
Proc. 1977 Very Large Data Bases i

Conference (Tokyo) I

I
THE DECOMPOSITION VERSUS THE SYNTHETIC APPROACH TO RELATIONAL DATABASE DESIGN

Ronald Fagin

IBM Research Laboratory
San Jose, California 95193

ABSTRACT:
normal form decomposition approach of Codd and the synthetic approach of Bernstein and others.
synthetic approach seems on the surface to be the more powerful; unfortunately, to avoid serious
problems, a nonintuitive constraint (the "uniqueness" of functional dependencies) must be assumed.
demonstrate the fourth normal form approach, which not only can deal with this difficulty, but which is
also more powerful than either of the earlier approaches.
attributes (potential column names), along with semantic information in the form of functional and
multivalued dmendencies: the outDut is a "8ood" (fourth normal form) lorrical desinn. The new method

Two of the competing approaches to the logical design of relational databases are the third
The

We

The input of the new method includes

-
is semi-automatic, which is especially helpful in the
that interrelate in complex ways.

INTRODUCTION

An important problem in the management of large
databases is the logical design of the database. In
the case of relational databases5, the problem is the
selection of an appropriate set of relation schemas,
that is. table skeletons. Two of the competing
approaches to the logical design of relational
databases are the third normal form decomposition
approach of Codd5 and the synth tic approach of
Bernstein and others (Bernstein'; Bernstein, Swenson,
and Tsichrit~is~). In this paper, we demonstrate the
fourth normal form decomposition approach, which is
more powerful than either of the earlier approaches,
and which lessens some of their difficulties.

to database design proceeds as follows.
of the design process, one is given (as input) an
initial set of relation schemas, along with a set of
functional dependencies. By using the information
contained in the dependencies, one converts the initial
set of relation schemas into a new, more desirable
set of relation schemas. That is, this approach
converts a good design into a better design.
Figure 1.

Codd's third normal form decomposition approach
At the start

See

Functional Dependencies Initial Relation Schemas

LEI Decomposition

3NF Relation Schemas

Figure 1. 3NF Decomposition

. - 1

case of a very large database with many attributes

The synthetic approach of Bernstein et al. is more
ambitious.
attributes (potential column names) and dependency
Information, but not with an Initial design.
is the same - to find a good design.

Here the design process begins with only

The goal
See Figure 2.

Attributes Functional Dependencies

I Synthetic
Process I

EMP SAL EMP CHILD m
3NF Relation Schemas

Figure 2. Synthetic Process

Unfortunately, to prevent serious problems it is
necessary to make an assumption (the "uniqueness" of
functional dependencies) that is nonintuitive and that
seems very hard to verify in a large database.
elaborate on this point later. The situation is
simpler in the decomposition approach, because in this.
case, the uniqueness of functional dependencies
automatically holds, as we will see.

In our approach, the design process has as input
a set of attributes along with a set of functional
dependencies and a set of the more general "multivalued
dependen~ies".~
schemas in fourth normal form7.

We

The final result is a set of relation
See Figure 3.

441

Functional Multivalued
Dependencies Dependencies Attributes

D o - Q
Approach

EMPLOYEE

EMP SAL EMP CHILD w
SALARY CHILD

4NF Relation Schernas

Figure 3. 4NF Approach

Our approach has several advantages over third
normal form decomposition and over the synthetic
approach. First, our approach is in the spirit of
the synthetic approach, since the input consists only
of attributes and of dependency information. This is
especially helpful in the case of a very large database
with many attributes that interrelate in complex ways.
For, then an automatic procedure can be invoked that
takes this dependency information as input and
mechaiically generates a design (cf. Bernstein's
efficient third normal form algorithm' and our fourth
normal form algorithm).
desirable to have a human in the loop (we discuss this
point later); thus, the procedure is really
semi-automatic rather than automatic. Second, although
our approach is in the spirit of the synthetic
approach, it '"works" mathematically in a similar manner
to third normal form decomposition. In particular,
the uniqueness problem does not cause us grave
difficulties. Third, our approach accepts as input
not only functional dependencies, but also multivalued
dependencies, which are useful since functional
dependencies are inade uate in general (for example,
as Schmid. and Swenson18 observed, the information that
an employee has a salary is given by a functional
dependency, while the information that he has children
is not.) Fourth, the output is a set of relation
schemas that are not just in third normal form but in
the more desirable fourth normal form.

decomposition and give Codd's definition of a
functional dependency.

In the third section, we sketch the synthetic
approach and give Bernstein's quite different
definition of functional dependency. .Bernstein's
definition is the source of the difficulties associated
with the synthetic approach.

In practice, it is probably

In the second section, we sketch third normal form

In the next two sections, we introduce multivalued

dependencies and demonstrate fourth normal form
decomposition.

example.
in this paper are in Fagin7.

THIRD NORMAL FORM DECOMPOSITION

This paper is informal in nature and proceeds by
Precise definitions of concepts that appear

The basic semantic object associated with third
normal form decomposition is the functional dependeccy.
As an example, let S(EMPLOYEE,SAWIY,CHILD) be a
relation with column names EMF'LOYEE, SALARY, and CBILD.
Thus, the relation S could be as in Table 1.

Gwendolyn Gauss $50K
Gauss 1 $50K 1 Greta
Pythagoras $2OK Peter

Table 1

Following Codd', we say that this relation S obeys
the functional dependency EMPLOYEE-tSALARY.
Intuitively, this means that each employee has exactly
one salary. The precise meaning is that if two tuples
(that is. rows) of S agree in the EMPLOYEE column,
then they agree in the SALARY column. That is, the
functional dependency "EMPLOYEE+SALARY" is simply
shorthand for the statement "Whenever two tuples of
the relation agree in the EMPLOYEE column, they also

4 agree in the SALARY column."
functional dependency holds for a relation schema,
we mean that each relation that is an instance of the
schema (that is, each "snapshot") is constrained to
obey the dependency. S o , a functional dependency is
then an "integrity constraint," which constrains the
"shape" of the relation.

For the sake of informality, we will be somewhat
careless about distinguishing relations from relation
schemas. A more careful treatment appears in Fagin?.

We briefly sketch the basic ideas behind Codd's
definition of third normal form (3NF). For a relation
schema to be in 3NF it must satisfy three rules.
rules are roughly, but inexactly, as follows (for an
exact definition, see Codd'):
be atomic; that is, the entries may not be sets or
relations. We assume throughout this paper that rule
(1) is never violated in any relation discussed. (2)
There must be no "partial dependence" on a key.
example, if AB is a key of R(A,B,C,D), then the
functional dependency A+€ must not hold (of course,
the functional dependency AB+C does hold for R since
AB is a key). (3) There must be no "transitive
dependence."
A+B and B+C should not both hold for R(A,B,C,D).

Codd suggests a number of reasons why relation
sch-zmas in 3NF are more desirable than those that are
not.
is to convert a set of relation schemas that are not
in 3NF into a set of relation schemas that carry the
same information but that are in 3NF.
is a set of relation schemas and a set of functional
dependencies. Let, say. R(A,B,C,D) be a relation
schema in the set that is not in 3NF. Since we are
assuming that rule (1) for 3NF is not violated, we
know that either rule (2) or rule (3) is violated.
Case 1:
key and A X holding.
A X holds for R(A,B,C,D), it turns out to be possible
to replace R(A,B,C,D) by its projections Rl(A,C) and
R2(A,B,D), without loss of information. At this step
of the 3NF decomposition process, we indeed do replace
R(A,B,C,D) by R1(A,C) and RZ(A.B,D).

When we say that a

The

(1) the entries must

For

For example, the functional dependencies

Hence, the goal of the 3°F decomposition process

3NF decomposition proceeds as follows. The input

Rule (2) is violated, via, say, AB being a
Because the functional dependency

i
4

. . I
t

442

Case 2: Rule (31 , and not rule (2) is violated, and
rule (3) is violated via, say, the functional
dependencies A+B and B-+C holding.
functioiial dependency B X holds for R(A,B,C,D), we
can (and do) replace R(A,B,C,D) in this step by R1(B,C)
and Rz(A,B,D), without loss of information.

Case 3: Both rules (2) and (3) are violated. Then
by Bone mechanism, a choice is made as to which
decomposition of R(A,B,C,D) should take place.

Because the

The decomposition process continues, step by step,
until all remaining relation schemas are in 3NF.

There are various objections to 3NF decomposition
as a technique for database design. A first objection
is that the designer must first find an initial design
which is then improved by 3NF decomposition. It would
be nice if instead, the designer could begin with just
dependency information, rather than with an initial
design.

goes "down", not "up" or "sideways". That is, 3NT
decomposition can break an existing relation schema
into two relation schemas, but it cannot, for example,
combine two relation schemas into a single larger
schema. So, the output of 3NF decomposition is
severely restricted by the input.

THE SYNTHETIC APPROACH

A second objection is that 3NF decomposition only

A goal of the synthetic approach is to begin at
an earlier stage of the design process than does the
3NF decomposition approach.
set of attributes, along with a set of functional
dependencies; no initial design is necessary.
output is a set of 3NF relation schemas that in some
sense "embody" the functional dependencies.

different from the definition in the previous section
is called for, since the previous definition required
a functional dependency to be true in the context of - a given relation. However, in the synthetic approach,
functional dependencies are supposed to exist
independently of relations that embody them.
I s , functional dependencies and not relation schemas
are the primitive objects.

Bernstein2 defines a functional dependency to be
a "time-varying function."
Bernstein) of the problems associated with this
approach, there could be a functional dependency
EMPt-tMGRI (which maps the number of an employee into
the number of his manager) and a functional dependency
MGR#+W# (which maps a manager's MGR# into his
corresponding EMPI).
mappings are inverses would be what Bernstein calls
an "invalid syntactic inference" that might require
a "semantic analyzer" to reject.

dependency EMPI-rEIGRU (that maps the number of an
employee into the number of his manager) and a
functional dependency MGRIbSTATUS (where the status
is a number between 1 and 10).
these functional dependencies is a functional
dependency W#-tSTATUS (which gives the status of the
manager of an employee). This could be confused with
another functional dependency that gives the status
of an employee himself.

To prevent such problems, Bernstein suggests the
strong assumption that there is at most one functional
dependency from a given set of attributes to a given
attribute. In the first example we gave, we could
change the functional dependency MGR#+EMP# into a
functional dependency MGR#+EMP# OF-MGR. Otherwise
there are two functional dependyncies EMP#+EXP/I:
the identity (which maps an employee number into
itself), and the other the composition of the

The input is simply a

The

A definition of functional dependency that is

That

As an example (due to

The assumption that the two

As a second example, there could be a functional

The composition of

one

functicrd dependencies EMPffrMGR# and MGR#+EHPI! (this
second functional dependency EMPhEMPf maps the
employee number of an employee into the employee number
of his manager). In the second example of a problem
that we gave, we can obtain uniqueness by having the
functional dependencies EMP#+STATUS-OF_EMP and
EMP#+STATiiS-OF-MGR. A s Bernstein notes, "Specifying
a set of functional dependencies that lead to no
Invalid syntactic inferences is clearly a difficult
problem."
Eernstein's uniqueness assumption in practice.

A further problem with the synthetic approach is
that the synthesis algorithm handles only functional
dependencies, and hence does not directly handle what
Bernstein calls "nonfunctional relationships." For
example, an EMPLOYEE may not only have a SALARY (where
the relationship is described by a functional
dependency mPLOYEE+SALARY), but the EHPLOYEE may also
have a set of CHILDren (where the relationship is not
given by a functional dependency, since an EMPLOYEE
may have more than one CHILD).
relationship between SUPPLIERS and PARTS where each
SUPPLIER supplies several PARTS, and each PART is
supplied by several SUPPLIERS. Bernstein deals with
these problems by creating dumy attributes Bi and
creating new functional dependencies
{EKPLOYEE,CHILDbe1 and (PART,SUPPLIER)+i32. This is
a trick that "fools" the synthesis algorithm into
creating essentially one relation schema per
nonfunctional relationship.

MULTIVALUED DEPENDENCIES

It is very unclear as to how to verify

Or, there may be a

The new semantic object that we consider is the
multivalued dependency, which is a generalization of
(Codd's definition of) the functional dependency. We
present a few examples, then give the definition. As
a first example, the relation S(EMPLOYEE,SALARY,CHILD)
of Table 1 obeys the multivalued dependency
EMPLOYEE-SALARY (which can be read "EMPLOYEE
multidetemines SALARY"), since functional dependencies
turn out to be special cases of multivalued
dependencies. Furthermore, the multivalued dependency
EXPLOYEE-HCHILD holds for S(EMPLOYEE,SALARY,CHILD),
because intuitively, an employee's set of children is
completely determined by the employee, and is
"orthogonal" to the salary. In this case, multivalued
dependencies remedy the objection noted earlier to
functional dependencies by Schmid and Swenson, that
an employee "has" a set of children just as he "has"
a salary, and that there should be ro arbitrary
distinction. Thus, both of the multivalued
dependencies EMPLOYEE-SALARY and EMPLOYEEWHILD hold
for this schema.

T(EMPLOYEE,CHILD,SALARY,YEAR) be a relation that
specifies the children and salary history of each
employee. See Table 2. A tuple, such as
(Pythagoras,Peter,$2OK,l976), appears in T iff (1)
Pythagoras is an employee, (2) one of his children is
named Peter, and (3) during at least part of 1976,
his salary was $20K. Although T has no functional
dependencies, it does have the multivalued dependencies
EEIPLOYEE-HCRILD (as in the previous example), and also
ENPLOYEE*~SALARY,YEAR~, because intuitively, an
employee's set of children is completely determined
by the employee, and is orthogonal to the salary
history. Caution: It does not follow from
EMPLOYEE++-, YEAR] t ha t x t her EMPLOYEE-SALARY
or EMPLOYEE-YEAR (See Faginif).
is in some sense a "cluster".

As andther example, let

The pair (SALARY,yEAR)

443

PPLOYEE

Hilbert
Gauss
Gauss
Gauss
Gauss
Pythagoras
Pythagoras

S40K
$5OX
$40K
$50K
$15K
$20K

CHILD
Hubert
Hubert
Gwendolyn
Gwendolyn
Greta
Greta
Peter
Peter

1975
1975
1975
1976
1975
1976

1 SALARY I YEAR
$3SK 1976
$40); I 1976

Table 2

We now present the formal definition of multivalued
(We give the definition in Beeri, Fagin, dependencies.

and Howard1, which is slightly more general than the
definition in Fagin7, in that the left- and right-hand
sides of the multivalued dependency need not be
disjoint.) Let R be a relation.
the column names of R, and u is a tuple of R, then by
u[X] we mean the projection of u onto X. When we say
that x is an X-value of the relation R, we mean that
x=u[X] for some tuple u of R. Let X and Y be subsets
of the column names of R. Define
YR(x)={y:For some tuple u in R, both u[X]=x and u[Y]=y).

That is, YR i s the set of Y-values that appear in R
with the X-value x. Let 2 be the set of column names
of R that are not in either X or Y (thus, 2 is the
complement of the union of X and Y). The relation R
obeys the multivalued dependency X-Y if for each XZ
value xz that appears in R, we have YR(xz)=YR(x).
That is, the multivalued dependency X-Y holds for R
if the set of Y values that appear with a given x also
appear with each combination of x and z in R.
this set is a function of x alone and does not depend
on the z-values that appear with x.

T(EMPLOYEE,CHILD,SALARY,YEAR) in Table 2 . The
multivalued dependency EMPLOYEE%HILD holds for T,
since, for example, CHILDT(Gauss) equals both
CHILDT(Gauss, $4OK, 1975) and CHILDT(Gauss, $5OK,1976),
which all equal {Gwendolyn,Greta).

Many properties of multivalued dependencies are
explored in Fagin7 and in Beeri, Fagin, and Howardl.
For example, as we already noted, functional
dependencies are special cases of multivalued
dependencies.
multivalued dependencies provide a necessary and
sufficient condition for a relation to be decomposable
into two of its projections without loss of information
(in the usual sense that the original relation is
guaranteed to be in the natural join of the two
projections).
EMPLOYEEWHILD holds for the relation
T(EMPLOYEE,CHILD,SALARY,YEAR) in Table 2, it follows
that this relation can be decomposed into the two
relations T1(EMPLOYEE,CHILD) and
Tq(EMPLOYEE,SALARY,YEAR) without loss of information
(see Table 3). We note that
T(EMPLOYEE,CHILD,SALARY,YEAR) cannot be decomposed on
the basis of any functional dependencies, because
there are none (except trivial functional dependencies,
such as A+A). In fact, T is in third normal form,
and even in the stronger "improved third normal form,"
or as it has come to be known, "Boyce-Codd normal
form"6, since it is "all key" (that is, no proper
subset of the four column names form a key for T).
However, as we will see, it is not in fourth normal
form. To obtain fourth normal form, it is necessary
to decompose T as above into T The example
is due to Schmid and Swenson,lb who recommend
decomposition on semantic grounds.

If X is a subset of

So,

As an example, consider the relation

Another important property is that

Thus, since the multivalued dependency

and Tp.

I

EMPLOYEE I CHILD
Hilbert } Hubert

Gwendolyn
Greta

Hi lb er t
Gauss

Table 3

FOURTH NORMAL FORM DECOMPOSITION

Fourth normal form decomposition is a
generalization of third normal form decomposition.
However, in some ways fourth normal form decomposition
"looks like" a sound, powerful version of the synthetic
approach. The input is a set of attributes, along
with semantic information in the form of functional
dependencies and multivalued dependencies.
is a set of relation schemas in fourth normal form.

Before we can define fourth normal form, we need
the simple concept of a "trivial multivalued
dependency." Assume that the sets X,Z partition the
set of column names of R(X.2). It is easy to verify
that the multivalued dependency X-HY always holds for
R when Y is either a subset of X or a superset of 2.
For example, the multivalued dependency CA,B)++C holds
for every relation S(A,B,C) with exactly three column
names, A,B,C. We call these "trivial multivalued
dependencies."
form (4NF) if whenever a nontrivial multivalued
dependency X-Y holds for R, where X and Y are subsets
of the column names of R, then the functional
dependency X+A holds for every column name A of R.
That is, a relation schema is in 4NF if all
dependencies are the result of keys.
a 4NF relation schema can have no nontrivial
multivalued dependencies that are not functional
dependencies.

process. The attributes are PROJECT, PART, SUPPLIER,
LOCATION, COST, EMPLOYEE, SALARY, and HIREDATE.
Intuitively, a PROJECT (such as Project 17) uses PARTS
(such as nails), which are supplied by SUPPLIERS (such
as Acme), each of which can have a number of locations
(such as Oklahoma City).
that if a SUPPLIER supplies a PART to a PROJECT, then
all LOCATIONS of the SUPPLIER supply that PART to the
PROJECT and all at the same COST. The COST depends
on SUPPLIER and the PART. Finally, each PROJECT has
one MANAGER (such as Jones), and a set of EMPLOYEES
(such as Smith), each of whom have a SALARY (such as
$30K) and a HIREDATE (such as 1973).

single relation schema

The output

A relation schema R is in fourth normal
-

In particular,

We now present an example of the 4NF normalization

In this example, we assume

We begin the normalization process by forming a

W(PROJECT,PART,SUPPLIER,LOCATION,COST,
PiPLOYEE,MANAGER,SALARY,HIREDATE) . (1)

What are the dependencies?

(note that for simplicity, we do not distinguish
between a singleton set {A) and its only member A;
e.g., we write COST for {COST)):

We have the following functional dependencies

CWPPLIER,PART~+COST (2)
(3)

EMPLOYEE~SALARY ,HIREDATE) . (4)

(5 1 SUPPLIER-HLOCATIQN
PROJECT*{EMPLOYEE, SALARY, HIREDATE) . (6)

PRO JECT-rMANAGER

Based on our assumptions, the following multfvalued
dependencies hold:

As for (6), the multivalued dependency
PROJECT*EMPLOYEE does =hold.
and HIREDATE (properties of the EMPLOYEE) must be
"clustered" together with EMPLOYEE on the right-hand
side for the multivalued dependency to hold (as the
reader can verify).

Instead, the SALARY

44 4

We nova begh 4NF normalization process. The basic
rule is that if a functional dependency X+Y or a
multivaiued dependency X-Y holds for a relation
K(X,Y,Z!, whrro 2 is the set of column names not in
X o c Y , thcn E CZII be decomposed into R1(X,Y) and
Z2 (;c,O,) wi:hoct loss of information (the original
relation R(X,Y,Z) is then the natural join of R1(X,Y)
and R (X , Z) > . On the basis of the functional
depenzency (Z), we decompose W (as given by (1)) into

and
W~(SUPPLIER,PART,COST)

W2(SUPPLIBR,PART.PROJECT,LOCATION,E"LOYEE,
MANAGER,SALARY,HIREDATE) .

Although W1 is now in 4NF, W2 is not, since, for
example, the functional dependency EMPLOYEEWAGER
holds for W2, whereas PIPLOYEE is not a key.
decoxpose W2 further. It can be shown7 that if a
multivalued dependency X*Y holds for a relation, then
it holds for every projection that contains at least
all of the column names in X and Y. Hence, since
multivalued dependency (6) holds for W, it also holds
for its projection W2. On the basis of (6) , we
decompose W2 into its projections

and

We now

W21(PROJECT,EKPLOYEE,SALARY,HIREDATE)

W~~(PROJECT,SUPPLIER,PART,LOC~TION~MANAGER) .
Using functional dependency (4), we decompose W21 into

and
W211(EMPLOYEE,SALARY,HIREDATE)

WZl2 (EEPLOYEE,PROJECT) ,

Using functional dependency (3) , we decompose W

WZz1 (PROJECT,MANAGER)

W222(PROJECT,SUPPLIER,PART,LOCATION) .
Finally, using multivalued dependency (S), we

W2221 (SUPPLIER,LOCATION)

W2222(SUPPLIER,PROJECT,PART) .
We are left with the 4NF family

W1(SUPPLIER,PART,COST)

WZl1(EMPLOYEE,SALARY,HIREDATE)
WZl2 (EMPLOYEE ,PROJECT)

W2221(SUPPLIER,LOCATION)

each of which are in 4NF.

into

and

22

decompose W222 into

and

wZz1 (PROJECT,MANAGER)

w2222 (SUPPLIER, PROJECT, PART) .
The final result could have been different if we

had decomposed differently.
mentioned several heuristics (suggested by Zaniololl
and Rissanen9) as to the order in which to use the
dependencies f o r decomposition.

(that can then be exploited).
inputs a set of functional and multivalued
dependencies, then it is possible to obtain new
dependencies, that are consequences of the input
dependencies, but that were not inputs themselves.
As a simple example, the functional dependency A N
is a consequence of the functional dependencies A-tB
and Be. AS a slightly more complicated example, if
the multivalued dependency X*Y holds in R(X,Y,Z),
where the set Z contains all column names of R not in
X or Y, then7 the multivalued dependency X-2 also
holds for R.
axiomatization for dependencies is exhibited, from
which all dependencies that are consequences of an
input set of dependencies can be derived. Using these

In Fagin,7 there are

In fact, a 4NF
- normalization "box" can generate new dependencies

That i s , if the user

In Beeri, Fagin, and Howardl, a complete

zxioxs, one can in principle obtsir; all p s s s i b l e 4F!F
designs.

(as in (l)), a 4NF normalization algorithm has a:
least as many opttons as if it begins vith many small
relation schemas that are then deconposed further.
That is, there are at least as many possible final
results in the former case.
more of a chance to optimize.

If there is a human in the normalization loop,
then the problem of determining all functional an?
multivalued dependencies that hold in a given situation
seems less formidable. This is because the human can
"notice" a previously neglected dependency at a late
stage of the 4NF normalization process, and then either
apply it at that stage or incorporate it in the list
of "known" dependencies and start over. The human
can make a decision to modify the design (and perhaps
stop short of 4NF) for performance or even esthetic
reasons. Indeed, it has been conjectured8 that people
are just not going to accept a fully computer-generated
design in which a human was not actively involved!

FOURTH NORMAL FORM DECOMPOSITION AND BERNSTEIN'S
UNIQUENESS ASSUMPTION

By initially forming B single iarge relaticn ?chei.&

Hence, an algorithm has

The 4NF approach provides a discipline for handling
problems related to Bernstein's uniqueness assumption
for functional dependencies.
that the uniqueness always holds within a given
relation. For example, if A and B are column names
of a relation R, then the functional dependency (under
Codd's definition) A*B either holds for R or it does
not. There is no possibility (or meaning attached
to) two functional dependencies A+B (with the same
left- and right-hand sides) both holding for R.

(conceptually) a single large relation schema.
can then write (in a language like English) a
description of a typical tuple.
this at the beginning of our earlier extended example
W(PROJECT,PART,SUPPLIER,LOCATION,COST,EMPLOYEE,
WAGER,SALARY,HIREDATE).
Thus, if (~,pa,su,lo,co,em,ma,sa,hi) is a typical
tuple of W, then lo is the location of the sumlier

A key observation is

The 4NF approach begins with the designer forming
He

We did essentially

..
E; part is suzlied by supplier to the project
pr; and so on. -

Let us now consider the examples given earlier
that violated Bernstein's uniqueness assumption.
Assume that the attributes include (among others)
EMF'#,MGR#. and STATUS. It should be clear from the
description of a typical tuple whether the status is
that of the employee or of the manager.
characteristic of the decomposition approach, it cannot
be both simultaneously (since we are working within'
a single relation).
are required, such as STATUS-OF-EMP and STATUS-OF-MGR,
it will be clear that new attributes should be
introduced. Incidentally, at the conclusion of the
4NF decomposition, it is possible to rename the
attributes. For example, if we ended with (among
others) the relation schemas R1(EMP#,STATUS_OF_EMP)
and Rp(MGR#,STATUS-OF MCR), we could then rename to
obtain R1(EMP#,STATUST and Rg(MGR#,STATUS), if we felt
that this were more desirable.

In our other example that violated the uniqueness
assumption, there were functional dependencies (under
Bernstein's definition) EMP#+MGR# and MGR#+DP# that
were not inverses of each other. But if there arc
two functional dependencies (under Codd's definition)
A*B and B+A within a single relation, then they are
automatically inverses of each other. Once again, we
can tell what it means for an EMP# and a MGR#
to appear together in a single tuple by our description
of a representative tuple.
manager number ma i s the manager of employee number

As is

If two different types of status

Thus, we can see whether

445

5, 3r whether ~2 is the employee number of manager
ncmber ma.
cannot be true simultaneously.
introduce new attributes, so that both relationships
can Sc rqresented.

helpless position of needing an assumption of
uniquecess and having no way to verify the assumption.
Under the decomposition approach, uniqueness holds
automatically, and we have a mechanism for verifying
whether new attributes are needed (to encode more
infortration).

Note that because we have multivalued dependencies
to work with in the 4NF approach, we have the ability
to split our sirgle large relation. However, using
only Codd's functional dependencies, we cannot, for
exainple, split the relation
T(ENPLOYEE,CHILD,SALART,YEAR) of Table 2 .

S W Y

Sicce this is a single relation, both
If desired, we can

Ur,der the synthetic approach, we are in the

A major disadvantage of using Codd's 3NF
decomposition as a tool for the logical design of
relational databases is that the output is severely
limited by the input. In fact, the input must include
an initial design that is usually not very different
from th% final design (the output). This is because
3NF decomposition only goes "down", not "up" or
"sideways". However, under the 4NF approach, it is
possible to obtain all possible 4NF designs.
because, by starting with a single relation schema
with all the attributes, there is nowhere to go but
"down".

intended to remedy the deficiencies of 3NF
decomposition by supplying as input only semantic
information in the form of functional dependencies.
Unfortunately, in this approach, in which functional
dependencies, rather than relations, are the primitive
cbjects, one is required to make the nonintuitive,
hard-to-verify assumption of uniqueness of functional
dependencies in order to avoid serious difficulties.
A further problem with the synthetic approach is that
functional dependencies are inadequate by themselves.

Our 4NF approach is in the synthetic "spirit" i n
that the input consists of semantic information in
tte form of dependencies. However, since we work in
the context of a single relation, the uniqueness
assumption holds automatically. And, there is a
mechanism for determining if new attributes are called
for. Furthemore, our approach is more powerful than
either of the other approaches in that we allow as
input not only functional dependencies but also the
m m e general nultivalued dependencies.

among the whole spectrum of all "good" (4NF) designs.
It can generate new dependencies that are consequences
of the Input dependencies. It is possible to have a
human in the loop who can add in dependencies that
.were accidentally omitted (the human can also decide

This is

The synthetic approach of Bernstein and others is

-

The 4hT "box" can employ heuristics to decide

ACKNObZEDGE?ENTS

The author is grateful to David Hsiao and Ted Codd
for encouraging him to put to paper the ideas expressed
in this report.
and Arne Solvberg for reading an early draft and making
helpful suggestions.

REFERENCES

He is also grateful to Chris Date

Beeri, C . , Fagin, R., and Howard, J. H. "A
complete axiomatization for functional and
multivalued dependencies in database
relations." ProcS 1977 A M SIGMOD.
Bernstein, P. A . "Synthesizing third norna l
form relations from functional dependencies."
Trans. on Database Systems 1, 4 (Dec. 19761,
277-293.
Bernstein, P. A,, Swenson, J. R., and
Tsichritzis, D. C. "A unified approach to
functional dependencies and relations." Proc.
ACN SIGNOD, W. F. King (ed.), San Jose,
California (May 1975), 237-245.
Cadiou, J-M. "On semantic issues in the
relational model of data." Proc.
International Synposium on Math. Foundations
of Computer Science, Gdagsk, Poland (Septenber
1975). Springer-Verlag Lecture Notes in
Computer Science,
Codd, E. F. "Further normalization of the
data base relational model." Courant Conputer
Science Symposium 6, Data Base Systems,
Frentice-Hall, N.Y. (May 1971), 65-98.
Codd, E. F. "Recent investigations in
relational data base systems." IFIP Conf.
Proc., North-Holland Publishing Company

Fagin, R. "Multivalued dependencies and a
new normal form for relational databases,"
Trans. on Database Systems (Sept. 1977).
Merten, A. and Taylor, R. W. Personal
communication.
Rissanen, J. J. "Independent components of
relations." Trans. on Database Systems, to
appear.

semantics of the relational data model."
Proc. A M SIGMOD, W. F. King (ed.), San Jose,
California (May 1975), 211-223.
Zaniolo, C. "Analysis and design of relational
schemata for database systems." Ph.D.
Dissertation, UCLA, 1976 (UCLA technical
report UCLA-ENG-7669, July 1976).

(1974), 1017-1021.

Schmid, H. A. and Swenson, J. R. "On the . -?

to stop short of-4NF for performance or other reasons).

44 6

