
A Simplified Universal Relation Assumption
and Its Properties

RONALD FAGIN

IBM Research Laboratory

ALBERT0 0. MENDELZON

IBM Research Center

and

JEFFREY D. ULLMAN

Stanford University

One problem concerning the universal relation assumption is the inability of known methods to obtain
a database scheme design in the general case, where the real-world constraints are given by a set of
dependencies that includes embedded multivalued dependencies. We propose a simpler method of
describing the real world, where constraints are given by functional dependencies and a single join
dependency. The relationship between this method of defining the real world and the classical
methods is exposed. We characterize in terms of hypergrapbs those multivalued dependencies that
are the consequence of a given join dependency. Also characterized in terms of hypergraphs are those
join dependencies that are equivalent to a set of multivalued dependencies.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic; G.2.2 [Discrete Mathematics]: Graph Theory-graph algorithms; trees; H.2.1
[Database Management]: Logical Design--normal forms; schema and subschema; H.3.3. [Infor-
mation Storage and Retrieval]: Information Search and Retrieval-query formulation

General Terms: Algorithms, Design, Languages, Management, Theory

Additional Key Words and Phrases: Acyclic, hypergraph, database scheme, relational database,
multivalued dependency, join dependency

.

1. INTRODUCTION

This paper is an attempt to deal with a number of issues concerning the “universal
relation” concept from relational database theory. In particular, we discuss the
following questions.

(1) Relational database design theory, as in [5, 251, for example, requires us to
write down our assumptions regarding the real world in terms of functional

This work was partially supported by Air Force grant AFSOR-80-0212 supplemented by NSF
agreement lST-80-21358.
Authors’ present addresses: R. Fagin, IBM Research Laboratory, San Jose, CA 95193; A. 0. Mendel-
zon, Department of Computer Science, University of Toronto, Toronto, Ont., Canada; J. D. Ullman,
Stanford University, Stanford, CA 94305.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1982 ACM 0362-5915/82/0900-0343 $00.75

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982, Pages 343-360.

344 l R. Fagin, A. 0. Mendelzon, and J. D. Ullman

dependencies and multivalued dependencies. While it seems easy enough for the
database designer to perceive and list the functional dependencies, multivalued
dependencies are harder to write down correctly. Worse, the standard database
design strategies may require us to deal with and infer new embedded multivalued
dependencies from those given, and there is no known algorithm for such
inferences. Could there be another way to describe the real world that is better
tuned to what the designer can perceive or that leads to a simpler design theory?

(2) There are some hints [15, 16, 241 that not every collection of functional
dependencies and multivalued dependencies describes a real world that could
possibly be of interest to a database designer. Lien especially [15, 161 has taken
more traditional forms of database description, such as Bachman diagrams and
entity-relationship diagrams, and shown that reasonable diagrams of these sorts
correspond to universal relations with special properties. If we suppose that
earlier tools for database design, such as Bachman diagrams, were well tuned to
the situations encountered in practice, might there not be a sufficiently general
class of real worlds in the universal relation sense, for which database design can
be done simply?

In answer to these questions we offer the following. Section 2 offers our class
of real worlds, those that can be defined by predicates and functional dependen-
cies alone. We feel this class plays a role analogous to the LALR(l) grammars
among context-free languages in general (see [2] for a discussion of such gram-
mars). Just as the LALR(l) grammars are sufficiently general to describe the
syntax of essentially every known programming language feature and yet are
sufficiently special that they have efficient parsers, we believe our class of real
worlds is sufficiently general to cover most matters of interest to database
designers and yet is sufficiently specific that database description and design are
far more manageable than when the real world is described by functional
dependencies and multivalued dependencies. This contention will no doubt itself
cause controversy; yet we are sufficiently confident of its usefulness that we
encourage the reader to search for a description of a plausible real world in
standard relational terms, or any other terms, that cannot be modeled in the
terms to be presented here.

Section 3 discusses database design in the new terms, and Section 4 relates our
real-world descriptions to descriptions by multivalued dependencies. Particularly,
we give an easy algorithm for finding the set of multivalued dependencies that
follow logically from our description of the real world, and we characterize those
of our real worlds that can be replaced by a set of multivalued dependencies and
functional dependencies.

2. DEFINING UNIVERSAL RELATIONS BY PREDICATES

When doing database designs from a universal relation scheme, as in [lo, 4, 251,
for example, there is the implication that the selected relation schemes will, in
the actual database, be given relations that are the projection of some universal
relation.’ Even though we reject this pure universal relation assumption, if we

’ See [25] for the definition of the relational database terms used in this paper.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

A Simplified Universal Relation Assumption 345

are to use the universal relation concept as a tool in selecting the relation schemes,
there must be a universal relation, possibly with nulls, that we regard as reflective
of the real world. Let us consider how we might define such a universal relation.

Example 1. Suppose our attributes in the universal scheme are C(ourse),
T(eacher), R(oom), H(our), S(tudent), and G(rade). An informal description of
what these attributes might mean is that T teaches course C, course C meets in
room R at hour H, and S is getting grade G in C. If we had to define a universal
relation over these attributes, we would therefore write

(ctrhsg] t “teaches” c, c “meets in” r “at hour” h, and s “is getting” g “in” c}.

In this definition we have used three undefined relationships, or predicates,
that we presume have meaning in the real world: “teaches,” “meets in . . . at
hour,” and “is getting . . . in.” We do not insist that each c, t, r, h, s, and g take on
real values in each tuple of the universal relation. For example, in some tuple, t
could be a null standing for “the teacher of c,” even if we did not know the correct
value. Thus we avoid Codd’s “anomalies” [12] in the universal relation and
achieve a degree of “normalization.” Cl

Our definition in Example 1 of the universal relation that reflects the current
real world made use of three abstract predicates, such as “teaches,” which we
may view as “filters” that look at a specified set of components in each tuple and
say whether or not these components reflect the current real world. The universal
relation is the set of all and only those tuples that pass the test implied by each
predicate.

While we do not know what the real world will say about various entities, for
example, whether or not it is true that course CSlOl meets Friday 9AM in room
321, we can assume that there are some three predicates Pl(c, t), Pz(c, h, r), and
Ps(c, s, g) that truly tell whether teacher t is teaching course c, and so on. The
fact that legal universal relations for Example 1 must be of the form

{ctrhsg] Pi(c, t) and &(c, h, r) and P3(c, s, g)}

for some predicates PI, Pz, and A puts a severe constraint on what universal
relations may be. However, this constraint is not so severe as the general
collections of multivalued dependencies that we imagine might be used to define
universal relations. (We consider the role of functional dependencies momentar-
ily.) In fact, we at once show that definition by predicates is equivalent to the
requirement that the universal relation satisfy one join dependency.

Given a collection of predicates {PI, . . . , P,), each of which is defined over a
subset of the attributes in some universal set U, we say relation r over relation
scheme U is the relation defined by PI, . . . , P,, if r consists of exactly those
tuples that satisfy all these predicates. Thus, in the example above, each possible
value of PI, P2, and P3 defines a relation over the relation scheme CTRHSG in
the way expressed by the set-formers shown above.

Recall that a join dependency [21], written w(R1, . . . , Rk), is the requirement
on relations rover relation scheme R = RI U . . . U Rk that the natural join of the
projections of r onto the Ri’s be r. If we abuse notation to the extent of identifying
the name of a predicate P with the set of attributes over which P acts as a filter,

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

346 - R. Fagin, A. 0. Mendelzon, and J. D. Ullman

then we can treat predicate names as if they were the Ri’s (which we shall,
following [23], call obj,cts) of a join dependency. That is, we can state the
following theorem.

THEOREM 1. A relation r over attributes PI U -. . U Pk can be the relation
defined by some values of the predicates PI, . . . , Pk if and only if r satisfies the
join dependency w(P~, . . . , Pk).

PROOF. If: Suppose r satisfies the join dependency, and let pi = 7~p, (r) for i =
1 **, k. (as stands for the projection onto set of attributes S.) If we take pi to be
the value of predicate Pi, that is, the set of tuples for which the predicate is true,
then surely every tuple in r satisfies the condition P, and . . . and Pk. Conversely,
any tuple t that satisfies the predicates is such that np, (t) is in pi. But then the
join dependency implies that t is in r. Thus r = {t] PI and . . . and Pk} when we
select the value pi for predicate Pi, i = 1, . . . , k.

Only if: Suppose r is the relation defined by the predicates when Pi has the
value pi for all i. Suppose ti is in mpz (r) for i = 1, . . . , k, and let t be the natural
join of the ti)s. Then ti must satisfy Pi, else it could not be the projection of a
tuple in the relation defined by the predicates. It follows that t satisfies all the
predicates and is therefore in r. But since the ti)s were arbitrary projections of
tuples in r, we have shown that r satisfies the join dependency. 0

COROLLARY 1. A relation is defined by predicates PI, . . . , Pk if and only if it
is a fixed point of (PI, . . . , Pk} in the sense of [8].

2.1 Functional Dependencies

There are, in most situations, certain functional dependencies that hold, and
these cannot be reflected in the definition of the universal relation by predicates
in the style we have introduced above. Rather, let us say that the functional
dependencies influence one or more predicates, in the sense that they may make
it impossible for certain values of the predicates to reflect any instance of the real
world. For example, if we assert the functional dependency C + T in our real
world of Example 1, then we would not expect that the CT predicate would say
yes both to (CSlOl, Jones) and (CSlOl, Smith). Functional dependencies may
have subtle influences, ranging over several predicates, since it is not guaranteed
that the attributes involved in a functional dependency will necessarily be checked
as a group by any one predicate.

Example 2. In Example 1 we might assert the following five functional depen-
dencies, following [26].

C+T,TH+R,SH+R,HR-+C,andCS+G

The three predicates, CT, CHR, and CSG, embody (contain all the attributes in)
the first, fourth, and fifth dependencies, respectively, but the second and third
are “interrelational.”

If one thinks about the universal relation produced by the alternative sets of
predicates, it becomes apparent that we do not want to add clauses to the
definition of the universal relation to the effect that “teacher t is in room r at
hour h,” and “student s is in room r at hour h.” Intuitively, there are two kinds

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

A Simplified Universal Relation Assumption - 347

of functional dependencies. One, which we call data structuring, has a set of
attributes that is coextensive with an object. These functional dependencies, such
as C + T, not only assert a uniqueness fact, but they tell us about a relationship
that influences how we structure data in the underlying database. The second
kind of functional dependency, which we shall call incidental, asserts a uniqueness
fact, but does not apparently relate to the way data should be structured. The
functional dependencies SH + R and TH + R are in this class. That is, although
they express the physical fact that students and teachers cannot be in two places
at once, they should have no bearing on how we store our data. There is no
practical reason why we should store the locations of students and teachers at
each hour explicitly (even though the information is deducible). 0

Thus it appears that in general, our specification of the universal relation will
include a definition by predicates, that is, the join dependency that the universal
relation must satisfy, plus a collection of functional dependencies, some of which
will be checked by the predicates and others that will not, but which will
nevertheless influence the simultaneous values the predicates may assume. It is
open to conjecture whether functional dependencies not embodied in a predicate
play any useful role in database design. Let us observe that just because a
functional dependency is true does not obligate us to check it or to design for it.

2.2 Hypergraph Representation of Join Dependencies

A portrayal of join dependencies that will prove useful later is the hypergraph.
Formally, a hypergraph is a set of nodes and a set of hyperedges (we shall call
them just “edges”) which are nonempty sets of nodes. Hypergraphs are general-
izations of ordinary graphs, in that a graph is a hypergraph in which every edge
consists of exactly two nodes. To relate hypergraphs to join dependencies, let us
use one node for each attribute, and let the edges be the objects of the join
dependency, that is, the sets of attributes onto which projections are required.

Example 3. Assume a universal relation scheme with attributes Bank, Acct,
Loan, Customer, Addr (address of customer), Bal (balance of account), and Amt
(amount of loan). A natural definition for the universal relation over all seven of
these attributes is

{al,..., a7 (a2 is an account at bank al, a3 is the balance for a2, a4 is a loan
made by bank al, a5 is the amount of loan ad, a6 is a customer
holding account al, a6 is the customer borrowing loan ad, and a7
is the address of as}.

The corresponding hypergraph is in Figure 1. Here we have only “ordinary”
edges, that is, sets of two nodes, and we show these edges by lines in the usual
way. Edges of other than two nodes are illustrated by dashed lines surrounding
their nodes.

Although legal, there may be some problem with the use of attribute Customer
in two different senses in the above definition of a universal relation. That is, if
a query requests those banks associated with a given customer, it is not clear
whether what is desired is the set of banks where the customer has loans, or the

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

348 ’ R. Fagin, A. 0. Mendelzon, and J. D. Ullman

Fig 1. Hypergraph for banking Fig. 2. Revised banking example with
example. no cycles.

set of banks where the customer has accounts, or both.2 In Section 4 we formally
define the notion of cycles in a hypergraph, but intuitively, the cycle in Figure 1
should be apparent. We conjecture that it is possible in the real world always to
define the universal relation so that cycles are absent (by renaming in some
“natural” way). For example, Figure 2 shows the hypergraph for a database
scheme similar to Figure 1, but that contains no cycles. Whether we wish always
to do so is more doubtful. q

2.3 Other Examples of Universal Relation Definitions

Let us exhibit the hypergraphs for some other universal relations that illustrate
additional points. First, we have not yet seen a case where an edge is other than
the standard pair of nodes. The Courses, Teachers, etc., world from Example 1
provides such a situation.

Example 4. In Figure 3 we see the hypergraph for Example 1. Let us remark
that this hypergraph is acyclic, as we shall see in Section 4 when we have a formal
definition of “cycle” to match our intuition. Cl

Example 5. The next example is taken from [15], where it illustrates what is
there called a “cyclic” Bachman diagram. Lien describes a database with infor-
mation about employees, their children, their departments, the projects they
work for (projects are unrelated to departments), the parts needed by projects,
and the suppliers of parts for projects. Figure 4 shows an initial attempt at
describing this information by a universal relation.

The role of the Project-Part-Supplier (PrPaS) predicate is threefold. First, it
checks triples (p, a, s) to see if supplier s is currently supplying part a to project
p. But the intent of Lien’s example is that we should also record information
about what parts a supplier could supply, and what parts a project needs, even
though no one may be supplying the part currently.

‘The problem as we see it is that the attribute Customer is “overloaded.” It really should he two
attributes, Depositor and Borrower. In that case, a query asking for Jones’ bank would have to specify
whether it meant Jones qua depositor or qua borrower. Note that the requirement that Customer be
split into two attributes is similar to the requirement for attribute splitting that comes from the
assumption of uniqueness of functional dependencies [IO, 41. Yet the latter does not formally require
the attribute Customer to be split, since there ia no functional relationship between Customer and
Bank.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

A Simplified Universal Relation Assumption * 349

Fig. 3. Hypergraph for Example 1. Fig. 4. Initial design of
employee database.

There is no room in our model of universal relation definition for subpredicates
PrPa and PaS of the ternary PrPaS predicate. In principle, the ternary predicate
can check any subpredicate anyway. However, the problem here is that the
meaning of the PrPa predicate is not: “there is a supplier s such that PrPaS is
true.” Thus the PrPaS and PrPa predicates are not consistent; neither are PrPaS
and Pas.

Our way out of this dilemma is to recognize that Part is an overloaded attribute.
It has three meanings, depending on whether it is a part that can be supplied, a
part that is needed, or a part that is actually being supplied to a project. Figure
5 shows how the universal relation should be defined in our style.

A second approach is to assert that the physical database wih have one relation,
PrPaS. The pairs (p, a) and (a, s) in PrPa and Pas, respectively, will be
represented by tuples with nulls (p, a, A) and (A, a, s) in PrPaS. Cl

2.4 The Formal Universal Relation Conjecture

The hypothesis that we would like to advance is that every plausible real world
has a universal relation that can be described by

(1) one (full) join dependency and
(2) some number of functional dependencies.

We assume that the join dependency is fuZZ, meaning that the union of all its
objects is the set of all attributes.

Further, we believe that it is possible to select a join dependency that is acyclic,
in a sense to be defined formally. We do not wish to take a hard position on
whether it is always necessary or desirable that the join dependency be acyclic.
To permit cyclic join dependencies may cause certain queries to be ambiguous
unnecessarily, while restricting ourselves to acyclic join dependencies may cause
us to lose part of the advantage of querying the universal relation. For example,
by splitting Part in Example 5 or Customer in Example 2, we force ourselves to
remember the jargon for the varieties of Parts and Customers. Remembering the
attribute name Part, Needed part, and Suppliable part is essentially the same as
remembering that there are three relations in the database, and that we should
refer to these attributes as PrPaS. Part, PrPa. Part, and Pas. Part, respectively.

An important consequence of our hypothesis is that there is no role in our
database design process for explicitly declared multivalued dependencies. Rather,
we see in Section 4 that the multivalued dependencies we would normally expect

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

350 * R. Fagin, A. 0. Mendelzon, and J. D. Ullman

Fig. 5. Revised employee example.

to hold are deducible from the join dependency. In fact, one of the great
advantages to this form of database specification is that we need not discover our
multivalued dependencies by ourselves; they can be generated automatically from
the join dependency. Of course, not all sets of multivalued dependencies can be
generated by one join dependency, so our hypothesis may be viewed as an
assumption about what sorts of multivalued dependencies one can expect to meet
in practice. We shall see that our hypothesis bears a distinct resemblance to
assumptions about multivalued dependencies made by [24, 151.

3. IMPLICATIONS OF THE HYPOTHESIS FOR DATABASE DESIGN

One of the first discoveries we make is that our hypothesis makes database design
from dependencies straightforward. Ordinarily, to design a database from a given
set of dependencies, one would start with a collection of attributes and decompose
them into a suitable “normal form” [12, 13, 141. Deciding whether further
decomposition of a set of attributes is necessary requires us to make inferences
about dependencies, and in some cases we have to infer embedded multivalued
dependencies. As no algorithm for deciding whether such inferences hold is
known, our capability to produce a design from the classical forms of informa-
tion-functional and (possibly embedded) multivalued dependencies-is limited.

However, we can view the database design problem in general as one of
selecting a database scheme, or set of sets of attributes. There are several
properties the database scheme should have [5, 22, 251, but chief among these is
the lossless join property [l], meaning that it should be possible, by taking the
natural join, to recover the universal relation from its projections onto the
selected relation schemes (sets of attributes in the database scheme). That is, if
we select relation schemes RI, . . . , Rk as our database scheme, the join depen-
dency bd(Rl,. . . , Rk) must hold. There are other desirable properties, principally
the embedding of functional dependencies in the selected relation schemes [22]
that we would like as well, but it appears that this dependency preservation
property will very likely be satisfied automatically by our design procedures, at
least for those functional dependencies that are represented by objects of the join
dependency that is given by the design specifications (what we have called data
structuring functional dependencies).

We can state very simply the conditions under which a given database scheme
is a lossless join decomposition, assuming a definition of the real world by a join

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

-

A Simplified Universal Relation Assumption - 351

dependency and several functional dependencies. It is necessary and sufficient
that

Lil, fi, . ..,fm)Pj2

where j1 is the join dependency given in the design specifications, f,, . . . , fm are
the given functional dependencies, and j, is the join dependency whose objects
are all the selected relation schemes. The symbol I= means “logically implies.”
Interestingly, this exact problem was proved NP-complete in [19], but. at least
we can answer the question in a finite amount of time. That is, unlike the classical
methods that involve embedded multivalued dependencies, we can always decide
whether a given database scheme has the lossiess join property and therefore
represents the universal relation correctly.

3.1 The Case of No Functional Dependencies

In one overly simple case (where there are no functional dependencies), we can
characterize exactly those database schemes that have a lossless join, and the
result has some implications for the more general case, in which there are given
functional dependencies.

THEOREM 2. If the legal universal relations are exactly those that satistj,
some particular join dependency W(R1, . . . , Rk), then a database scheme &,
. . . , S,,, has a lossless join if and only if for each R, there is an Sj such that R;
C Sj.

PROOF. A proof can be found in [8] or [9]. 0

If we wish the join of all the relations in the database to be lossless, then
Theorem 2 says it is necessary that the objects of the given join dependency be
each contained in some relation scheme. Since we may have reason not to require
a lossless join of all the objects, we do not view this containment as mandatory,
however.

COROLLARY 2. If our real world is defined by a join dependency and some
functional dependencies, then the “if” direction of Theorem 2 still holds.

3.2 When We Have Functional Dependencies Along with a Join Dependency

If we are given functional dependencies along with our join dependency, the
relation schemes need not be subsets of the objects, nor do the objects need to be
subsets of the relation schemes. There may be objects of the join dependency,
such as AB and AC, that are properly contained in a relation scheme ABC; yet
no violation of even as strong a normal form as projection/join normal form [14]
occurs because A + BC, and so A is a key.

We might also consider the possibility of two relation schemes AB and BC that
are contained in an object ABC. As long as B + A or B + C, the join of the
relation schemes will still be lossless, because AB and BC join losslessly to
produce the object ABC. In fact, when such functional dependencies exist, we are
obliged to decompose relation ABC into AB and BC in order to achieve second
normal form (unless B + A and B + C both hold).

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

352 * R. Fagin, A. 0. Mendelzon, and J. D. Ullman

4. INFERRING MULTIVALUED DEPENDENCIES
FROM ONE JOIN DEPENDENCY

In this section we give a simple rule for discovering the multivalued dependencies
that are implied by one join dependency. We also consider the question of when
a join dependency is equivalent to the multivalued dependencies it implies, and
show that the equivalence occurs only when the join dependency is “acyclic.”
The interest in this result comes from the argument in [24] that all “realistic”
sets of multivalued dependencies are equivalent to one join dependency. Our
result lends credence to the naturalness of the conjecture made in Section 3 that
the attribute names for the universal relation should be chosen so that the join
dependency resulting from definition of the universal relation by predicates yields
an acyclic join dependency.

4.1 Definitions

To begin, let us give some terminology for hypergraphs. A path from node n to
node m is a sequence of k 2 1 edges El, . . . , Ek such that

(1) n is in E1,
(2) m is in Ek , and
(3) for all 1 5 i < k, Ei n Ei+l is nonempty.

We also say the above sequence of edges is an edge-path (or just path when no
confusion arises) from El to Ek.

Two nodes (or attributes) are connected if there is a path from one to the other.
Similarly, two edges are connected if there is an edge-path from one to the other.
A set of nodes or edges is connected if every pair is connected.

Let (4 8) be a hypergraph. Its reduction (& 6’) is obtained by removing from
d each edge that is a proper subset of another edge. A hypergraph is reduced if
it equals its reduction, that is, if no edge is a subset of another edge. In what
follows, we shall assume that a hypergraph is reduced unless stated otherwise.
Note that the join dependency of a hypergraph and the join dependency of its
reduction are logically equivalent [8].

Let ~9’ be a set of nodes of the hypergraph (& 6). The set of partial edges
generated by &’ is obtained by intersecting the edges in 6 with JZ, that is, taking

{(E rlM)lE isin S} - (0},

then taking the reduction of this set of edges. The set of partial edges generated
from (Jv; &) by some set JZY is said to be a node-generated set ofpartial edges.

Let F-be a connected, reduced set of partial edges, and let E and F be in 9? Let
Q = E rl F. We say that (E, F) is an articulation pair, and that Q is an
articulation set of 9, if the result of removing Q from every edge in F-is not a
connected set of edges. Evidently, an articulation set in a hypergraph is a
generalization of the concept of an articulation point in an ordinary graph.

A block of a reduced hypergraph is a connected, node-generated set of partial
edges with no articulation set. A block is trivial if it consists of a single (partial)
edge. A reduced hypergraph is acyclic if all its blocks are trivial; otherwise it is
cyclic. A hypergraph is said to be cyclic or acyclic precisely if its reduction is
cyclic or acyclic. We note that our definition of an acyclic hypergraph is different

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

--

A Simplified Universal Relation Assumption - 353

Fig. 6. Example of an acyclic hypergraph.

from that in [111, that is, our definition is strictly less restrictive. We believe that
our definition is a better generalization of the usual definition of acyclic (ordinary)
graphs. For a discussion of this point, along with a number of definitions
equivalent to our definition of “acyclic hypergraph,” see [7] and [lg].

Example 6. It is straightforward to verify that Figure 6 shows an acyclic
hypergraph. Its edges are ABC, CDE, EFA, and ACE.3 An articulation set for the
set of all edges is ABC n ACE = AC, since the result of removing A and C from
each edge is to leave the set of edges B, DE, EF, and E, which is not connected
(B is disconnected from the others). Note that the set of edges {ABC, CDE,
EFA} has no articulation set. However this set of edges is not node generated, so
there is no contradiction of our assertion that Figure 6 is acyclic. Cl

4.2 Inferring Multivalued Dependencies from a Join Dependency

We shall now give a simple technique for computing the set of multivalued
dependencies that follow from a join dependency. The method is amenable to
computer implementation, and serves as an extremely easy way to deduce
multivalued dependencies by “eyeballing” the hypergraph for a join dependency.
The method can be viewed as a generalization of a theorem of [15] (although the
dependencies inferred there were multivalued dependencies “with nulls,” which
are slightly different from our multivalued dependencies). It is also a special case
of algorithms recently discovered by [19, 20, 261 for general inference of multi-
valued dependencies.

THEOREM 3. Let j = W(R1, . . . , Rk) be a join dependency. Suppose that X and
Y are disjoint sets of attributes. Then the multivalued dependency X ++ Y
follows logically from j if and only if Y is the union of some connected
components of the hypergraph of j with the set of nodes X deleted.

PROOF. Only if: Let us suppose that Z is all the attributes not in X or Y, and
assume that there is some Ri that intersects both Y and Z, as suggested in Figure
7. If X ++ Y follows from j, then the tableau test of [17] will say so. That is, if
we were to start with the tableau of Figure 8 and apply j to infer additional rows,
we would eventually get a row of all a’s. However, initially, there is no row with
a’s in the columns for all the attributes in Ri, and any application of j produces
a row that agrees with some previous row on Ri. Thus an easy induction on the

3 Conventionally, we denote sets of attributes, that is, nodes, by their concatenation. Thus ABC is
short for (A, B, C).

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

354 * Ft. Fagin, A. 0. Mendelzon, and J. D. Ullman

x Y z
aa . . . a aa . . . a bb . . . b
aa . . . a bb . . . b aa . . - a

Fig. 7. Hypergraph
that does not imply

x-t+ Y.

Fig. 8. Initial tableau to test X++ Y.

number of added rows proves that no row with a’s in all the columns for Ri can
ever be added. Thus j does not imply X ++ Y.

If: Suppose that Y is the union of some connected components of the hyper-
graph of j with X deleted, whereupon 2 must be the union of the other connected
components. Then we can apply the tableau test to the tableau of Figure 8
successfully; that is, we produce a row of all a’s. In fact, we can do so in one step,
since we may choose the first row of Figure 8 for those R,,,‘s of j that are subsets
of XY, and choose the second row for those R,‘s that are subsets of XZ. It is not
possible that an R, is contained neither in XY nor in X2, or else Y and Z would
not be the union of connected components of the hypergraph with X removed.
But the proposed mapping of the objects of the join dependency j into the rows
of Figure 8 allows us immediately to infer the existence of a row with all a’s and
prove jl=X++ Y. 0

COROLLARY 3. The dependency basis [6, 31 for a left side X is obtained by
deleting the nodes in X from the hypergraph for the given join dependency and
finding the connected components that result.

EXAMPLE 7. The dependency basis of Customer in Figure 1 is

Addr 1 Bank, Acct, Loan, Bal, Amt,

while the dependency basis of {Bank, Customer} is

Bal, Acct 1 Loan, Amt (Addr 0

4.3 Characterization of Join Dependencies Equivalent to a Set
of Multivalued Dependencies

Theorem 3 gives us the set of multivalued dependencies implied by a join
dependency j, which we call MVD(j). We can use that result to show that j is
logically equivalent to MVD(j) (i.e., the same relations satisfy both j and
MVD(j)) exactly when j is acyclic. Before proving this result, we need some
definitions and a lemma.

Let (Jy; 8) be a hypergraph, and let P-be a subset of d Let ~2 be the set of
nodes that is the union of the members of Z We say 9is closed if for each edge
I of the hypergraph, there is an edge G in Bsuch that I II JH G G. Note that every
closed set of edges is a node-generated set of partial edges, generated by &.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

A Simplified Universal Relation Assumption * 355

LEMMA 1. Let H = (& 8) be a hypergraph, ‘3 a closed subset of 8, and A%’ the
set of nodes of 3. Let Fbe a closed subset of the hypergraph (A?, 3). Then Fis
also a closed subset of H.

PROOF. Let I be an edge in 8, and let Pbe the union of the edges in 55 We
must show there is some edge G in Psuch that I n 9 c G. Since 9 is closed with
respect to &‘, there is some edge J in 9 such that I rl JZ%’ G J. Then, since Fis
closed with respect to 9, there is some edge K in Ssuch that J n B & K. Thus,
In.9cK. q

Let 9 be a closed connected set of two or more edges in a reduced acyclic
hypergraph. Since Bis a node-generated set of partial edges there is an articula-
tion set Q for R The edges in d can thus be partitioned into nonempty sets
A?,..., rt;h, k L 2, such that

(1) each edge of 9is in exactly one .%,
(2) % - Q” is connected for each i, and
(3) if El is an edge in Z and EP is an edge in @, i # j, then El n EP c Q.

The fact that such a partition exists is exactly what we mean by saying that Q
is an articulation set of 9 Each % is obtained by taking one of the connected
components of F- Q and adding back to each edge its intersection with Q. We
call each ~6 a component of Fafter articulation by Q. We are now ready to prove
the main theorem of the paper.

THEOREM 4. The join dependency j is logically equivalent to a set of multi-
valued dependencies if and only if j’s hypergraph is acyclic.

PROOF. If: Evidently, j implies MVD (j), so we need only to prove that j follows
from MVD(j). Without loss of generality, we assume that j’s hypergraph is
reduced. We use the tableau test of [17] and prove that if we chase the tableau of
j with MVDG), then we obtain a row of distinguished symbols (“a’s”) in all the
attributes.

We can assume that the hypergraph is connected. In proof, note that if the
theorem holds for connected components, then, since by Theorem 3,0 ++ X for
every connected component X, we can form a row of all a’s from the rows with
a’s in the connected components.

We shall now define, inductively on i, certain closed subsets of edges to be i-
level components and i-level augmented components. We start the induction by
letting the set of all edges be the uniqtie O-level component and the unique O-level
augmented component.

Suppose that we have defined (i - l)-level components and augmented com-
ponents, i 1 1. Assume inductively that each (i - 1)-level augmented component
is closed. We Cow define the i-level components and augmented components. If
B is an (i - 1)-level augmented component with exactly one edge, then 9’ is also
an i-level component and augmented component.

If 9’is an (i - l)-level augmented component with more than one edge, then
since j is acyclic, there is an articulation pair (E, F) of 9, since by the inductive

’ We use I - X to mean the set of partial edges generated (as defined above) from set of edges 8 by
the set of nodes consisting of all the nodes in members of I except those in Q.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

356 l R. Fagin, A. 0. Mendelzon, and J. D. Ullman

hypothesis, 9 is closed, and therefore, node generated. Let Ye,, . . . , &$ be the
components of 9after articulation by E I-J F. For each m, 1~ m 5 k, define %?,,
to be %, if .@,,, contains one or both of the edges E or F,5 and 2; = yi”, U {E}
otherwise. Each Zm is an i-level component, and each PO:, is an i-level augmented
component.

By construction, each JY~ contains either E or F. We now show that each
.%C,, is closed. It is sufficient, by Lemma 1, to show that &Y,, is a closed subset of
the closed subset 9 Let A,,, be the set of nodes appearing in %%, and let I be an
edge of 9? We must show that I fl A,,, G G for some G in &Y,, . If I is in &%, then
let G = I. Suppose I is not in %‘k. We know that the unaugmented component
yt”, is a connected component of 9’ after articulation by E n F. Thus, as I is in
@but not in &!?,,, we know that its intersection with edges of 2k, if any, is limited
to the articulation set, that is, I fl .&,,, G E CI F. Thus we can take G to be
whichever of E and F is in &‘“:,.

We call each .#A, a child of 9’, and we call 9’ the father of *A. The transitive
closure of the father relation is the ancestor relation. It is straightforward that
each child has strictly fewer edges than its father. It follows by induction on i
that each i-level augmented component has at most n - i edges, if n is the
number of edges in the original hypergraph. In particular, the (n - l)-level
augmented components are precisely the singleton sets {G) for each edge G of
the original hypergraph.

Assume as before that 9’ is an (i - 1)-level augmented component with (E, F)
an articulation pair, and that .%, . . . , xk, k I 2, are the components of 9 after
articulation by E n F. We shall now show that

(*) (E, F) is an articulation pair for the whole hypergraph H, and each of
&, yek is contained in a distinct component of H after articulation by
E n F.

If i = 1, that is, if B is the O-level augmented component, which contains every
edge, then (*) is immediate. Assume that 9’ has a father 3. We show that (E, F)
is an articulation pair for .c%, and that each of yi”l , . . . , &?k is contained in a distinct
component after articulation of @ by E n F. Then (*) follows easily by induction
on the level of 9?

Assume by way of contradiction that 3% and 31pz are in the same component
after articulation of .9! by Q = E n F. Pick edge G1 in HI and Gz in Hz. We then
know that there is a sequence of edges Xl, ., . e, Xt of 9?, where

(1) Gl =X1,
(2) G,: = Xr, and
(3) X, n X,+1 is not wholly contained within Q, for 1 I m < t.

We know that some X,,, is not in 9, since H1 and Hz are distinct components of
9 after articulation by Q. Let u be the minimum value of m, and u the maximum
value of m such that X, is not in .?? Then 1~ u 5 v < t.

’ Note that just because the removal of E fl F disconnects the hypergraph does not mean that E is
disconnected from F. It is possible that E II F's removal disconnects certain other edges whose sole
connection to the rest of the graph was through nodes in E fl F. It is true in this case, however, that
another articulation pair could have been chosen.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

A Simplified Universal Relation Assumption 0 357

Let (C, D) be the articulation pair of W that led to the creation of 9? Then 9
contains at least one of C and D; by renaming if necessary, assume it is C.
Consider the sequence of edges

Xl, x2,. . . , xu-1, c, x”+l, . . . , xt

in which we have “spliced” C in place of X,, . . . , X,. Every edge in this sequence
is in 9 To derive a contradiction, we need only show that this path is one in
which each consecutive pair has a point in common that is not in Q = E fl F, for
we know that X1 = G1 and Xt = G2, but G1 and G2 are supposed to be in distinct
components of 9 after articulation by Q.

By (3) above, we already know that X, fl X,+, - Q is not empty for 1 I m <
u - 1 and for u < M < t. Thus we need only show that X,-I n C - Q and X,+1
n C - Q are nonempty. We know that there is some node d in XUel n X, - Q, by
condition (3) above. Now XUwl and X, are both in 9, but they are not in the same
child of 9?, since X,-I is in 9, but X, is not. So, since d is in XUel n Xu, we know
that d is in C n D. We already know that d is in XUP1 n X, - Q, so d is in XU-1
n C - Q. Hence XUP1 n C - Q is nonempty. By an identical argument, X,+, n C
- Q is nonempty, as was to be shown. We have now shown that if B is an (i - l)-
level augmented component with (E, F) as articulation pair and with
.ri”,,.. . , & as the components of 9’ after articulation by E rl F, then (E, F) is an
articulation pair for the whole hypergraph H, and that each of yi”l, . . . , .%k is
contained in a distinct component of H after articulation of H by E n F.

We now prove by reverse induction on i that if we chase the tableau of the join
dependency j with MVD(j), then we obtain a row with distinguished symbols in
all of the attributes of 9, for each i-level augmented component 9 The statement
is true when i = n - 1, where n is the total number of nodes, since as we saw,
every (n - l)-level augmented component is a single edge. We assume the result
for i L 1, and show it for i - 1.

Let 9’ be an (i - l)-level augmented component, and let #1, . . . , % be its
components after articulation as above, by E tl F. Let 21, . . . , &?k be the
corresponding augmented components. By the inductive hypothesis, for each m,
15 m 5 k, there is a row r, in the chased tableau with distinguished symbols in
all the attributes of A?,, and hence of A%. We just proved that E (1 F is an
articulation set of the whole hypergraph, and that each &%, is in a distinct
component after articulation of the hypergraph by E n F. It follows easily that
chasing the rows rl, . . . , rk using multivalued dependencies with left-hand side
E n F, we obtain a row with distinguished symbols in all the attributes of 9

This completes the induction step. In particular, it follows that there exists in
the chased tableau a row with distinguished symbols in every attribute of the O-
level augmented component, that is, in every attribute whatsoever. Hence
MVD(j) implies j, as was to be shown.

Only if: Suppose that the hypergraph of j is cyclic. Then there is a set A? of
nodes such that the set RI, . . . , R, of partial edges generated by A%’ has no
articulation set, and m 2 2. We show by induction on the number of rows added
when chasing the tableau of j according to the set of multivalued dependencies
MVD(j), that the projection ofany row onto the columns for A%’ is the projection
of a row that existed at the outset of the chase procedure.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

358 * R. Fagin, A. 0. Mendelzon, and J. D. Ullman

The basis, zero rows, is immediate. For the induction, suppose that at some
time we can use the multivalued dependency X --w Y in MVD(j) to produce a
row whose projection onto set of attributes & differs from the projections onto
&’ that already exist. Let 2 be all the attributes not in X or Y. Let rl and r2 be the
pair of rows to which X ++ Y is applied to generate, for the first time, a new
projection onto ~2’. So by the inductive assumption, ~#((r~) = am and TN(rz)
= ~T,~(sz) for some rows sl and sz of the original tableau. Now T.~(T~) # T.~(T-~), or
else a new projection onto JZ could not be generated from these rows by a
multivalued dependency. Thus r.&) # rK(s2), and so s1 # s2.

Assume that sl corresponds to the set of attributes S1 (that is, the distinguished
symbols of sl appear in exactly the columns for the attributes in SI) and, similarly,
~2 corresponds to S2. Recall that all nondistinguished symbols are unique. So, s1
and s2 agree precisely on S1 f~ SZ. We know that S1 f~ J,&’ = Rp and SZ II JI = R,
for some p and q, because R1, . . . , R, is the node-generated set of partial edges,
generated by ~2’. So nx(sl) and 7r.#(s2) agree precisely on S1 rl S2 n A= Rp n R,.
Thus ~#(r~) and eu(n) agree precisely on Rp fl R,. To apply the multivalued
dependency X ++ Y to rl and r2 and get something new, rows r1 and r2 must at
least agree on X. So v,&) and ~.~(r~‘z) must agree on J? n X. Since we showed
that 7#(rl) and TT.~(~~) agree precisely on Rp n R,, it follows that ~2’ n X c Rp
n R,. Note that R, # R,, because if Rp = R, then S1 n .& = S2 n 4, whereupon
Q(SI) = nR(s2), a contradiction.

Since R1, . . . , R, forms a block, we know that deletion of Rp n R, does not
disconnect these partial edges. But JZZ n X C_ Rp n R,. Thus the deletion of X
does not disconnect these partial edges. We may conclude from Theorem 3 that
either ~2 c XY or J&’ c X.25 As a result, applying the multivalued dependency
X++ Y produces only rows whose projection onto & already existed in another
row, and it is not possible that this application of X ++ Y is the first to produce
a row that has u’s in a set of columns of & that is not a subset of the columns for
any Ri.

We conclude that the chase process never introduces any new projections of
rows onto JZ Thus, when we restrict our attention to J& each row has a’s only in
a set of columns that is contained in some Ri, 15 i I m. Unless JZ is a subset of
an edge of the hypergraph for j, in which case the block is trivial, contrary tc
hypothesis, none of these rows have a’s in all the rows of ~2’. Thus certainly we
do not, by chasing, produce a row with a’s everywhere, and we conclude that j
cannot be inferred from MVD(j). Hence, j is not equivalent to MVD(j), and so
clearly, j is not equivalent to any set of multivalued dependencies. 0

Note that if j is equivalent to MVD(j), then j is equivalent to the set of those
multivalued dependencies in MVD(j) whose left-hand side is the intersection of
two objects in j. This statement follows from the proof of the “if” portion of
Theorem 4, in which we made use of only those members of MVD(j). As a
consequence, for any acyclic join dependency j, we can find a subset of MVD(j)
that is equivalent to MVD(j) and whose size is a polynomial in the size of j. We
note that Beeri, Fagin, Maier, and Yannakakis [7] strengthen this result by
showing that if j is acyclic then we can find a subset of MVDG) that is equivalent
to MVD(j) and is linear in the size of j.

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

A Simplified Universal Relation Assumption - 359

5. CONCLUSIONS

We have presented a way to define universal relations and their semantic
constraints (dependencies) that, while restricted, appears to offer enough power
to describe real-world situations. Moreover, the method is sufficiently restricted
that we can guarantee a database design into projection/join normal form [14]
without encountering any possibly undecidable problems concerning whether a
particular relation can or must be decomposed.

We also explored the class of universal relations defined by acyclic join
dependencies. These were characterized as those join dependencies that are
equivalent to the multivalued dependencies they imply. This result in turn shows
that the class of universal relations defined by acyclic join dependencies includes
those that are considered reasonable by [24, 151. A number of other remarkable
propeties of acyclic join dependencies have been shown in [7].

ACKNOWLEDGMENTS

The authors are grateful to Catriel Beeri, Maria Klawe, David Maier, and Moshe
Vardi for useful suggestions.

REFERENCES
1. AHO, A.V., BEERI, C., AND ULLMAN, J.D. The theory of joins in relational databases. ACM

Truns. Database Syst. 4,3 (Sept. 1979), 297-314.
2. AHO, A.V., AND ULLMAN, J.D. Principles of Compiler Design. Addison-Wesley, Reading Mass.
3. BEERI, C. On the membership problem for functional and muitivalued dependencies in relational

databases. ACM Trans. Database Syst. 5,3 (Sept. 1980), 241-259.
4. BEERI, C., AND BERNSTEIN, P.A. An algorithmic approach to normalization of relational

database schemas, CSRG-73, Univ. Toronto, 1975.
5. BEERI, C., BERNSTEIN, P.A., AND GOODMAN, N. A sophisticate’s introduction to database

normalization theory. In Proc. 4th Znt. Conf Very Large Databases, (West Berlin, Sept. 13-15),
ACM, New York, 1978, pp. 113-124.

6. BEERI, C., FAGIN, R., AND HOWARD, J.H. A complete axiomatization for functional and multi-
valued dependencies in database relations. ACM SIGMOD Znt. Symp. Management of Data,
ACM, New York, 1977, pp. 47-61.

7. BEERI, C., FAGIN, R., MAIER, D., AND YANNAKAKIS, M. On the desirability of acyclic database
schemes. To appear in J. ACM.

8. BEERI, C., MENDELZON, A.O., SAGIV, Y., AND ULLMAN, J.D. Equivalence of relational database
schemes. SIAM J. Comput. 10, 2 (June 1981) 352-370.

9. BEERI, C. AND VARDI, M.Y. On the properties of joint dependencies. In Proc. Workshop Formal
Bases for Databases (Toulouse, Dec. 1979).

10. BERNSTEIN, P.A. Synthesizing third normal form relations from functional dependencies. ACM
Trans. Database Syst. 1,4 (Dec. 1976), 277-298.

11. BERGE, C. Graphs and Hypergraphs. Elsevier North-Holland, New York, 1973.
12. CODD, E.F. A relational model for large shared data banks. Commun. ACM 13, 6 (June 1970),

377-387.
13. FAGIN, R. Multivalued dependencies and a new DOITIM~ form for relational databases. ACM

Trans. Database Syst. 2,3 (Sept. 1977), 262-278.
14. FAGIN, R. Normal forms and relational database operators, In Proc. ACM SZGMOD Znt. Conf

Management of Data, (Boston, Mass., May 30-June I), ACM, New York, 1979, pp. 153-160.
15. LIEN, Y.E. On the equivalence of database models. Database Research Report No. 3 (July 1980),

Bell Laboratories, Holmdel, N.J.
16. LIEN, Y.E. On the semantics of the entity-relationship model. In Entity-Relationship Approach

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

360 * R. Fagin, A. 0. Mendelzon, and J. D. Ullman

to Systems Analysis and Design, P. P. Chen, Ed, Elsevier North-Holland, New York, 1980, pp.
155-167.

17. MAIER, D., MENDELZON, A.O., AND SAGIV, Y. Testing implications of data dependencies. ACM
Trans. Database Syst. 4,4 (Dec. 1979), 455-469.

18. MAIER, D., AND ULLMAN, J.D. Connections in acyclic hypergraphs. In hoc. ACM Symp.
Principles ofDatabase Systems (Los Angeles, March 29-31), ACM, New York, 1982, pp. 34-39.

19. MAIER, D., SAGIV, Y., AND YANNAKAKIS, M. On the complexity of testing implications of
functional and join dependencies. J. ACM 28,4 (Oct. 1982), 680-695.

20. MENDELZON, A.O., AND MAIER, D. Generalized mutual dependencies and the decomposition of
database relations. In Proc. 5t7z ht. Conf. Very Large Databases, (Rio de Janeiro, Oct. 3-5),
ACM, New York, 1979, pp. 75-82.

21. RISSANEN, J. Theory of joins for relational databases-A tutorial survey. In Proc. 7th Symp.
Mathematical Foundations of Computer Science, Lecture Notes in Computer Science 64, Sprin-
ger-Verlag, pp. 537-551.

22. RISSANEN, J. Independent components of relations. ACM Trans. Database Syst. 2, 4 (Dec.
1977), 317-325.

23. SCIORE, E. Nullvalues, updates, and normalization in relational databases. Doctoral dissertation,
Princeton Univ., Princeton, N. J., 1980.

24. SCIORE, E. Real-world MVD’s. In ACM SIGMOD Znt. Conf. Management of Data (Ann Arbor,
Mich., April 29-May l), ACM, New York, 1981, pp. 121-132.

25. ULLMAN, J.D. Principles of Database Systems. Computer Science Press, Potomac, Md., 1980.
26. VARDI, M.Y. Inferring multivalued dependencies from functional and join dependencies. Dep.

of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, 1980.

Received November 1980; revised July 1981; accepted August 1981

ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982

