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ABSTRACT: 
normal form decomposition approach of Codd and the synthetic approach of Bernstein and others. 
synthetic approach seems on the surface to be the more powerful; unfortunately, to avoid serious 
problems, a nonintuitive constraint (the "uniqueness" of functional dependencies) must be assumed. 
demonstrate the fourth normal form approach, which not only can deal with this difficulty, but which is 
also more powerful than either of the earlier approaches. 
attributes (potential column names), along with semantic information in the form of functional and 
multivalued dmendencies: the outDut is a "8ood" (fourth normal form) lorrical desinn. The new method 

Two of the competing approaches to the logical design of relational databases are the third 
The 

We 

The input of the new method includes 

- 
is semi-automatic, which is especially helpful in the 
that interrelate in complex ways. 

INTRODUCTION 

An important problem in the management of large 
databases is the logical design of the database. In 
the case of relational databases5, the problem is the 
selection of an appropriate set of relation schemas, 
that is. table skeletons. Two of the competing 
approaches to the logical design of relational 
databases are the third normal form decomposition 
approach of Codd5 and the synth tic approach of 
Bernstein and others (Bernstein'; Bernstein, Swenson, 
and Tsichrit~is~). In this paper, we demonstrate the 
fourth normal form decomposition approach, which is 
more powerful than either of the earlier approaches, 
and which lessens some of their difficulties. 

to database design proceeds as follows. 
of the design process, one is given (as input) an 
initial set of relation schemas, along with a set of 
functional dependencies. By using the information 
contained in the dependencies, one converts the initial 
set of relation schemas into a new, more desirable 
set of relation schemas. That is, this approach 
converts a good design into a better design. 
Figure 1. 

Codd's third normal form decomposition approach 
At the start 

See 
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Figure 1. 3NF Decomposition 
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case of a very large database with many attributes 

The synthetic approach of Bernstein et al. is more 
ambitious. 
attributes (potential column names) and dependency 
Information, but not with an Initial design. 
is the same - to find a good design. 

Here the design process begins with only 

The goal 
See Figure 2. 

Attributes Functional Dependencies 

I Synthetic 
Process I 

EMP SAL EMP CHILD m 
3NF Relation Schemas 

Figure 2. Synthetic Process 

Unfortunately, to prevent serious problems it is 
necessary to make an assumption (the "uniqueness" of 
functional dependencies) that is nonintuitive and that 
seems very hard to verify in a large database. 
elaborate on this point later. The situation is 
simpler in the decomposition approach, because in this. 
case, the uniqueness of functional dependencies 
automatically holds, as we will see. 

In our approach, the design process has as input 
a set of attributes along with a set of functional 
dependencies and a set of the more general "multivalued 
dependen~ies".~ 
schemas in fourth normal form7. 

We 

The final result is a set of relation 
See Figure 3. 
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Figure 3. 4NF Approach 

Our approach has several advantages over third 
normal form decomposition and over the synthetic 
approach. First, our approach is in the spirit of 
the synthetic approach, since the input consists only 
of attributes and of dependency information. This is 
especially helpful in the case of a very large database 
with many attributes that interrelate in complex ways. 
For, then an automatic procedure can be invoked that 
takes this dependency information as input and 
mechaiically generates a design (cf. Bernstein's 
efficient third normal form algorithm' and our fourth 
normal form algorithm). 
desirable to have a human in the loop (we discuss this 
point later); thus, the procedure is really 
semi-automatic rather than automatic. Second, although 
our approach is in the spirit of the synthetic 
approach, it '"works" mathematically in a similar manner 
to third normal form decomposition. In particular, 
the uniqueness problem does not cause us grave 
difficulties. Third, our approach accepts as input 
not only functional dependencies, but also multivalued 
dependencies, which are useful since functional 
dependencies are inade uate in general (for example, 
as Schmid. and Swenson18 observed, the information that 
an employee has a salary is given by a functional 
dependency, while the information that he has children 
is not.) Fourth, the output is a set of relation 
schemas that are not just in third normal form but in 
the more desirable fourth normal form. 

decomposition and give Codd's definition of a 
functional dependency. 

In the third section, we sketch the synthetic 
approach and give Bernstein's quite different 
definition of functional dependency. .Bernstein's 
definition is the source of the difficulties associated 
with the synthetic approach. 

In practice, it is probably 

In the second section, we sketch third normal form 

In the next two sections, we introduce multivalued 

dependencies and demonstrate fourth normal form 
decomposition. 

example. 
in this paper are in Fagin7. 

THIRD NORMAL FORM DECOMPOSITION 

This paper is informal in nature and proceeds by 
Precise definitions of concepts that appear 

The basic semantic object associated with third 
normal form decomposition is the functional dependeccy. 
As an example, let S(EMPLOYEE,SAWIY,CHILD) be a 
relation with column names EMF'LOYEE, SALARY, and CBILD. 
Thus, the relation S could be as in Table 1. 

Gwendolyn Gauss $50K 
Gauss 1 $50K 1 Greta 
Pythagoras $2OK Peter 

Table 1 

Following Codd', we say that this relation S obeys 
the functional dependency EMPLOYEE-tSALARY. 
Intuitively, this means that each employee has exactly 
one salary. The precise meaning is that if two tuples 
(that is. rows) of S agree in the EMPLOYEE column, 
then they agree in the SALARY column. That is, the 
functional dependency "EMPLOYEE+SALARY" is simply 
shorthand for the statement "Whenever two tuples of 
the relation agree in the EMPLOYEE column, they also 

4 agree in the SALARY column." 
functional dependency holds for a relation schema, 
we mean that each relation that is an instance of the 
schema (that is, each "snapshot") is constrained to 
obey the dependency. S o ,  a functional dependency is 
then an "integrity constraint," which constrains the 
"shape" of the relation. 

For the sake of informality, we will be somewhat 
careless about distinguishing relations from relation 
schemas. A more careful treatment appears in Fagin?. 

We briefly sketch the basic ideas behind Codd's 
definition of third normal form (3NF). For a relation 
schema to be in 3NF it must satisfy three rules. 
rules are roughly, but inexactly, as follows (for an 
exact definition, see Codd'): 
be atomic; that is, the entries may not be sets or 
relations. We assume throughout this paper that rule 
(1) is never violated in any relation discussed. (2) 
There must be no "partial dependence" on a key. 
example, if AB is a key of R(A,B,C,D), then the 
functional dependency A+€ must not hold (of course, 
the functional dependency AB+C does hold for R since 
AB is a key). (3) There must be no "transitive 
dependence." 
A+B and B+C should not both hold for R(A,B,C,D). 

Codd suggests a number of reasons why relation 
sch-zmas in 3NF are more desirable than those that are 
not. 
is to convert a set of relation schemas that are not 
in 3NF into a set of relation schemas that carry the 
same information but that are in 3NF. 
is a set of relation schemas and a set of functional 
dependencies. Let, say. R(A,B,C,D) be a relation 
schema in the set that is not in 3NF. Since we are 
assuming that rule (1) for 3NF is not violated, we 
know that either rule (2) or rule (3) is violated. 
Case 1: 
key and A X  holding. 
A X  holds for R(A,B,C,D), it turns out to be possible 
to replace R(A,B,C,D) by its projections Rl(A,C) and 
R2(A,B,D), without loss of information. At this step 
of the 3NF decomposition process, we indeed do replace 
R(A,B,C,D) by R1(A,C) and RZ(A.B,D). 

When we say that a 

The 

(1) the entries must 

For 

For example, the functional dependencies 

Hence, the goal of the 3°F decomposition process 

3NF decomposition proceeds as follows. The input 

Rule (2) is violated, via, say, AB being a 
Because the functional dependency 

i 
4 

. .  I 
t 
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Case 2: Rule (31 ,  and not rule (2)  is violated, and 
rule (3) is violated via, say, the functional 
dependencies A+B and B-+C holding. 
functioiial dependency B X  holds for R(A,B,C,D), we 
can (and do) replace R(A,B,C,D) in this step by R1(B,C) 
and Rz(A,B,D), without loss of information. 

Case 3: Both rules (2) and (3)  are violated. Then 
by Bone mechanism, a choice is made as to which 
decomposition of R(A,B,C,D) should take place. 

Because the 

The decomposition process continues, step by step, 
until all remaining relation schemas are in 3NF. 

There are various objections to 3NF decomposition 
as a technique for database design. A first objection 
is that the designer must first find an initial design 
which is then improved by 3NF decomposition. It would 
be nice if instead, the designer could begin with just 
dependency information, rather than with an initial 
design. 

goes "down", not "up" or "sideways". That is, 3NT 
decomposition can break an existing relation schema 
into two relation schemas, but it cannot, for example, 
combine two relation schemas into a single larger 
schema. So, the output of 3NF decomposition is 
severely restricted by the input. 

THE SYNTHETIC APPROACH 

A second objection is that 3NF decomposition only 

A goal of the synthetic approach is to begin at 
an earlier stage of the design process than does the 
3NF decomposition approach. 
set of attributes, along with a set of functional 
dependencies; no initial design is necessary. 
output is a set of 3NF relation schemas that in some 
sense "embody" the functional dependencies. 

different from the definition in the previous section 
is called for, since the previous definition required 
a functional dependency to be true in the context of - a given relation. However, in the synthetic approach, 
functional dependencies are supposed to exist 
independently of relations that embody them. 
I s ,  functional dependencies and not relation schemas 
are the primitive objects. 

Bernstein2 defines a functional dependency to be 
a "time-varying function." 
Bernstein) of the problems associated with this 
approach, there could be a functional dependency 
EMPt-tMGRI (which maps the number of an employee into 
the number of his manager) and a functional dependency 
MGR#+W# (which maps a manager's MGR# into his 
corresponding EMPI). 
mappings are inverses would be what Bernstein calls 
an "invalid syntactic inference" that might require 
a "semantic analyzer" to reject. 

dependency EMPI-rEIGRU (that maps the number of an 
employee into the number of his manager) and a 
functional dependency MGRIbSTATUS (where the status 
is a number between 1 and 10). 
these functional dependencies is a functional 
dependency W#-tSTATUS (which gives the status of the 
manager of an employee). This could be confused with 
another functional dependency that gives the status 
of an employee himself. 

To prevent such problems, Bernstein suggests the 
strong assumption that there is at most one functional 
dependency from a given set of attributes to a given 
attribute. In the first example we gave, we could 
change the functional dependency MGR#+EMP# into a 
functional dependency MGR#+EMP# OF-MGR. Otherwise 
there are two functional dependyncies EMP#+EXP/I: 
the identity (which maps an employee number into 
itself), and the other the composition of the 

The input is simply a 

The 

A definition of functional dependency that is 

That 

As an example (due to 

The assumption that the two 

As a second example, there could be a functional 

The composition of 

one 

functicrd dependencies EMPffrMGR# and MGR#+EHPI! (this 
second functional dependency EMPhEMPf maps the 
employee number of an employee into the employee number 
of his manager). In the second example of a problem 
that we gave, we can obtain uniqueness by having the 
functional dependencies EMP#+STATUS-OF_EMP and 
EMP#+STATiiS-OF-MGR. A s  Bernstein notes, "Specifying 
a set of functional dependencies that lead to no 
Invalid syntactic inferences is clearly a difficult 
problem." 
Eernstein's uniqueness assumption in practice. 

A further problem with the synthetic approach is 
that the synthesis algorithm handles only functional 
dependencies, and hence does not directly handle what 
Bernstein calls "nonfunctional relationships." For 
example, an EMPLOYEE may not only have a SALARY (where 
the relationship is described by a functional 
dependency mPLOYEE+SALARY), but the EHPLOYEE may also 
have a set of CHILDren (where the relationship is not 
given by a functional dependency, since an EMPLOYEE 
may have more than one CHILD). 
relationship between SUPPLIERS and PARTS where each 
SUPPLIER supplies several PARTS, and each PART is 
supplied by several SUPPLIERS. Bernstein deals with 
these problems by creating dumy attributes Bi and 
creating new functional dependencies 
{EKPLOYEE,CHILDbe1 and (PART,SUPPLIER)+i32. This is 
a trick that "fools" the synthesis algorithm into 
creating essentially one relation schema per 
nonfunctional relationship. 

MULTIVALUED DEPENDENCIES 

It is very unclear as to how to verify 

Or, there may be a 

The new semantic object that we consider is the 
multivalued dependency, which is a generalization of 
(Codd's definition of) the functional dependency. We 
present a few examples, then give the definition. As 
a first example, the relation S(EMPLOYEE,SALARY,CHILD) 
of Table 1 obeys the multivalued dependency 
EMPLOYEE-SALARY (which can be read "EMPLOYEE 
multidetemines SALARY"), since functional dependencies 
turn out to be special cases of multivalued 
dependencies. Furthermore, the multivalued dependency 
EXPLOYEE-HCHILD holds for S(EMPLOYEE,SALARY,CHILD), 
because intuitively, an employee's set of children is 
completely determined by the employee, and is 
"orthogonal" to the salary. In this case, multivalued 
dependencies remedy the objection noted earlier to 
functional dependencies by Schmid and Swenson, that 
an employee "has" a set of children just as he "has" 
a salary, and that there should be ro arbitrary 
distinction. Thus, both of the multivalued 
dependencies EMPLOYEE-SALARY and EMPLOYEEWHILD hold 
for this schema. 

T(EMPLOYEE,CHILD,SALARY,YEAR) be a relation that 
specifies the children and salary history of each 
employee. See Table 2. A tuple, such as 
(Pythagoras,Peter,$2OK,l976), appears in T iff (1) 
Pythagoras is an employee, (2) one of his children is 
named Peter, and (3) during at least part of 1976, 
his salary was $20K. Although T has no functional 
dependencies, it does have the multivalued dependencies 
EEIPLOYEE-HCRILD (as in the previous example), and also 
ENPLOYEE*~SALARY,YEAR~, because intuitively, an 
employee's set of children is completely determined 
by the employee, and is orthogonal to the salary 
history. Caution: It does not follow from 
EMPLOYEE++-, YEAR] t ha t x t  her EMPLOYEE-SALARY 
or EMPLOYEE-YEAR (See Faginif). 
is in some sense a "cluster". 

As andther example, let 

The pair (SALARY,yEAR) 
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PPLOYEE 

Hilbert 
Gauss 
Gauss 
Gauss 
Gauss 
Pythagoras 
Pythagoras 

S40K 
$5OX 
$40K 
$50K 
$15K 
$20K 

CHILD 
Hubert 
Hubert 
Gwendolyn 
Gwendolyn 
Greta 
Greta 
Peter 
Peter 

1975 
1975 
1975 
1976 
1975 
1976 

1 SALARY I YEAR 
$3SK 1976 
$40); I 1976 

Table 2 

We now present the formal definition of multivalued 
(We give the definition in Beeri, Fagin, dependencies. 

and Howard1, which is slightly more general than the 
definition in Fagin7, in that the left- and right-hand 
sides of the multivalued dependency need not be 
disjoint.) Let R be a relation. 
the column names of R, and u is a tuple of R, then by 
u[X] we mean the projection of u onto X. When we say 
that x is an X-value of the relation R, we mean that 
x=u[X] for some tuple u of R. Let X and Y be subsets 
of the column names of R. Define 
YR(x)={y:For some tuple u in R, both u[X]=x and u[Y]=y). 

That is, YR i s  the set of Y-values that appear in R 
with the X-value x. Let 2 be the set of column names 
of R that are not in either X or Y (thus, 2 is the 
complement of the union of X and Y). The relation R 
obeys the multivalued dependency X-Y if for each XZ 
value xz that appears in R, we have YR(xz)=YR(x). 
That is, the multivalued dependency X-Y holds for R 
if the set of Y values that appear with a given x also 
appear with each combination of x and z in R. 
this set is a function of x alone and does not depend 
on the z-values that appear with x. 

T(EMPLOYEE,CHILD,SALARY,YEAR) in Table 2 .  The 
multivalued dependency EMPLOYEE%HILD holds for T, 
since, for example, CHILDT(Gauss) equals both 
CHILDT(Gauss, $4OK, 1975) and CHILDT(Gauss, $5OK,1976), 
which all equal {Gwendolyn,Greta). 

Many properties of multivalued dependencies are 
explored in Fagin7 and in Beeri, Fagin, and Howardl. 
For example, as we already noted, functional 
dependencies are special cases of multivalued 
dependencies. 
multivalued dependencies provide a necessary and 
sufficient condition for a relation to be decomposable 
into two of its projections without loss of information 
(in the usual sense that the original relation is 
guaranteed to be in the natural join of the two 
projections). 
EMPLOYEEWHILD holds for the relation 
T(EMPLOYEE,CHILD,SALARY,YEAR) in Table 2,  it follows 
that this relation can be decomposed into the two 
relations T1(EMPLOYEE,CHILD) and 
Tq(EMPLOYEE,SALARY,YEAR) without loss of information 
(see Table 3). We note that 
T(EMPLOYEE,CHILD,SALARY,YEAR) cannot be decomposed on 
the basis of any functional dependencies, because 
there are none (except trivial functional dependencies, 
such as A+A). In fact, T is in third normal form, 
and even in the stronger "improved third normal form," 
or as it has come to be known, "Boyce-Codd normal 
form"6, since it is "all key" (that is, no proper 
subset of the four column names form a key for T). 
However, as we will see, it is not in fourth normal 
form. To obtain fourth normal form, it is necessary 
to decompose T as above into T The example 
is due to Schmid and Swenson,lb who recommend 
decomposition on semantic grounds. 

If X is a subset of 

So, 

As an example, consider the relation 

Another important property is that 

Thus, since the multivalued dependency 

and Tp. 

I 

EMPLOYEE I CHILD 
Hilbert } Hubert 

Gwendolyn 
Greta 

Hi lb er t 
Gauss 

Table 3 

FOURTH NORMAL FORM DECOMPOSITION 

Fourth normal form decomposition is a 
generalization of third normal form decomposition. 
However, in some ways fourth normal form decomposition 
"looks like" a sound, powerful version of the synthetic 
approach. The input is a set of attributes, along 
with semantic information in the form of functional 
dependencies and multivalued dependencies. 
is a set of relation schemas in fourth normal form. 

Before we can define fourth normal form, we need 
the simple concept of a "trivial multivalued 
dependency." Assume that the sets X,Z partition the 
set of column names of R(X.2). It is easy to verify 
that the multivalued dependency X-HY always holds for 
R when Y is  either a subset of X or a superset of 2. 
For example, the multivalued dependency CA,B)++C holds 
for every relation S(A,B,C) with exactly three column 
names, A,B,C. We call these "trivial multivalued 
dependencies." 
form (4NF) if whenever a nontrivial multivalued 
dependency X-Y holds for R, where X and Y are subsets 
of the column names of R, then the functional 
dependency X+A holds for every column name A of R. 
That is, a relation schema is in 4NF if all 
dependencies are the result of keys. 
a 4NF relation schema can have no nontrivial 
multivalued dependencies that are not functional 
dependencies. 

process. The attributes are PROJECT, PART, SUPPLIER, 
LOCATION, COST, EMPLOYEE, SALARY, and HIREDATE. 
Intuitively, a PROJECT (such as Project 17) uses PARTS 
(such as nails), which are supplied by SUPPLIERS (such 
as Acme), each of which can have a number of locations 
(such as Oklahoma City). 
that if a SUPPLIER supplies a PART to a PROJECT, then 
all LOCATIONS of the SUPPLIER supply that PART to the 
PROJECT and all at the same COST. The COST depends 
on SUPPLIER and the PART. Finally, each PROJECT has 
one MANAGER (such as Jones), and a set of EMPLOYEES 
(such as Smith), each of whom have a SALARY (such as 
$30K) and a HIREDATE (such as 1973). 

single relation schema 

The output 

A relation schema R is in fourth normal 
- 

In particular, 

We now present an example of the 4NF normalization 

In this example, we assume 

We begin the normalization process by forming a 

W(PROJECT,PART,SUPPLIER,LOCATION,COST, 
PiPLOYEE,MANAGER,SALARY,HIREDATE) . (1) 

What are the dependencies? 

(note that for simplicity, we do not distinguish 
between a singleton set {A) and its only member A; 
e.g., we write COST for {COST)): 

We have the following functional dependencies 

CWPPLIER,PART~+COST (2) 
(3) 

EMPLOYEE~SALARY ,HIREDATE) . (4) 

(5 1 SUPPLIER-HLOCATIQN 
PROJECT*{EMPLOYEE, SALARY, HIREDATE) . (6 ) 

PRO JECT-rMANAGER 

Based on our assumptions, the following multfvalued 
dependencies hold: 

As for (6), the multivalued dependency 
PROJECT*EMPLOYEE does =hold. 
and HIREDATE (properties of the EMPLOYEE) must be 
"clustered" together with EMPLOYEE on the right-hand 
side for the multivalued dependency to hold (as the 
reader can verify). 

Instead, the SALARY 
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We nova begh 4NF normalization process. The basic 
rule is that if a functional dependency X+Y or a 
multivaiued dependency X-Y holds for a relation 
K(X,Y,Z!, whrro 2 is the set of column names not in 
X o c  Y ,  thcn E CZII be decomposed into R1(X,Y) and 
Z2 (;c,O,) wi:hoct loss of information (the original 
relation R(X,Y,Z) is then the natural join of R1(X,Y) 
and R ( X , Z ) > .  On the basis of the functional 
depenzency (Z), we decompose W (as given by (1)) into 

and 
W~(SUPPLIER,PART,COST) 

W2(SUPPLIBR,PART.PROJECT,LOCATION,E"LOYEE, 
MANAGER,SALARY,HIREDATE) . 

Although W1 is now in 4NF, W2 is not, since, for 
example, the functional dependency EMPLOYEEWAGER 
holds for W2, whereas PIPLOYEE is  not a key. 
decoxpose W2 further. It can be shown7 that if a 
multivalued dependency X*Y holds for a relation, then 
it holds for every projection that contains at least 
all of the column names in X and Y. Hence, since 
multivalued dependency ( 6 )  holds for W, it also holds 
for its projection W2. On the basis of ( 6 ) ,  we 
decompose W2 into its projections 

and 

We now 

W21(PROJECT,EKPLOYEE,SALARY,HIREDATE) 

W~~(PROJECT,SUPPLIER,PART,LOC~TION~MANAGER) . 
Using functional dependency (4), we decompose W21 into 

and 
W211(EMPLOYEE,SALARY,HIREDATE) 

WZl2 (EEPLOYEE,PROJECT) , 

Using functional dependency (3 ) ,  we decompose W 

WZz1 (PROJECT,MANAGER) 

W222(PROJECT,SUPPLIER,PART,LOCATION) . 
Finally, using multivalued dependency (S), we 

W2221 (SUPPLIER,LOCATION) 

W2222(SUPPLIER,PROJECT,PART) . 
We are left with the 4NF family 

W1(SUPPLIER,PART,COST) 

WZl1(EMPLOYEE,SALARY,HIREDATE) 
WZl2 (EMPLOYEE ,PROJECT) 

W2221(SUPPLIER,LOCATION) 

each of which are in 4NF. 

into 

and 

22 

decompose W222 into 

and 

wZz1 (PROJECT,MANAGER) 

w2222 (SUPPLIER, PROJECT, PART) . 
The final result could have been different if we 

had decomposed differently. 
mentioned several heuristics (suggested by Zaniololl 
and Rissanen9) as to the order in which to use the 
dependencies f o r  decomposition. 

(that can then be exploited). 
inputs a set of functional and multivalued 
dependencies, then it is possible to obtain new 
dependencies, that are consequences of the input 
dependencies, but that were not inputs themselves. 
As a simple example, the functional dependency A N  
is a consequence of the functional dependencies A-tB 
and Be. AS a slightly more complicated example, if 
the multivalued dependency X*Y holds in R(X,Y,Z), 
where the set Z contains all column names of R not in 
X or Y, then7 the multivalued dependency X-2 also 
holds for R. 
axiomatization for dependencies is exhibited, from 
which all dependencies that are consequences of an 
input set of dependencies can be derived. Using these 

In Fagin,7 there are 

In fact, a 4NF 
- normalization "box" can generate new dependencies 

That i s ,  if the user 

In Beeri, Fagin, and Howardl, a complete 

zxioxs, one can in principle obtsir; all p s s s i b l e  4F!F 
designs. 

(as in (l)), a 4NF normalization algorithm has a: 
least as many opttons as if it begins vith many small 
relation schemas that are then deconposed further. 
That is, there are at least as many possible final 
results in the former case. 
more of a chance to optimize. 

If there is a human in the normalization loop, 
then the problem of determining all functional an? 
multivalued dependencies that hold in a given situation 
seems less formidable. This is because the human can 
"notice" a previously neglected dependency at a late 
stage of the 4NF normalization process, and then either 
apply it at that stage or incorporate it in the list 
of "known" dependencies and start over. The human 
can make a decision to modify the design (and perhaps 
stop short of 4NF) for performance or even esthetic 
reasons. Indeed, it has been conjectured8 that people 
are just not going to accept a fully computer-generated 
design in which a human was not actively involved! 

FOURTH NORMAL FORM DECOMPOSITION AND BERNSTEIN'S 
UNIQUENESS ASSUMPTION 

By initially forming B single iarge relaticn ?chei.& 

Hence, an algorithm has 

The 4NF approach provides a discipline for handling 
problems related to Bernstein's uniqueness assumption 
for functional dependencies. 
that the uniqueness always holds within a given 
relation. For example, if A and B are column names 
of a relation R, then the functional dependency (under 
Codd's definition) A*B either holds for R or it does 
not. There is no possibility (or meaning attached 
to) two functional dependencies A+B (with the same 
left- and right-hand sides) both holding for R. 

(conceptually) a single large relation schema. 
can then write (in a language like English) a 
description of a typical tuple. 
this at the beginning of our earlier extended example 
W(PROJECT,PART,SUPPLIER,LOCATION,COST,EMPLOYEE, 
WAGER,SALARY,HIREDATE). 
Thus, if (~,pa,su,lo,co,em,ma,sa,hi) is a typical 
tuple of W, then lo is the location of the sumlier 

A key observation is 

The 4NF approach begins with the designer forming 
He 

We did essentially 

.. 
E; part is suzlied by supplier to the project 
pr; and so on. - 

Let us now consider the examples given earlier 
that violated Bernstein's uniqueness assumption. 
Assume that the attributes include (among others) 
EMF'#,MGR#. and STATUS. It should be clear from the 
description of a typical tuple whether the status is 
that of the employee or of the manager. 
characteristic of the decomposition approach, it cannot 
be both simultaneously (since we are working within' 
a single relation). 
are required, such as STATUS-OF-EMP and STATUS-OF-MGR, 
it will be clear that new attributes should be 
introduced. Incidentally, at the conclusion of the 
4NF decomposition, it is possible to rename the 
attributes. For example, if we ended with (among 
others) the relation schemas R1(EMP#,STATUS_OF_EMP) 
and Rp(MGR#,STATUS-OF MCR), we could then rename to 
obtain R1(EMP#,STATUST and Rg(MGR#,STATUS), if we felt 
that this were more desirable. 

In our other example that violated the uniqueness 
assumption, there were functional dependencies (under 
Bernstein's definition) EMP#+MGR# and MGR#+DP# that 
were not inverses of each other. But if there arc 
two functional dependencies (under Codd's definition) 
A*B and B+A within a single relation, then they are 
automatically inverses of each other. Once again, we 
can tell what it means for an EMP# and a MGR# 
to appear together in a single tuple by our description 
of a representative tuple. 
manager number ma i s  the manager of employee number 

As is 

If two different types of status 

Thus, we can see whether 
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5, 3r whether ~2 is the employee number of manager 
ncmber ma. 
cannot be true simultaneously. 
introduce new attributes, so that both relationships 
can Sc rqresented. 

helpless position of needing an assumption of 
uniquecess and having no way to verify the assumption. 
Under the decomposition approach, uniqueness holds 
automatically, and we have a mechanism for verifying 
whether new attributes are needed (to encode more 
infortration). 

Note that because we have multivalued dependencies 
to work with in the 4NF approach, we have the ability 
to split our sirgle large relation. However, using 
only Codd's functional dependencies, we cannot, for 
exainple, split the relation 
T(ENPLOYEE,CHILD,SALART,YEAR) of Table 2 .  

S W Y  

Sicce this is a single relation, both 
If desired, we can 

Ur,der the synthetic approach, we are in the 

A major disadvantage of using Codd's 3NF 
decomposition as a tool for the logical design of 
relational databases is that the output is severely 
limited by the input. In fact, the input must include 
an initial design that is usually not very different 
from th% final design (the output). This is because 
3NF decomposition only goes "down", not "up" or 
"sideways". However, under the 4NF approach, it is 
possible to obtain all possible 4NF designs. 
because, by starting with a single relation schema 
with all the attributes, there is nowhere to go but 
"down". 

intended to remedy the deficiencies of 3NF 
decomposition by supplying as input only semantic 
information in the form of functional dependencies. 
Unfortunately, in this approach, in which functional 
dependencies, rather than relations, are the primitive 
cbjects, one is required to make the nonintuitive, 
hard-to-verify assumption of uniqueness of functional 
dependencies in order to avoid serious difficulties. 
A further problem with the synthetic approach is that 
functional dependencies are inadequate by themselves. 

Our 4NF approach is in the synthetic "spirit" i n  
that the input consists of semantic information in 
tte form of dependencies. However, since we work in 
the context of a single relation, the uniqueness 
assumption holds automatically. And, there is a 
mechanism for determining if new attributes are called 
for. Furthemore, our approach is more powerful than 
either of the other approaches in that we allow as 
input not only functional dependencies but also the 
m m e  general nultivalued dependencies. 

among the whole spectrum of all "good" (4NF) designs. 
It can generate new dependencies that are consequences 
of the Input dependencies. It is possible to have a 
human in the loop who can add in dependencies that 
.were accidentally omitted (the human can also decide 

This is 

The synthetic approach of Bernstein and others is 

- 

The 4hT "box" can employ heuristics to decide 

ACKNObZEDGE?ENTS 

The author is grateful to David Hsiao and Ted Codd 
for encouraging him to put to paper the ideas expressed 
in this report. 
and Arne Solvberg for reading an early draft and making 
helpful suggestions. 

REFERENCES 

He is also grateful to Chris Date 

Beeri, C . ,  Fagin, R., and Howard, J. H. "A 
complete axiomatization for functional and 
multivalued dependencies in database 
relations." ProcS 1977 A M  SIGMOD. 
Bernstein, P. A .  "Synthesizing third norna l  
form relations from functional dependencies." 
Trans. on Database Systems 1, 4 (Dec. 19761, 
277-293. 
Bernstein, P. A,, Swenson, J. R., and 
Tsichritzis, D. C. "A unified approach to 
functional dependencies and relations." Proc. 
ACN SIGNOD, W. F. King (ed.), San Jose, 
California (May 1975), 237-245. 
Cadiou, J-M. "On semantic issues in the 
relational model of data." Proc. 
International Synposium on Math. Foundations 
of Computer Science, Gdagsk, Poland (Septenber 
1975). Springer-Verlag Lecture Notes in 
Computer Science, 
Codd, E. F. "Further normalization of the 
data base relational model." Courant Conputer 
Science Symposium 6, Data Base Systems, 
Frentice-Hall, N.Y. (May 1971), 65-98. 
Codd, E. F. "Recent investigations in 
relational data base systems." IFIP Conf. 
Proc., North-Holland Publishing Company 

Fagin, R. "Multivalued dependencies and a 
new normal form for relational databases," 
Trans. on Database Systems (Sept. 1977). 
Merten, A. and Taylor, R. W. Personal 
communication. 
Rissanen, J. J. "Independent components of 
relations." Trans. on Database Systems, to 
appear. 

semantics of the relational data model." 
Proc. A M  SIGMOD, W. F. King (ed.), San Jose, 
California (May 1975), 211-223. 
Zaniolo, C. "Analysis and design of relational 
schemata for database systems." Ph.D. 
Dissertation, UCLA, 1976 (UCLA technical 
report UCLA-ENG-7669, July 1976). 

(1974), 1017-1021. 

Schmid, H. A. and Swenson, J. R. "On the . -? 

to stop short of-4NF for performance or other reasons). 

44 6 


