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1. INTRODUCTION 

Historically, the study of normal forms in a relational database has dealt with 
two separate issues. The first issue concerns the definition of the normal form in 
question, call it Q normal form (where Q can be “third” [lo], “Boyce-Codd” [ 111, 
“fourth” [16], “projection-join” [17], etc.). A relation schema (which, as we shall 
see, can be thought of as a set of constraints that the instances must obey) is 
considered to be “good” in some sense if it is in Q normal form. The second issue 
concerns the normalization process, that is, how one might, if possible, convert a 
relation schema that is not in Q normal form into a collection of relation 
schemata, each of which is in Q normal form, and where the new set of schemata 
is somehow equivalent to the original schema. In this paper, our primary focus is 
the first issue. We show that the second issue leads to a host of research questions. 

We define a new normal form for relational databases that is based only on the 
primitive concepts of domain and key, and we call it domain-key normal form, 
or DK/NF. Intuitively, a relation schema is in DK/NF if every constraint can be 
inferred by simply knowing the set of attribute names and their underlying 
domains, along with the set of keys. We also define insertion and deletion 
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anomalies. (Our definition of “anomaly” is different from that of Codd [lo]. 
Codd’s anomalies have been adequately resolved, that is, prevented, by Boyce- 
Codd normal form [ll].) Intuitively, an insertion anomaly (in our sense) occurs 
when a seemingly legal insertion of a single tuple into a valid instance of the 
schema causes the resulting relation to violate one of the constraints of the 
schema. Here, “seemingly legal” means that every entry of the new tuple is in the 
appropriate domain, and that the new tuple differs from all previous tuples on 
every key. Similarly, a deletion anomaly occurs when the deletion of a single 
tuple from a valid instance of the schema causes a constraint to be violated. We 
show that a satisfiable relation schema (a schema that has at least one valid 
instance) is in DK/NF if and only if it has no insertion or deletion anomalies. 

Unlike previous normal form definitions, our definition of DK/NF is operator 
free. Our viewpoint is that in the best of all possible worlds, every relation schema 
in a database would be in DK/NF. (Ideally, there would be no interrelational 
constraints either. We discuss the issue of interrelational constraints more in 
Section 4.) The very important practical question of exactly when DK/NF can 
be obtained (and how to obtain it) is open. It certainly depends on what the 
allowed transformations are. We discuss this issue more in Section 4. In this 
paper, we deal mainly with the issue of what DK/NF is, that is, with what it 
means for a relation schema to be “good.” We consider it to be an important 
research problem to deal with the other question, of how and when DK/NF is 
obtainable under various transformations. 

In Section 2, we present a number of definitions. In Section 3, we show that a 
satisfiable relation schema is in DK/NF if and only if it has no insertion or 
deletion anomalies. In Section 4, we present some schemata as examples, and 
discuss the issue of converting them into DK/NF. We also discuss the general 
problem of transformation into DK/NF. In Section 5, we summarize some results 
from [17] about Boyce-Codd normal form, fourth normal form, and projection- 
join normal form. These results expose a strong analogy that holds between them. 
In Section 6, we consider the effect of modifying these previously defined normal 
forms to take account of the combinatorial effects of bounded domain sizes. This 
effect has been largely ignored in the past. Previous research proceeded under 
the assumption that domain sizes were infinite (or, perhaps, so large that no 
unexpected combinatorial effects would appear). We show that after this modi- 
fication, these previously defined normal forms are all implied by DK/NF. It 
follows, in particular, that if all domains are infinite, then DK/NF implies all of 
these normal forms. We also consider a formalization of Smith’s “(3,3) normal 
form” [28] and show that it, too, is implied by DK/NF. In Section 7, we discuss 
approaches toward weakening DK/NF by allowing other simple constraints 
besides domain and key constraints. In Section 8, we present our conclusions. 

2. DEFINITIONS 

Let X be a finite set of distinct symbols called attributes (or column names). In 
the spirit of Armstrong [3] and of Aho, Beeri, and Ulhnan [l] we define an 
X-tuple (or simply a tuple if X is understood) to be a function with domain X. 
Thus a tuple is a mapping that associates a value with each attribute in X. We 
call the value associated with the attribute A the A entry of the tuple. Note that 
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under this definition, the often-made statement that “the order of the columns 
does not matter” is true, since “columns” correspond to attributes, and we have 
imposed no ordering on the attributes. If Y is a subset of X, and if t is an X-tuple, 
then t[Y] denotes the Y-tuple obtained by restricting the mapping to Y. An 
X-relation (or simply a relation if X is understood) is a finite set of X-tuples. 
Note that we are explicitly assuming the finiteness of relations (that is, relations 
are assumed to be finite sets of tuples). This corresponds to custom, and, of 
course, to practice. We must make this assumption explicit since the concept of 
logical consequence (defined later) would otherwise be subtly different. The proof 
of Theorem 3.13, for example, requires the finiteness assumption. If R is an 
X-relation, and if Y is a subset of X, then by R [ Y], the projection of R onto Y, we 
mean the set of all tuples t[Y], where t is in R. 

An X-constraint (or simply a constraint if X is understood) is a mapping from 
the collection of all X-relations into {TRUE, FALSE}. Constraints are often 
restricted to those that can be specified by sentences written in a given language, 
such as first-order predicate calculus. (We make no such restriction.) We say that 
relation R obeys constant u, or that (I holds in R, if under this mapping, relation 
R takes on the value TRUE. Otherwise, we say that u fails in R. Note that for us, 
constraints are static, not dynamic, in that they deal with relations, but not with 
transitions between relations. That is, we are not considering “dynamic con- 
straints,” such as “an employee’s salary cannot decrease.” Later in this section 
we discuss certain constraints of special interest to us. These include (1) tradi- 
tional dependencies (functional, multivalued, and join dependencies), (2) domain 
dependencies (or DDs), and (3) key dependencies (or KDs). 

Let X be a set of attributes, let u be a constraint, and let I: be either a constraint 
or a set of constraints. When we say that Z logically implies u (in the context of 
X), or that u is a logical consequence of I2 (in the context of X), we mean that 
whenever Z holds for a relation with attributes X, then so does u. That is, there 
is no “counterexample relation” R with X as its set of attributes such that every 
constraint in Z holds in R, but such that u fails in R. We write 2 i=x u, or, if the 
context X is understood, simply Z I= u. As a simple example, 

{A+B,B-+C)kA-+C. 

Following Cadiou [7], we define a relation schema to be a set of attributes, 
along with a set of constraints. So that we can always speak of constraints in the 
schema, rather than constraints that are logical consequences of those in the 
schema, it is convenient to assume that the set of constraints of the schema is 
closed under logical consequence. That is, if Z is the set of constraints of the 
schema, and if u is a constraint such that Z I= u, then u is also a constraint of the 
schema. A relation is a valid instance (or simply an instance) of the schema if it 
has the same attributes as the schema, and if it obeys every constraint of the 
schema. 

We now define certain dependencies of special interest. 

(1) Functional, multivalued, and join dependencies. Let U and V be sets of 
attributes. The functional dependency [9] U + V is a constraint that says that 
every pair of tuples that agree in the U entries must also agree in the V entries, 
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If S is a UV-relation and T is a UW-relation (where the attributes in common 
are the attributes in U), then the join S * T of S and T is the relation consisting 
of the tuples (u, u, zu), where (u, v) is in S and (u, w) is in T. (Note: When we 
write UV, where U and Vare sets of attributes, we mean the set U U V. When we 
write AB, where A and B are attributes, we mean the set {A, B}; similarly for 
ABCD and so on.) The concept of multivalued dependency (see Fagin [16]) is 
intimately related to that of join. Specifically, if U and V are subsets of attributes 
of a relation R, and if W is the set of attributes of R not in U or V, then the 
multivalued dependency U ++ V holds in R if and only if R is the join of its 
projections R[ UV] and R[UW]. (This characterization of multivalued depen- 
dencies appears in [lS] as Theorem 1.) 

It is convenient for us to use a generalized definition of join, due to Aho, Beeri, 
and Ullman [l], that gives the join of an arbitrary collection of relations. If 
RI, . . . , R, are relations, then the join of the set {RI, . . . , R,.} is the set of all 
tuples (al, . . . , a,,), where Al, . . . , A,, are the attributes appearing in at least one 
ofRl,..., R,, and where for each i, the projection of the tuple (al, . . . , a,) onto 
the attributes of Ri is a tuple in the relation Ri. It is straightforward to verify that 
the old and new definitions of join agree when there are only two relations to be 
joined. Furthermore, this generalized join can be “built up” out of binary joins. 
For example, the join * {RI, Rz, RJ, Rd} is equal to (((RI * Rz) * Rs) * RJ, that is, the 
result of joining RI and Rz, joining the result with RB, and then joining this result 
with R4. By the associativity and commutativity of the binary join, we can take 
the binary joins in any order we wish, and parenthesize however we wish, and 
still get the same answer. For example, * {RI, Rz, RB, R4) also equals 
(Rz * Rs)*(R4 * RI). 

Let X1, . . . , X, each be subsets (not necessarily disjoint) of the attributes of 
relation R, where each attribute of R is contained in at least one of Xl, . . . , X,. 
Following Rissanen [26], we say that R obeys the join dependency * {Xl, . . . , Xr} 
if R is the join of its projections R[XJ, . . . , R [X,]. 

As noted in [l], the join of the projections R[XJ, . . . , R[X,] of R equals 

{t: there are tuples wl, . . . , wr of R 

such that wi[Xi] = t[Xi] for each i (15 i 5 r)} . 

It follows that the join dependency * {X1, . . . , Xr} holds for the relation R if and 
only if R contains each tuple t for which there are tuples wl, . . . , w,. of R (not 
necessarily distinct) such that Wi[Xi] = t[XJ for each i (15 i I r). 

If R and U, V, W are as in the definition above of multivalued dependency, 
then the multivalued dependency U++ V holds in R if and only if the join 
dependency * {UV, UW} holds in R. Thus it is possible to represent each 
multivalued dependency by a join dependency. We note that Nicolas [24] defined 
the mutual dependency, which is a special case of the join dependency where 
there are exactly three relations to be joined. Delobel [E] and Dayal and 
Bernstein [ 141 also explore properties of join dependencies. 

From this point on, we abbreviate functional dependency, multivalued depen- 
dency, and join dependency by FD, MVD, and JD, respectively. 
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(2) Domain dependencies (DDs). The domain dependency IN(A,S), where A 
is an attribute and S is a set, means that the A entry in each tuple must be a 
member of the set S. For example, let A be the attribute SALARY, and let S be 
the set of all integers between 10,000 and 100,000. If A is one of the attributes of 
relation R, then R obeys IN(A, S) if and only if the SALARY entry of every tuple 
of R is an integer between 10,000 and 100,000. 

(3) Key dependencies (KDs). The key dependency KEY(K), where K is a set 
of attributes, says that K is a key, that is, that no two tuples have the same K 
entries. Thus if R is an X-relation, that is, if X is the set of attributes of relation 
R, then KEY(K) holds for R if and only if the FD K+X does. For notational 
convenience, we may write KEY(A1, . . . , A,) for KEY( {Al, . . . , A,}). We remark 
that keys are usually defined at the schema level, not at the instance level. At the 
schema level, for K to be a key, it is usually assumed that K is minimal, that is, 
that no proper subset of K is a key. However, this minimality assumption is not 
useful at the instance level. Thus we wish a relation in which a proper subset of 
K happens to uniquely identify tuples to be a possible instance of a schema in 
which K is a key. So our definition, in which minimality is not assumed, is more 
convenient for our purposes. 

3. DEFINITION OF INSERTION ANOMALY, DELETION ANOMALY, AND DK/NF 

In this section, we present a definition of an insertion anomaly and of a deletion 
anomaly. We define DK/NF, and we show that a satisfiable relation schema is in 
DK/NF if and only if it has no insertion or deletion anomalies. We present some 
schemata as examples. We assume throughout this paper that every relation 
schema we consider is already in Codd’s first normal form (lNF), that is, each 
entry of each instance is atomic. 

Definition 3.1. Let R* be a relation schema, and let R be a valid instance of 
R*. Let t be an arbitrary tuple not in R. We say that tuple t is compatible with 
R (in the context of R*) if 

(1) t has the same attributes as R; 
(2) the A entry of t is in set S for each attribute A and each DD IN(A, S) of R *; 

and 
(3) t[K] # s[K] for each KD KEY(K) of R* and for each tuple s of R. 

Thus a compatible tuple is “insertible” into R without violating any DDs or 
KDs. 

Definition 3.2. Relation schema R * has an insertion anomaly if there is a valid 
instance R of R* and there is a tuple t compatible with R such that R U {t} , the 
relation obtained by inserting t into R, is not a valid instance of R* (i.e., violates 
a constraint of R *) , 

Example 3.3. Let R* be a relation schema with attributes EMP, DEPT, and 
MGR, and with the following constraints (where %@&!20 is the set of all 
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Figure 1 

1 EMP 1 DEPT 

Hilbert Math 
Pythagoras Math 
Turing Computer Science 
Cauchy Math 

Figure 2 

character strings of at most 20 characters): 

MGR 

Gauss 
Gauss 
van Neumann 
Euler 

IN(EMP, WSlr920) 

IN( DEPT, %Xk%’ 20) 

IN(MGR, S$%%&‘20) 

KEY (EMP) 

DEPT + MGR 

As we noted earlier, we tacitly close the set of constraints under logical conse- 
quence, that is, under I=. The schema is not in Boyce-Codd normal form, or even 
in third normal form [lo], because of the “transitive dependence” of MGR on 
EMP via EMP + DEPT and DEPT + MGR. We now show that R* has an 
insertion anomaly. Let R be the relation in Figure 1. This is a valid instance of 
the schema R *. Let t be the tuple (Cauchy, Math, Euler). Tuple t is compatible 
with relation R. However, if we were to insert tuple t, then we would obtain the 
relation in Figure 2, which is not a valid instance of the schema, since it violates 
the FD DEPT + MGX. Thus there is an insertion anomaly. One intuitive 
viewpoint on what is happening here is that by the insertion of the tuple (Cauchy, 
Math, Euler), it is not clear whether the intent is simply to insert information 
about a new employee (Cauchy), or whether the intent is also to update the name 
of the chairman of the math department, 

Example 3.4. Let R* be a relation schema with attributes ABC, and with the 
following constraints (where J&‘Ss the set (0, 1, 2, . . . ,} of natural numbers): 

IN(A, J&W) 

IN@, &‘&W) 

IN( C, J&W) 

KEY (ABC) 

A++B 
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Figure 3 

Figure 4 

The schema R* is not in fourth normal form (although it is in Boyce-Codd 
normal form), since the MVD A-t+ B holds, and A is not a key. We now show 
that R* has an insertion anomaly. Let R be the relation in Figure 3. This is a 
valid instance of the schema R*. Let t be the tuple (0, 1,l). Tuple t is compatible 
with relation R. However, if we were to insert tuple t, then we would obtain the 
relation in Figure 4, which is not a valid instance of the schema, since it violates 
the MVD A ++ B. 

Example 3.5. This example, which is discussed in [17], is a slight modification 
of an example due to Nicolas [24]. Assume that there are only three attributes 
A, P, C, where the tuple (a,p, c) means, intuitively, that agent a represents product 
p produced by company c. Let R* be a relation schema with these attributes, and 
with the following constraints: 

IN(A, %9&&?20) 

IN(P, @%&?20) 

IN(C, %&@?20) 

* {AP,AC, PC} 

Let us denote the JD * {AP, AC, PC} above by u. In English, the JD u says 
precisely the following: 

Assume that agent a represents product p produced by company c’, that 
agent a represents product p’ produced by company c, and that agent a’ 
represents product p produced by company c. Then agent a represents 
product p produced by company c. 

It is shown in [17] that the schema R* is in fourth normal form but not in 
projection-join normal form. We now show that R* has an insertion anomaly. 
Let R be the relation in Figure 5. It is a valid instance of the schema. Let t be the 
tuple (Smith, bolt, Acme). Tuple t is compatible with relation R. However, if we 
were to insert tuple t, then we would obtain the relation in Figure 6, which is not 
a valid instance of the schema, since it violates the JD u. (If we were to add the 
tuple (Jones, bolt, Acme) to the relation in Figure 6, then it would obey cr.) 
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A P c 

Jones bolt Ace 
Jones screw Acme 

Figure 5 

Figure 6 

STATUS 

1 
0 
1 

Figure 7 

T 

t 
STATUS 

SALARY 

73000 
37000 
46000 

SALARY 

73000 
37000 
46ooo 
57000 

Figure 8 

Example 3.6. Let R* be a relation schema with attributes EMP#, STATUS, 
and SALARY, and with the following constraints: 

IN(EMP#, {n: n is a six-digit integer} ) 

IN(STATUS, (0, 1) ) 

IN(SALARY, {n: 10,OOO~n~100,000}) 

KEY (EMP#) 

Vt( @[STATUS] = 0) * @[SALARY] I 50,000)) 

Intuitively, our constraints say that EMP# is a six-digit integer, and is the key; 
there are two statuses, represented by 0 and 1; and salaries are between $10,000 
and $100,000, except that employees with status 0 have a salary of at most 
$50,000. This schema is in fourth normal form, and even in projection-join normal 
form. However, it has the following insertion anomaly. Let R be the relation in 
Figure 7. It is a valid instance of the schema. Let t be the tuple (141421,0,57000). 
Tuple t is compatible with relation R. However, if we were to insert tuple t, then 
we would obtain the relation in Figure 8, which is not a valid instance of the 

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981. 



Normal Form for Relational Databases Based on Domains and Keys - 395 

Figure 9 

A B C 

ml 1 0 0 
1 0 1 
1 1 0 

Figure 10 

schema, since it violates the constraint that no employee with status 0 can have 
a salary greater than $50,000. 

Example 3.7. This example is due to Smith [28]. Let P-ROLE be a relation 
schema with attributes PERSON and ROLE. A PERSON is assumed to have 
two types of ROLES: sex role (male or female) and professional role. It is assumed 
that a person can have several professions, but only one sex. This schema is in 
projection-join normal form, but not in Smith’s (3,3) normal form [28] (which we 
discuss briefly at the end of Section 6). The schema has an insertion anomaly 
since it is possible to insert a tuple that gives the same person two different sex 
roles, without violating any DDs or KDs. Smith notes that the schema can be 
split [17] into two schemata, SEX-ROLE and PROF-ROLE. A tuple about a 
person’s sex role goes into the first relation, and tuples about his professional 
roles go into the second. The schema SEX-ROLE obeys the FD PERSON + 
ROLE, while the schema PROF-ROLE does not. As Smith notes, an advantage 
of splitting is that the system’s key maintenance mechanism can then prevent 
the insertion of two sex roles for one person. In our terminology, a schema that 
is not in DK/NF has been split into two schemata, each of which is in DK/NF. 
Our intent is not that, at time of insertion, the database management system 
check the tuple and decide which of the two relations it should go into. Instead, 
our intent is that the user view of the database be two relations, one involving 
sex roles and one involving professional roles, and that the user should decide 
which relation to insert a tuple into. 

We now define a deletion anomaly. 

Definition 3.8. Relation schema R* has a deletion anomaly if there is a valid 
instance R of R* and a tuple t in R such that the relation obtained by removing 
t from R is not a valid instance of R* (i.e., violates a constraint of R*). 

Example 3.9. Let R* be the same relation schema as in Example 3.4. We now 
show that R* has a deletion anomaly. Let R be the relation in Figure 9. This is 
a valid instance of the schema R*. Let t be the tuple (1, 1,l). If we delete tuple t 
from relation R, then we obtain the relation in Figure 10, which is not a valid 
instance of the schema, since it violates the MVD A++ B. 
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Figure 11 

Figure 12 

Example 3.10. Let R* be a relation schema with attributes EMP# and MGR#, 
and with the following constraints: 

IN(EMP#, {n: n is a six-digit integer} ) 

IN(MGR#, {n: n is a six-digit integer} ) 

KEY (EMP#) 

MGR# G EMP# 

By MGR# C EMP#, we mean the constraint that says that every MGRf entry 
must also be an EMP# entry. We call such constraints inclusion depen- 
dencies. They have also been used by Smith and Smith [29], Zaniolo [34], and 
Codd [ 121. Probably their greatest importance is as an interrelational constraint, 
in which we might say that each A entry of relation R appears as a B entry of 
relation S. More generally, an inclusion dependency can say that the projection 
onto a given m columns of relation R are a subset of the projection onto a given 
m columns of relation S. Inclusion dependencies are a special case of extended 
embedded implicational dependencies (see Fagin [ES]). We discuss them more in 
Section 4. 

This schema is in projection-join normal form. However, we now show that it 
has a deletion anomaly. Let R be the relation in Figure 11. This is a valid instance 
of the schema (we have a null entry corresponding to the manager of employee 
number 449489 since this employee is the head of the organization and has no 
manager). Let t be the tuple (732050,449489). If we delete tuple t from relation R, 
then we obtain the relation in Figure 12, which is not a valid instance of the 
schema since it violates the inclusion dependency MGR# c EMP#. 

Example 3.11. Let R* be a relation schema with only one attribute A, and 
with the following constraints: 

3t&23t3((tl z t2) A @I z 6) A @2 z t3)) 
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The predicate calculus expression simply says that there are at least three 
distinct tuples. It is easy to see that this schema has a deletion anomaly. 

We now define DK/NF. 

Definition 3.12. Let R* be a 1NF relation schema, and let I’ be the set of DDs 
and KDs of the schema. R * is in domain-key normal form (DK/NF) if I’ E u for 
every constraint u of R*. 

That is, a INF relation schema is in DK/NF if every constraint can be inferred 
by simply knowing the DDs (domain dependencies) and the KDs (key depen- 
dencies). Putting it another way: a 1NF relation schema is in DK/NF if, by 
enforcing the DDs and KDs, every constraint of the schema is automatically 
enforced. This is good, since DDs (“this entry must lie in this set”) and KDs 
(“this entry is a unique identifier”) are quite fundamental and easily understood. 
By constrast, each of Boyce-Codd normal form, fourth normal form, and projec- 
tion-join normal form (all discussed in the next section) depend heavily on the 
concept of FD; the latter two normal forms also depend on the concepts of MVD 
and JD. Although these three traditional dependencies are quite useful from a 
practical point of view, it is difficult to justify that they are inherently fundamental 
(from a mathematical point of view) to the relational model. Our definitions of 
DK/NF and of anomaly, however, depend only on the primitive concepts of 
domains (via DDs) and keys (via KDs), along with the general concept of a 
“constraint.” 

Bernstein [6, p. 2801 also discusses the basic nature of the key concept. He 
notes that data definition languages tend to allow the definition of keys, but not 
of FDs. He defines an FD to be embodied in a schema if its left-hand side is a key 
of the schema (and if its right-hand side is an attribute of the schema). He 
thereby allows one to replace the specification of FDs by the more primitive 
notion of specification of keys. Another point about the basic nature of the key 
concept: relations, being sets (of tuples), are unordered. Hence it is desirable to 
refer to a tuple in a content-addressable manner; keys provide a uniform mech- 
anism for doing so. 

If all relation schemata that correspond to stored relations in a database are in 
DK/NF (and if there are no interrelatonal dependencies), then the database 
management system need only have a mechanism for supporting DDs and KDs, 
rather than a mechanism for supporting more general constraints. We remark 
that while System R [5] does not even support general FDs, it does support keys 
(via “unique indices”). 

We now need to define the concept of satisfiability. A relation schema is 
satisfiable if it has at least one valid instance. Thus a relation schema is satisfiable 
if its set of constraints is noncontradictory. An example of a nonsatisfiable schema 
would be one in which one of the constraints is 3t(t # t). Of course, the only 
schemata of any interest are satisfiable. We remark that if the DD IN(A,0), 
where 0 is the empty set, holds for a relation schema, then this does not 
necessarily mean that the schema is unsatisfiable. It simply means that the only 
possible valid instance for the schema is the empty relation (with no tuples). In 
particular, every set of KDs and DDs alone (or, more exactly, the schema 
determined by a set of attributes along with this set of constraints) is satisfiable, 
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since the empty relation (with the appropriate attributes) is always a valid 
instance. 

The following theorem, which is not deep, shows that there are two equivalent 
ways of defining what it means for a satisfiable 1NF schema to be in DK/NF. 
The first is the definition we gave, which could be called “static.” The second 
possible definition could be called “dynamic,” since it discusses the effects of 
insertions and deletions (in particular, it says that there are no insertion or 
deletion anomalies). 

THEOREM 3.13. A satisfiable 1NF relation schema is in DK/NF if and only 
if it has no insertion or deletion anomalies. 

PROOF. Assume first that R* is a satisfiable 1NF relation schema in DK/NF. 
We shall show that R * has no insertion or deletion anomalies. Let R be a valid 
instance of R*. We must show that R’, which is obtained from R by either 
inserting a tuple compatible with R, or by deleting a tuple from R, is also a valid 
instance of R *. Let I’ be the set of DDs and KDs of R *. It is easy to verify that 
since R obeys I’, so does R’. To show that R’ is a valid instance of R*, we must 
show that R ’ obeys every constraint u of R*. But if u is an arbitrary constraint of 
R *, then l? I= u, since R * is in DK/NF. Hence since R’ obeys r and since r k u, 
it follows that R’ obeys u, as desired. 

Conversely, we now show that if R* is a satisfiable 1NF relation schema that 
is not in DK/NF, then it has either an insertion or a deletion anomaly. Assume 
that R * is a satisfiable 1NF relation schema that is not in DK/NF. Let I be the 
set of DDs and KDs of R*. Since R* is not in DK/NF, it has a constraint u that 
is not a logical consequence of I. By definition of logical consequence, this means 
that there exists a “counterexample relation” S for which r holds and a fails. In 
particular, S is not a valid instance of the schema R *, since o fails. Since R * is 
satisfiable, it has a valid instance. Let us call this valid instance R. Since, by our 
definitions, a “relation” is a finite set of tuples, each of R and S contain a finite 
number of tuples. Assume that R containsp distinct tuples rl, . . . , r,, and that S 
contains q distinct tuples sl,. . . , s,. We now define p+q+ 1 relations 
Ti(-psilq), as follows: 

T-P = {rl, . ..,rP} =R 
T-,+1 = {rl, . . . , rp-l) 

T-i = {rl, . . . , ri} (lSi5p) 

TO =0 
Tl = {Sl) 
7’2 = {Sl,SZ) 

. 

. 
Ti = {Sly a.. , Si} (lsi%q) 

TQ = {Sl, . . . , s,} = s 
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Thus the sequence of relations Ti is obtained as follows. The sequence begins 
with the relation R; then one tuple at a time is deleted until the empty relation 
is obtained, then one tuple at a time is inserted until the relation S is obtained. 
Now the first relation ( TmP = R) in the sequence is a valid instance of the schema, 
and the last relation (Tg = S) in the sequence is not a valid instance of the 
schema. Therefore, for some k (-p f k 5 q - l), we know that Tk is a valid instance 
of the schema and Tk+, is not. If kt0, that is, if Tk+, is obtained from Tk by 
deleting a tuple, then R * has a deletion anomaly. If k ~0, that is, if Tk+l is 
obtained from Tk by inserting a tuple t, then R * has an insertion anomaly, since 
t is compatible with Tk. (The reason that t is compatible with Tk is that t and all 
of the tuples of Tk are in S, and S obeys I’.) Thus R * has either an insertion or a 
deletion anomaly, which was to be shown. 0 

Note that the (non-DK/NF) schema in Example 3.3 has an insertion anomaly 
but no deletion anomaly, and the (non-DK/NF) schema in Example 3.11 has a 
deletion anomaly but no insertion anomaly. 

Although, as we just noted, it is possible for a satisfiable schema to violate 
DK/NF without having an insertion anomaly, we do have the following result. 

THEOREM 3.14. Let R * be a 1NF relation schema. Then R * is in DK/NF if 
and only if (1) it has no insertion anomaly, and (2) the empty relation (with the 
appropriate attributes) is a valid instance of the schema. 

PROOF. Assume first that R* is in DK/NF. As in the proof of the “only if” 
direction of Theorem 3.13, it follows that R * has no insertion anomaly. So (1) 
holds. And, (2) holds, since the empty relation obeys every DD and KD. We have 
now proved the “only if” direction of the theorem. The “if” direction can be 
proved by a modification of the proof of the “if” direction of Theorem 3.13, where 
we let the relation R in the proof be the empty relation. 0 

Note that the empty relation (with a given set of attributes) obeys every DD, 
KD, FD, MVD, and JD (with the same attributes). In particular, all of our 
examples that are not in DK/NF (except Example 3.11) obey (2) but not (1) of 
Theorem 3.14. The schema in Example 3.11 is one for which the empty relation 
is not a valid instance. This schema, which is not in DK/NF, obeys (1) but 
not (2). 

4. TRANSFORMING INTO DK/NF 

As we noted in the introduction, the primary focus of this paper is on defining 
DK/NF (and on giving some of its properties), rather than on telling how to 
obtain DK/NF (and on determining when this is possible). Thus in this paper, 
the main issue is what it means for a relation schema to be “good,” rather than 
on how to make it good. We now briefly discuss this latter issue. We begin by 
considering the normalization of the examples in the previous section. 

The schema in Example 3.3 (with attributes {EMP, DEPT, MGR] ) is not in 
DK/NF, but can be decomposed into two DK/NF schemata RT and Rz*, with 
attributes (EMP, DEPT} and {DEPT, MGR} , respectively. This is classic nor- 
malization, as introduced by Codd [lo]. We note that sometimes (but not always), 
it might be desirable in practice to have an inter-relational constraint that says 
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that if RI and Rz are the instances at a given time of RT and RI, respectively, 
then RJDEPT] = &[DEPT], that is, that the DEPT entries must be the same. 
This issue is a subtle one, which we return to later in this section. 

The schema in Example 3.4 is not in DK/NF. By decomposing the schema into 
two schemata, with attributes AB and AC, respectively, we obtain two DK/NF 
schemata. 

The schema in Example 3.5 is not in DK/NF. However, by decomposing the 
schema into three schemata, with attributes AP, AC, and PC, respectively, we 
obtain three DK/NF schemata. 

The schema in Example 3.6 is not in DK/NF, and the decomposition approach 
(the use of projections) is not powerful enough to obtain DK/NF. However, the 
split operator (as discussed in [17] and in Example 3.7) does do the job. That is, 
we replace the original schema R * of Example 3.6 by two schemata R T and R 2*, 
where instances of schema Rf deal with employees of status 0, and where 
instances of schema R2* deal with employees of status 1. Thus R ?, which deals 
with status 0 employees, has attributes EMP# and SALARY, and the following 
constraints: 

IN(EMP#, {n: n is a six-digit integer} ) 

IN(SALARY, {n: 10,000~n~50,000}) 

KEY (EMP#) 

Note that a STATUS attribute is no longer necessary or desirable since all 
STATUS values would be identically 0. Schema R2*, which deals with status 1 
employees, is just like schema R :, except that 50,000 is replaced by 100,000. We 
shall return to this example later. 

Similarly, as discussed in Example 3.7, the split operator converts the schema 
of Example 3.7, which is not in DK/NF, into two schemata, each of which is in 
DK/NF. 

The schema of Example 3.10 is not in DK/NF, and there is no obvious, natural 
way to convert it into several schemata, each of which is in DK/NF. The same 
comment applies to the schema of Example 3.11. 

In order to discuss the possibility or impossibility of converting a schema into 
DK/NF, we must, of course, define the class of legal transformations, We now 
discuss this issue. 

Define a database schema to be a collection of relation schemata (each of 
which is a set of attributes and a set of constraints), possibly along with 
interrelational constraints. A transformation from one database schema into 
another is a mapping from the valid instances of the first database schema into 
the valid instances of the second. (We sometimes say loosely that the transfor- 
mation maps one schema into another.) In classic decomposition (as would take 
place, for example, in Example 3.3), the transformation consists of mapping a 
relation into a collection of certain of its projections. One natural demand on a 
transformation from one schema into another is that the transformation be l-l. 
For, if D is a valid instance of the original schema, and if f (D) is the transformed 
version (i.e., the corresponding instance of the second schema), then it is possible, 
in theory, to reconstruct D from f(D), since the fact that f is l-l says precisely 
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that f(D) uniquely determines D. This is what corresponds in the database 
literature to a “lossless” transformation, or a transformation “without loss of 
information” [l, 161. Classical decomposition (using projections) has this l-l 
property, in the presence of the appropriate FDs, MVDs, or JDs. The whole point 
of Rissanen’s paper on independent components of relations [25] is to consider 
the situation in which the transformation is not only l-l, but also onto. Interest- 
ingly enough, one of Codd’s original motivations for normalization is in direct 
contradiction to the “onto” property. Thus one of the reasons that Codd gives for 
normalizing the {EMP, DEPT, MGR} SC h ema of Example 3.3 (with the FD 
DEPT + MGR) into an {EMP, DEPT} SC h ema and a {DEPT, MGR} schema is 
to be able to maintain manager information for a department with no employees. 
Thus Codd wants it to be possible for the DEPT entries in the (EMP,DEPT} 
relation to be different from the DEPT entries in the {DEPT, MGR} relation. In 
this case, the transformation map is not onto, since no {EMP,DEPT, MGR} 
relation has as a pair of projections an {EMP,DEPT} relation and a 
{DEPT,MGR} relation in which the DEPT entries are different. Intuitively, 
when a transformation map is not onto, there are “less constraints” (i.e., “more 
possible database instances”). 

This last observation gives us a clue to a trivial l-l transformation from an 
arbitrary database schema into a database schema in which every relation schema 
is in DK/NF, and in which there are no inter-relational constraints. We simply let 
the transformation f be the identity map (in which f(D) = D), and we let the 
“target” database schema (the result of the transformation) be the same as the 
“source” (i.e., the original) database schema, but with all constraints removed. 
Thus to every relation schema in the source database schema, there corresponds 
a relation schema in the target database schema with exactly the same attributes, 
but with no constraints (and, further, the target database schema has no inter- 
relational constraints). 

Even if we were to demand that the transformation map be both l-l and onto, 
there is still always a trivial transformation of every satisfiable database schema 
into a single DK/NF relation schema. For ease in exposition, we describe a 
transformation that “almost” works; its only flaw is that the transformation is 
not quite onto, since it misses one valid instance of the target schema (the empty 
instance). We remark that by a trivial finite modification of the transformation, 
the transformation can be made onto. There are exactly two attributes A and B 
in the target schema. Let S be the set of all valid database instances of the source 
database schema. The target schema has precisely the following constraints. 

INCA, KU) 

IN(B,S) 

KEY(A) 

The transformation f maps an instance D to the one-tuple relation with 0 as the 
A entry and with D as the B entry. Although DK/NF has been attained, it is 
clear that nothing at all has been gained by this transformation. All the difficulties 
of maintaining the constraints of the source schema have simply been converted 
into difficulties in maintaining a very complex domain dependency. Furthermore, 
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the target schema is clearly unacceptable in every way, both as a user view and 
as a way for data to be actually stored. 

In order to adequately deal with the theoretical issues involved in the problem 
of when it is desirable and how it is possible to convert a database schema into a 
“DK/NF database schema,” a number of problems must be addressed. The first 
issue is: what is a “DK/NF database schema”? We have so far only defined a 
DK/NF relation schema. We certainly insist that a DK/NF database schema 
contain only DK/NF relation schemata. What about interrelational constraints? 
We might insist that a DK/NF database schema contain no inter-relational 
constraints. A less strict demand, that is also natural, is to allow only inclusion 
dependencies (see Example 3.10) as interrelational constraints. Allowing inclusion 
dependencies as interrelational constraints is in the spirit of our definition of a 
DK/NF relation schema, in that inclusion dependencies are very important 
constraints that a database management system should have the capability of 
enforcing anyway. Note that an “equality dependency,” which says, for example, 
that the set of A entries of relation R must equal the set of B entries of relation 
S, is equivalent to two inclusion dependencies (R[A] c S[B] and S[B] c R[A]). 
One efficient mechanism for enforcing inclusion dependencies in a double index. 
Thus to maintain the inclusion dependency which says, for example, that the A 
entries of relation R must always be a subset (not necessarily proper) of the B 
entries of relation S, it is possible to keep an index on both R[A] and S[B] 
(possibly in the same physical index, as in ADABAS [30]), and thereby to enforce 
the constraint by checking the indices whenever there is an insertion, deletion, or 
update affecting these entries. 

It is interesting to note that any relation schema in which the only constraints 
are FDs can always be transformed in a simple manner into a DK/NF database 
schema, in which the only interrelational constraints are inclusion dependencies. 
We first form one relation schema R* that contains ah of the attributes in the 
source relation schema, but with no constraints. For each FD X+ Y of the source 
schema, we also form a new relation schema with attributes XY, and with the 
single constraint KEY(X). The interrelational constraints say that each relation 
is a projection of the instance R of R* (this can be said with a collection of 
inclusion dependencies). This process can be best understood by an example. 

Example 4.1. Assume that the source relation schema contains exactly four 
attributes ABCD, and that the constraints are the FDs AB + C and C + A. This 
schema is not in DK/NF (it is not even in Boyce-Codd normal form). We 
transform this schema into a new database schema with three relation schemata 
R T, R ?;, and R *3. Schema R T contains alI four attributes ABCD, and no con- 
straints. Schema R 1 contains attributes ABC and the single constraint KEYlAB). 
Schema R *3 contains attributes AC and the single constraint KEY(C). The 
interrelational constraints are 

R2 G RI[ABC] 

Rl[ABC] c R2 

Rs c RI[AC] 

Rl[AC] c RS 
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The first two interrelational constraints say that Rz is the projection of RI onto 
ABC, and the second two interrelational constraints say that RS is the projection 
of RI onto AC. It is easy to verify that there is a l-l correspondence between the 
source and the target database instances. This technique is a special case of a 
more general approach by Armstrong and Delobel[4], in which they project onto 
saturated sets and antiroots. For details, see [4]. 

We shall come back to the issue of what interrelational dependencies to allow 
in Section 7. 

An important practical issue is: how complicated a domain dependency can we 
expect (or demand) that the relational database management system be able to 
enforce? System R [5] and ADABAS [30] currently have the capability of 
enforcing domain constraints such as “each A entry of relation R must be exactly 
n bytes,” for arbitrary fixed n. Query-by-example [21] and INGRES [32] also 
have this capability, but n must be at most 6. In IBM’s GIS [19], it is possible to 
completely specify any finite domain (e.g., it is possible to say that every entry in 
column B of relation R must be a member of the finite domain {nail, bolt, screw} ). 

Another important practical issue that may arise relates to the complexity of 
the transformation fi (This would be an issue if the target schema is how the 
data are to be stored, and the source schema is how the data are to be viewed.) 
The complexity measure might involve computation time and memory require- 
ments, as well as the number of page faults. Possibly, the time complexity of f 
and its inverse should be linear. Furthermore, if the database instance D’ is 
obtained from D by a simple operation (such as an insertion or a deletion of a 
single tuple), then it should be easy to convert f(D) into f(D’); here, “easy” 
might mean “constant time.” Clearly, this is a fertile area for research. 

We close this section with a warning. In the general case, it is not useful to 
think in terms of mechanical procedures for conversion to DK/NF, since we 
immediately run into undecidability results. For example, it is not even decidable 
as to whether a sentence of first-order logic is a tautology (this is Church’s 
theorem [a]). One approach to circumventing undecidability is to restrict the 
class of constraints. For example, there are known decision procedures [23] for 
determining when traditional dependencies (FDs, MVDs, and JDs) are conse- 
quences of other traditional dependencies. We shall not pursue this matter further 
in this paper. 

5. BCNF, 4NF, AND PJ/NF 

In this section, we present definitions of some previously defined normal forms 
that are based on the projection and join operators: Boyce-Codd normal form 
[ 111, fourth normal form [ 161, and projection-join normal form [ 171. We hereafter 
refer to these latter three normal forms as BCNF, 4NF, and PJ/NF, respectively. 
The definitions that we give are not the same as the original definitions, but, as 
shown in Fagin [17], are equivalent to the original definitions. 

Definition 5.1. A 1NF relation schema R * is in BCNF if A I= u for each FD u 
of R *, where A is the set of KDs of R *. Thus every FD is the result of keys. 

Definition 5.2. A 1NF relation schema R * is in 4NF if A I= u for each MVD u 
of R *, where A is the set of KDs of R *. Thus every MVD is the result of keys. 

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981. 



404 * Ronald Fagin 

Definition 5.3. A 1NF relation schema R* is in PJ/NF if A I= u for each JD u 
of R *, where A is the set of KDs of R *. Thus every JD is the result of keys. 

The following theorem is proved in [17]. 

THEOREM 5.4. PJ/NF - 4NF - BCNF. 

There is a striking analogy between the definitions, as presented above, of 
BCNF, 4NF, and PJ/NF. In fact, this observation was one of the author’s 
motivations in defining DK/NF. Unlike DK/NF, none of these earlier normal 
forms considered the role of domains. The purpose of the next section is to 
remedy this neglect. 

6. MODIFIED VERSIONS OF BCNF, 4NF, AND PJ/NF 

In this section, we define modified versions of BCNF, 4NF, and PJ/NF, which we 
call BCNF’, 4NF’, and PJ/NF’, respectively. The modification consists of taking 
into account the effect of DDs. It is proved that the original and modified versions 
are equivalent, provided no domain is too small. We also show that DK/NF j 
PJ/NF’ e 4NF’ - BCNF’. One view of this section is that, for the first time, the 
combinatorial effects of a bounded domain size are being considered. This effect 
has been neglected in the past. For example, the tableaux technique of Aho, 
Beeri, and Ullman [l], and the constructions of Armstrong [3] implicitly assume 
that it is always possible to introduce an arbitrary number of new entries of new 
tuples. Kanellakis [22] has recently shown another effect of bounded domain 
sizes. Namely, he proves that the property of determining whether or not a 
lossless join property holds, in the presence of KDs and DDs, is NP-complete. 
We show that if all domains are infinite, then DK/NF implies PJ/NF (and, of 
course, 4NF and BCNF). We also give a formalization of Smith’s (3,3) normal 
form, and show that it is also implied by DK/NF. 

Let Q be a set of constraints. For each attribute A, define doma = n {S : Sz 
t= IN(A, S)}. Thus domn(A) is the collection of all possible values that the A 
entry of a tuple of a relation can assume, if the relation obeys 52. If P is the set of 
constraints of a relation schema, then domQ(A) = II {S : IN(A, S) E 0}, where 
0 is the set of DDs of the schema. This is because, as we stated in the introduction, 
the set of constraints of a schema are assumed to be closed under logical 
consequence. In particular, then, every DD implied by the constraints of the 
schema is in 0. (Similarly, every KD implied by the constraints of the schema is 
in A, the set of KDs of the schema.) We usually write simply dam(A) for damn(A). 
In what follows, we shall often be concerned with 1 dam(A) I, the cardinality of 
dam(A) . 

The definitions of BCNF, 4NF, and PJ/NF in Section 4 ignore the effects of 
DDs. That is, for certain constraints u, they deal with the issue of whether or not 
A I= u, rather than whether or not I’ h u (recall that A is the set of KDs of a 
schema, while r is the set of KDs and DDs). The next two lemmas give conditions 
under which there is no difference. 

LEMMA 6.1. Let A be a set of KDs, 0 a set of DDs, and I7 = A U 8. Assume that 
Idom(A)lr2f or each attribute A. Let a be an FD or MVD. Then A I= 0 if and 
only if l? I= u. 
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Before we prove Lemma 6.1, it is helpful to consider two examples. 

Example 6.2. Let R * be a relation schema with attributes ABC, and with the 
following constraints: 

INtA, (11) 

IN(B, &X7) 

KEY(BC) 

Let u be the FD 0 + A, where 0 is the empty set. The reader can easily verify 
from the formal definition of functional dependency that the special functional 
dependency 0 + A, where the left-hand side is the empty set, says precisely that 
the A entry of every tuple is the same. Then u is a constraint of the schema since 
u is a logical consequence of the first DD above. (If the reader is not comfortable 
with FDs in which the left-hand side is the empty set, then he can let u be the FD 
B + A, and our example will work just as well.) Let A be the singleton set 
{KEY(BC)}, let 0 be the set consisting of the three DDs above, and let 
I = A U 8. Then r I= a, while it is false that A I= u. Note that 1 dam(A) I= 1. Thus 
Lemma 6.1 is false if we drop the assumption that 1 dam(A) ) z 2. We make use of 
this example again later. 

Example 6.3. Let R* be a relation schema with attributes ABCDE, and with 
the following constraints: 

INA, {0,13) 

IN(B, My) 

IN(C, ./Gzz’F) 

IN(D, My) 

KEY(AB) 

KEY(CDE) 

Let u be the JD *(BCD, BCE, BDE, ACDE}. Let I be the set of all constraints 
listed above, and let A be the set containing only the two KDs above. We shall 
show that I’ l= u. However, it follows from the membership algorithm in [IT] (or 
from the “chase” algorithm in [23]) that it is false that A I= u. Thus Lemma 6.1 
would be false if we were to allow u to be a JD. We make use of this example 
again later. 

We now show, as promised, that l? l= u. Recall that u is * (BCD, BCE, BDE, 
ACDE}. Let R be a relation in which I’ holds. We must show that u necessarily 
holds in R. To show that u holds in R, we must show that R contains each tuple 
t for which there are tuples wl, wz, ~13, w4 of R (not necessarily distinct) such that 

w,[BCD] = t[BCD] (6.1) 

wz[BCE] = t[BCE] (6.2) 
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wa[BDE] = t[BDE] (6.3) 

wd[ACDE] = t[ACDE]. (6.4) 

Thus assume that t, wl, WZ, w3, w4 are as in (6.1), (6.2), (6.3), and (6.4), with WI, 

w2, w3, w4 in R; we must show that t is also in R. Now w1 [A], wz[A], and w3[A] 
cannot all be distinct, since ( dam(A) ] = 2. Assume that w[A] = wz[A]; the proof 
is almost identical in the other two cases. Now wl[B] = wa[B] since both equal 
t[B], by (6.1) and (6.2). Thus wi [AB] = w2[AB]. Since AB is a key, it follows that 
w1 = cop. Denote the common value of WI and wp by w. We know that w[BCD] 
= t[BCD] by (6.1), and that w[BCE] = t[BCE] by (6.2). It follows that w[BCDE] 
= t[BCDE]. Now, w4[ACDE] = t[ACDE] by (6.4). By these last two facts, we 
know that both w[ CDE] and w4 [ CDE] equal t[CDE]. Hence w[CDE] = wd [ CDE]. 
Since CDE is a key, w4 = w. But w4[A] = t[A] by (6.4). Hence w[A] = t[A]. Since 
we also already showed that w[BCDE] = t[BCDE], it follows that w[ABCDE] 
= t[ABCDE], that is, w = t. Thus t is indeed in R, which was to be shown. This 
concludes the example. 

PROOF OF LEMMA 6.1. If A I= u, then I’ != u, since A c r. So we need only show 
that if r I= u, then A I= u. Assume that r i= u, but that it is false that A E u. We 
will derive a contradiction. Since it is false that A I= u, we know that there is a 
counterexample relation R for which A holds but u fails. Since u is either an FD 
or MVD, it is easy to see R contains a 2-tuple subrelation for which u fails. That 
is, there are two tuples s1 and s2 of R, such that the relation S, which contains 
precisely these two tuples, does not obey u. Clearly S, being a subrelation of R, 
obeys the set A of KDs. Thus S is a 2-tuple counterexample relation for which A 
holds but u fails. (We note that a strong version of the result that says that there 
is a 2-tuple counterexample subrelation appears in [27, Lemma 91, the “2-tuple 
subrelation lemma.“) 

We define two new tuples t, and t2, attribute by attribute, as follows. Let A be 
an arbitrary attribute. If sl[A] = s2[A], then let tl[A] = .&[A] = a, where a is an 
arbitrary member of dam(A). If sIrA] # s:![A], then let tl[A] = a, and let 
&[A] = b, where a and b are distinct members of dam(A); this is possible since 
1 dam(A) ) 2 2. Let T be the relation containing precisely t1 and k. For each 
attribute A, we have defined T so that the two tuples of T agree on attribute A 
(i.e., tl[A] = &[A]) if and only if the two tuples of S agree on attribute A. Thus 
S and T are “isomorphic.” In particular, since A holds in S.and u fails in S, also 
A holds in T and u fails in T. Furthermore, we have constructed T so that all of 
the DDs in 0 hold in T. Hence r holds in T. 

By assumption, r I= u. But, we showed that I’ holds in T and u fails in T. This 
is a contradiction. 0 

It is certainly possible for a set I? of DDs and KDs to logically imply a fixed 
bound on the number of tuples. For example, KEY(A) and IN(A, (0, 1, 2, 3) ) 
taken together logically imply that each instance may have no more than four 
tuples. One’s first thought might be that the combinatorial curiosities exhibited 
by the schema in Example 6.3 were caused by such a phenomenon. However, this 
is not what “goes wrong” in this case. For, an instance of the schema in Example 
6.3 may have an arbitrarily large number of tuples. 
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Example 6.3 shows us that Lemma 6.1 fails if we allow u to be a JD. The next 
lemma (Lemma 6.4) gives a condition, analogous to Lemma 6.1, for the JD case. 
Before we can state Lemma 6.4, we need a few more definitions. Following Codd 
[lo], we say that an attribute is prime if it is a member of a minimal key, that is, 
of a key with no proper subset that is a key. By C(n, m), we mean the number of 
combinations of n objects, taken m at a time. (C(n, m) is sometimes read as “n 
choose m.“) Finally, by [x], where x is a real number, we mean the greatest 
integer not exceeding x. 

LEMMA 6.4. Let A be a set of KDs, 0 a set of DDs, and I? = A U 0. Let n be the 
number of attributes. Assume that 1 dam(A) 1~ 2 for each nonprime attribute A, 
and that 1 dam(A) 1 L C(n, [n/2]) f or each prime attribute A. Let o be a JD. 
Then A t= u if and only if I’ I= cr. 

The proof of Lemma 6.4 appears in the appendix. Our technique in the proof 
of Lemma 6.4 (and in the proof in Example 6.3) is in the spirit of the “chase” 
technique of Maier, Mendelzon, and Sagiv [23], except that unlike them, we must 
take into consideration the effects of bounded domains. We note also that by 
Stirling’s formula, the term C(n, [n/2]) in Lemma 6.4 is asymptotic to 
2n+0.5/ (74.5. 

As an example of Lemma 6.4, assume that there are five attributes, that 
1 dam(A) 1 2 2 f or each nonprime attribute A, and that I dam(A) I 2 10 for each 
prime attribute A. If u is an arbitrary JD, then A l= u if and only if I’ k u. 

We now present modified versions of BCNF, 4NF, and PJ/NF, in which the 
combinatorial effect of the DDs are explicitly taken into account. 

Definition 6.5. A 1NF relation schema R * is in BCNF’ if F b u for each FD u 
of R *, where I’ is the set of DDs and KDs of R *. 

THEOREM 6.6. Let R * be a relation schema in which ( dam(A) I 2 2 for each 
attribute A. Then R * is in BCNF if and only if it is in BCNF’. 

PROOF. Immediate from the definitions and from Lemma 6.1. q 

Definition 6.7. A 1NF relation schema R * is in 4NF’ if F I= u for each MVD u 
of R *, where F is the set of DDs and KDs of R *. 

THEOREM 6.8. Let R * be a relation schema in which 1 dam(A) I 2 2 for each 
attribute A. Then R * is in 4NF if and only if it is in 4NF’. 

PROOF. Immediate from the definitions and from Lemma 6.1. 0 

Definition 6.9. A 1NF relation schema R * is in PJ/NF’ if I? I= u for each JD u 
of R *, where I? is the set of DDs and KDs of R *. 

THEOREM 6.10. Let R * be a relation schema in which I dam(A) I E 2 for each 
nonprime attribute A, and in which I dam(A) I 2 C(n, [n/2]) for each prime 
attribute A. Then R * is in PJINF if and only if it is in PJ/NF’. 

PROOF. Immediate from the definitions and from Lemma 6.4. 0 

COROLLARY 6.11. Let R * be a relation schema in which dam(A) is infinite for 
each attribute A. Then R * is in PJ/NF if and only if it is in PJ/NF’. 
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PROOF. Immediate from Theorem 6.10. Cl 

COROLLARY 6.12. Let R * be a relation schema in which dam(A) is infinite for 
each attribute A. If R* is in DK/NF, then it is in PJ/NF. Thus if all domains 
are infinite, then DK/NF =+ PJ/NF * 4NF - BCNF. 

PROOF. Since R * is in DK/NF, it follows immediately from the definitions that 
R * is in PJ/NF’ (because every JD is a constraint). It then follows from Corollary 
6.11 that R * is in PJ/NF. The other implications (PJ/NF * 4NF * BCNF) hold 
in general, by Theorem 5.4. Cl 

Example 6.2 shows that the assumption 1 dam(A) ] > 2 is necessary in Theorems 
6.6 and 6.8 since the schema in Example 6.2 is in BCNF’ and 4NF’ but not in 
BCNF or 4NF. Example 6.3 shows that it is not sufficient to replace the 
assumptions on 1 dam(A) ] in the statement of Theorem 6.10 by simply “ 1 dam(A) 1 
L 2 for each attribute A,” since the schema in Example 6.3, in which I dam(A) I 
2 2 for each attribute A, is in PJ/NF’ but not in PJ/NF. We note that it is not 
hard to modify Example 6.3 to obtain, for each integer K, a schema in which 
I dam(A) ] 2 K for each attribute A, and which is in PJ/NF’ but not in PJ/NF. 

A relation schema that violates the assumption of Theorems 6.6 and 6.8 would 
certainly be unreasonable. For, we would either have ] dam(A) I = 0 for some 
attribute A (in which case the schema would have no valid instance that is 
nonempty), or else we would have ] dam(A) I = 1 for some attribute A (in which 
case there is no reason to include A as an attribute). So, by Theorems 6.6 and 6.8, 
it follows that BCNF and BCNF’ are the same for all reasonable schemata, as are 
4NF and 4NF’. However, a schema could certainly violate the assumptions of 
Theorem 6.10 and still be reasonable, Our viewpoint on PJ/NF versus PJ/NF’ is 
that PJ/NF’ is fundamentally more natural than PJ/NF since the effects of 
bounded domain sizes are quite real and should be taken into account. Another 
lesson we should learn from these results is that a reasonable restriction to place 
on a DK/NF schema is that ] dam(A) I z 2. 

THEOREM 6.13. DK/NF =+ PJ/NF’ * 4NF’ + BCNF’. 

PROOF. As before, it is immediate from the definitions that DK/NF q PJ/NF’ 
since every JD is a constraint. The fact that PJ/NF’ =+ 4NF’ follows from the 
fact, noted in Section 2, that each MVD can be represented by a JD. The proof 
that 4NF’ * BCNF’ requires some work. Let R * be a relation schema in 4NF’; 
we shall show that it is in BCNF’. Assume not; we shall derive a contradiction. If 
] dam(C) ) = 0 for some attribute C, then R * is in BCNF’. Thus for each attribute 
C, we can assume that 1 dam(C) ( I 1. Let P be the set of DDs and KDs of R*. 
Since R * is not in BCNF’, there is an FD (I of the schema such that P does not 
logically imply cr. We can assume without loss of generality that the right-hand 
side of the FD u is a single attribute. Let us write u as U+ A, where A is a single 
attribute. 

Let V be the set of those attributes C such that I dam(C) I = 1. We define two 
tuples s1 and s2 as follows. For each attribute C in U U V, we set s1 [C] = a[C] 
= a, where a is an arbitrary member of dam(C). For each remaining attribute C, 
we set s1 [C] = a and s2 [ C] = b, where a and b are distinct members of dom( C). 

Note that A is not in U U V, or else I’ I= U -+ A would hold. Thus sl [A] # 
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s2[A]. We now show that there is some other attribute B, distinct from A, which 
is not in U U V. Assume not. Then, since U + A and U + V are constraints in 
R *, it would follow that KEY( U) is a constraint of R *. But then, since KEY( U) 
would be in I’, it would follow that r I= U + A, a contradiction. Thus we have 
shown that B, as described above, exists. Then sl[B] # sz[B]. 

Let S be a 2-tuple relation containing precisely s1 and SZ. We know that 

s,[U] = sz[Ul 

s1 [Al Z s&II (6.5) 

s,[B] f s&B]. 
Since A and B are distinct attributes not in U, it follows easily from (6.5) that the 
MVD U ++ A fails in S. Let KEY(K) be an arbitrary KD in I’. Then sl [K] # 
sg[K], or else, by definition of s1 and ~2, we would have K c U U V, which would 
imply that KEY(U) is in I’, which would imply that r i= u, a contradiction. Hence 
every KD in r holds in S. Also, by construction, every DD in I? holds in S. So, 
r holds in S. We already showed that U ++ A fails in S. So, S is a counterexample 
relation that shows that r I= U ++ A is false. But on the other hand, U ++ A 
is a constraint of R * (since U + A is). So, since U -4 A is an MVD of R *, and 
since R * is in 4NF’, it follows that r I= U -++ A. This is a contradiction. 0 

We close this section with some remarks on Smith’s (3,3) normal form ((3,3)NF) 
[28]. One formalization of the intent of (3,3)NF is to say that a 1NF schema is in 
(3,3)NF if those “embedded” FDs that hold in a subrelation obtained by splitting 
(in exactly the same sense as in Example 3.7) are all logical consequences of r. 
That is, (3,3)NF means that r logically implies each of the schema’s constraints 
that are of the form 

VtIVt2(wI) A $02) A h[U] = tz[ul)) * ((t1Wl = t2lm) (6.6) 

for arbitrary II/, U, and V. It is not hard to see that (6.6) says that “the relation 
consisting of those tuples t that satisfy Ii/(t) obeys the FD U + V.” It follows from 
what we have said that DK/NF * (3,3)NF, since (6.6) is simply another 
constraint. 

7. A PARADIGM FOR NORMAL FORMS 

Earlier, we discussed the fundamental nature of domains and keys for relational 
databases. Thus it is reasonable to assume that a database management system 
should have the power to enforce our KDs and at least a limited version of our 
DDs (such as those DDs that state that the domain of a given attribute is, say, 
strings of six characters). Since domains and keys are already being supported for 
other reasons, it is very good if all of the constraints of a schema can be enforced 
by simply enforcing domains and keys (which is precisely what DK/NF is all 
about). That is, if a schema is in DK/NF, then there is no extra overhead in 
supporting the constraints of a DK/NF schema. In fact, the database management 
system may well not have the capability for supporting constraints other than 
those that are automatically enforced by enforcing domains and keys. 

We might define new classes of normal forms (for relation schemata and for 
database schemata) by selecting a certain class g of constraints (including 
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interrelational constraints) that are somehow primitive, or “easy to enforce.” To 
properly define “easy to enforce,” we need a complexity theory for database 
constraints. Unlike traditional complexity theory, the primary cost is not the 
computation time or memory, but rather the number of page faults. A schema is 
in %? normal form if the set of constraints of the schema is precisely the set of 
logical consequences of some set of constraints, each of which is in the class %‘. 
For example, if % is the class of all DDs and KDs, then % normal form is the 
same as DK/NF. It is easy to see that if % c ‘&, then 5% normal form implies 
%$ normal form. 

If the database management system has the capability of enforcing inclusion 
dependencies as interrelational constraints, then it is reasonable to consider 
allowing such dependencies as constraints within ‘a relation schema (as in the 
schema of Example 3.10). 

Another natural class of simple constraints are single-tuple dependencies. 
These are constraints of the form V&(t), where $(t) is quantifier free in some 
language. Single-tuple dependencies involve only the tuple to be inserted and no 
other tuples. Thus whatever the language of 4(t) is, +(t) should be computable, 
without referencing any other tuples. In Example 3.6, the last constraint (which 
says that employees with status 0 have a salary of at most $50,000) is an example 
of a single-tuple dependency. If we allow G(t) to be an arbitrary computable 
predicate, then computable domain dependencies are special cases of single-tuple 
dependencies. INGRES [32] and MAGNUM [33] are designed to enforce single- 
tuple dependencies. IMS [20] supports “exits,” where a side computation can be 
done before an insertion or an update; the side computation cannot look at any 
other tuples other than the one to be inserted, but the computation can be 
arbitrarily complex. By this means, IMS can enforce arbitrary single-tuple de- 
pendencies. 

Another example of a constraint that might be easy to enforce is a cardinality 
constraint on the number of tuples in a relation, such as “there are at least 3 
tuples,” or “there are at most 117 tuples.” A special case that one might want is 
the constraint that says “the relation is not empty” (i.e., “there is at least one 
tuple”). Depending on the database management system, these cardinality con- 
straints might be easily implemented by associating a tuple counter with each 
relation; the counter is updated whenever the relation is. 

8. CONCLUSIONS 

We have defined a new normal form, called domain-key normal form (DK/NF), 
which is based only on the primitive concepts of domain and key, along with the 
general concept of a “constraint,” We have also presented a formal definition of 
an insertion anomaly and a deletion anomaly. We have shown that a satisfiable 
1NF relation schema is in DK/NF if and only if it has no insertion or deletion 
anomalies. We have shown how traditional normal forms might be modified “in 
the spirit of DK/NF,” to take into consideration the combinatorial consequences 
of bounded domain sizes. The effect of the modifications, as we have shown, is 
that the original normal form and its modified counterpart are equivalent pro- 
vided no domain size is too small. Each of these modified normal forms is implied 
by DK/NF. 

ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981. 



Normal Form for Relational Databases Based on Domains and Keys * 411 

Our results indicate that it is reasonable to insist that a relation schema obey 
other properties besides being in DK/NF. These restrictions include: 

(1) The schema is in 1NF (we have discussed nothing but 1NF schemata in this 
paper, but DK/NF could be defined without this assumption). 

(2) The schema is satisfiable (i.e., it has at least one valid instance). 
(3) 1 dam(A) 1 z 2 for each attribute A. 
(4) All domain constraints are “simple,” that is, easily enforceable. 

We consider it an important research problem to find other natural restrictions 
that should be imposed. 

We have discussed paradigms for normal forms (both for relation schemata 
and for database schemata). All constraints (including inter-relational constraints) 
should be “simple.” A good example of a simple and important interrelational 
constraint is the inclusion dependency. 

A “database complexity theory” is needed, to clarify what a “simple” constraint 
is and what a “simple” transformation from one database schema into another is. 
(The concept of a simple transformation is needed for dealing with the question 
of converting a database schema into a DK/NF database schema.) “Simple” 
should somehow mean “fast for a database management system to perform.” 
Such a complexity notion might lead to the isolation of a set of primitive 
operations that a database management system can and should support easily. 

Our viewpoint on DK/NF is that in the best of all possible worlds, every 
relation schema in a database would be in DK/NF (and there would be no 
interrelational constraints, or perhaps only easily enforceable inter-relational 
constraints, such as inclusion dependencies). In practice, this goal is unlikely to 
be attained. A good research problem might be to define reasonable ways in 
which we can “set our sights lower”; one possibility is to consider weaker normal 
forms than DK/NF. From a purely practical point of view, we feel that in the 
database design process, the designer should strive to obtain DK/NF. 

APPENDIX 

The purpose of this appendix is to prove Lemma 6.4, which is as follows. 

Lemma 6.4. Let b be a set of KDs, 0 a set of DDs, and r = L\ U 0. Let n be the 
number of attributes. Assume that 1 dam(A) 1 2 2 for each nonprime attribute A, 
and that 1 dam(A) 1 1 C(n, [n/2]) f or each prime attribute A. Let o be a JD. 
Then A k a if and only if F t= u. 

IfaisaJD*(X1,... , XT}, where no two Xi are the same, then we say that u 
has r components. We begin by proving the following lemma. 

LEMMA Al. Let A be a set of KDs, 0 a set of DDs, and r = A U 0. Let u be a 
JD with r components. Assume that 1 dam(A) I > 2 for each nonprime attribute 
A, and that 1 dam(A) I - > r or each prime attribute A. Then A F u if and only if f 
r I= u. 

PROOF. If A I= U, then r I= u since A c I’. So, we need only show that if I? != u, 
then A I= u. Assume that r l= u, but that it is false that A != u. We shall derive a 
contradiction. Since it is false that A b u, we know that there is a counterexample 
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relation R for which A holds and u fails. Let us write u as * {Xl, . . . , X,.} . Since u 
fails in R, there are tuples sl, . . . , sr of R (not necessarily distinct) and a tuple u 
not in R such that ai[Xi] = u[Xi] for each i (1 5 i I r). Let S be a relation 
containing only the tuples sl, . . . , s,. of R. Then u fails in S. However, A holds in 
S since it holds in R. We now define new tuples tl, . . . , tr, attribute by attribute. 

Case 1. A is a prime attribute. We can define tl[A], . . . , &[A] so that 

(a) &[A] E dam(A), 15 i d r; 
(b) t, [A] = tj[A] if and only if sJA] = sj[A], 15 i ZG r, 1 5 j 5 r. 

The reason that (b) is possible is that ] dam(A) ] 2 r. 

Case 2. A is a nonprime attribute. Let a and b be two distinct members of 
dam(A). Recall that u is a tuple not in S such that si[Xi] = u[Xi], 1 I i I r. For 
each i (1 I i 5 r), set 

&[A] = a if si[A] = u[A]. 

ti[A] = b if s;[A] # u[A]. 

Let T be a relation containing precisely the tuples tl, . . . , t,.. Our goal is to show 
that r holds in T and that u fails in T. This will give us a contradiction, since, by 
assumption, I? I= u. Clearly 0, the set of DDs, holds in T, by construction. So, the 
proof is complete if we show that each KD in A holds in T and that u fails in T. 

Let KEY(K) be an arbitrary KD in A. Let K’ be a minimal subset of K such 
that KEY(K’) is in A. To show that KEY(K) holds in T, we need only show that 
KEY(K’) holds in T. Since K’ contains only prime attributes, it follows from our 
construction that for each i, j(l5 i 5 r, 1 5 j 5 r), we have ti[K’] = tj[K’] if and 
only if si[K’] = si[K’]. But si[K’]# s~[K’] w h en i # j, since KEY (K’) holds in S. 
Thus ti[K’] # tj[K’] if i # j. So, KEIY(K’) holds in T, which was to be shown. 

Finally, we must show that u does not hold in T. We now define a tuple u, 
attribute by attribute. Let A be an arbitrary attribute. We know that there is 
some i such that a[A] = u[A] (we simply find i such that A E X,. Then Si[Xi] = 
u[X,], SO si[A] = u[A]). Set u[A] = &[A]. We must show that $A] is well defined. 
That is, we must show that if si[A] and sj[A] both equal u[A], then ti[A] = tj [A]. 
But this is easily verified from our definitions, whether A is prime or nonprime. 

We now show that for each attribute A, we have 

&[A] = u[A] if and only if si[A] = u[A]. (Al) 

If a[A] = u[A], then ti[A] = u[A] by definition of u. Conversely, assume that 
ti[A] = u[A]. We wish to show that si[A] = u[A]. Assume that si[A] # u[A]; we 
shall derive a contradiction. Find j such that A E Xj. Then sj[A] = u[A]. By 
definition of u, we know that tj[A] = u[A]. So ti[A] = tj[A], since both equal u[A]. 
There are now two cases, depending on whether or not A is prime. Assume first 
that A is prime. Since ti[A] = tj[A], it follows from the definition of ti[A] and of 
tj[A] that si[A] = sj [A]. This is a contradiction, since si[A] # u[A] and sj[A] = 
u[A]. Now assume that A is nonprime. Since si[A] # u[A] and sj[A] = u[A], it 
follows from the definition of ti[A] and of tj[A] that ti[A] and tj[A] are unequal. 
This is a contradiction. Thus (Al) is proved in both cases. 
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Since si[Xi] = u[Xi] (1 I i 5 r), it follows from (Al) that ti[Xi] = u[X~] (1 I i 
I r). Hence to show that o does not hold in T, we need only show that u is not in 
T. If u were in T, then for some i, we would have u = ti. But then, by (Al), it 
would follow that u = si. This is impossible since u is not in S. So u does not hold 
in T. This was to be shown. 0 

Definition A2. A JD * {X1, . . . , X,.} is irreducible if for no i, j with i # j is it 
true that Xi c Xj . 

LEMMA A3. Every JD is equivalent to an irreducible JD. 

PROOF. As we now show, the JD *{X1, . . . , X,.} is equivalent to an irreducible 
JD, which is obtained from the original JD by “removing” each component Xi 
that is a proper subset of another component Xi. (We do not need to consider the 
case where two components are equal since we are thinking of {X1, . . . , XT} as a 
set, which by definition has no duplicates.) The reason for the equivalence is as 
follows. The JD *{X1, . . . , X,} holds for a relation R precisely if R = R[X,] 

* R[X,]. If Xi c Xi, then R[Xi] * R [X;] = R[Xj]. Thus since the join is 
zdimutative and associative, R = RIXl] * . . . * R[X,] if and only if R = R[Xl] 
* . . . * R[Xi-I] * R[Xi+l] * . . . * R[X,]. This latter equality holds if and only if 
the JD obtained from the original JD by removing the Xi component holds in R. 
This process is repeated until an irreducible JD is obtained. q 

We note that Lemma A3 is an immediate consequence of results by Aho, Sagiv, 
and Ullman [2]. 

LEMMA A4. The maximum number of components an irreducible JD can have 
is C(n, [n/2]), where n is the number of attributes. 

PROOF. This follows immediately from a theorem of Sperner [31], which states 
that the maximum number of pairwise incomparable (under &) subsets of a set 
of n elements is C(n, [n/2]). Cl 

We can now prove Lemma 6.4. By Lemma A3, we need only consider irreducible 
JDs. By Lemma A4, no irreducible JD can have more than C(n, [n/2]) compo- 
nents. Thus if r is as in Lemma Al, then the maximal value of r we need to 
consider is C(n, [n/2]). Lemma 6.4 then follows. 
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