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1. INTRODUCTION 

This paper is an attempt to deal with a number of issues concerning the “universal 
relation” concept from relational database theory. In particular, we discuss the 
following questions. 

(1) Relational database design theory, as in [5, 251, for example, requires us to 
write down our assumptions regarding the real world in terms of functional 
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dependencies and multivalued dependencies. While it seems easy enough for the 
database designer to perceive and list the functional dependencies, multivalued 
dependencies are harder to write down correctly. Worse, the standard database 
design strategies may require us to deal with and infer new embedded multivalued 
dependencies from those given, and there is no known algorithm for such 
inferences. Could there be another way to describe the real world that is better 
tuned to what the designer can perceive or that leads to a simpler design theory? 

(2) There are some hints [15, 16, 241 that not every collection of functional 
dependencies and multivalued dependencies describes a real world that could 
possibly be of interest to a database designer. Lien especially [15, 161 has taken 
more traditional forms of database description, such as Bachman diagrams and 
entity-relationship diagrams, and shown that reasonable diagrams of these sorts 
correspond to universal relations with special properties. If we suppose that 
earlier tools for database design, such as Bachman diagrams, were well tuned to 
the situations encountered in practice, might there not be a sufficiently general 
class of real worlds in the universal relation sense, for which database design can 
be done simply? 

In answer to these questions we offer the following. Section 2 offers our class 
of real worlds, those that can be defined by predicates and functional dependen- 
cies alone. We feel this class plays a role analogous to the LALR(l) grammars 
among context-free languages in general (see [2] for a discussion of such gram- 
mars). Just as the LALR(l) grammars are sufficiently general to describe the 
syntax of essentially every known programming language feature and yet are 
sufficiently special that they have efficient parsers, we believe our class of real 
worlds is sufficiently general to cover most matters of interest to database 
designers and yet is sufficiently specific that database description and design are 
far more manageable than when the real world is described by functional 
dependencies and multivalued dependencies. This contention will no doubt itself 
cause controversy; yet we are sufficiently confident of its usefulness that we 
encourage the reader to search for a description of a plausible real world in 
standard relational terms, or any other terms, that cannot be modeled in the 
terms to be presented here. 

Section 3 discusses database design in the new terms, and Section 4 relates our 
real-world descriptions to descriptions by multivalued dependencies. Particularly, 
we give an easy algorithm for finding the set of multivalued dependencies that 
follow logically from our description of the real world, and we characterize those 
of our real worlds that can be replaced by a set of multivalued dependencies and 
functional dependencies. 

2. DEFINING UNIVERSAL RELATIONS BY PREDICATES 

When doing database designs from a universal relation scheme, as in [lo, 4, 251, 
for example, there is the implication that the selected relation schemes will, in 
the actual database, be given relations that are the projection of some universal 
relation.’ Even though we reject this pure universal relation assumption, if we 

’ See [25] for the definition of the relational database terms used in this paper. 
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are to use the universal relation concept as a tool in selecting the relation schemes, 
there must be a universal relation, possibly with nulls, that we regard as reflective 
of the real world. Let us consider how we might define such a universal relation. 

Example 1. Suppose our attributes in the universal scheme are C(ourse), 
T(eacher), R(oom), H(our), S(tudent), and G(rade). An informal description of 
what these attributes might mean is that T teaches course C, course C meets in 
room R at hour H, and S is getting grade G in C. If we had to define a universal 
relation over these attributes, we would therefore write 

(ctrhsg ] t “teaches” c, c “meets in” r “at hour” h, and s “is getting” g “in” c}. 

In this definition we have used three undefined relationships, or predicates, 
that we presume have meaning in the real world: “teaches,” “meets in . . . at 
hour,” and “is getting . . . in.” We do not insist that each c, t, r, h, s, and g take on 
real values in each tuple of the universal relation. For example, in some tuple, t 
could be a null standing for “the teacher of c,” even if we did not know the correct 
value. Thus we avoid Codd’s “anomalies” [12] in the universal relation and 
achieve a degree of “normalization.” Cl 

Our definition in Example 1 of the universal relation that reflects the current 
real world made use of three abstract predicates, such as “teaches,” which we 
may view as “filters” that look at a specified set of components in each tuple and 
say whether or not these components reflect the current real world. The universal 
relation is the set of all and only those tuples that pass the test implied by each 
predicate. 

While we do not know what the real world will say about various entities, for 
example, whether or not it is true that course CSlOl meets Friday 9AM in room 
321, we can assume that there are some three predicates Pl(c, t), Pz(c, h, r), and 
Ps(c, s, g) that truly tell whether teacher t is teaching course c, and so on. The 
fact that legal universal relations for Example 1 must be of the form 

{ctrhsg ] Pi(c, t) and &(c, h, r) and P3(c, s, g)} 

for some predicates PI, Pz, and A puts a severe constraint on what universal 
relations may be. However, this constraint is not so severe as the general 
collections of multivalued dependencies that we imagine might be used to define 
universal relations. (We consider the role of functional dependencies momentar- 
ily.) In fact, we at once show that definition by predicates is equivalent to the 
requirement that the universal relation satisfy one join dependency. 

Given a collection of predicates {PI, . . . , P,), each of which is defined over a 
subset of the attributes in some universal set U, we say relation r over relation 
scheme U is the relation defined by PI, . . . , P,, if r consists of exactly those 
tuples that satisfy all these predicates. Thus, in the example above, each possible 
value of PI, P2, and P3 defines a relation over the relation scheme CTRHSG in 
the way expressed by the set-formers shown above. 

Recall that a join dependency [21], written w(R1, . . . , Rk), is the requirement 
on relations rover relation scheme R = RI U . . . U Rk that the natural join of the 
projections of r onto the Ri’s be r. If we abuse notation to the extent of identifying 
the name of a predicate P with the set of attributes over which P acts as a filter, 
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then we can treat predicate names as if they were the Ri’s (which we shall, 
following [23], call obj,cts) of a join dependency. That is, we can state the 
following theorem. 

THEOREM 1. A relation r over attributes PI U -. . U Pk can be the relation 
defined by some values of the predicates PI, . . . , Pk if and only if r satisfies the 
join dependency w(P~, . . . , Pk). 

PROOF. If: Suppose r satisfies the join dependency, and let pi = 7~p, (r) for i = 
1 **, k. (as stands for the projection onto set of attributes S.) If we take pi to be 
the value of predicate Pi, that is, the set of tuples for which the predicate is true, 
then surely every tuple in r satisfies the condition P, and . . . and Pk. Conversely, 
any tuple t that satisfies the predicates is such that np, (t) is in pi. But then the 
join dependency implies that t is in r. Thus r = {t ] PI and . . . and Pk} when we 
select the value pi for predicate Pi, i = 1, . . . , k. 

Only if: Suppose r is the relation defined by the predicates when Pi has the 
value pi for all i. Suppose ti is in mpz (r) for i = 1, . . . , k, and let t be the natural 
join of the ti)s. Then ti must satisfy Pi, else it could not be the projection of a 
tuple in the relation defined by the predicates. It follows that t satisfies all the 
predicates and is therefore in r. But since the ti)s were arbitrary projections of 
tuples in r, we have shown that r satisfies the join dependency. 0 

COROLLARY 1. A relation is defined by predicates PI, . . . , Pk if and only if it 
is a fixed point of (PI, . . . , Pk} in the sense of [8]. 

2.1 Functional Dependencies 

There are, in most situations, certain functional dependencies that hold, and 
these cannot be reflected in the definition of the universal relation by predicates 
in the style we have introduced above. Rather, let us say that the functional 
dependencies influence one or more predicates, in the sense that they may make 
it impossible for certain values of the predicates to reflect any instance of the real 
world. For example, if we assert the functional dependency C + T in our real 
world of Example 1, then we would not expect that the CT predicate would say 
yes both to (CSlOl, Jones) and (CSlOl, Smith). Functional dependencies may 
have subtle influences, ranging over several predicates, since it is not guaranteed 
that the attributes involved in a functional dependency will necessarily be checked 
as a group by any one predicate. 

Example 2. In Example 1 we might assert the following five functional depen- 
dencies, following [26]. 

C+T,TH+R,SH+R,HR-+C,andCS+G 

The three predicates, CT, CHR, and CSG, embody (contain all the attributes in) 
the first, fourth, and fifth dependencies, respectively, but the second and third 
are “interrelational.” 

If one thinks about the universal relation produced by the alternative sets of 
predicates, it becomes apparent that we do not want to add clauses to the 
definition of the universal relation to the effect that “teacher t is in room r at 
hour h,” and “student s is in room r at hour h.” Intuitively, there are two kinds 
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of functional dependencies. One, which we call data structuring, has a set of 
attributes that is coextensive with an object. These functional dependencies, such 
as C + T, not only assert a uniqueness fact, but they tell us about a relationship 
that influences how we structure data in the underlying database. The second 
kind of functional dependency, which we shall call incidental, asserts a uniqueness 
fact, but does not apparently relate to the way data should be structured. The 
functional dependencies SH + R and TH + R are in this class. That is, although 
they express the physical fact that students and teachers cannot be in two places 
at once, they should have no bearing on how we store our data. There is no 
practical reason why we should store the locations of students and teachers at 
each hour explicitly (even though the information is deducible). 0 

Thus it appears that in general, our specification of the universal relation will 
include a definition by predicates, that is, the join dependency that the universal 
relation must satisfy, plus a collection of functional dependencies, some of which 
will be checked by the predicates and others that will not, but which will 
nevertheless influence the simultaneous values the predicates may assume. It is 
open to conjecture whether functional dependencies not embodied in a predicate 
play any useful role in database design. Let us observe that just because a 
functional dependency is true does not obligate us to check it or to design for it. 

2.2 Hypergraph Representation of Join Dependencies 

A portrayal of join dependencies that will prove useful later is the hypergraph. 
Formally, a hypergraph is a set of nodes and a set of hyperedges (we shall call 
them just “edges”) which are nonempty sets of nodes. Hypergraphs are general- 
izations of ordinary graphs, in that a graph is a hypergraph in which every edge 
consists of exactly two nodes. To relate hypergraphs to join dependencies, let us 
use one node for each attribute, and let the edges be the objects of the join 
dependency, that is, the sets of attributes onto which projections are required. 

Example 3. Assume a universal relation scheme with attributes Bank, Acct, 
Loan, Customer, Addr (address of customer), Bal (balance of account), and Amt 
(amount of loan). A natural definition for the universal relation over all seven of 
these attributes is 

{al,..., a7 ( a2 is an account at bank al, a3 is the balance for a2, a4 is a loan 
made by bank al, a5 is the amount of loan ad, a6 is a customer 
holding account al, a6 is the customer borrowing loan ad, and a7 
is the address of as}. 

The corresponding hypergraph is in Figure 1. Here we have only “ordinary” 
edges, that is, sets of two nodes, and we show these edges by lines in the usual 
way. Edges of other than two nodes are illustrated by dashed lines surrounding 
their nodes. 

Although legal, there may be some problem with the use of attribute Customer 
in two different senses in the above definition of a universal relation. That is, if 
a query requests those banks associated with a given customer, it is not clear 
whether what is desired is the set of banks where the customer has loans, or the 
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Fig 1. Hypergraph for banking Fig. 2. Revised banking example with 
example. no cycles. 

set of banks where the customer has accounts, or both.2 In Section 4 we formally 
define the notion of cycles in a hypergraph, but intuitively, the cycle in Figure 1 
should be apparent. We conjecture that it is possible in the real world always to 
define the universal relation so that cycles are absent (by renaming in some 
“natural” way). For example, Figure 2 shows the hypergraph for a database 
scheme similar to Figure 1, but that contains no cycles. Whether we wish always 
to do so is more doubtful. q 

2.3 Other Examples of Universal Relation Definitions 

Let us exhibit the hypergraphs for some other universal relations that illustrate 
additional points. First, we have not yet seen a case where an edge is other than 
the standard pair of nodes. The Courses, Teachers, etc., world from Example 1 
provides such a situation. 

Example 4. In Figure 3 we see the hypergraph for Example 1. Let us remark 
that this hypergraph is acyclic, as we shall see in Section 4 when we have a formal 
definition of “cycle” to match our intuition. Cl 

Example 5. The next example is taken from [15], where it illustrates what is 
there called a “cyclic” Bachman diagram. Lien describes a database with infor- 
mation about employees, their children, their departments, the projects they 
work for (projects are unrelated to departments), the parts needed by projects, 
and the suppliers of parts for projects. Figure 4 shows an initial attempt at 
describing this information by a universal relation. 

The role of the Project-Part-Supplier (PrPaS) predicate is threefold. First, it 
checks triples (p, a, s) to see if supplier s is currently supplying part a to project 
p. But the intent of Lien’s example is that we should also record information 
about what parts a supplier could supply, and what parts a project needs, even 
though no one may be supplying the part currently. 

‘The problem as we see it is that the attribute Customer is “overloaded.” It really should he two 
attributes, Depositor and Borrower. In that case, a query asking for Jones’ bank would have to specify 
whether it meant Jones qua depositor or qua borrower. Note that the requirement that Customer be 
split into two attributes is similar to the requirement for attribute splitting that comes from the 
assumption of uniqueness of functional dependencies [IO, 41. Yet the latter does not formally require 
the attribute Customer to be split, since there ia no functional relationship between Customer and 
Bank. 
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Fig. 3. Hypergraph for Example 1. Fig. 4. Initial design of 
employee database. 

There is no room in our model of universal relation definition for subpredicates 
PrPa and PaS of the ternary PrPaS predicate. In principle, the ternary predicate 
can check any subpredicate anyway. However, the problem here is that the 
meaning of the PrPa predicate is not: “there is a supplier s such that PrPaS is 
true.” Thus the PrPaS and PrPa predicates are not consistent; neither are PrPaS 
and Pas. 

Our way out of this dilemma is to recognize that Part is an overloaded attribute. 
It has three meanings, depending on whether it is a part that can be supplied, a 
part that is needed, or a part that is actually being supplied to a project. Figure 
5 shows how the universal relation should be defined in our style. 

A second approach is to assert that the physical database wih have one relation, 
PrPaS. The pairs (p, a) and (a, s) in PrPa and Pas, respectively, will be 
represented by tuples with nulls (p, a, A) and (A, a, s) in PrPaS. Cl 

2.4 The Formal Universal Relation Conjecture 

The hypothesis that we would like to advance is that every plausible real world 
has a universal relation that can be described by 

(1) one (full) join dependency and 
(2) some number of functional dependencies. 

We assume that the join dependency is fuZZ, meaning that the union of all its 
objects is the set of all attributes. 

Further, we believe that it is possible to select a join dependency that is acyclic, 
in a sense to be defined formally. We do not wish to take a hard position on 
whether it is always necessary or desirable that the join dependency be acyclic. 
To permit cyclic join dependencies may cause certain queries to be ambiguous 
unnecessarily, while restricting ourselves to acyclic join dependencies may cause 
us to lose part of the advantage of querying the universal relation. For example, 
by splitting Part in Example 5 or Customer in Example 2, we force ourselves to 
remember the jargon for the varieties of Parts and Customers. Remembering the 
attribute name Part, Needed part, and Suppliable part is essentially the same as 
remembering that there are three relations in the database, and that we should 
refer to these attributes as PrPaS. Part, PrPa. Part, and Pas. Part, respectively. 

An important consequence of our hypothesis is that there is no role in our 
database design process for explicitly declared multivalued dependencies. Rather, 
we see in Section 4 that the multivalued dependencies we would normally expect 
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Fig. 5. Revised employee example. 

to hold are deducible from the join dependency. In fact, one of the great 
advantages to this form of database specification is that we need not discover our 
multivalued dependencies by ourselves; they can be generated automatically from 
the join dependency. Of course, not all sets of multivalued dependencies can be 
generated by one join dependency, so our hypothesis may be viewed as an 
assumption about what sorts of multivalued dependencies one can expect to meet 
in practice. We shall see that our hypothesis bears a distinct resemblance to 
assumptions about multivalued dependencies made by [24, 151. 

3. IMPLICATIONS OF THE HYPOTHESIS FOR DATABASE DESIGN 

One of the first discoveries we make is that our hypothesis makes database design 
from dependencies straightforward. Ordinarily, to design a database from a given 
set of dependencies, one would start with a collection of attributes and decompose 
them into a suitable “normal form” [12, 13, 141. Deciding whether further 
decomposition of a set of attributes is necessary requires us to make inferences 
about dependencies, and in some cases we have to infer embedded multivalued 
dependencies. As no algorithm for deciding whether such inferences hold is 
known, our capability to produce a design from the classical forms of informa- 
tion-functional and (possibly embedded) multivalued dependencies-is limited. 

However, we can view the database design problem in general as one of 
selecting a database scheme, or set of sets of attributes. There are several 
properties the database scheme should have [5, 22, 251, but chief among these is 
the lossless join property [l], meaning that it should be possible, by taking the 
natural join, to recover the universal relation from its projections onto the 
selected relation schemes (sets of attributes in the database scheme). That is, if 
we select relation schemes RI, . . . , Rk as our database scheme, the join depen- 
dency bd(Rl,. . . , Rk) must hold. There are other desirable properties, principally 
the embedding of functional dependencies in the selected relation schemes [22] 
that we would like as well, but it appears that this dependency preservation 
property will very likely be satisfied automatically by our design procedures, at 
least for those functional dependencies that are represented by objects of the join 
dependency that is given by the design specifications (what we have called data 
structuring functional dependencies). 

We can state very simply the conditions under which a given database scheme 
is a lossless join decomposition, assuming a definition of the real world by a join 
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dependency and several functional dependencies. It is necessary and sufficient 
that 

Lil, fi, . ..,fm)Pj2 

where j1 is the join dependency given in the design specifications, f,, . . . , fm are 
the given functional dependencies, and j, is the join dependency whose objects 
are all the selected relation schemes. The symbol I= means “logically implies.” 
Interestingly, this exact problem was proved NP-complete in [19], but. at least 
we can answer the question in a finite amount of time. That is, unlike the classical 
methods that involve embedded multivalued dependencies, we can always decide 
whether a given database scheme has the lossiess join property and therefore 
represents the universal relation correctly. 

3.1 The Case of No Functional Dependencies 

In one overly simple case (where there are no functional dependencies), we can 
characterize exactly those database schemes that have a lossless join, and the 
result has some implications for the more general case, in which there are given 
functional dependencies. 

THEOREM 2. If the legal universal relations are exactly those that satistj, 
some particular join dependency W(R1, . . . , Rk), then a database scheme &, 
. . . , S,,, has a lossless join if and only if for each R, there is an Sj such that R; 
C Sj. 

PROOF. A proof can be found in [8] or [9]. 0 

If we wish the join of all the relations in the database to be lossless, then 
Theorem 2 says it is necessary that the objects of the given join dependency be 
each contained in some relation scheme. Since we may have reason not to require 
a lossless join of all the objects, we do not view this containment as mandatory, 
however. 

COROLLARY 2. If our real world is defined by a join dependency and some 
functional dependencies, then the “if” direction of Theorem 2 still holds. 

3.2 When We Have Functional Dependencies Along with a Join Dependency 

If we are given functional dependencies along with our join dependency, the 
relation schemes need not be subsets of the objects, nor do the objects need to be 
subsets of the relation schemes. There may be objects of the join dependency, 
such as AB and AC, that are properly contained in a relation scheme ABC; yet 
no violation of even as strong a normal form as projection/join normal form [14] 
occurs because A + BC, and so A is a key. 

We might also consider the possibility of two relation schemes AB and BC that 
are contained in an object ABC. As long as B + A or B + C, the join of the 
relation schemes will still be lossless, because AB and BC join losslessly to 
produce the object ABC. In fact, when such functional dependencies exist, we are 
obliged to decompose relation ABC into AB and BC in order to achieve second 
normal form (unless B + A and B + C both hold). 
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4. INFERRING MULTIVALUED DEPENDENCIES 
FROM ONE JOIN DEPENDENCY 

In this section we give a simple rule for discovering the multivalued dependencies 
that are implied by one join dependency. We also consider the question of when 
a join dependency is equivalent to the multivalued dependencies it implies, and 
show that the equivalence occurs only when the join dependency is “acyclic.” 
The interest in this result comes from the argument in [24] that all “realistic” 
sets of multivalued dependencies are equivalent to one join dependency. Our 
result lends credence to the naturalness of the conjecture made in Section 3 that 
the attribute names for the universal relation should be chosen so that the join 
dependency resulting from definition of the universal relation by predicates yields 
an acyclic join dependency. 

4.1 Definitions 

To begin, let us give some terminology for hypergraphs. A path from node n to 
node m is a sequence of k 2 1 edges El, . . . , Ek such that 

(1) n is in E1, 
(2) m is in Ek , and 
(3) for all 1 5 i < k, Ei n Ei+l is nonempty. 

We also say the above sequence of edges is an edge-path (or just path when no 
confusion arises) from El to Ek. 

Two nodes (or attributes) are connected if there is a path from one to the other. 
Similarly, two edges are connected if there is an edge-path from one to the other. 
A set of nodes or edges is connected if every pair is connected. 

Let (4 8) be a hypergraph. Its reduction (& 6’) is obtained by removing from 
d each edge that is a proper subset of another edge. A hypergraph is reduced if 
it equals its reduction, that is, if no edge is a subset of another edge. In what 
follows, we shall assume that a hypergraph is reduced unless stated otherwise. 
Note that the join dependency of a hypergraph and the join dependency of its 
reduction are logically equivalent [8]. 

Let ~9’ be a set of nodes of the hypergraph (& 6). The set of partial edges 
generated by &’ is obtained by intersecting the edges in 6 with JZ, that is, taking 

{(E rlM)lE isin S} - (0}, 

then taking the reduction of this set of edges. The set of partial edges generated 
from (Jv; &) by some set JZY is said to be a node-generated set ofpartial edges. 

Let F-be a connected, reduced set of partial edges, and let E and F be in 9? Let 
Q = E rl F. We say that (E, F) is an articulation pair, and that Q is an 
articulation set of 9, if the result of removing Q from every edge in F-is not a 
connected set of edges. Evidently, an articulation set in a hypergraph is a 
generalization of the concept of an articulation point in an ordinary graph. 

A block of a reduced hypergraph is a connected, node-generated set of partial 
edges with no articulation set. A block is trivial if it consists of a single (partial) 
edge. A reduced hypergraph is acyclic if all its blocks are trivial; otherwise it is 
cyclic. A hypergraph is said to be cyclic or acyclic precisely if its reduction is 
cyclic or acyclic. We note that our definition of an acyclic hypergraph is different 
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Fig. 6. Example of an acyclic hypergraph. 

from that in [ 111, that is, our definition is strictly less restrictive. We believe that 
our definition is a better generalization of the usual definition of acyclic (ordinary) 
graphs. For a discussion of this point, along with a number of definitions 
equivalent to our definition of “acyclic hypergraph,” see [7] and [lg]. 

Example 6. It is straightforward to verify that Figure 6 shows an acyclic 
hypergraph. Its edges are ABC, CDE, EFA, and ACE.3 An articulation set for the 
set of all edges is ABC n ACE = AC, since the result of removing A and C from 
each edge is to leave the set of edges B, DE, EF, and E, which is not connected 
(B is disconnected from the others). Note that the set of edges {ABC, CDE, 
EFA} has no articulation set. However this set of edges is not node generated, so 
there is no contradiction of our assertion that Figure 6 is acyclic. Cl 

4.2 Inferring Multivalued Dependencies from a Join Dependency 

We shall now give a simple technique for computing the set of multivalued 
dependencies that follow from a join dependency. The method is amenable to 
computer implementation, and serves as an extremely easy way to deduce 
multivalued dependencies by “eyeballing” the hypergraph for a join dependency. 
The method can be viewed as a generalization of a theorem of [15] (although the 
dependencies inferred there were multivalued dependencies “with nulls,” which 
are slightly different from our multivalued dependencies). It is also a special case 
of algorithms recently discovered by [19, 20, 261 for general inference of multi- 
valued dependencies. 

THEOREM 3. Let j = W(R1, . . . , Rk) be a join dependency. Suppose that X and 
Y are disjoint sets of attributes. Then the multivalued dependency X ++ Y 
follows logically from j if and only if Y is the union of some connected 
components of the hypergraph of j with the set of nodes X deleted. 

PROOF. Only if: Let us suppose that Z is all the attributes not in X or Y, and 
assume that there is some Ri that intersects both Y and Z, as suggested in Figure 
7. If X ++ Y follows from j, then the tableau test of [17] will say so. That is, if 
we were to start with the tableau of Figure 8 and apply j to infer additional rows, 
we would eventually get a row of all a’s. However, initially, there is no row with 
a’s in the columns for all the attributes in Ri, and any application of j produces 
a row that agrees with some previous row on Ri. Thus an easy induction on the 

3 Conventionally, we denote sets of attributes, that is, nodes, by their concatenation. Thus ABC is 
short for (A, B, C). 
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x Y z 
aa . . . a aa . . . a bb . . . b 
aa . . . a bb . . . b aa . . - a 

Fig. 7. Hypergraph 
that does not imply 

x-t+ Y. 

Fig. 8. Initial tableau to test X++ Y. 

number of added rows proves that no row with a’s in all the columns for Ri can 
ever be added. Thus j does not imply X ++ Y. 

If: Suppose that Y is the union of some connected components of the hyper- 
graph of j with X deleted, whereupon 2 must be the union of the other connected 
components. Then we can apply the tableau test to the tableau of Figure 8 
successfully; that is, we produce a row of all a’s. In fact, we can do so in one step, 
since we may choose the first row of Figure 8 for those R,,,‘s of j that are subsets 
of XY, and choose the second row for those R,‘s that are subsets of XZ. It is not 
possible that an R, is contained neither in XY nor in X2, or else Y and Z would 
not be the union of connected components of the hypergraph with X removed. 
But the proposed mapping of the objects of the join dependency j into the rows 
of Figure 8 allows us immediately to infer the existence of a row with all a’s and 
prove jl=X++ Y. 0 

COROLLARY 3. The dependency basis [6, 31 for a left side X is obtained by 
deleting the nodes in X from the hypergraph for the given join dependency and 
finding the connected components that result. 

EXAMPLE 7. The dependency basis of Customer in Figure 1 is 

Addr 1 Bank, Acct, Loan, Bal, Amt, 

while the dependency basis of {Bank, Customer} is 

Bal, Acct 1 Loan, Amt ( Addr 0 

4.3 Characterization of Join Dependencies Equivalent to a Set 
of Multivalued Dependencies 

Theorem 3 gives us the set of multivalued dependencies implied by a join 
dependency j, which we call MVD( j). We can use that result to show that j is 
logically equivalent to MVD(j) (i.e., the same relations satisfy both j and 
MVD(j)) exactly when j is acyclic. Before proving this result, we need some 
definitions and a lemma. 

Let (Jy; 8) be a hypergraph, and let P-be a subset of d Let ~2 be the set of 
nodes that is the union of the members of Z We say 9is closed if for each edge 
I of the hypergraph, there is an edge G in Bsuch that I II JH G G. Note that every 
closed set of edges is a node-generated set of partial edges, generated by &. 
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LEMMA 1. Let H = (& 8) be a hypergraph, ‘3 a closed subset of 8, and A%’ the 
set of nodes of 3. Let Fbe a closed subset of the hypergraph (A?, 3). Then Fis 
also a closed subset of H. 

PROOF. Let I be an edge in 8, and let Pbe the union of the edges in 55 We 
must show there is some edge G in Psuch that I n 9 c G. Since 9 is closed with 
respect to &‘, there is some edge J in 9 such that I rl JZ%’ G J. Then, since Fis 
closed with respect to 9, there is some edge K in Ssuch that J n B & K. Thus, 
In.9cK. q 

Let 9 be a closed connected set of two or more edges in a reduced acyclic 
hypergraph. Since Bis a node-generated set of partial edges there is an articula- 
tion set Q for R The edges in d can thus be partitioned into nonempty sets 
A?,..., rt;h, k L 2, such that 

(1) each edge of 9is in exactly one .%, 
(2) % - Q” is connected for each i, and 
(3) if El is an edge in Z and EP is an edge in @, i # j, then El n EP c Q. 

The fact that such a partition exists is exactly what we mean by saying that Q 
is an articulation set of 9 Each % is obtained by taking one of the connected 
components of F- Q and adding back to each edge its intersection with Q. We 
call each ~6 a component of Fafter articulation by Q. We are now ready to prove 
the main theorem of the paper. 

THEOREM 4. The join dependency j is logically equivalent to a set of multi- 
valued dependencies if and only if j’s hypergraph is acyclic. 

PROOF. If: Evidently, j implies MVD ( j), so we need only to prove that j follows 
from MVD(j). Without loss of generality, we assume that j’s hypergraph is 
reduced. We use the tableau test of [17] and prove that if we chase the tableau of 
j with MVDG), then we obtain a row of distinguished symbols (“a’s”) in all the 
attributes. 

We can assume that the hypergraph is connected. In proof, note that if the 
theorem holds for connected components, then, since by Theorem 3,0 ++ X for 
every connected component X, we can form a row of all a’s from the rows with 
a’s in the connected components. 

We shall now define, inductively on i, certain closed subsets of edges to be i- 
level components and i-level augmented components. We start the induction by 
letting the set of all edges be the uniqtie O-level component and the unique O-level 
augmented component. 

Suppose that we have defined (i - l)-level components and augmented com- 
ponents, i 1 1. Assume inductively that each (i - 1)-level augmented component 
is closed. We Cow define the i-level components and augmented components. If 
B is an (i - 1)-level augmented component with exactly one edge, then 9’ is also 
an i-level component and augmented component. 

If 9’is an (i - l)-level augmented component with more than one edge, then 
since j is acyclic, there is an articulation pair (E, F) of 9, since by the inductive 

’ We use I - X to mean the set of partial edges generated (as defined above) from set of edges 8 by 
the set of nodes consisting of all the nodes in members of I except those in Q. 
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hypothesis, 9 is closed, and therefore, node generated. Let Ye,, . . . , &$ be the 
components of 9after articulation by E I-J F. For each m, 1~ m 5 k, define %?,, 
to be %, if .@,,, contains one or both of the edges E or F,5 and 2; = yi”, U {E} 
otherwise. Each Zm is an i-level component, and each PO:, is an i-level augmented 
component. 

By construction, each JY~ contains either E or F. We now show that each 
.%C,, is closed. It is sufficient, by Lemma 1, to show that &Y,, is a closed subset of 
the closed subset 9 Let A,,, be the set of nodes appearing in %%, and let I be an 
edge of 9? We must show that I fl A,,, G G for some G in &Y,, . If I is in &%, then 
let G = I. Suppose I is not in %‘k. We know that the unaugmented component 
yt”, is a connected component of 9’ after articulation by E n F. Thus, as I is in 
@but not in &!?,,, we know that its intersection with edges of 2k, if any, is limited 
to the articulation set, that is, I fl .&,,, G E CI F. Thus we can take G to be 
whichever of E and F is in &‘“:,. 

We call each .#A, a child of 9’, and we call 9’ the father of *A. The transitive 
closure of the father relation is the ancestor relation. It is straightforward that 
each child has strictly fewer edges than its father. It follows by induction on i 
that each i-level augmented component has at most n - i edges, if n is the 
number of edges in the original hypergraph. In particular, the (n - l)-level 
augmented components are precisely the singleton sets {G) for each edge G of 
the original hypergraph. 

Assume as before that 9’ is an (i - 1)-level augmented component with (E, F) 
an articulation pair, and that .%, . . . , xk, k I 2, are the components of 9 after 
articulation by E n F. We shall now show that 

(* ) (E, F) is an articulation pair for the whole hypergraph H, and each of 
&, . . . . yek is contained in a distinct component of H after articulation by 
E n F. 

If i = 1, that is, if B is the O-level augmented component, which contains every 
edge, then (*) is immediate. Assume that 9’ has a father 3. We show that (E, F) 
is an articulation pair for .c%, and that each of yi”l , . . . , &?k is contained in a distinct 
component after articulation of @ by E n F. Then (*) follows easily by induction 
on the level of 9? 

Assume by way of contradiction that 3% and 31pz are in the same component 
after articulation of .9! by Q = E n F. Pick edge G1 in HI and Gz in Hz. We then 
know that there is a sequence of edges Xl, ., . e, Xt of 9?, where 

(1) Gl =X1, 
(2) G,: = Xr, and 
(3) X, n X,+1 is not wholly contained within Q, for 1 I m < t. 

We know that some X,,, is not in 9, since H1 and Hz are distinct components of 
9 after articulation by Q. Let u be the minimum value of m, and u the maximum 
value of m such that X, is not in .?? Then 1~ u 5 v < t. 

’ Note that just because the removal of E fl F disconnects the hypergraph does not mean that E is 
disconnected from F. It is possible that E II F's removal disconnects certain other edges whose sole 
connection to the rest of the graph was through nodes in E fl F. It is true in this case, however, that 
another articulation pair could have been chosen. 
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Let (C, D) be the articulation pair of W that led to the creation of 9? Then 9 
contains at least one of C and D; by renaming if necessary, assume it is C. 
Consider the sequence of edges 

Xl, x2,. . . , xu-1, c, x”+l, . . . , xt 

in which we have “spliced” C in place of X,, . . . , X,. Every edge in this sequence 
is in 9 To derive a contradiction, we need only show that this path is one in 
which each consecutive pair has a point in common that is not in Q = E fl F, for 
we know that X1 = G1 and Xt = G2, but G1 and G2 are supposed to be in distinct 
components of 9 after articulation by Q. 

By (3) above, we already know that X, fl X,+, - Q is not empty for 1 I m < 
u - 1 and for u < M < t. Thus we need only show that X,-I n C - Q and X,+1 
n C - Q are nonempty. We know that there is some node d in XUel n X, - Q, by 
condition (3) above. Now XUwl and X, are both in 9, but they are not in the same 
child of 9?, since X,-I is in 9, but X, is not. So, since d is in XUel n Xu, we know 
that d is in C n D. We already know that d is in XUP1 n X, - Q, so d is in XU-1 
n C - Q. Hence XUP1 n C - Q is nonempty. By an identical argument, X,+, n C 
- Q is nonempty, as was to be shown. We have now shown that if B is an (i - l)- 
level augmented component with (E, F) as articulation pair and with 
.ri”,,.. . , & as the components of 9’ after articulation by E rl F, then (E, F) is an 
articulation pair for the whole hypergraph H, and that each of yi”l, . . . , .%k is 
contained in a distinct component of H after articulation of H by E n F. 

We now prove by reverse induction on i that if we chase the tableau of the join 
dependency j with MVD( j), then we obtain a row with distinguished symbols in 
all of the attributes of 9, for each i-level augmented component 9 The statement 
is true when i = n - 1, where n is the total number of nodes, since as we saw, 
every (n - l)-level augmented component is a single edge. We assume the result 
for i L 1, and show it for i - 1. 

Let 9’ be an (i - l)-level augmented component, and let #1, . . . , % be its 
components after articulation as above, by E tl F. Let 21, . . . , &?k be the 
corresponding augmented components. By the inductive hypothesis, for each m, 
15 m 5 k, there is a row r, in the chased tableau with distinguished symbols in 
all the attributes of A?,, and hence of A%. We just proved that E (1 F is an 
articulation set of the whole hypergraph, and that each &%, is in a distinct 
component after articulation of the hypergraph by E n F. It follows easily that 
chasing the rows rl, . . . , rk using multivalued dependencies with left-hand side 
E n F, we obtain a row with distinguished symbols in all the attributes of 9 

This completes the induction step. In particular, it follows that there exists in 
the chased tableau a row with distinguished symbols in every attribute of the O- 
level augmented component, that is, in every attribute whatsoever. Hence 
MVD( j) implies j, as was to be shown. 

Only if: Suppose that the hypergraph of j is cyclic. Then there is a set A? of 
nodes such that the set RI, . . . , R, of partial edges generated by A%’ has no 
articulation set, and m 2 2. We show by induction on the number of rows added 
when chasing the tableau of j according to the set of multivalued dependencies 
MVD( j), that the projection ofany row onto the columns for A%’ is the projection 
of a row that existed at the outset of the chase procedure. 
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The basis, zero rows, is immediate. For the induction, suppose that at some 
time we can use the multivalued dependency X --w Y in MVD(j) to produce a 
row whose projection onto set of attributes & differs from the projections onto 
&’ that already exist. Let 2 be all the attributes not in X or Y. Let rl and r2 be the 
pair of rows to which X ++ Y is applied to generate, for the first time, a new 
projection onto ~2’. So by the inductive assumption, ~#((r~) = am and TN(rz) 
= ~T,~(sz) for some rows sl and sz of the original tableau. Now T.~(T~) # T.~(T-~), or 
else a new projection onto JZ could not be generated from these rows by a 
multivalued dependency. Thus r.&) # rK(s2), and so s1 # s2. 

Assume that sl corresponds to the set of attributes S1 (that is, the distinguished 
symbols of sl appear in exactly the columns for the attributes in SI) and, similarly, 
~2 corresponds to S2. Recall that all nondistinguished symbols are unique. So, s1 
and s2 agree precisely on S1 f~ SZ. We know that S1 f~ J,&’ = Rp and SZ II JI = R, 
for some p and q, because R1, . . . , R, is the node-generated set of partial edges, 
generated by ~2’. So nx(sl) and 7r.#(s2) agree precisely on S1 rl S2 n A= Rp n R,. 
Thus ~#(r~) and eu(n) agree precisely on Rp fl R,. To apply the multivalued 
dependency X ++ Y to rl and r2 and get something new, rows r1 and r2 must at 
least agree on X. So v,&) and ~.~(r~‘z) must agree on J? n X. Since we showed 
that 7#(rl) and TT.~(~~) agree precisely on Rp n R,, it follows that ~2’ n X c Rp 
n R,. Note that R, # R,, because if Rp = R, then S1 n .& = S2 n 4, whereupon 
Q(SI) = nR(s2), a contradiction. 

Since R1, . . . , R, forms a block, we know that deletion of Rp n R, does not 
disconnect these partial edges. But JZZ n X C_ Rp n R,. Thus the deletion of X 
does not disconnect these partial edges. We may conclude from Theorem 3 that 
either ~2 c XY or J&’ c X.25 As a result, applying the multivalued dependency 
X++ Y produces only rows whose projection onto & already existed in another 
row, and it is not possible that this application of X ++ Y is the first to produce 
a row that has u’s in a set of columns of & that is not a subset of the columns for 
any Ri. 

We conclude that the chase process never introduces any new projections of 
rows onto JZ Thus, when we restrict our attention to J& each row has a’s only in 
a set of columns that is contained in some Ri, 15 i I m. Unless JZ is a subset of 
an edge of the hypergraph for j, in which case the block is trivial, contrary tc 
hypothesis, none of these rows have a’s in all the rows of ~2’. Thus certainly we 
do not, by chasing, produce a row with a’s everywhere, and we conclude that j 
cannot be inferred from MVD( j). Hence, j is not equivalent to MVD(j), and so 
clearly, j is not equivalent to any set of multivalued dependencies. 0 

Note that if j is equivalent to MVD( j), then j is equivalent to the set of those 
multivalued dependencies in MVD( j) whose left-hand side is the intersection of 
two objects in j. This statement follows from the proof of the “if” portion of 
Theorem 4, in which we made use of only those members of MVD(j). As a 
consequence, for any acyclic join dependency j, we can find a subset of MVD( j) 
that is equivalent to MVD( j) and whose size is a polynomial in the size of j. We 
note that Beeri, Fagin, Maier, and Yannakakis [7] strengthen this result by 
showing that if j is acyclic then we can find a subset of MVDG) that is equivalent 
to MVD(j) and is linear in the size of j. 
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5. CONCLUSIONS 

We have presented a way to define universal relations and their semantic 
constraints (dependencies) that, while restricted, appears to offer enough power 
to describe real-world situations. Moreover, the method is sufficiently restricted 
that we can guarantee a database design into projection/join normal form [14] 
without encountering any possibly undecidable problems concerning whether a 
particular relation can or must be decomposed. 

We also explored the class of universal relations defined by acyclic join 
dependencies. These were characterized as those join dependencies that are 
equivalent to the multivalued dependencies they imply. This result in turn shows 
that the class of universal relations defined by acyclic join dependencies includes 
those that are considered reasonable by [24, 151. A number of other remarkable 
propeties of acyclic join dependencies have been shown in [7]. 
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