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Abstract: We define a new notion of conditional belief, which plays the same role for 
Dempster-Shafer belief functions as conditional probability does for probability functions. 
Our definition is different from the standard definition given by Dempster, and avoids 
many of the well-known problems of that definition. Just as the conditional probability 
Pr(.IB) is a probability function which is the result of conditioning on B being true, 
so too our conditional belief function BeZ(-IB) is a belief function which is the result 
of conditioning on B being true. We define the conditional belief as the lower envelope 
(that is, the inf) of a family of conditional probability functions, and provide a closed- 
form expression for it. An alternate way of understanding our definition of conditional 
belief is provided by considering ideas from an earlier paper [Fagin and Halpern, 19891, 
where we connect belief functions with inner measures. In particular, we show here how 
to extend the definition of conditional probability to nonmeasurable sets, in order to 
get notions of inner and outer conditional probabilities, which can be viewed as best 
approximations to the true conditional probability, given our lack of information. Our 
definition of conditional belief turns out to be an exact analogue of our definition of inner 
conditional probability. 
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1 Introduction 

How should one update one’s belief given new evidence? If beliefs are expressed in terms 
of probability, then the standard approach is to use conditioning. If an agent’s original 
estimate of the probability of A is given by Pr(A),  and then some new evidence, say 
B,  is acquired, then the new estimate is given by PT(AIB). By definition, Pr(AJB)  is 

The Dempster-Shafer approach to reasoning about uncertainty [Shafer, 19761 has 
recently become quite popular in expert systems applications (see, for example, [Abel, 
1988; Falkenhainer, 1988; Li and Uhr, 1988; Lowrance and Garvey, 19831). This approach 
uses belieffunctions, a class of functions that satisfy three axioms, somewhat related to  
the axioms of probability. In this paper, we consider how to define a notion of conditional 
6eliej which generalizes conditional probability. 

One definition for conditional belief was already suggested by Dempster [Dempster, 
19673, and is derived using the rule of combination; hereafter we refer to Dempster’s 
definition as the DS definition of conditionuZ beliej Although the DS definition also 
generalizes conditional probability, it is well known to give counterintuitive results in a 
number of situations (see, e.g., [Aitchison, 1968; Black, 1987; Diaconis, 1978; Diaconis 
and Zabell, 1986; Hunter, 1987; Lemmer, 1986; Pearl, 1988; Pearl, 1989; Zadeh, 19841). 
We provide here a new definition of conditional belief, which also generalizes conditional 
probability, but is different from the DS definition in general. We can show that our 
definition avoids many of the problems associated with the DS definition. 

The motivation for our definition of conditional belief comes from probability theory. 
It is well known that a belief function BeZ is the lower envelope of the family of all 
probability functions Pr consistent with BeL2 That is, BeZ(A) is the inf of Pr(A),  where 
the inf is taken over all probability functions Pr such that BeZ(A’) <_ Pr(A‘) for all A’. 
We therefore define the conditional belief function BeZ(A1B) to  be the lower envelope 
of the family of all functions Pr(.(B) where Pr is consistent with Bel (similarly to the 
situation with conditional probability, we assume that BeZ(B) > 0, so that everything is 
well defined). Although we define Bel(.IB) in terms of a lower envelope, we show that 
there is an elegant closed form expression for it. Moreover, we can show that just as the 
conditional probability function is in fact a probability function, our Conditional belief 
function is a belief function. 

An alternate way of understanding our definition of conditional belief is provided by 
considering the approach to reasoning about uncertainty we advocated in an earlier paper 
[Fagin and Halpern, 19891. There we observed that, although in the Bayesian approach 
to probability, it is assumed that all relevant events can be assigned a probability, this 
is an assumption that is not made in standard probability theory. Not every subset of a 
sample space S need be assigned a probability; some sets can be nonmeasurable, i.e., not 

‘This definition is not completely uncontroversial (see, e.g., [Diaconis and Zabell, 19861 for 
a discussion and further references). 

’We remark that some authors (e.g., [Dubois and Prade, 19881) have used the term lower 
probability to denote what we are calling lower envelopes. We have used the term lower envelope 
here to avoid confusion with Dempster’s technical usage of the phrase lower probability in 
[Dempster, 1967; Dempster, 19681, which, although related, is not equivalent to what we are 
calling a lower envelope. 

PT(A n B)/Pr(B).* . 

z 

. 
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in the domain of the probability function. We can view the measurable sets as those 
sets for which the agent has sufficient information to assign a probability. Although 
we cannot talk about the probability of a nonmeasurable event E ,  we can talk about 
Pr,(E) and Pr’(E)-the inner  measure and outer  measure of E ,  respectively. If E is 
measurable, then Pr,(E) = P r ( E )  = Pr’(E); in general, we have Pr,(E) 5 Pr*(E). 
Intuitively, Pr.(E) and Pr’(E) can be viewed as the best approximations from below 
and above to the “true probability” of E. This intuition is made precise by a well- 
known result, which says that if we start with an arbitrary probability function Pr and 
extend it to a probability function Pr’ such that E is measurable with respect to Pr’, then 
Pr,(E) 5 Pr‘(E) 5 Pr*(E). Moreover, there are extensions of Pr that achieve the inner 
and outer measure; i.e., there are extensions Prl and P T ~  of Pr such that E is measurable 
with respect to both Prl and Prz, and Pr,(E) = Pr,(E) and Pr2(E) = Pr*(E). 

Notice that implicit in the definition of the conditional probability Pr(A1B) as Pr(An 
B ) / P r ( B )  is the assumption that both A n B and B are measurable sets. If A and B 
are not measurable, then the conditional probability of A given B is not well defined. 
What we can consider instead are the inner  and outer  conditional probability of A given 
B ;  these are the best lower and upper bounds on the true conditional probability in the 
sense outlined above. We provide formal definitions and closed form expressions for these 
notions. 

In [Fagin and Halpern, 19891 it is shown that every inner measure is a belief function, 
and that every belief function can be viewed as an inner measure. In view of this, it is 
perhaps not surprising that our definition of conditional belief is completely analogous to  
our definition of inner conditional probability. In fact, the definition of inner conditional 
probability was the inspiration for our definition of conditional belief. 

The rest of this paper is organized as follows. In the next section, we define the 
notions of inner and outer conditional probability, and apply them to analyzing the well- 
known three prisoners  problem [Gardner, 1961; Diaconis, 19781. In Section 3 we apply 
these ideas to  belief functions, define our notion of conditional belief and compare it to 
the DS notion. Our comparison helps to explain the cause of the counterintuitive answers 
provided by the DS notion. In Section 4 we briefly consider other updating rules, such 
as Jefrey’s rule [Jeffrey, 19831. In Section 5 we discuss the relationship between belief 
functions and sets of probability functions. We conclude in Section 6 with some discussion 
on the implications of our results to the use of belief functions. 

2 Inner and outer conditional probability 

We begin by reviewing basic definitions from probability theory. Our presentation follows 
that of [Fagin and Halpern, 19891; the reader should consult a basic probability text such 
as [Feller, 1957; Halmos, 19501 for more details. 

A probabzlzty space ( S , X ,  Pr )  consists of a set S (called the sample space), a 0- 

algebra X of subsets of S (i.e., a set of subsets of S containing S and closed under 
complementation and countable union, but not necessarily consisting of all subsets of 
S) whose elements are called measurable sets, and a probabzlzty measure Pr: X --f [0, I] 
satisfying the following properties: 

PI. P r ( X )  2 0 for all X E X 
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P2. P r ( S )  = 1 

P3. Pr(U,"_,Xi) = 

Property P3 is called countable additivity. Of course, the fact that X is closed under 
countable union guarantees that if each Xi E X ,  then so is UzlXi. If we restrict to finite 
spaces, it suffices to require finite additivity; i.e., we can restrict attention to finite rather 
than infinite unions. 

In a probability space (S, X ,  P r ) ,  the probability measure Pr is not necessarily defined 
on 2s (the .set of all subset of S ) ,  but only on X .  If A E X ,  then we say that A is 
measurable with respect to P r .  We can extend P r  to 2s in two standard ways, by defining 
functions Pr.  and PI-*, traditionally called the inner measure and outer measure induced 
by PT [Halmos, 19501. For an arbitrary subset A C S ,  we define 

Pr(X, ) ,  if the Xi's are pairwise disjoint members of X .  

. 

Pr, (A)  = sup{Pr(X)  I X C A and X E X }  
Pr'(A) = inf{Pr(X) I X 2 A and X E X } .  

If there are only finitely many measurable sets (in particular, if S is finite), then it is 
easy to see that the inner measure of A is the measure of the largest measurable set 
contained in A ,  while the outer measure of A is the measure of the smallest measurable 
set containing A.  

A subset y of X is said to be a busis (of X )  if the members of y are nonempty and 
disjoint, and if X consists precisely of countable unions of members of y. It is easy to 
see that if X is finite then it has a basis. Moreover, whenever X has a basis, it is unique: 
it consists precisely of the minimal elements of X (the nonempty sets none of whose 
nonempty subsets are in X ) .  Note that if X has a basis y ,  once we know the probability 
of every set in the basis, we can compute the probability of every measurable set by using 
countable additivity; i.e., for a measurable set A ,  we have 

P r ( A )  = C X C A . X E Y  W X ) .  

We can also easily compute the inner and outer measure of an arbitrary set A.  It is easy 
to check that 

PT*(A) = C X C A , X E Y  p r ( x )  
PT'(A) = C X n A # 0 , X C Y  pT(x) .  

Since, for a measurable set A ,  every basis set is either a subset of A or disjoint from A ,  
these definitions again show that Pr, (A)  = Pr'(A) for a measurable set A.  

It is easy to check that for any set A we have PT,(A)  5 Pr*(A);  if A is measurable, 
then Pr.(A) = Pr*(A)  = P r ( A ) .  The inner and outer measures of a set A can be viewed 
as our best estimate of the "true" measure of A ,  given our lack of knowledge. To make 
this precise, we say that a probability space (S, X' ,  Pr') is an eztension of the probability 
space ( S , X , P r )  if X' 2 X ,  and Pr'(A) = P r ( A )  for all A E X (so that PT and Pr' 
agree on X ,  their common domain). If (S,X' ,Pr')  is an extension of ( S , X , P r ) ,  then 
we say that Pr' extends P r .  The following result is well known (a proof can be found in 
[Ruspini, 19871). 

Theorem 2.1: I f (S ,X ' ,Pr ' )  i s  an estension o f ( S , X , P r )  and A E X',  then P r , ( A )  I 
Pr'(A) 5 Pr*(A) .  Moreover, there ezist eztensions ( S , X l ,  P r l ) ,  ( S ,  X Z ,  Pr2) o f ( S ,  X ,  P T )  
such that A E XI ,  A E X2, Pr1(A) = P r l ( A ) ,  and P Q ( A )  = Pr'(A).  
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Proofi Suppose ( S ,  X’, Pr’) is an extension of (S ,  X, Pr),  and assume A E X’. Since 
X C X‘, it  is clear that Pr,(A) 5 Pr:(A).  Since A E X’, we have PrL(A) = Pr’(A). So 
Pr,(A) 5 Pr’(A). Similarly, Pr’(A) 5 Pr’(A). 

We omit the proof of the second half of the theorem here. However, it is similar t o  
(and simpler than) the proof of Theorem 2.3, which is sketched below. 8 

Intuitively, the first part of Theorem 2.1 tells us that if we acquire extra information 
enabling us to  compute the probability of A, then it is bound to  lie somewhere between 
the inner measure and outer measure of A.  The second part of the theorem tells us that  
the inner measure and outer measure are the best estimates we can get. 

We would like an analogue of inner and outer measure for conditional probability. The 
inspiration for our definition is Theorem 2.1. Let ( S ,  X, Pr)  be a probability space. We 
define the inner conditional probability PT.(A(B) and the outer conditional probability 
Pr*(A(B) of A given B as follows: 

Pr.(AIB) = inf(Pr’(A1B) I (S, X’, Pr’) extends (S, X, Pr)  and A, B E X’} 
Pr*(AIB) = sup(Pr’(A1B) I (S ,X’ ,Pr’ )  extends ( S , X , P r )  and A, B E 2’). 

Since the inf and sup above are not well-defined unless Pr,(B) > 0, we define Pr , (AJB) 
and Pr*(AIB) only if PT,(B) > 0.3 We then have the following analogue to Theorem 2.1. 

Theorem 2.2: If ( S ,  X’, Pr’) is an eztension of ( S ,  X, Pr)  and A, B E X‘, then 

Pr.(AJB) 5 Pr’(A1B) _< Pr*(A(B).  

Moreover, there ezist eztensions ( S ,  XI, Prl ) ,  ( S ,  X2, P Q )  of (S, X, Pr)  such that A, B E 
XI, A , B  E X,, Pq(A1B) = PT.(AJB), and P T ~ ( A I B )  = Pr’(A1B). 

Proof: The first part follows immediately from the definitions of Pr.(A(B) as an inf and 
of Pr*(AIB) as a sup. The second part requires showing that the inf is actually attained 
(and similarly for the sup); this follows from the proof of Theorem 2.3 below. I 

Our definition of inner and outer conditional probabilities as lower and upper en- 
velopes does not give us much help in computing these expressions. We would like to 
have closed-form expressions for them. Since the (usual) conditional probability Pr(A(B)  
of A given B is defined as P r ( A n  B)/Pr(B)  (provided that A and B are measurable sets 
and Pr(B)  # 0), we might guess that Pr,(AIB) is Pr,(AnB)/PT*(B), which is obtained 
by taking the smallest possible numerator and the largest possible denominator. Note 
that this gives the right answer when A and B are measurable. Similarly, we might guess 
that Pr’(AIB) is Pr*(A n B)/Pr.(B), which is obtained by taking the largest possible 
numerator and the smallest possible denominator. However, we now show that these for- 
mulas are incorrect. For later reference, let us define Pr-(AIB) = Pr,(A n B)/Pr*(B),  
and Pr+(AIB) = Pr*(A n B)/Pr,(B).  Suppose that A is not a measurable set and 
Pr,(A) < Pr*(A). Then Pr- (A(A)  < 1. However, it is clear that Pr,(AIA) = 1, since 

If S is finite, then we could just as well take X’in the definitions of Pr,(AIB) and PT’(A(B) 
to be 2’, SO that not only are A and B measurable under PT’, but also every subset of 5’. It is 
straightforward to verify that this new definition is equivdent to the old definition. 
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Pr.(AIA) is defined to be an inf of terms Pr'(AIA), each of which equals 1. Similarly, 
under our assumptions Pr+(AIA) > 1, whereas Pr'(A1A) = 1. 

We can in fact give elegant closed-form expressions for the inner and outer conditional 
probabilities. Taking 2 to be the complement of A, we can show that 

Pr, ( A  n B )  Pr,(AIB) = 
PT,(A n B )  + ~ ~ ( 7 4  n B )  

Pr*(A n B )  
Pr'(A1B) = Pr*(A n B )  + Pr*@ n B )  

The intuition behind the formula for Pr.(AIB) is that rather than having Pr*(B) in the 
denominator, we divide B up into two parts: A n B and n B. On A n B we use the 
inner measure, since we have already used the inner measure in estimating the likelihood 
to assign to A n  B in the numerator. It is only on 2 n B that we use the outer measure. 
A similar intuition holds for Pr'(A]B).  Note that the formulas give us the correct value 
of 1 when A = B,  even if A is not measurable. 

Although we do not bother with the proof here, it is not hard to show that Pr,(A n 
B )  + Pr*(A n B )  5 Pr'(B). Thus we get that Pr-(AIB) 5 Pr,(AIB), and similarly 
Pr*(A(B)  5 Pr+(AIB). So the interval defined by [Pr.(AIB), Pr*(A(B)]  is nested within 
the interval defined by [Pr-(AIB), Pr+(AIB)]. As we saw, this nesting may be proper, 
even when A = B .  

The expressions given above for the inner and outer conditional probability are very 
natural and well motivated. Not surprisingly, it turns out that other authors have discov- 
ered them as well. In particular, essentially these expressions appear in [Walley, 19811, 
[Smets and Kennes, 19891, and [de Campos e t  al., 19901. Indeed, it even appears (lost in 
a welter of notation) as Equation 4.8 in [Dempster, 1967]! (Interestingly, none of these 
papers references any other work as the source of the formula.) 

For the sake of completeness, we now prove that the closed-form expressions do indeed 
work as claimed. 

Theorem 2.3: For any probability function Pr on S and subsets A, B S such that 
PT.(B) > 0, 

Pr,(A n B )  
P r J A  n B )  + Pr*(x  n B )  Pr.(AIB) = 

Pr*(A n B )  
Pr'(A n B )  + Pr.(x n B )  

Pr'(AJB) = 

Proof: Let us denote the right-hand side of the first equality in the statement of the 
theorem by P,(AIB), and the right-hand side of the second equality in the statement of 
the theorem by P*(AIB). Assume that Pr.(B) > 0 (so that Pr.(AIB) and Pr'(A1B) 
are defined). We need only show that Theorem 2.2 holds when we replace Pr,(AIB) by 
P,(AIB) and Pr'(AJB) by P*(AIB). Let Pr' be a probability function extending Pr 
such that A and B are measurable with respect to Pr'. We first show that P,(AIB) 5 
Pr'(A[B).  From Theorem 2.1, we have that (1) Pr,(A n B )  5 Pr'(A n B )  and (2) 
Pr*(a n B) 2 Pr'(2 n B). From (1), it follows that that 

- 
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Pr,(A n B )  
Pr,(A n B )  + Pr*(X n B )  P*(AIB) = 

P+A n B )  
W ( A  n B )  + P~*(z n B)’ 

(The inequality is just an application of the general fact that z/(z + y)  5 z ’ / (x‘  + y)  if 
z,y 2 0 and x 5 d.) From (2), it follows that 

- P r f ( A  n B )  
Pr’( B )  

= Pr’(A1B). 

- 

The proof that Pr’(A1B) 5 P * ( A J B )  is similar and left to the reader. 
We next show that there exists some extension (S, Xi, Prl)  of (S, X ,  Pr )  such that 

A,  B E XI and Prl(AIB) = P,(AIB). This is the probability function Prl required to 
complete the proof of Theorem 2.2 We just briefly sketch the ideas here, leaving the 
details (as well as the construction of the corresponding probability function Prz such 
that Pr,(AIB) = P*(A(B) )  to the reader. We take XI to consist of all sets of the form 
( A n  B n X i )  u (Xn B n X z )  u ( A n B n X 3 )  u ( X n B n X 4 ) ,  where X l ,  . . . ,X4  E X .  It is 
straightforward to show that XI is closed under complementation and countable union. 
Further, X I  2 X, since if X € X ,  then X = ( A n  B n X )  u (Xn B n X )  U ( A n  Bn X )  U 
(2 n 3 n X). We define Prl on Xi as follows: 

p r 1 ( ( A  n B n X i )  u (An B n X 2 )  u ( A  nB n x3) u (1 n B  n x4)) 

+PT*(A n x4) - 
= PT.(A n B n X i )  + Pr*(Xn  B fl X z )  + PT,(A n X3) - PT,(A n B n X3) 

n B n x4). 
This is nonnegative because Pr,(A n X3) - Pr,(A n B n X3)  2 0 (since ( A  n X3) _> 
( A n  B f~ X3) ) ,  and similarly for Pr*@ n X4) - Pr*@ n B n X4) .  

It is easy to see that for a set X E X, we have 

P r l ( X )  = P r l ( ( A n  B n X )  u (Zn B nx) u ( A n B n  x) u ( A n B n  x))  
= PT,(A n X) + PT*(X n x) 
= P r ( X ) ,  

so that Prl and Pr agree on sets in X .  In particular, we have that Prl(0) = 0 and 
Pri(S) = 1. We leave it to the reader to check that if X i ,  X a ,  . . . are pairwise disjoint 
sets in XI, then PTI(U,X,,) = C,, Prl(X,.). 

By definition of Prl, it follows that P Q ( A  n B )  = Pr,(A n B )  and P q ( 2  n B )  = 
Pr*@ n B). Since A n B and 2 n B are measurable with respect to Prl,  we have that 
Pri(B) = Pri(A n B )  + Prl(2i-l B). It is now immediate that P r l ( A ( B )  = P,(AIB). I 
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Example 1 (The  three  prisoners problem): In order to illustrate our updating 
technique, we consider the well-known three prisoners problem4 

Of three prisoners a, b, and c, two are to be executed but a does not know 
which. He therefore says to the jailer, “Since either b or c is certainly going 
to be executed, you will give me no information about my own chances if you 
give me the name of one man, either b or c,  who is going to be executed.” 
Accepting this argument, the jailer truthfully replies, “ b  will be executed.” 
Thereupon a feels happier because before the jailer replied, his own chance of 
execution was two-thirds, but afterwards there are only two people, himself 
and c, who could be the one not executed, and so his chance of execution is 
one-half. 

Note that in order for a to believe that his own chance of execution was two-thirds 
before the jailer replied, he seems to be implicitly assuming that the one to get pardoned 
is chosen at random from among a,  6,  and c. We make this assumption explicit in the 
remainder of our discussion. 

Is a justified in believing that his chances of escaping have improved? It seems that 
the jailer did not give him any relevant extra information. Yet how could a’s subjective 
probabilities change if he does not acquire any relevant extra information? 

Following [Diaconis and Zabell, 19861, we model a possible situation by a pair (z,~), 
where z,y E { a ,  b, c } .  Intuitively, a pair (z, y) represents a situation where z is pardoned 
and the jailer says that y will be executed in response to a’s question. Since the jailer 
answers truthfully, we cannot have x = y; since the jailer will never tell a directly 
that a will be executed, we cannot have y = a.  Thus, the set of possible outcomes is 
{ ( a ,  b) ,  ( a ,  c ) ,  ( b ,  c) ,  (c, b)}. The event that a lives, which we denote lives-a, corresponds to 
the set { ( a ,  b) ,  (a ,  c ) } .  Similarly, we define the events lives-b and lives-c, which correspond 
to the sets { ( b , c ) }  and { ( c ,  b)} ,  respectively. By assumption, each of these three events 
has probability 1/3. 

The event that the jailer says b, which we denote says-b, corresponds to the set 
{ ( a ,  b), (c ,  b ) } ;  the story does not give us a probability for this event. In order to do a 
Bayesian analysis of the situation, we will need this probability. Note that we do know 
that the probability of {(c, b)}  is 1/3; we just need to know the probability of { ( a ,  b)) .  
This depends on the jailer’s strategy in the one case that he has free choice, namely when 
a lives. He gets to choose between saying b and c in that case. We need to know the 
probability that he says b; i.e., Pr(says-bllives-a). 

If we assume that the jailer chooses at random between saying b and c if a is par- 
doned, so that Pr(says-bllives-a) = 1/2, then P r ( { ( a , b ) } )  = P r ( { ( ( a , c ) } )  = 1/6, and 
Pr(says-b) = 1/2. We can now easily compute that 

Pr(Zzves-alsays-b) = Pr(2ives-a n says-b)/Pr(says-b) = (1/6)/(1/2) = 1/3. 

Thus, in this case, the jailer’s answer does not affect a’s probability. 

4For an excellent introduction to the problem as well as a Bayesian solution, see [Gardner, 
19611. Our description of the story is taken from [Diaconis, 19781 and much of our discussion 
is based on that of Diaconis and Zabell [Diaconis, 1978; Diaconis and Zabell, 19861. 
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Suppose more generally that Pr(says-bllives-a) = a, for 0 5 a 5 1. Then straight- 
forward computations show that 

Pr({(a,  b ) } )  = Pr(Zives-a) x Pr(says4lZives-a) = a/3,  
Pr(says-b) = Pr({(a,  b)} )  + Pr({(c, b ) } )  = (a + 1)/3, and 

Pr(lives-alsays-b) = &3 = a/(& + I). 
This says that if a # 1/2 (i.e., if the jailer had a particular preference for answering 
either b or c when a was the one pardoned), then a would learn something from the 
answer, in that he would change his estimate of the probability that he will be executed. 
For example, if a = 0, then if a is pardoned, the jailer will definitely say c. Thus, if 
the jailer actually says b, then a knows that he is definitely not pardoned; i.e., that 
Pr(lives-alsays-b) = 0. Similarly, if a = 1, then a knows that if either he or c is 
pardoned, then the jailer will say b, while if b is pardoned the jailer will say c. Given 
that the jailer says b, then from a’s point of view the one pardoned is equally likely to 
be him or c; thus, Pr(Zives-alsays-b) = 1/2. As a ranges from 0 to 1, it is easy to check 
that Pr(1ives-alsays-b) ranges from 0 to 1/2. 

Rather than assuming that there is some unknown probability a that the jailer will say 
b given that a is pardoned, suppose we ipstead capture this situation using the idea of non- 
measurable sets. Thus, we take lives-a, lives-b, and lives-c as a basis for the measurable 
sets; in particular, neither of the singleton sets { ( a ,  b ) }  and {(a,c)} is measurable, since 
we are not given the probability that the jailer will say b (resp. c )  if a is pardoned. An easy 
computation shows that (1) Pr,(lives-unsays-b) = Pr.({(a,b)}) = 0 (since there are no 
nonempty measurable subsets of { ( a ,  b ) } ) ,  (2) Pr*(Zives-a n says-b) = Pr’({(u, b ) } )  = 
1/3, and (3) Pr.(Zives-ansays-b) = Pr*(Zives-ansays-b) = Pr({(c,b)} = 1/3. It follows 
that 

Pr,(Zives-a n says-b) 
Pr,(lives-a n says-b) + Pr*(Zives-a n says-b) 

Pr, (lives-alsays-b) = = 0,  

Pr’(1ives-a fl says-b) = 1/2. 
Pr*(Zives-alsays-b) = 

Pr*(lives-a n says-b) + Pr.(Zives-a n says-b) 
Notice that the range 0 to 1/2 is precisely that obtained in the Bayesian analysis by letting 
a range from 0 to 1. This should be no surprise; it is a consequence of Theorem 2.2. I 

3 Updating belief functions 

The Dempster-Shafer theory of evidence [Shafer, 19761 provides another approach to 
attaching likelihoods to events. This approach is meant to be an alternative to probability 
theory. The theory starts out with a beliefhnction. For every event (i.e., set) A, the 
belief in A,  denoted BeZ(A), is a number in the interval [0,1] that places a lower bound 
on likelihood of A. We have a corresponding number PZ(A) = 1 - BeZ(X)), called the 
plausibility of A,  which places an upper bound on the likelihood of A. Thus, to every 
event A we can attach the interval [BeZ(A), PZ(A)]. Like a probability measure, a belief 
function assigns a “weight” to subsets of a set S, but unlike a probability measure, the 
domain of a belief function is always taken to be all subsets of S. Formally, a belief 
function BeZ on a set S is a function Bel: 2s -+ [ O ,  11 satisfying: 
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BO. B e l ( 0 )  = 0 

B1. B e l ( A )  2 0 

BZ. BeZ(S) = 1 

B3. Bel(AI  U . . . U A k )  2 &{I ,.._, k } , r f - ~ ( - l ) l ~ l + l B e l ( n ~ r  A;). 

As long as we restrict to finite spaces, there is another formulation of belief functions 
that is perhaps more intuitive. A mass function is simply a function m: 2’ -+ [0,1] such 
that 

M1. m(0) = 0 

MZ. C ~ c s  - m(A) = 1. 

Intuitively, m(A) is the weight of evidence for A that has not already been assigned 
to  some proper subset of A. With this interpretation of mass, we would expect that 
an agent’s belief in A is the sum of the masses he has assigned to  all the subsets of A; 
i.e., B e l ( A )  = C B C A  - m(B). Indeed, this intuition is correct. 

Proposition 3.1: ([Shafer, 1976, p. 391) 

1 .  I f m  is a mass function on S, then the function Bel:  2’ 4 [0,1] defined by BeZ(A) = 
C B c A  m(B) is a belieffunction. 

2. If Be1 is a belief function on 2s and S is finite, then there is a unique mass function 
m on 2’ such that B e l ( A )  = CBCAm(B) - for every subset A of S .  

Note: From here on, we restrict for convenience to finite sample spaces S, both when 
we discuss belief functions and probability functions. Because of this assumption, (a) 
there is always a mass function for every belief function, as in part (2) of Proposition 3.1, 
and (b) every probability space we shall consider has a basis. We note that many of our 
results would still go through without the assumption of finiteness. 

The interval defined by [ B e l ( A ) ,  P I ( A ) ]  may strike the reader as somewhat reminiscent 
of the interval [Pr,(A),  Pr’(A)] defined by the inner and outer measure. This similarity 
is not accidental. As is shown in [Fagin and Halpern, 19891, every inner measure induced 
by a probability function is a belief function. In fact, if Pr is a probability function 
defined on a set X of measurable subsets of a finite set S, and y is a basis of X ,  let m 
be the mass function such that 

otherwise, m(A) = 

and let BeE be the belief function corresponding to  m. Then it is easy to  show that 
B e l ( B )  = Pr.(B) for all B S. Thus, Be1 agrees with P r  on the measurable sets and, 
more generally, is equal to the inner measure on arbitrary subsets. The corresponding 
plausibility function PI also agrees with Pr on the measurable sets, and is equal to  the 
outer measure on arbitrary subsets. We call Be1 (resp. PI) the belief(resp. plausibility) 
function corresponding to Pr . 

As shown in [Fagin and Halpern, 19891, there is also a strong sense in which every 
belief function can be viewed as an inner measure induced by a probability function. 

. 
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Theorem 3 .2  [Fagin and Halpern, 19891 Given a belief function BeZ defined on a finite 
set S, there is a probability space (S',  X ,  Pr )  and a surjection f : S' -i S such that for 
each A C S ,  we have BeZ(A) = Pv.(f- ' (A)) .  

Given a set P of probability functions all defined on a sample space S, define the 
lower envelope of P to be the function f such that for each A 5 S, we have f ( A )  = 
inf{Pr(A) : P r  E P and A is measurable with respect to Pr}. We have the correspond- 
ing definition of upper envelope of P. Theorem 2.1 says that the inner measure induced 
by a probability function Pr can be viewed as the lower envelope of the family of prob- 
ability functions extending P r ;  the outer measure is the corresponding upper envelope. 
Since by Theorem 3.2, a belief function is essentially an inner measure, this suggests that 
a belief function can also be viewed as a lower envelope. This is true, and was already 
known to Dempster [Dempster, 19671. Let BeZ be a belief function defined on S, and let 
(S, X, Pr)  be a probability space with sample space S.  We say that Pr is consistent with 
Be1 if Bel(A)  5 P r ( A )  5 P l ( A )  for each A E X .  Intuitively, Pr is consistent with BeZ if 
the probabilities assigned by Pr is consistent with the intervals [BeZ(A), PI(A)] given by 
the belief function Bel. It is easy to see that Pr is consistent with BeZ if Bel(A) 5 P r ( A )  
for each A E X (that is, it follows automatically that Pr(A)  5 PI(A) for each A E X ) .  
This is because PZ(A) = 1 - BeZ(x) 2 1 - P r ( x )  = Pr(A) .  Let P,, be the set of all 
probability functions defined on 2s consistent with BeZ. The next theorem tells us that 
the belief function BeZ is the lower envelope of Psel, and PI is the upper envelope. 

Theorem 3.3: [Dempster, 19671 Let Be2 be a belief function on S. Then for all A C S, 

BeZ(A) = infprEpBe, P r ( A )  
P l ( 4  = SUPP,€PB., W A ) .  

Proof: The theorem follows from Theorem 2.1 (which says that each inner measure is 
an infimum of a family of probability functions) and from Theorem 3.2 (which says that 
belief functions are essentially inner measures). The details, which are omitted, are in 
the same spirit as in the proof of Theorem 3.4 below. I 

Using techniques similar to those of Theorem 2.3, we can show that the infimum and 
supremum are actually attainable, i.e., for each A S, there are probability functions 
Prl and Prz in P B ~ ~  such that Bel(A) = Pr, (A)  and PI(A) = Prz(A).  We remark 
that the converse to Theorem 3.3 does not hold: not every lower envelope is a belief 
function. Counterexamples are well known [Dempster, 1967; Kyburg, 1987; Black, 19871. 
We return to this issue in Section 5. 

Theorem 3.3 suggests how we might update a belief function to a conditional belief 
function (and a plausibility function to a conditional plausibility function): 

BeZ(A1B) = inf Pr(A1B) 
PrEpB.1 

PZ(A1B) = sup Pr(A1B). 
P'€PBCl 

It is not hard to see that the inf and sup above are not well-defined unless BeI(B) > 0; 
therefore, we define Bel(A1B) and Pl(A1B) only if BeZ(B) > 0. It is straightforward 
to check that if Pr is a probability function, BeZ is the belief function corresponding to 
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Pr,  and A and B are measurable sets with respect to PT,  then BeZ(A1B) = Pr(A1B). 
Thus, our definition of conditional belief generalizes that of conditional probability. Note 
that taking B = true in the preceding definition, we get as a special case that BeZ(A) = 
infprEPBer Pr(A)  and PI(A)  = supp,EpBer Pr(A) ,  which is Theorem 3.3 above. 

Because of the close analogy between our definitions of conditional inner measures 
and conditional belief functions, and the fact that inner measures and belief functions 
are essentially the same, we might suspect that a closed-form formula for the conditional 
belief function can be obtained by replacing inner measures in Theorem 2.3 by belief 
functions and outer measures by plausibility functions. The next theorem says that this 
is indeed' the case. 

Theorem 3.4: If BeZ is a belief function on S such that Be l (B)  > 0 ,  then 

BeZ(A n B )  
BeZ(A n B )  + PZ(2 n B )  

Bel(A1B) = 

PZ(A n B )  
PZ(A n B )  + BeZ(2 n B) '  

Pl(A1B) = 

Proof: We consider BeZ(A1B) here. The proof for PZ(A1B) is similar and left to the 
reader. The result follows from Theorem 3.2. Let (S', X ,  P T )  be the probability space 
guaranteed to exist by the theorem and f the surjection from S' onto S such that for each 
A E S, we have BeZ(A) = Pr, ( f - l (A) ) .  Now it is easy to show that every probability 
function Pr' extending Pr defined on all the sets of the form f - ' ( A ) ,  A C S ,  can be pro- 
jected to a probability function PT$ on S extending Be1 (where Pr$(A)  = PrJ( f-'(A))); 
conversely, for every probability function Prl, extending BeZ we can find a probability 
function PT' defined on all the sets f-*(A) such that PT' projects to P T ~ .  The result 
now follows from Theorem 2.2. I 

It is well known that the conditional probability function is a probability function. 
That is, if we start with a probability function Pr defined on a u-algebra X of subsets of 
S and if B E X and P T ( B )  > 0, then the function PT(.IB) defined on X is a probability 
function. We might hope that the same situation holds with belief functions, so that the 
conditional belief and plausibility functions are indeed belief and plausibility functions. 
Given our definitions of conditional belief and plausibility as lower and upper envelopes, 
it is not clear that this should be so, since lower and upper envelopes of arbitrary sets of 
probability functions do not in general result in belief and plausibility functions. Fortu- 
nately, as the next result shows, in this case they do. Thus, we have a way of updating 
belief and plausibility functions to give us new belief and plausibility functions in the 
light of new information. 

Theorem 3.5: Let BeZ be a belief function defined on S ,  and PI the corresponding 
plausibility function. Let B C S be such that Be l (B)  > 0. Then BeZ(.lB) is a belief 
function and Pl(.IB) is the corresponding plausibility function. 

The proof of Theorem 3.5 is somewhat difficult; details can be found in the appendix, 
where we also discuss further technical properties of these definitions. We remark that 
this result-which we view as the main technical result of the paper-appears in none 
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of the papers cited above that contain the expression for conditional belief that appears 
in Theorem 3.4. In [de Campos et al., 19901 the question of whether Bel(.lB) is a belief 
function is discussed, but left unanswered. Theorem 3.5 was proven independently by 
J d r a y  [Jaffray, 19901, with a somewhat different proof. In response to an early draft 
of this paper, Zhang [Zhang, 19891 constructed another proof along very different lines. 
Very recently, Sundberg and Wagner [Sundberg and Wagner, 19911 proved a stronger 
result. Let us say that a function f is k-monotone if 

f(Al U.. . U Ak) 2 C (-l)"'+'f(n A;) ,  
r g { i ,  ..., k}, r+0 I E I  

for each choice of AX,. . . ,A&.  A belief function is said to be co-monotone, since it is 
k-monotone for each k. Sundberg and Wagner showed the interesting result that if a 
function f is k-monotone and if f ( B )  > 0, then f(.lB) is also k-monotone. In particular, 
it follows immediately that if f is co-monotone, then so is f(.lB). In the case when 
Ic = 2, Sundberg and Wagner's result was already proved by Walley [Walley, 19811 (the 
k = 1 case is trivial). 

As we mentioned in the introduction, our definition is quite different from that given 
by Dempster. Given a belief function BeI, Dempster defines a conditional belief function 
BeZ(.l(B) as follows [Shafer, 1976, p. 97]:5 

BeZ(A U B) - Be@) 
1 - Bel(B) 

BeZ(A1IB) = 

The corresponding plausibility function is shown to satisfy: 

If Bel is the belief function corresponding to a probability function PT, and both 
A and B are measurable sets with respect to Pr, then it is easy to show Bel(AJJB) = 
PT(A(B).  Thus, the DS definition of conditional belief generalizes the idea of conditional 
probability, just as our definition of conditional belief does. However, a brief glance 
at the DS definition compared with the formula in Theorem 2.3 should convince the 
reader that in general these two definitions of conditional belief will not agree. We give 
several characterizations of Bel(.lB) and Bel(.llB) that clarify their relationship. We 
first present an example where the two definitions differ, and show that the DS definition 
gives counterintuitive answers. 
Example 2 (The three prisoners revisited): We consider the result of applying 
the two definitions of conditional belief to analyzing the three prisoners problem. Sup- 
pose we are not given a probability that the jailer will say b given that a is pardoned. 
Thus, using the same notation as in the previous section, we assume that the only mea- 
surable sets are those generated by the basis Zives-a, lives-b, and lives-c. This means 
that, for example, we cannot assign a probability to the event that b lives and a is 

5Dempster's definition is usually given as a special application of a more general rule of 
combination for belief functions. It would take us too far afield here to discuss the rule of 
combination; see the companion paper [Halpern and Fagin, 19901 for a discussion of the role of 
the rule of combination. 
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pardoned. Let Pr be the probability function that assigns probability 113 to each of 
these basis sets, and let BeZ and PZ be the belief function and plausibility functions] 
respectively, corresponding to Pr. Using the definition above, it is easy to check that 
BeI(Zives-allsays-b) = PZ(Zives-allsays-b) = 112. Thus, for the DS notion of conditional 
probability, the range reduces to the single point 1/2. By way of contrast, recall that we 
showed in the previous section that BeZ(Zives-alsays-b) = Pr.(Zives-alsays-b) = 0 while 
Pl(Zives-alsays-b) = Pr*(Zives-alsays-b) = 1/2. I 

, 

This example shows that the two notions of conditioning can give quite different 
answers. As we mentioned in the previous section, the range [0,1/2] determined by 
BeZ(Zives-alsays-b) and PZ(Zives-alsays-b) has a natural probabilistic interpretation: it 
is determined by taking the probability that the jailer will say b in the one situation that 
he has a choice between saying b and c, namely, when a is the one pardoned, and letting 
it range from 0 to 1. 

The range [1/2,1/2] determined by the DS notion seems much more mysterious. 
The answer 1/2 corresponds to the situation where the jailer says b whenever he can 
(i.e., whenever a is pardoned or c is pardoned). Why is this a reasonable answer? More 
importantly, why does it arise? Is there a natural probabilistic interpretation for it? 

In order to investigate this question carefully, we first give a characterization of DS 
conditioning in terms of probability. This characterization shows that we can also inter- 
pret the DS conditioning in terms of an inner measures. Using this characterization] we 
show that the DS definition arises by giving a (somewhat unnatural) twist to a standard 
probabilistic process for getting our notion conditional belief. This will allow us to give 
a precise explanation for the answer 112 obtained by the DS notion in the three pris- 
oners problem, and, more generally, characterize the conditions under which it will give 
appropriate answers. 

Suppose we start out with a probabilityspace ( S ,  X ,  Pr ) ,  with a basis yfor X .  (Recall 
that we are assuming that the probability space is finite, so there is a basis.) Suppose 
we now observe B C S ,  where Pr*(B) # 0. We construct the conditional probability 
space (S ,XB ,  PTB)  as follows: XB is the space generated by taking as basis the set YB 
consisting of all the nonempty sets of the form X n B and X n B, for X E Y .  If X E Y ,  
we define PTB(X n B) = 0, while 

i f X n B = 0  
PrB(X n B )  = { & X ) / P r * ( B )  otherwise. 

We then extend Prg by additivity. Note that PrB is indeed a well-defined probability. 
In particular, since CxnBZB,xEyPr(X)  = Pr'(B),  it follows that P T B ( S )  = 1. This 
method of constructing the conditional probability space seems quite natural. Observe 
that if B is measurable, then XB = X (since every basis set is either a subset of B or 
disjoint from B )  and Prg = Pr(.IB). As the following result shows, even if B is not 
measurable, this process defines the DS notion of conditioning. 

Proposition 3.6: Let ( S ,  X ,  P T )  be a probability space, let BeZ be the belief function 
corresponding to Pr,  and let B E S such that Pr ' (B)  > 0. Then (PTB) .  = BeZ(.llB) 

' 

and (PTB)* = PZ(.IIB). 

Proof: Given the corresponding relationships between inner and outer measure on the 
one hand and belief and plausibility on the other, it suffices to show that (PTB)* = 
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Pl(.(IB). Let y be the basis for X. Recall that the outer measure of a set A is the sum 
of the measures of all the basis sets that intersect A and that Pl(A)  = Pr*(A).  Thus, 
given an arbitrary set A C S, we have 

(PTB)*(A)  = C x n B n a f 0 , X ~ Y  P ~ B ( X  n B )  
= CXnBnA#Q.XEY PT(X) /PT ' (B)  
= Pr*(A fl B)/Pr'(B) 
= Pl (A  n B)/PZ(B) 
= PZ(AI[B). 

This completes the proof. I 

In order to explain the difference between BeI(.IB) and BeZ(.llB), we now prove an 
analogous result for Bel(.lB). Given a probability space ( S , X , P r )  with basis y and 
set B C S, let PB consist of all probability functions Pr' defined on X B  such that Pr' 
is of the form cPr", where c is a normalizing constant and PrN satisfies the following 
constraints: If X E y then Pr"(X n B)  = 0, while 

i f X n B = 0  
PrJ'(X fl B )  = P r ( X )  if X C B i E = O  [O,Pr(X)] if X n B # 0, X n B  # 0. 

It is easy to see that P ~ B  E ?B (we just take Pr"(X n B )  = P r ( X )  for all X such that 
X n B # 0; the appropriate normalizing constant in this case, as we observed above, is 
l /Pr ' (B) ) .  It is the set PB of probability functions that characterizes Bel(.lB), as the 
following proposition shows: 

Proposition 3.7: Let (S, X ,  P r )  be a probability space, let  Be1 be the belief f inction 
corresponding to P r ,  and let B C S be such that PT, (B)  > 0 .  Then for all sets A C S ,  
we have Bel(A1B) = minp,#Ep, Pr'(A) and Pl(A1B) = maxp,fEpB Pr'(A). 

Proof: Since Bel(A[B)  = Pr,(AIB), it follows from Theorem 2.2 that BeZ(A1B) = 
minp,, Pr'(AIB), where the minimum is taken over all probability functions Pr' extending 
Pr. It follows easily from the proof of Theorem 2.3 that if we start with a probability 
space ( S , X , P r )  with a basis, then the minimum is actually taken by a probability 
function in PB. The proof in the case of the PI(A1B) is similar. We leave details to the 
reader. a 

Propositions 3.6 and 3.7 show that the difference between our notion of conditional 
belief and the DS notion of conditional belief comes in the treatment of basis sets X 
such that both X n B # 0 and X n B # 0. For such basis sets, the DS notion gives 
probability Pr(X) /Pr*(B) ,  while ours essentially allows the probability to vary from 0 
to cPr(X) (where c is the appropriate normalizing constant). In particular, this means 
that we allow for the possibility that all the probability of X is actually located in B or 
that none of it is. Note that if B is a measurable set, then there are no basis sets that 
have a nonempty intersection with both B and B, so that both notions of conditional 
belief agree. In general, as an immediate corollary to the observation that PTB E PB and 
Propositions 3.6 and 3.7, we get the following observation, which was already known to 
Dempster [Dempster, 1967; Dempster, 19681. 
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Corollary 3.8: If BeZ as a belief function defined on S and A, B C S ,  then 

BeZ(A1B) 5 BeZ(A1IB) 5 PZ(AIIB) 5 PZ(A1B). 

Thus, in general, BeZ(.llB) and PZ(.IIB) will define a smaller interval than BeZ(.lB) 
and PZ(.IB). However, as we saw in the discussion of the three prisoners problem, this 
smaller interval may not always be justified. 

We conclude our discussion with a construction that may further explain the difference 
between BeZ(.lB) and BeZ(.l[B). This construction is a generalization of the “beehive” 
example in [Smets and Kennes, 19891 (as well as being a formalization of some comments 
made in [de Campos et aZ., 19901). 

Suppose a set S is partitioned into (nonempty) disjoints sets XI,. . . , Xk. An agent 
chooses X; with probability a; (a1 + ... + ak = 1) and then chooses z E X; with some 
unknown probability. (Equivalently, we can view (S, X ,  Pro) as a probability space with 
basis y = {XI,. . . , xk} where Pro(X;) = a;.) Given subsets A and B of S, we want t o  
know what the probability is that the element z chosen is in A,  and the probability that 
z is in A given that it is in B. If A = X;, then it is clear that the probability that z E A 
is a;. However, if A is not one of the X,’s, then all we can compute are upper and lower 
bounds on the probability. 

Let P be the set of discrete probability functions on S consistent with this situation; 
namely, Pr E P iff Pr(X,) = a;, i = 1,. . . , k. Let BeZ be the lower envelope of P. By 
our earlier discussion, we know that BeZ = Pr, and that BeZ is indeed a belief function. 
Moreover, the best upper and lower bounds we can give on the probability that z E A 
are BeZ(A) and PZ(A). Similarly, the best lower and upper bounds we can give on the 
probability that z E A given that z E B are given by the infimum and supremum of 
(Pr(A1B) : Pr E P}. These are precisely BeZ(A1B) and PZ(A1B). 

Now suppose we slightly change the rules of the game. We are told that the prob- 
abilistic process that chooses an element in X; will definitely choose an element in B if 
possible This does not affect anything if X ;  B or if X, C B. However, if X ;  n B # 0 
and X; # B # 0, then, rather than choosing X; with probability a;, the probability is 
now redistributed so that X ; n B  is chosen with probability a;, while X ; n B  is chosen with 
probability 0. The probability that used to be spread over all of X; is now concentrated 
on X; fl B. Now what is the probability that this new process chooses an element of 
A given that the element chosen is definitely in B? In this case, the bounds are given 
by BeZ(A1IB) and PZ(A1IB). To see why, first notice that the change in the rules effec- 
tively results in a change to  the probability function Pr to  a probability function Pr‘ 
defined on X,  as follows. We have PT’(X) = P r ( X )  if X 2 B or X B. However, if 
X n B # 0 and X nB # 0, then all of the probability of X moves to  X n B; thus we have 
Pr’(X n B )  = P r ( X ) ,  while Pr‘(X n B) = 0. This means that if B is measurable, then 
Pr’ is identical to Pr, since if B is measurable, then every basis set X is contained either 
in B or in B. If B is not measurable, then Pr’ can be quite different from Pr. Notice 
that, in fact, Pr‘ is almost identical to PTB, except for the fact that it assigns nonzero 
probability to  subsets X C B. However, it is easy to see that Pr’(.]B) = PrB, The fact 
that Bel(A1IB) and PZ(AIIB) provide the lower and upper bounds on the probability 
that an element of A will be chosen given that the element chosen is definitely in B now 
follows from Proposition 3.6. 

Suppose we now reconsider the three prisoners problem from this point of view. We 
can now see that BeZ(Zives-allsays-b) gives the probability that a lives given the extra 

- 
. 

. 
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hypothesis that the jailer says b whenever possible. in particular, this means that the 
jailer definitely says b if a is the one that is pardoned; i.e., Pr(says-blZives-a) = 1. 
Under this revised situation, the probability that a lives given that the jailer says b is 
indeed exactly 1/2. With this understanding of the DS notion of updating, the result 
BeZ(Zives-allsays-b) = PZ(Zives-allsays-b) = 1/2 should come as no surprise. 

To summarize, this discussion has shown that BeZ(A1IB) corresponds to a somewhat 
unnatural updating process, where before we condition with respect to B, we first try 
to choose an element in B whenever possible. Although this extra step before updating 
makes no difference if B is measurable, it will make a difference if B is not measurable. 
This is the case in the three prisoner problem, and is the cause of the answer 1/2 that 
we get when we try to apply DS conditioning in this case. 

4 Other updating rules 

Taking conditional probability with respect to B only makes sense if we have definite 
evidence that B actually occurred. More typically, the best we can say is that B oc- 
curred with some probability. Jeflrey's rule [Jeffrey, 19831 is designed to deal with a 
generalization of this situation. Suppose our initial situation is described by a probabil- 
ity distribution Pr. Suppose that B1,. . . , B k  are mutually exclusive events, measurable 
with respect to  Pr,  with Pr(B,) > 0, and we make an observation Ob which tells us 
that B, holds with probability a,, i = 1,. . . , k, where a1 + . .  . + ak = 1 .  Then, accord- 
ing to Jeffrey's rule, the probability that we should assign to event A (which is again 
assumed to be measurable with respect to Pr)  given Ob, which we denote by Pr(AlOb), 
is alPr(AIB1) + . . . + akPr(AIBk). Notice that conditional probability with respect to 
B is a special case of this rule (where we assume that we observe that B occurs with 
probability 1). We call an observation that places probability 1 on some event B a simple 
observataon. 

Now what should we do if some A ,  B1, . . . , Bk are not measurable? By analogy with 
our previous definitions, we take Pr.(AIUb) and Pr'(Al0b) to be the appropriate lower 
and upper envelopes. Thus, we define Pr,(AJOb) to be 

inf{Pr'(AlOb) : Pr' extends PT and A, Bl, . . . Bk are measurable with respect to Pr'}. 

The definition of Pr'(A1Ob) is analogous. We conjecture that Pr,(-(Ob) defined in this 
way is a belief function, just as in the case of simple observations. We leave it to the 
reader to check that it is indeed the case that Pr*(zlOb) = 1 - Pr,(xlOb), so that if 
Pr.(.lOb) is a belief function, then Pr'(.lOb) is the corresponding plausibility function. 

Unfortunately, unlike the case of simple observations, we do not believe that there is 
any closed-form expression for Pr.(AlOb) in the general case. A natural conjecture is 
that Pr,(AlOb) = alPr,(AIB1) + ...  + akPr,(AIBk). Unfortunately, this is incorrect, as 
the following counterexample shows. 

Example 4.1: Let S consist of four distinct points a,  b,c,d, let A = {a,b} ,  and let 
B = {a ,  c } .  Assume that the the basis consists of the four sets { a ,  b},  { c } ,  and {d } ,  and 
that Pr({a,b}) = 1/2, and Pr({c}) = Pr({d}) = 1/4. Let Ob be an observation that 
tells us that B holds with probability 2/3, and B holds with probability 1/3. When we 
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consider probability distributions Pr’ that extend Pr, the only issue is what measure 
should be assigned to  { a } .  If P T ’ ( { ~ } )  = a and Pr’({b}) = p (where a + p = 1/2), then 

2 a  1 p  Pr’(A1Ob) = -- +- -__ 
3 a + 4  3 p s ;  

By definition, Pr(A1Ob) is the infimum of the right-hand side of (I), subject to  a + ,8 = 
1/2, along with a 2 0 and p 2 0. A straightforward calculation shows that the infimum 
is 2/9, which is attained when a = 0. However, the proposed estimate given by the 
conjecture we are disproving is 

, 

2 1 
-Pr.(AIB) + -Pr,(AIB), 
3 3 

which is 0, since Pr.(AIB) = 0 and Pr,(AIB) = 0. I 

5 Belief functions and lower envelopes 

Theorem 3.3 says that each belief function is the lower envelope of a set of probabil- 
ity functions, and each plausibility function an upper envelope. Unfortunately, as we 
mentioned above, the lower envelope of an arbitrary set of probability functions is not 
in general a belief function, nor is the upper envelope of an arbitrary set of probability 
functions in general a plausibility function. A very nice example of this situation is pro- 
vided in [Pearl, 19891 (where it is credited to  N. Dalkey). Suppose a space is partitioned 
into three disjoint sets El,  Ez, E3; all we know about these sets is that the probability 
of each is at most 1/2. Thus, we are considering the class of all probability functions 
Pr such that Pr(E1) + Pr(E2) -+ Pr(E3) = 1 and Pr(E,) 5 1/2, z = 1,2,3. If we now 
minimize and maximize over this collection of probability functions, we get a function 
BeZ such Bel(E,) = 0 and PZ(E,) = l /2 ,  i = 1,2,3 (since the probability of each set 
E, can be as low as 0 and as high as 1/2). However, Be1 is not a belief function. To 
see this, first observe that if it were, we would also have BeZ(E) = 1 - PI(E,) = 1/2. 
Since n = Ek if i, j, and Ic are all distinct, it follows that BeI@ n K )  = 0. 
However, it  can now be shown that BeZ violates axiom B3 of belief functions, since 
1 = BeZ(& U z U z) < BeZ(Z) + B e l ( 5 )  t BeZ(&). 

Nevertheless, our results show that there are natural sets of probability functions that 
do induce belief and plausibility functions. For example, Theorem 2.1 and the fact that 
every inner measure is a belief function shows that the set of all probability functions 
extending a particular probability function Pr is one such example. Theorem 3.5 shows 
that a similar situation holds for conditional probability functions. Although a general 
characterization is lacking, the discussion in Section 4 and further examples in [Halpern 
and Fagin, 19901 suggest that these may not be isolated examples. It seems that there 
are many situations where naturally defined sets of probability functions do induce belief 
and plausibility functions. 

Even if a set P of probability functions does induce a belief and plausibility function, 
say Be1 and PI, it is reasonable t o  ask whether we should represent P by Be1 and PI. 
Clearly the answer depends very much on the intended application. However, it is worth 
noting that this representation of P might result in a loss of valuable information. Let 

. 

~ 
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P consist of all probability functions on {a, b, c }  with the following three properties: (1) 
1/4 5 Pr({a}) 5 1/2, (2) 1/4 5 Pr({b}) 5 1/2, and (3) Pr({u}) = Pr({b}). It is not 
hard to  show that the lower envelope of P is a belief function BeZ whose mass function m 
satisfies m(a) = m(6) = m({a ,c})  = m({b ,c} )  = 1/4. Note that Bel({a}) = Bel({b}) = 
1/4 and PZ({a}) = PZ({b}) = 1/2. Thus, we retain the information that the probability 
of u and b both range between 1/4 and 1/2. However, we have lost the information that 
the probabilities of a and b are the same in all the probability functions in P. 

This loss of information has some serious repercussions. One consequence is that 
updates do not commute. To make this precise, let S = {u, b, c ,  d }  and suppose we have 
a basis of S consisting of the three measurable sets { a } ,  {a}, and { c ,  d}.  Suppose that the 
probability function Pr is such that Pr({u}) = 1/4, Pr({b}) = 1/4, and Pr({c,d}) = 
1/2, and let BeZ be the belief function corresponding to Pr. Finally, let A = {a}, 
B = { a ,  b} ,  and C = { a ,  b ,c} .  It is easy to  see that BeZ(A1B) = PZ(A1B) = 1/2, since A 
and B are measurable sets, A E B,  and the probability of A is half that of B. It is also 
easy to check that BeZ(A1C) = 1/4, PZ(A1C) = 1/2, BeZ(B1C) = 1/2, and PZ(B1C) = 1. 
Let P consist of all probability functions extending Pr,  let PB consist of all probability 
functions Pr’(./B) such that Pr’ E P, and let Pc consist of all probability functions 
Pr’(.IC) such that Pr’ E P. By our earlier results, we know that BeZ(.lC) and PZ(.IC) 
are the lower and upper envelope, respectively, of the probability functions in 7’‘. It 
is also easy to  check that for all Pr’ E Pc, we have Pr’(B1C) = 2Pr’(AIC). Just as 
in our earlier example, for each function Pr’ E P, we have Pr’({a}lC) = Pr’({b}(C), 
but this information is lost when we take the lower envelope. We can easily construct a 
probability function Pr” consistent with Bel(.IC) and Pl(.lC) such that Pr”(A1C) = 1/4 
and Pr“( B 1 C) = 1. 

Now suppose we start with the set P of probability functions and then observe B. 
The result of this observation is the set PB. Since B 5 C ,  if we next observe C ,  
this does not change anything. The set PB describes this set of probability functions. 
Changing the order of observations still results in the same final set. This is true in 
general for probability functions; the order of updating is irrelevant as long as we do 
our updating by conditioning and have measurable sets a t  every step of the way. (See 
[Halpern and Fagin, 19901 for a proof of this well-known fact.) Unfortunately, this is 
not the case for belief functions. For example, if we start with Bel, observe C ,  and 
then observe B, we get the belief function BeZc(.lB), where BeZc = BeZ(.IC). It is 
easy to check that BeZc(AIB) = 1/3 and PZc(AIB) = 2/3. On the other hand, if 
we first observe B then observe C ,  this is equivalent to just observing B, so it  is easy 
to  check that BeZB(A(C) = BeZB(A) = 1/2 and PIB(A(C) = PZB(A) = 1/2, where 
BelB = BeZ(.lB). Notice also that updating by B A C is equivalent to  updating by B,  
so BeZ(.IB A C) = BeZ(.lB). Thus, updating by C and then updating by B is not the 
same as updating by B A C or updating by B then updating by C. The key point here 
is that information is lost if we represent Pc by BeZ(-lC) and PZ(.IC), namely, that the 
probability of B is twice that of A.  (By way of contrast, the DS rule of conditioning is 
commutative. Conditioning with respect to  C and then with respect to  B is equivalent 
to  conditioning with respect to  B and then with respect to  C ,  since both are equivalent 
to conditioning with respect to  B A C. However, as we have pointed out, the DS rule of 
conditioning has other problems when viewed as a technique for updating beliefs.) 

These observations suggest to us that the question of the “best” representation of 
evidence does not have a unique answer. It may be easier to compute with a pair of 
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Our notion also allows us to avoid some paradoxes associated with the DS no- 
tion. For example, we would expect that if both an agent’s belief in a proposition p 
given q and his belief in p given -q are at least a, then his belief in p should be at 
least a, whether or not he learns anything about q. This is essentially what Savage 
[Savage, 19541 has called the sure thing principle. It is easy to see that conditional 
probability satisfies the sure thing principle, but the DS conditioning rule does not. 
An example is provided by the three prisoner problem. Recall that we showed that 
BeZ(Zives-allsays-b) = 1/2. Now if the jailer does not say b, then he must say c, and 
by symmetry we have BeZ(Zives-a(1isays-b) = BeZ(lives-a((says-c) = 1/2. However, 
BeZ(Zives-a) = 1/3. On the other hand, it is easy to see that our notion of conditioning 
does satisfy the sure thing principle. (This is also observed in [Pearl, 19891.) For suppose 
we have an arbitrary belief function Be1 such that BeZ(pJp) 2 a and BeZ(pJ-q) 2 a. 
Choose an arbitrary probability function Pr compatible with BeZ. By our definition 
of conditional belief as an infimum, we see that Pr(p1q) 2 a and Pr(pl7q) 2 a. SO 
Pr(p)  >_ a. Thus, Pr(p)  2 a for all probability functions Pr compatible with Bel. So, 
from Theorem 3.3, it follows that BeZ(p) 2 a. 

Although our results show that belief functions can play a useful role even when one 
wants to think probabilistically, the observations of the previous section do show that 
information can be lost if we pass to belief functions. This suggests they should be used 
with care. 

One thing we have not really discussed in this paper is what is considered perhaps 
the key component of the Dempster-Shafer approach, namely, the rule of combination. 
This rule is a way of combining two belief functions to obtain a third one. The reason 

belief and plausibility functions than to have to carry around a whole set of probability 
functions. Nevertheless, since information may be lost in this process, this ease of com- 
putation comes at a cost. (See [Pearl, 19891 for further examples of this phenomenon.) 

6 Conclusions 

In [Fagin and Halpern, 19891 we advocated the use of nonmeasurable sets as a way of 
representing uncertainty, and showed that the Dempster-Shafer notions of belief and 
plausibility could be understood in terms of the classical notions of inner and outer 
measure. Here we have shown that this viewpoint can be extended in a natural way to 
deal with the process of conditioning. In particular, this extension allows us to define a 
new notion of conditional belief, distinct from the DS notion, that leads to more intuitive 
results. 

There have been many other attempts at relating the Dempster-Shafer approach to 
probability theory. Perhaps the most prominent among these include the original papers 
by Dempster [Dempster, 1967; Dempster, 19681, and later works by Shafer [Shafer, 19791, 
Ruspini [Ruspini, 19871, Kyburg [Kyburg, 19871, and Pearl [Pearl, 19881. A detailed 
comparison of our approach to these others can be found in [Fagin and Halpern, 19891, 
so will not be repeated here. Of course, Dempster’s viewpoint leads to a notion of 
conditioning, namely, the DS notion. It is not clear to what extent the techniques used 
in these other papers can be extended to deal with conditioning. The fact that we can 
define such a natural notion of conditioning lends support to the usefulness of thinking 
in terms of inner and outer measures. 
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we have not discussed it is that we feel that the rule of combination does not fit in well 
with the viewpoint of belief functions as a generalization of probability functions that is 
discussed in this paper. This point came up indirectly when we pointed out how Shafer's 
definition of conditional belief, which is defined in terms of the rule of combination, gives 
unintuitive answers in certain cases. However, there is another way of viewing belief 
functions, which is as representations of evidence. This is in fact the view taken in 
[Shafer, 19761. When belief is viewed as a representation of evidence, then the rule of 
combination becomes more appropriate. These issues are discussed in more detail in a 
companion paper [Halpern and Fagin, 19901. 
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Appendix: Proof of Theorem 3.5 

Recall that we want to show BeZ(.IB) is a belief function, and PI(.IB) is the corresponding 
plausibility function. We are working under the assumption that S is finite. We remark 
that using techniques of [Fagin and Halpern, 19891 we could drop this assumption. 

It is easy to see, using the formulas in Theorem 3.4, that 

PI(Z n B)  
PZ(A n B )  + BeZ(A n B )  

Pl(AIB) = 

BeZ(A n B )  
PZ(3 n B )  + Bel(A n B )  

z= 1 -  

= 1 - BeZ(A(B). 

Thus, once we show that BeZ(.IB) is a belief function, it will immediately follow that 
Pl(.IB) is the corresponding plausibility function. 

Suppose Bel is a belief function defined on the space 5'. Let m be the underlying 
mass function of BeZ, as guaranteed by Proposition 3.1. In order to show that BeZ(.lB) 
is a belief function, assume that Bel(B) > 0. Let Bel' be the function defined on 2B 
such that for each subset A of B, 

Bel'(A) = Bel(A)/(BeZ(A) + P l ( 3  n B)). 

It clearly suffices to show that Bel' is a belief function, since for all subsets C of S, 
we have BeZ(C1B) = BeZ'(C n B). Once we show that BeZ' satisfies axioms BO-B3, it 
immediately follows that BeZ(.JB) does. 

It is clear that Bel' satisfies BO-B2. All that remains is to show that Bel' satisfies 
B3. Thus we must show that the following inequality holds: 

Bel'(A1 U . . . U Ah) 2 (-l)I'l+'BeZ'( fl A,). 
r g i ,  ..., q, r+@ * € I  
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Let B1,. . . , Bt be the distinct sets with positive mass contained in B.  Let A;, . . . ,A: 
be the distinct sets with positive mass that intersect B but are not subsets of B ,  and let 
A; = A: n B ,  for 1 5 i 5 n. Since Bel(B) > 0, we know that there is some B; (but there 
may be no A;). Let a: = m(A:), and p,! = m(B;), for each i. Let N = CZ1 a: + C=, 0:. 
Note that N > 0, since there is some B;. Let a; = a : / N ,  and p; = /3,!/N, for each i. 
Thus, the cyi’s and /3;’s are normalized versions of the ai’s and &’s. 

We want to define a mass function m’ corresponding to Bel’. We first need to do a 
small detour. If 51  . . .5k is a string, and if 1 5 il < . . . < i, 5 k, then we call s;, . . . sip 

a substring of s1 . .  . s k ,  which we write as s;, . . . s i p  5 5 - 1 . .  . sk. For example, 515354 is 
a substring of S ~ S Z S ~ S ~ S ~ .  The substring is proper if it does not equal the full string 
s1 . . . s k ;  we then write s;, . . . sip 4 s1 . . . sk. w e  now define a function m”, whose domain 
is {Al ,  . . . ,A,, B1,. . . , Bt}’, the set of finite strings over the alphabet consisting of the 
names of the sets with positive mass that intersect B.  (We shall usually not bother to 
distinguish between a set and the name of a set, but, as we shall see, it is convenient to 
consider explicitly strings of names of sets.) First, we let m“(B;) = p;, for 1 5 i 5 t .  
Assume now that we have defined m”(B;Aj, . . . A,’) whenever s < r and j1  < . . . < j,. 
Assume that j 1  < . . . < j,. Let 

, 

, 

If A is not of the form B;A,, . . . Aj, with j1 < . . . < j,, then m”(A) = 0. 

where j 1  < . . . < j,, then we say that X represents the set given by B; U Aj, U.. . U Aj,. 
We would like to let m’ be simply m” (that is, by letting m‘ applied to a set be equal 
to m” applied to a string that represents the set, and let m’(A) = 0 for sets not of the 
form B,Aj, . . . Ajv). The problem is that several distinct strings may represent the same 
set; for example, it is quite possible that, say, the sets B1 U A1 and Bz U A4 U A5 are the 
same. We define m‘(A) to be ,& m”(X) .  For example, if the set A equals both 
B1 U A1 and Bz U Ad U As, but if A is not of the form B; u A,, . . . U A,, for any other 
choices of B,, Aj,, . . . , Aj, with j ,  < . . . < j,, then m’(A) = m’’(BIA1) + m”(BzAdA5). 
We shall prove that m’ is a mass function, and that BeZ’(A) = CccA - m‘(G). This will 
show that Bel’is a belief function. 

We are now ready to define the alleged mass function m’. If X is the string B;Aj, . . . Aj,, 

Thus, we must show that 

A. m’(0) = 0 .  

B. m’(A) 2 0 ,  for each A E B. 

C. Caca - m’(A) = 1. 

D. Bel’(A) = CccA - m‘(G). 

By definition of m” and m‘, we know that (A) holds. We now prove (D). Let 
Ak,,. . . , Ak, (where kl < . . . < kq) be the A,’s contained in A, and let B;, , . . . , B,, be the 
B;’s contained in A. What is BeZ’(A)? As before, let N = C:=l a: + C:=, p:. It is easy to 
seethat BeZ(A)=P:,+.. .+/3:, ,  a n d P Z ( i i i B ) =  N - ( a ; ,  +...+a;~+p:,++..++PI!,). 
Hence, 

Bel’(A) = Bel(A)/(Bel(A) + PZ(2 n B ) )  = (/3:L + . . . + P : , ) / ( N  - a;, - . . . - Q. 
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When we divide numerator and denominator by N ,  we see that 

Bel’(A) = (PI, + . . . + @*.)/(1 - ffk,  - . . . - % ) .  (3) 

To prove (D), we must show that CccA m‘(C) equals the right-hand side of (3). Let 
us call an expression m”(B,AJ1 . . . A,,): where i is a member of { i l l .  . . , zS}, and where 
31 < . . . < 3, are members of {klr.. . , kq}, a good t e r n .  Note that if m”(B,A,, . . . A,) 
is a good term, then B, U A,, U .. . U A,, C A. Now m’(C) equals the sum of all 
good terms. This is because (a) each good term is a part of the sum defining mf(C) 
for exactly one C A, and (b) if C E A, then m’(C) is defined as the sum of certain 
good terms. So we must show that the sum of all of the good terms equals the right- 
hand side of (3). Now let z be a fixed member of ( 2 1 , .  . . ,zs}. The sum of all good 
terms of the form mf‘(B,AJl . . . A,?) ezcept for the good term m”(B,Akl . . . Ak,) is simply I 

c 
Y C Y + A ~ ,  A ~ ,  m”(B,Y). Since 

it follows that the sum of all good terms of the form m”(&A,, . . . AJr) equals &/(1 - 
- ‘ . ‘  - f f k q ) .  so the sum of all good terms is (a, + . . . +,&,)/(I - a k l  - . . . - %,), 

as desired. This proves (D). 
Now (C) follows from (D), since it is easy to see that BeZ’(B) = 1. So we need 

only prove (B). Since m’(A) = CXreprcsentsAmff(X), we need only show that mf‘ is 
nonnegative. Thus, we must show that each m”(B,AJ1 . . . A,,) is nonnegative. For ease 
in notation, we replace z by 1, and 31,. . . , j ,  by 1 , .  . . , r ,  and show that m“(BlA1 ... A,) 
is nonnegative. 

We now show that 

If r = 0, then (4) says that m”(B1) = P I ,  as desired (there is one summand, where I = 8). 
If T = 1, then (4) says 

,”( BIA1) = __ - PI, (5) 1 - a1 
and if P = 2, then (4) says 

+ A .  ( 6 )  
1 - f f 1 - f f 2  1-a1 1-a2 

01 m”(BiAIA2) = p1 - ~ - _ _  

We prove (4) by induction on r. As we noted, the base case ( r  = 0) simply says that 
m”(B1) = 01. As for the induction, step, we replace each m”(B1Y) on the right-hand 
side of (2) by the corresponding formula as given by the right-hand side of (4); this is all 
right by induction hypothesis, since Y is a proper substring of A1 . . . A,. Let us denote 
a/(l - CI,g a,) by EI. We now compute the coefficient of Er in the expression resulting 
from our substitution we just described. If I = (1,. . . , r} ,  then it is clear that Er appears 
only once (and positively). This is (-l)‘-lrI&/(l - C3,g a,), as desired. Let [ I \  = s, and 
assume that s < r .  The number of subsets of (1,. . . , T }  that contain I where 111 = t is 
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0, if t < 8 ,  and ( 1: ) otherwise. So the total contribution of the expression EI by 

proper substrings Y of A1 . . .  A, of length t is (-l)f-"+' [ 'I 1 ," ) Er. Hence, the grand 

total contribution is L 

Note that the largest index of the sum is t = r - 1 rather than t = r ,  since in (2) we 
consider only proper substrings Y .  By changing index, this value is 

' 

Now xi;;( -1)"f' ( ' ) = 0, since it is -1 times the binomial expansion of (1 -l)r-s. 

So (7) equals ( - ly-$E~,  that is, (-l)r-lrlE~, as desired. 

(4) is nonnegative. Dividing through by &, we see that we must show that 
To prove that m" is nonnegative, we now need only show that the right-hand side of 

Note that each a, is positive, and xi=, aJ < 1 (since p1 > 0, and the sum of the aJ's 
and P, 's is at most 1). 

Since 0 5 CIEIa, < 1, it follows that 1/(1 - C,,Ia,) = Czo(C3EIa3)k, where we 
interpret ( ~ J ~ ~  a,)' to be 1, even when CJEI cyJ = 0 (which occurs when I = 8). So we 
need only show that for each r and k, 

Define fr,k to be a function with T arguments, with domain those tuples (a l ,  . . . ,a,) 
where each a, is nonnegative, and 

(where we make the convention that if r = 0, then fr,k is a constant function that is equal 
to 0, with no arguments). To prove (9), we need only show that each fr,k is nonnegative. 
Define gr,k to be a function with the same domain as fr,k, and 

, 

if r > 0 (and as before, 0 if r = 0). 
We shall show, by induction on r ,  that for every k, the functions fr,k and gr,k are non- 

negative. The base case ( r  = 0) is immediate. Assume inductively that T 2 1, and that 
fr-1,k and gr- l ,k  are nonnegative for every k. We now show, by a second induction on k, 
that ft,k and gr,k are nonnegative. For the base case (k = 0), note that f r ,o (a l , .  . . ,a,) = 
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~ ~ ~ { l , , , , , ~ } ( - l > ' - l I l ,  which equals 0, since it is the same as the binomial expansion of 
(1 - I>'. Now g r . o ( a 1 , .  . . , a r )  = ~ I ~ { l , . . . , r } , r ~ ~ ( - l y - ' I '  = EI~~{I, . . . ,~-I}  (-1)r-l-II'l = 
fr-l,O(al,. . . , a,-1) ,  so also gr,o is nonnegative. 

For the inductive step, assume that fr,k-l and gr,k-l  are nonnegative. To show that 
fr,k and gr,k are nonnegative, we shall show that f r ,k (a l  ,..., a,) and g , , k ( a l ,  ..., a,.) 
are nonnegative when a, = 0, and that the first derivatives with respect to  a, are 
nonnegative. 

If a, = 0, then 

f r , k ( a l , . .  . ,a,) = c (-l)r-"'(zaj)k 
K{l% ..., r} &I 

- - c (-ly-l+"(E a j ) k  c ( - 1 y - q E a j ) k  

I'c{l, ..., r-1} j € I '  I c { l ,  ..., r-I} &I 

f r - l , k ( a l , .  . . , a v - 1 )  - f r - l , k ( a l , .  . . ,%-I) = 

= 0. 

If a, = 0, then g + , k ( a l , .  . . ,a,) = f r - l , k ( a l , .  . . , 

As for the derivatives: The derivative of f r , k ( a l , .  . . , a,) with respect to a, is 

which by inductive assumption 
on r is nonnegative. 

k ( - l ~ - l " ( ~ a , ) k - l  = k g F , k - i ( a l , . .  . ,a,), 
Ic{l, ..., r},r€I J E I  

which is nonnegative by inductive assumption on k. The derivative of g , , k ( a l , .  . . , a,) with 
respect to  a, is k g r , k - l ( a l , .  . . , ar), which again is nonnegative by inductive assumption 
on k. 

We conclude with a few remarks on some technical details from the proof of our result. 
By Proposition 3.1, a belief function on a finite sample space uniquely determines the 
mass function. Therefore, the mass function constructed in the previous proof is uniquely 
determined. It is interesting to consider which sets have positive mass; these are what 
Shafer calls the focal elements. In the construction, we saw that the only sets that were 
possibly assigned positive mass are sets of the form B; U Aj, U . . . U Aj,, where the B;'s 
and A;'s are as in the previous proof. Do all of these sets indeed have positive mass? As 
we now show, the answer is yes: that is, m'(A) > 0 iff A is of the form B,UA,, U. - .U Aj,. 

If A is B;, then m'(A) = ,B; > 0, so we can assume that A is of the form B; U Aj, U 
. . . U Aj, where s > 0. We need only show that if r and al, . . . , or are each positive, then 
f r , k ( a l , .  . . , ar) > 0 for some k,  where fr,k is as in the previous proof. In fact, we shall 
show that under these assumptions, f,,,(al,. . . ,a,) > 0. 

To prove this, we show by induction on r 2 1 that if al, . . . ,a, are each positive, 
then g,,v.-i(al,. . . ,ar) > 0 and fr,r(al,. . . ,ar )  > 0. As for the base case T = 1, we have 
that gi,o(ai) = 1 and fi,l(al) = al, so both are positive if a 1  > 0. Assume inductively 
that r 2 2, and that gr--l,r-2(a;, . . . ,a;-l) > 0 and f v - l , , - l ( a i , .  . . ,a;-l) > 0 whenever 
a;, . . . , a: are each positive. 

If a, = 0, then gr,?-l(ai,. . . , a,) = f , - 1 , ~ - 1 ( a 1 , .  . . , a,-1) ,  which by inductive assump- 
tion is positive if al, . . . , ar-l are each positive. Since the derivative of g 7 , r - 1 ( a l , .  . . , a,) 
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is, as we saw, nonnegative, it follows that gr ,+- l (a l , .  . .,a,) > 0 whenever al,  . . . , a,-l 
are each positive, and in particular whenever al, . . . ,a, are each positive. 

The derivative of f,,r(al,. . . ,a,) with respect to  a, is, as we saw, rg7,,-1(a1,. . . ,at.), 
which, as we just showed, is positive if 0 1 , .  . . ,a,  are each positive. Since, as we saw, 
f , ,?(a~,. . . , u,) is nonnegative when a, = 0, it then follows that f,,,(a1,. . . ,a,) is positive 
when a ~ , .  . . ,a, are each positive, as we now show. If instead, fr,r(al,. . . , a r )  = 0, 
then since the derivative at a: when 0 5 a: _< a, is nonnegative, it would follow that 
f7,r(al, .  . . , cx-1, a:) = 0 when 0 5 a: 5 a,. But then the derivative at a: when 0 < a: < 
a, would be 0, whereas we showed that the derivative is positive when a ] ,  . . . , a7-1, a: 
are each positive. 

, 

~ 
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