
Simple Conditions for Guaranteeing Higher
Normal Forms in Relational Databases

C. J. DATE
Independent Consultant

and

RONALD FAGIN

IBM Almaden Research Center

A key is simple if it consists of a single attribute. It is shown that if a relation schema is in third

normal form and every key is simple, then it is in projection-join normal form (sometimes called

fifth normal form), the ultimate normal form with respect to projections and joins. Furthermore,
it is shown that if a relation schema is in Boyce-Codd normal form and some key is simple, then
it is in fourth normal form (but not necessarily projection-join normal form). These results give

the database designer simple sufficient conditions, defined in terms of functional dependencies
alone, that guarantee that the schema being designed is automatically in higher normal forms.

Categories and Subject Descriptors: H.2. l[Database Management]: Logical Design—normal

forms

General Terms: Design, Theory

Additional Key Words and Phrases: Boyce-Codd normal form, BCNF, database design, fifth
normal form, 5NF, fourth normal form, 4NI?, functional dependency, join dependency,
projection-join normal form, PJ/NF, multivalued dependency, normalization, relational database,
simple key

1. INTRODUCTION

In his first papers on the relational model, Codd [4, 5] observed that relation

schemas in which certain patterns of functional dependencies occur exhibit

undesirable behavior. He defined various normal ~orms where this undesir-

able behavior does not occur. The strongest (most restrictive) such normal

form that he defined then is third normal form (3NF). Later Codd [6] defined

an “improved third normal form”, usually called Boyce-Codd normal form

(BCNF), which is stronger still. He discussed ways to normalize, that is, to

convert relation schemas not in a given normal form into ones that are, by

Authors’ addresses: C. J. Date, P.O.B. 1000, Healdsburg, CA 95448; R. Fagin, IBM Almaden
Research Center, 650 Harry Road, San Jose, CA 95120.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Aesocie.kion for Compd+ Machinmy. T& copy otherwise, or to republish, requiro~ a fee andjor
specific permission.
@ 1992 ACM 0362-5915/92/0900-0465 $01.50

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992, Pages 465-476.

466 . C. J. Date and R. Fagln

making use of the projection and join operators. Fagin [8] observed that even

BCNF relation schemas may have some of the anomalous behavior that

Codd’s normal forms were intended to prevent. By making use of multiualued

dependencies, Fagin [8] defined a new fourth normal form (4NF), which is

even stronger than BCNF. Later, by making use of join dependencies [10],

Fagin [9] defined projection-join normal form (PJ/NF), sometimes called

fifth normal form (5NF), which is stronger than 4NF, and which is the

“ultimate” normal form, when only the projection and join operators are

allowed.

Nearly every textbook on databases discusses 3NF, many consider BCNF

and 4NF, and a number of them also discuss PJ/NF. There tends to be a

problem with presentations of higher normal forms, namely 4NF and PJ/NF,

both in print and in live seminars :1 Either they are excessively concerned

with the formalism, giving accurate and precise definitions of the higher

normal forms, but very little in the way of practical insight, or else they fall

into the opposite trap and make statements that are so imprecise and

inaccurate as to be virtually useless.

The problem is that 4NF and PJ/NF are defined in terms of multivalued

dependencies and join dependencies, which are harder to understand than

functional dependencies. ‘l’he purpose of this paper is to give some easy-to-un-

derstand conditions, which are defined in terms of functional dependencies

alone, and that hold in a wide class of situations, that are sufficient to

guarantee higher normal forms. In particular, we show that if a relation

schema is in third normal form and every key is simple (that is, consists of a

single attribute), then it is in projection-join normal form. Furthermore, we

show that if a relation schema is in Boyce-Codd normal form and some key is

simple, then it is in fourth normal form (but not necessarily projection-join

normal form). These results give conditions that are easy for the practitioner

to understand and that are sufficient to guarantee the higher normal forms.

Thereby, they provide a practical database design guideline, which may make

the database designer’s job a little easier. These results are also useful for the

database instructor, who can give the class practical situations in which

projection-join normal form can be achieved, without requiring knowledge of

multivalued dependencies or join dependencies.

In Section 2, we give an informal description of our results. In Sections 3,4,

and 5, we proceed formally. In Section 3, we give definitions. In Section 4, we

prove that if a relation schema is 3NF and every key is simple, then the

relation schema is PJ/NF. In Section 5, we consider the effect of assuming

only that some key is simple, rather than euery key is simple. We show th~t
if a relation schema is BCNF and some key is simple, then the relation

schema is 4NF. However, we show by a counterexample that if a relation

schema is BCNF, and some key is simple, then it is not necessarily PJ/NF.

Sections 3, 4, and 5 can be skipped by those interested only in the results but

not the proofs.

1The authors of this paper include their own presentations in this regard!

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

Simple Conditions for Guaranteeing Higher Normal Forms in Databases . 467

2. INFORMAL DISCUSSION OF RESULTS

Normal forms can be thought of as “good” ways to structure relations in a

relational database. As Codd explained in his early work, “good means that

certain anomalous behavior does not occur. There are various levels of

normalization. The higher the normal form, the more desirable it is. Normal-

ization is a process to convert the relation schema (the structure of the

relations, along with the integrity constraints) into a higher normal form.

Nearly every textbook on databases discusses normalization through third

normal form (3NF). There are a number of essentially equivalent definitions

of 3NF. For the purposes of our discussion, a convenient definition of 3NF

says that if A is an attribute that functionally depends on some set X of

attributes (written X + A) then either (1) A is in X (so the dependence is

trivial), (2) X contains a key (so X functionally determines euery attribute),

or (3) A is part of a key. If we eliminate the third clause, then we obtain the

stronger (more desirable) Boyce-Codd normal form (BCNF). Thus, BCNF

demands that the only nontrivial functional dependencies are the result of

keys. 3NF is a little less demanding: It allows a nontrivial functional depen-

dency X + A if A is part of a key. The reason this might be reasonable is

that in passing from 3NF to BCNF, the normalization process would split up

a key, which may not be desirable.

Normal forms are intended to correspond to “goodness”. However, even

though a relation schema is BCNF, it may still have some of the same

problems that normalization was intended to prevent. Let us consider an

example from Date [7] of a schema that is BCNF but not 4NF. There are

attributes COURSE, TEACHER, and TEXT. A sample instance is in Figure

1. The semantics are as follows. A tuple (c, t,x) appears in the relation if and

only if course c can be taught by teacher t and uses text x as a reference. For

a given course, there can exist any number of corresponding teachers and any

number of corresponding texts. It is assumed that teachers and texts are

independent of each other; that is, no matter who actually teaches any

particular offering of the given course, the same texts are used. This example

is BCNF, since it is “all key” (no proper subset of the three attributes is a

key). However, it is still not structured in a good way. This is because, for

example, the information that Professor Green teaches physics appears twice,

once for each physics textbook. This redundancy may lead to inconsistencies.

Fourth normal form (4NF) is intended to remedy the problem, as we now

discuss.

The functional dependency of TEACHER on COURSE, i.e., COURSE +

TEACHER, does not hold, since a course maybe taught by multiple teachers.

However, there is a “multivalued dependency” of TEACHER on COURSE

(written COURSE ~ - TEACHER), and similarly a multivalued dependency

COURSE + - TEXT. For the schema to be 4NF, every multivalued depen-

dency must be a consequence of keys. This is not the case here, so the relation

schema is not 4NF. However, by decomposing it into two relation schemas,

one with attributes COURSE and TEACHER, and another with attributes

COURSE and TEXT, as in Figure 2, we obtain 4NF.

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

468 . . C. J. Date and R. Fagm

COURSE

Physics

Physics

Physics

Physics

Math

Math

Math

TEA CHER

Prof. Green

Prof. Green

Prof. Brown

Prof. Brown

Prof. Green

Prof. Green

Prof. Green

TEXT

Basic Mechanics

Principles of Optics

Basic Mechanics

Principles of Optics

Basic Mechanics

Vector Analysis

Trigonometry

Fig. 1. BCNF but not 4NF.

m COURSE

Physics

Physics

Math

Math

Math

TEXT

I
Basic Mechanics

Principles of Optics

Basic Mechanics

Vector Analysis

Trigonometry

Fig, 2. Decomposing to obtain 4NF.

Although it is certainly possible to give a formal, precise definition of

multivalued dependencies (and of 4NF), the problem is that multivalued

dependencies are not as intuitive as functional dependencies. Indeed, if the

concept is stated too informally (such as, “there is a multivalued dependence

of Y on X if for each X, there is a set of Y’s”), then one could incorrectly

conclude that for euery pair X, Y, there is a multivalued dependency X + +

Y. This make it difficult for practitioners to understand multivalued depen-

dencies and 4NF (which is defined in terms of multivalued dependencies).

We are now ready to discuss the contributions of this paper. We refer to a

key consisting of a single attribute as simple. One of our results is that

BCNF, along with some key being simple, implies 4NF. Thus, the only

possible “counterexamples” of schemas that are BCNF but not 4NF have the

property that every key is a compound key, consisting of more than one

attribute. This gives us a condition involving only functional, and not multi-

valued dependencies, that guarantees 4NF.

As we noted earlier, the COURSE-TEACHER-TEXT example we gave, that

is BCNF but not 4NF, is all key. In fact, an examination of handbooks on

database design and similar documents reveals that examples of schemas

that are BCNF but not 4Nl? always seem to be of this same general form, and

in particular all key. In some sense, the examples are all really the same

example. This might lead us to believe that every example of a relation

schema that is BCNF but not 4NF is necessarily all key. However, this is not

the case. We can simply modify our COURSE-TEACHER-TEXT example by

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

Simple Conditions for Guaranteeing Higher Normal Forms in Databases . 469

adding a constraint that a given teacher cannot use the same text in more

than one course (this corresponds to adding the functional dependency

{TEACHER, TEXT} + COURSE). Then {TEACHER, TEXT} is a key, and in

particular this example is not all key. Since the multivalued dependence

COURSE + + TEACHER is not a consequence of keys, the schema is still

not 4NF, although it is BCNF.

We just saw by an example that the conjecture is false that every schema

that is BCNF but not 4NF is all key. What our two examples of schemas that

are BCNF but not 4NF do have in common is that in each case, there is only

one key ({COURSE, TEACHER, TEXT} in the first example, and {TEACHER,

TEXT} in the second example), and these keys are compound. More generally,

we show that in every schema that is BCNF but not 4NF, every key is

compound. Or, putting it another way, we show that if a schema is BCNF and

some key is simple, then it is 4NF.

So far in this section, we have discussed normal forms through 4NF. There

is a still higher normal form, called projection-join normal form (PJ/NF) or

sometimes fifth normal form (5NF), which is the “ultimate” normal form as

far as decomposing with respect to projections and joins is concerned. Just as

4NF is defined by using multivalued dependencies, PJ/NF is defined by

using join dependencies, which are also somewhat hard for the practitioner to

understand. Once again, we can give simple conditions, which we now

describe, that are defined using functional dependencies alone, that are

sufficient to guarantee PJ\NF.

As we have discussed, the assumptions that

(1) the relation schema is BCNF, and

(2) some key is simple

are enough to guarantee 4NF. However, as we show later, these assumptions

are not sufficient to guarantee PJ/NF. But if we strengthen the second

assumption by assuming that euery (not just some) key is simple, then we

can show that this is enough to guarantee PJ/NF. In fact, we can then even

weaken the first assumption by assuming only that the relation schema is

3NF, rather than assuming BCNF. Thus, we show that the assumptions that

(1) the relation schema is 3NF, and

(2) every key is simple

are enough to guarantee PJ/NF. For those database designers who are most

comfortable with 3NF, this gives them an additional condition (that every key

is simple) which, when combined with 3NF, automatically guarantees PJ\NF.

This concludes the informal part of this paper. Those who are interested in

formal definitions and proofs can read on.

3. DEFINITIONS

We are given a fixed finite set U of distinct symbols, called attributes, which
represent column names of a relation. If X and Y are sets of attributes, then

we may write XY for X u Y. If X = {Al, A.}, then we may write

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

470 . C, J, Date and R. Fagln

Al . . . A. for X. In particular, we may write simply A to represent the

singleton set {A}.

Let T be a set of attributes (that is, a subset of U). A T-tuple (or simply

tuple, if T is understood) is a function with domain T. Thus, a T-tuple is a

mapping that associates a value with each attribute in T. A relation (over T)

is a set of T-tuples. If s is a U-tuple, then S[T] denotes the T-tuple obtained

by restricting the mapping s to T.

Assume that the relations Rl, R. are over attribute sets TI, T.

respectively. The join of the relations RI, . . . , R ~, which is written

M{ RI,..., R.}, is the set of all tuples s over the attribute set TI u . . . u T.

such that S[T,] is in R, for each i. (Our notation exploits the fact that the join

is associative and commutative.)

A functional dependency (FD) [5] is a statement of the form X G Y, where

X and Y are sets of attributes. The FD X + Y is said to hold for a relation R

if every pair of tuples of R that agrees on each of the attributes in X also

agrees on the attributes in Y. That is, the FD X - Y holds for relation R if

whenever s and t are tuples of R where s[X] = t[X], then s[Y] = t[Y].

A multivalued dependency (LTVD) [8] is a statement of the form X + + Y,

where X and Y are sets of attributes. Let Z be the set of attributes not in X

or Y, that is, Z = U — XY. The MVD X - - Y is said to hold for a relation

R if whenever there are tuples s and t of R where S[X] = t [X], then there is

a tuple u of R where ZL[XY] = S[XY] and U[Z] = t[Z]. Later, we shall make

use of the simple fact [2] that the MVD X + + Y is equivalent to the MVD

X - + (Y – X). In this way, we can replace an MVD by an equivalent MVD

where the left-hand side and right-hand side are disjoint.

A join dependency (JD) [10] is a statement of the form M {Xl,. . . . X.},

where Xl, X. are sets of attributes. The JD M {Xl,. . . . X.} is said to

hold for a relation R if R = M{ RIXI], . . . , R[X.]}. We shall make use later

of the simple fact [8] that the JD M {Xl, Xz} is equivalent to the MVD

Xln Xz-+Xz.

If Z is a set of dependencies and u is a single dependency, then S logically

implies w (or c is a logical consequence of Z) if every relation that satisfies z

also satisfies a. Thus, Z logically implies CT if there is no “counterexample

relation” that satisfies X but not u. As an example, the set {A + B, B + C}

of FD’s logically implies the FD A + C (this is called transitivity). As another

example, the FD X + Y logically implies the MVD X + + Y. A dependency

is trivial if it is valid, that is, a logical consequence of the empty set. For
example, the FD A + A is trivial, since every relation where one of the

attributes is A satisfies this dependency. It is straightforward to verify that

an FD X + Y is trivial if and only if Y c X; an MVD X + + Y is trivial if

and only if either Y = 0 or X U Y = U; and a JD M {Xl, X.} is trivial if

and only if Xi = U for some i.

A relation schema is a pair (U, Z), where U is a set of attributes and Z is

a set of dependencies involving only these attributes. Thus, a relation schema

describes the attributes U, along with the dependencies, where they are

ACM TransactIons on Database Systems, Vol. 17, No, 3, September 1992.

Simple Conchtlons for Guaranteeing Higher Normal Forms in Databases . 471

thought of as constraints. A dependency v is a dependency of the schema

(U, Z) if cr involves only attributes in U, and if u is a logical consequence of

Z. A key (sometimes called candidate key) of a schema is a set K of

attributes such that (a) the FD K + U is an FD of the schema, and (b) if K‘

is a proper subset of K, then K’ + U is not an FD of the schema. A superkey

is a superset of a key. Thus, K is a superkey precisely if the FD K + U is an

FD of the schema. An FD K + U, where K is a key of the schema, is called a

key dependency (KD).

We now define the various normal forms that we shall consider in this

paper, in increasing order of strength.

Third normal form was originally defined by Codd [5]. In this paper, we

shall make use of Zaniolo’s [11] definition of third normal form, which is

equivalent to Codd’s, but is easier to use for our purposes. To define third

normal form, we need another definition. In a relation schema, an attribute is

a key attribute (sometimes called a prime attribute) if it is contained in some

key. Otherwise, it is a nonkey attribute. A relation schema is in third normal

form (31W0 if whenever X - A is a nontrivial FD of the schema, where A is

a single attribute, then either X is a superkey or A is a key attribute.

A relation schema is in Boyce-Codd normal form (BCNF) [6] if whenever
X + Y is a nontrivial FD of the schema, necessarily X is a superkey. It is

shown by Fagin [9] that a relation schema is BCNF if and only if every FD of

the schema is a logical consequence of the set of key dependencies of the

schema.

A relation schema is in fourth normal form (4NF) [8] if whenever X + - Y

is a nontrivial MVD of the schema, necessarily X is a superkey. It is shown

by Fagin [9] that a relation schema is 4NF if and only if every MVD of the

schema is a logical consequence of the set of key dependencies of the schema.

A relation schema is in projection-join normal form (PJ/NF) [91, some-

times called fifth normal form (5NF), if every JD of the schema is a logical

consequence of the set of key dependencies of the schema.

4. ASSUMING EVERY KEY IS SIMPLE

In this section, we prove that a simple condition, involving only functional

dependencies, and one that holds in a wide class of situations, guarantees

PJ/NF. Specifically, we show:

THEOREM 4.1. Assume that a relation schema is 3NF, and that every key

is simple. Then the relation schema is PJ/NF.

To prove this theorem, there are two steps. We first show that under the

hypotheses of the theorem, the relation schema is BCNF (this is very easy to

show). We then prove the harder result that if a relation schema is BCNF,

and every key is simple, then it is PJ/NF.

The next lemma is the first step in the proof of Theorem 4.1.

LEMMA 4.2. Assume that a relation schema is 3NF, and that every key is

simple. Then the relation schema is BCNF.

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

472 . C. J. Date and R. Fagin

PROOF. Let X + A be a nontrivial FD of the schema, where A is a single

attribute. Assume that the schema is 3NF. To show that it is BCNF, it is

sufficient to show that X is a superkey. Since the schema is 3NF, either X is

a superkey, or A is a key attribute. If A is a key attribute, then A is a key

itself, since by assumption, every key is simple. Since X + A is an FD of the

schema, it follows that X is a superkey. So in any case, X is a superkey. This

was to be shown. ❑

If M{ Xl,..., Xn } is a JD, then we refer to the XL’S as components of the

JD. We shall make use of the following simple lemma, whose proof is

straightforward.

LEMMA 4.3. [3] Let JI be a JD, and let Jz be a JD obtained from JI by

replacing two components of JI by their union. Then JI logically implies Jz.

As an example of Lemma 4.3, the JD M {ABC, AD, BC, CE} logically implies

the JD N {ABC, AD, BCE}, where we replace the components BC and CE

by their union BCE.

We shall also make use of the following Membership Algorithm for deter-

mining whether a given JD is a logical consequence of a set of KD’s. The

correctness of the algorithm is stated in Fagin [9]; it also follows from the

results of Aho et al. [1].

Theinputisa JD H {Xl,.. ., X~}andaset{KU, U,.. ., K~+U}of

KD’s. Initialize set&as {Xl,. . ., Xn}. Apply the following rule until it can be

no longer applied: if K1 c Y n Z for some key K1 (1 < i < s) and for some

members Y and Z of ~, then replace Y and Z in ~ by their union, that is,

remove the sets Y and Z from & and add to & the single member Y U Z. (In

particular, the number of members of W then decreases by one.) Let

{Y,,.. ., Y,} be the final result. Then M {XI,... , X~} is a logical consequence

of theset{Kl - U, ..., K, + U} of KD’S precisely if some ~ equals the set U

of all attributes.

Example. Assume that the attributes are U = {A, B, C, D}, and that the

input consists of the JD N {AB, AD, BC} and the KD’s A + U and B + U.

We now show, by using the Membership Algorithm, that the JD is a logical

consequence of the KD’s. Initialize & as {AB, AD, BC}. Since A + U is a KD

and since AB and AD are in Y, we replace AB and AD in P by ABD. At

this stage, F is {ABD, BC}. Since B + U is a KD and since ABD and BC

are in 9, we replace ABD and BC by ABCD. We are left with P = { ABCD}

= {V}. So the Membership Algorithm tells us that, indeed, the JD
w {All, AD, BC} is a logical consequence of the set {A + U, B + U} of KD’s.

❑

The next lemma is the second (and final) step in the proof of Theorem 4.1.

LEMMA 4.4. Assume that a relation schema is BCNF, and every key is

simple. Then the relation schema is PJ/NF.

PROOF. Assume that the relation schema is BCNF, and every key is

simple. We wish to show that the schema is PJ/NF. Assume not. Then there

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992

Simple Conditions for Guaranteeing Higher Normal Forms In Databases . 473

isa JD~{Xl, . . ., Xn} of the schema that is not a logical consequence of the

KD’s.

Let {Yl,. . . . Yr} be the final result after applying the Membership Algo-
rithm with the JD w {Xl, . . ., X~} and the KD’s of the schema as the input.

Since, by assumption, M {Xl,..., X~} is not a logical consequence of the

KD’s, it follows from the Membership Algorithm that none of the YZ’S equals

the set U of all attributes. Note also that it follows from repeated applications

of Lemma 4.3 that the JD M {Xl, X~} logically implies the JD

w {Yl, . . ., Y,}.

By assumption, every key is simple. Since every relation schema has at

least one key, it follows in particular that there is some simple key. Let A be

an attribute that is a simple key. Then A is in exactly one Y,. This is because

A is certainly in at least one Yi, since the union of the ~’s is the set U of all

attributes. Further, A cannot be a member of both YZ and Y~, where i #j,

because the procedure would have replaced Y, and Y~ by Y, u Yj, since A is a

key.

Without loss of generality, let YI be the Yi that contains A. Define

W= Y2 U... U Y, to be the union of all of the Y,’s except for Yl; there is at

least one such ~, since as we noted above, none of the ~’s equals the set U of

all attributes, and in particular YI + U. By Lemma 4.3 applied repeatedly, it

follows that the JD M {Yl, W} is a logical consequence of M {Xl,. . . . Xn}. As

we noted earlier, the JD M {Yl, W} is equivalent to the MVD YI n W + + W.

Therefore, the MVD YI n W + + W is an MVD of the schema.

We now make use of the following inference rule for functional and

multivalued dependencies, which is a special case of the inference rule

FD-MVD2 in the complete axiomatization of Beeri et al. [2] for FD’s and

MVD’S.

(*) If X + + Z and Y + Z, where Y and Z are disjoint, then X + Z.

Let X be YI n W, let Y be A, and let Z be W. We now show that we can

apply the inference rule (*) to derive an FD of the schema.

(l) X++ Zisani’hlVD of the schema: Here X~-Zis Yln W~~W,

which we showed above is an MVD of the schema.

(2) Y - Z is an FD of the schema: Here Y - Z is A + W, which is an FD of
the schema, since A is a key.

(3) Y and Z are disjoint: Here Y and Z are A and W, respectively. We saw
above that A is in precisely one of the Y,’s, namely YI. Since W = Yg
u . . . u Y, (the union of all of the Y,’s except for Yl), it follows that

A G W. Thus A and W are indeed disjoint.

It follows from inference rule (*) that X ~ Z, that is, YI n W + W, is an FD

of the schema. We now show that the FD YI n W + W is nontrivial, that is,

W is not a subset of YI n W. If W were a subset of YI n W, then W would be

a subset of Y1. Since YI u W = YI u Y2 u “o. u Y. = U, it would follow that
YI = U, which we have shown is not the case. So indeed, the FD YI n W + W

is nontrivial. Since it is an FD of the schema, and since the schema is BCNF,

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

474 . C. J. Date and R, Fagin

it follows that YI n W is a superkey. Since by assumption, every key is

simple, it follows that YI n W contains some simple key B. Since B ● YI n
WGW=Y2U .. . U Y,, we know that B = ~ for somej with2 <j < r. But

also, B = YI n W c Y1. Thus, B is a member of both YI and Yj. But this is

impossible, because the procedure would have replaced YI and Yj by YI U Y~,

since B is a key. ❑

Theorem 4.1 now follows from Lemmas 4.2 and 4.4.

5. ASSUMING SOME KEY IS SIMPLE

The assumption that every key is simple is fairly strong. In this section, we

show that we can sometimes get by with the weaker assumption that some

key is simple. In particular, we show that every BCNF relation schema where

some key is simple is 4NF. However, we show by a counterexample that there

is a BCNF relation schema where some key is simple that is not PJ/NF.

In order to prove that every BCNF relation schema where some key is

simple is 4NF, we make use of the following lemma, which gives us informa-

tion about the structure of a relation schema that is BCNF but not 4NF.

Recall that if a relation schema is not 4NF, then there is a nontrivial MVD
V ~ + W of the schema where V is not a superkey.

LEMMA 5.1. Assume that a relation schema is BCNF but not 4NF. Let

V + + W be a nontrivial MVD of the schema where V is not a superkey. Let

W‘ be the set of attributes not in V or W. Then every key of the schema

contains a member of W and a member of W’.

PROOF. As we noted earlier, we can assume without loss of generality that

V and W are disjoint (by replacing W by W – V if necessary), so that each

attribute is in exactly one of V, W, or W‘. If the assumptions of the lemma

hold but not the conclusion, then let K be a key of the schema that does not

contain both a member of W and a member of W‘. The roles of W and W‘ are

symmetric, since V + + W’ is also a nontrivial MVD of the schema. There-

fore, without loss of generality, we can assume that K does not contain a

member of W, that is, K and W are disjoint. Now K + W is an FD of the

schema, since K is a key. Let X be V, let Y be K, and let Z be W. We now

show that we can apply the inference rule (*) to derive and FD of the schema.

(1) X + + Zis an MVD of the schema: Here X + - Z is V + + W, whichby

assumption is an MVD of the schema.

(2) Y * Z is an FD of the schema: Here Y G Z is K * W, which is an FD of
the schema, since K is a key.

(3) Y and Z are disjoint: Here Y and Z are K and W, respectively, which by

assumption are disjoint.

If follows from inference rule (*) that X - Z, that is, V + W, is an FD of the

schema. Since the schema is BCNF and W is not a subset of V, it follows that

V is a superkey. This is a contradiction. ❑

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992,

Simple Conditions for Guaranteeing Higher Normal Forms in Databases . 475

As an example of Lemma 5.1, let us consider our two COURSE-

TEACHER-TEXT examples from Section 2. In both of these, the MVD

COURSE - + TEACHER holds. In Lemma 5.1, we can take V, W, and W‘ to

be singleton sets consisting of COURSE, TEACHER, and TEXT respectively.

Therefore, Lemma 5.1 tells us that each key must contain {TEACHER,

TEXT}. Indeed, in our first COURSE-TEACHER-TEXT example, there is only

one key, namely {COURSE, TEACHER, TEXT}, and in our second COURSE-

TEACHER-TEXT example, there is only one key, namely {TEACHER, TEXT}.

We can now prove:

THEOREM 5.2. Assume that a relation schema is BCNF, and some key is

simple. Then the relation schema is 4NF.

PROOF. Assume that a relation schema is BCNF but not 4NF; we shall

show that no key is simple. Since the schema is not 4NF, it has a nontrivial

MVD V + + W where V is not a superkey. Let W’ be the set of attributes

not in V or W. Since the MVD V + + W is nontrivial, it follows that W and

W‘ are nonempty. By Lemma 5.1, every key of the schema contains a member

of W and a member of W‘. Since W and W‘ are nonempty and disjoint, it

follows that no key is simple. This was to be shown. ❑

Counterexample. We cannot replace “4NF’ by “PJ/NF” in Theorem 5.2,

as the following counterexample shows. Let the schema have attributes

U = {A, B, C, D}. Let the dependencies of the schema be the logical conse-

quences of the KD’s A + U and BC + ?7 and the join dependency

M {ABC, BD, CD}. Although one of the keys is simple, one of the keys is not.

We now show that the only nontrivial F~’s X + Y of the schema are those

where X contains either A or both of B and C (that is, we show that any FD

not of this form is not a logical consequence of {A + U, BC + U,

w {ABC, BC, CD}}). It is easy to see that the only subsets X of {A, B, C, D}

where X contains neither A nor both of B and C are subsets of {B, D} and

subsets of {C, ~}. So we must show that if X c {B, D} or X L {C, D}, and Y is

not a subset of X, then X - Y is not an FD of the schema. By the symmetric

role of B and C, we can restrict attention to the case where X G {B, D}. If

X + Y were a nontrivial FD of the schema, then it is straightforward to

verify that one of four FD’s B + D, D + B, BD + A, or BD + C would be

an FD of the schema. However, consider the 2-tuple relation where one tuple

has O’s in every entry, and the other tuple has O’s as the B and D entries, but

1’s as the A and C entries. It is straightforward to verify that this relation

satisfies all of the dependencies of the schema, but neither of the FD’s

B~ + A nor B~ + c. similarly a 2-tuple relation where one tuple has O’S in

every entry, and the other tuple has O’s as the B (respectively, D) entry, but

1’s as all the other entries, satisfies all of the dependencies of the schema, but

not the FD B + D (respectively, D + B).

From what we just showed, it follows that the relation schema is BCNF. By

applying the Membership Algorithm given above, we see that the JD

w {ABC, BD; CD} is not a logical consequence of the KD’s A + u and

BC + U. SO the relation schema is not in PJ/NF. ❑

ACM Transactions on Database Systems, Vol. 17, No. 3, September 1992.

476 . C. J. Date and R. Fagin

ACKNOWLEDGMENTS

The authors are grateful to Shuky Sagiv and Moshe Vardi for helpful

comments.

REFERENCES

1. AHO, A. V., BEERI, C., AND ULLMAN, J. D. The theory of joins in relational data bases. ACM

Trans. Database Syst. 4, 3 (Sept. 1979), 297-314,
2. BE~RI, C., FAGJN, R,, AND HOWARD, J. H. A complete axiomatization for functional and

multivalued dependencies in database relations. In proceedings of the 1977 ACM SIGMOD

Conference, D. C. P. Smith, Ed,, pp. 47-61.
3. BEERI, C., AND VARDI, M. Y. On the properties of join dependencies. In Advances In

Databases—Vol. 1, H. Gallaire, J. Minker, and J. M. Nicolas, Eds.j Plenum Press, 1981, pp.

25-72.
4. CODD, E. F. A relational model of data for large shared data banks. Commun. ACM 13, 6

(June 1970), 377-387.

5. CODD, E. F. Further normalization of the data base relational model. In Courant Computer

Science Symposium 6: Data Base Systems, R. Rustin, Ed., Prentice-Hall, 1972, pp. 33-64.

6. CODD, E. F. Recent investigations in relational data base systems. In Information Process-

ing 74, North-Holland, 1974, pp. 1017–1021.
7. DATE. C. J. Further normalization. In An Zntroductzon to Database Systems: Volume 1, Ch.

21, 5th edition, Addison-Wesley, 1990.
8. F.AGIN, R. Multivalued dependencies and a new normal form for relational databases. ACM

Trans. Database Syst. 2, 3 (Sept. 1977), 262-278,

9. FAGIN, R. Normal forms and relational database operators. In Proceedings of the 1979 ACM

SIGMOD Conference, P. A. Bernstein, Ed., pp. 153-160.
10, RISSANEN, J. Theory of relations for databases—a tutorial survey. In Proceedings of the 7th

Symposwm on Mathematical Foundation of Computer Science, Lecture Notes in Computer

Science 64, Springer-Verlag, 1978, pp. 537-551.
11. ZANIOLO, C. A new normal form for the design of relational database schemata, ACM

Trans. Database Syst. 7, 3 (Sept. 1982), 489-499.

Received April 1991; revised August 1991; accepted August 1991

ACM TransactIons on Database Systems, Vol. 17, No. 3, September 1992

