A Tzyv. So, y2 says that the point y in U 

(the universe) corresponds to the pair (2, v), where x E A and v E B. 
We are now going to define a sentence u’, which simulates the statement that u is 

true about a structure with universe A .  
Let X be the set of all variables that occur in a. Let V = (vi: x E X, 1 5 i s k} 

be a set of k f f  new variables ( x  in A will correspond the the k-tuple (vi, . . ., vt) of 
points in B). Let y = {yJ:  s E X  x V }  be a set of i? - r  new variables ( Y ( ~ , “ )  in U 
will correspond to the pair ( x ,  v), where x E A ,  v E B). Assume that all of these vari- 
ables are distinct. 

Let @ = ( A ys: yx is either A,x or A2x}.  Thus, @ contains BPdistinct formulas. 

We can assume without loss of generality that a is in prenex normal form 
Qlxl . . . Qmx,M, where each Qi is V or 3 (1 5 i 5 m), where x i  and x j  are distinct 
variables if i 9 i, and where M is quantifier-free. For each tp in @, let M ,  be the 
result of the following substitutions into M .  I f  Rx;, . . . xjk+, occurs in M (where 
R EY), and if y contains ApJ,+,  as a conjunct, then replace Rxj, . . . xjk+, in M by 
Riys, . . . ysk , where s, is ( x , ~ ,  v:), for 1 s m s k and 1 s i 6 2, and where z is 
xjk+,. Exactly one of the two case8 i = 1 or i = 2 takes place. Let M’ be the follow- 
ing formula : 

V (AiX A A B V j  A QiV1 . . . vk A A S!XVj) .  

x e x  

V’U k4(( A Yi(G ‘d, . . - 3  V:) A A 
sox X E X ,  VE v F O  

Y&!<z,v) J 2, V)) + v A M p )  3 

where Vv Vy means a universal quantification over every v in V and every y in Y .  
Jnductively define formulas a: (0 5 i 6 m), by letting a, = M’, and defining cri+l 

as follows (0 _I i < m): 
Vxm-i(Ax,-i + a;), if Qm-i is V 
~ x , - , ( A x , - ~  A a;), if &m-i is 3 .  

9* 
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Let u’ = uh, and let g’ = Mod, W(tl A z2 A t3 A u’ A VXUx A A aP). 
It is straightforward to  check that 2Y is a finite modification of 93’; so, since 

93’ E T ~ ( Y ) ,  so is g. The only difficulty lies in showing that 2[n1lkIk >= n for suffi- 
ciently large n, so that we can set up the correspondences we want. This is equivalent 
to showing that 211k[n11k] 2 nilk for sufficiently large n. Write 211k = 1 + 8; so, 8 =- 0.  
Let n be large enough to insure that 8[n11k] 2 1 .  Then 211k[n11k] 2 [nllk] + 1 3 nllk, 
which was to be shown. 

Theorem 12. Assume that k 2 1, that d and gk are as in Theorem 7, and that 
Isom({&(%): 2X E a}) is in F k ( 9 ) .  Then d E s k + l ( y ) *  

Proof. We will prove the following result: 

(1) Assume that dl ~ s k ( 9 ) ,  and that Bl = {B E F i n ( 9 ) :  E(B) E dl). Then 

Then Theorem 12 follows. For, let dl = Isom({z(%): % EJZ‘}), and let g1 = 
= {‘!8 E P i n ( 9 ) :  %(%) E dl}. Then a1 E % k + l ( Y ) ,  by (1). Now gk is strictly monotone, 
and hence one-one. So 5 is essentially one-one, by Lemma 2. It follows easily that 
9 Y 1 =  d. 

We will now prove (1). Let dl = Nod, 3Yu, where Y is a set of t distinct k-ary 
predicate symbols R,, . . . , Rt. Let g1 = (125 E F i n ( 9 ) :  &(B) E dl}. We want to  
show that gl E F k + l ( Y ) .  The essential idea is as follows. Assume that 113 E a1. Let 
U be the universe of 8, of cardinality n,  let B be a set of cardinality [nilk], and let 
A be a set of cardinality [n1lkIk. For each R in r, we want to  simulate Rxl . . . xk,  
where each xi ranges through an imaginary larger universe of cardinality n[nl$, 
whose “points” are pairs (u, b) ,  with u in U and b in B. We set up a one-one cor- 
respondence between points in A and k-tuples of points in B. For each k-ary predicate 
symbol R,  we let R be it new (k + 1)-ary predicate symbol. We simulate R((ul, bl) ,  . . . , 

Let A ,  B, and U be new unary predicate symbols; 8, , . . . , Sk new binary predicate 
symbols; 9-’ a certain finite set of new binary predicate symbols, defined below; and 
3 a set of t distinct (k  + 1)-ary predicate symbols R, ,  . . ., R,. Let Yo be the set of 
all these new symbols; we assume that they are distinct and differ from the symbols 
in Y and 9-. 

Assume that 3Y’t1 defines n ‘+f [nllk] with respect to B and U ;  this is possible, 
by Lemma 10. Let t2 be the sentence 

“There is a one-one correspondence between points x in A and k-tuples 

( y l ,  . . ., yk) of points in B, via A S,xyi”. 

PEY 

a1 8 s k + l ( 9 ) *  

( u k ,  b k ) )  by f iU1 . . . U@,  Where a in A corresponds to  <b1, . . . , bk). 

k 

i = l  

Then 39-l 3B 3S1 . . . 3sk(zl  A z2) defines n w [n1lkIk with respect to A and u. 
k k 

Let ly be the formula Av A A Bxi A A Sivxi.  So p says that v in A corresponds 
i = i  i = i  

to  the k-tuple ( x l ,  . . ., x k )  of points in B. 

the structure with universe consisting of pairs (u, b) ,  with u in U and b in B. 
We will now define a sentence d, which simulates the statement that u is true about 
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Let X be the set of all variables which occur in u. For each x in X ,  let x1 and x2 be 
two new variables (the imaginary universe will consist of pairs (xl, x2), with x1 in U 
and xz in B). For each k-tuple s in X k ,  let v, be a new variable (the point v($~, .  ..,+ 
in A corresponds to the k-tuple (x:, . . . , x:) of points in B). Let w be yet another 
new variable (w is thought of as a fixed point in B, and the point x in U is represented 

Let Q, = { A y=: ys is either x2 = w or x2 + w}. Thus, Q, contains 2xdistinct for- 
mulas. 

We can assume that a is in prenex normal form Q1xl. . . Q,x,M, where each Qi 
is v or 3, where xi and xj are distinct variables if i + j ,  and where M is quantifier- 
free. For each ? E @, let M ,  be the result of the following substitutions into M .  If 
xi  = x j  appears in M ,  then replace it by xi  = x; A xa = x2. If Pxil . . . xi, appears 
in M (where P E Y) ,  and if x[ = w is a conjunct of y for each s (1 s s s r ) ,  then 
substitute Pxtl . . . xt, in M for Pxil . . . xL,. If Pxil . . . xi, appears in M (where P E Y), 
and if x;, + w is a conjunct of ? for some s (1 j s j r ) ,  then substitute xil + xi, 
in M for Pxi, .  . . xi,. If Rxi, . . . xi* appears in M (where R EF), then substitute 
ax;,. . . xxv, in M for Rxi, . . . xik ,  where s = (x i l ,  . . ., xik)).  Let M' be the follow- 
ing formula: 

where Vv means a universal quantification over every v, with s in X k .  

as follows (0 5 i < m):  

by the pair ( x ,  w>). - 

zsx 

vv(( A y)(V(z1,. . . ,zS) 9 21 2 - * * 9 z k ) )  -+ v 9 A M q )  9 
(21,. . . , z k ) E X k  pE@ 

Inductively define formulas ui (0 5 i 5 m), by letting u; = M', and defining 

8 1 8 VxmWi V X , - ~ ( ( A X ~ - ~ A  Bxm-i) -+ ui), if Qm-i is V 
~ x , - ~ ~ x , - ~ ( A x , _ ~ A B x , _ ~ A u ~ ) ,  1 8 if Qmdi is 3. ui+l = 1 

' 
Let u' be (3w E B)  u;. It is straightforward to  check that al = Mud, Wo(tl A 

Clearly, Theorem 7 follows from Theorems 11 and 12. 
I n  the special case when Y = 0, we get the following result from Theorem 7. 
Corol la ry  13. Assume that k 2 2 and S g Z+. Then S E s k + l  iff {n[nllk]: n E s} 

Proof .  Immediate from Theorem 7. 
We conclude this section with a consequence of Theorems 3 and 12. We need two 

preliminary lemmas. If  h:  Z+ + Z+ is a function, then define h(,) inductively, by 
letting I&*) = h and letting h(,+l) be the composition h o I&"). 

Lemma 14. Let g p  be the function n w n[nl'P]. For each pair p ,  k of positive integers, 
there are positive integers nz and N such that g$")(n) 2 nk for each n 2 N .  

Proof .  It is straightforward to  show that gP(n) 5 nl+ll(aP) for sufficiently large n. 
The lemma now follows. 

L e m m a  15. For each pair of positive integers p ,  k, there i s  a (positive integer m such 
that whenever d E s k ( y ) ,  then Isorn((gF(3): 8 E.I;s}) i s  in  ~ ~ ( 9 ) .  

Proof .  Assume that d ~ S k ( 9 ) .  Let f k  be the function n t) nk, and let B = 
= Isom((G3): B ~d}). From Theorem 3, we know that a EBIN(Y); let Li? = 
= Mod, 3Qu, where Q is a new binary predicate symbol. 

A tz A u' A VxUx). Hence ~ 3 9 ~  E Sk+l(Y). 

is in S k .  
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Find m from Lemma 14 such that g(F)(n) 2 n k  for sufficiently large n. Let A ,  B,  U 
be new unary predicate symbols, let .TI and .Y2 be disjoint sets of new binary pred- 
icate symbols, and let tl and z2 be first-order sentences such that 3.T1tl defines n H nk 

with respect to B and A ,  and 3 9 - 2 ~ 2  defines gLm) with respect to U and A ;  this is pos- 
sible, by Lemmas 8, 9, and 10. Let Yo be fll vYz w { A ,  B, U ,  Q]. 

For each P in 9 ( P  r-ary) let ap be the sentence Vxl . . . Vx,(Pzl . . . x, -+ A AX(). 

Let $f = Mod, Wo(zl A zz A crB A QxUx A AP ap). Then %? E S2(9’). So, we need 

only show that Isom({g6m)(%): B ~ d ] )  is a finite modification of V. But this is true, 
because if 6 E Q, and if card (6) is sufficiently large, then 6 contains substructures 
% g 8, with C(B) = 23, 

r 

i = l  

PEY 

= 6, and 8 in a (and hence 8 in d). 
Theorem 16. Assume that YP(9’) = 9p+l(9). Then .Fk(9) = 9JY)  for each 

Proof. Case 1: p = 1. Then .Fl(Y) =+ F2(9’). For, let &’ = (3 E F i n ( Y ) :  card(%) 
is even]. Then as in the commentary following the statement of Theorem 7, we find 
that d E Sz(9’), but d + Sl(9’)z 

.Case 2: p 2 2. Assume that .F,(Y) = 9p+l(9’). Then we will prove that the fd- 
lowing statement holds for each m :  

(2) Assume that I s o m ( ( p ( 8 ) :  B E d}) is in Sp(9’). Then d E Sp(9’). 
Statement (2) holds for m = 1 by Theorem 12 (with k = p ) ,  since we are assuming 
that Pp(9’) = Sp+l(sP). Then (2) follows for general m by a straightforward induction. 

Now assume that d E Sk(Y) for some k 2 p .  Find m from Lemma 15 such that 
Isom({z)(B): B E d>) is in F2(SP) E SP(9’). Then from (2), we find that d E SP(9). 
So Tk(9’) k. Hence Pd9) = Fp(9’). 

k 2 p .  

9J.4”). But also Fp(9’) 5 S k ( Y ) ,  since p 

Conjecture .  I f  p =+ k, then Fp(9’) .f. S k ( 9 ’ ) .  
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