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We introduce and develop a declarative framework for entity linking and, in particular, for entity resolu-
tion. As in some earlier approaches, our framework is based on a systematic use of constraints. However,
the constraints we adopt are link-to-source constraints, unlike in earlier approaches where source-to-link
constraints were used to dictate how to generate links. Our approach makes it possible to focus entirely on
the intended properties of the outcome of entity linking, thus separating the constraints from any procedure
of how to achieve that outcome. The core language consists of link-to-source constraints that specify the
desired properties of a link relation in terms of source relations and built-in predicates such as similarity
measures. A key feature of the link-to-source constraints is that they employ disjunction, which enables the
declarative listing of all the reasons two entities should be linked. We also consider extensions of the core
language that capture collective entity resolution by allowing interdependencies among the link relations.

We identify a class of “good” solutions for entity-linking specifications, which we call maximum-value
solutions and which capture the strength of a link by counting the reasons that justify it. We study natural
algorithmic problems associated with these solutions, including the problem of enumerating the “good”
solutions and the problem of finding the certain links, which are the links that appear in every “good”
solution. We show that these problems are tractable for the core language but may become intractable once
we allow interdependencies among the link relations. We also make some surprising connections between our
declarative framework, which is deterministic, and probabilistic approaches such as ones based on Markov
Logic Networks.
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1. INTRODUCTION

Entity linking is a long-standing research problem that has received considerable at-
tention over the years. The most extensively investigated case of entity linking is entity
resolution, which is the problem of linking pieces of information occurring in one or
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17:2 D. Burdick et al.

more, possibly heterogeneous, datasets that refer to the same real-world object (entity).
Entity resolution is known under various names: record linkage, data deduplication,
reference reconciliation, and merge-purge (see, e.g., Dong et al. [2005], Elmagarmid
et al. [2007], Fellegi and Sunter [1969], Hernández and Stolfo [1995], and Koudas
et al. [2006]). Much of entity resolution research has focused on developing the algo-
rithms, similarity measures, and general methodologies for matching entities, while
at the same time significant engineering effort has been devoted to experimenting and
tuning the resulting systems.

In recent years, we have seen several new efforts aimed at raising the level of ab-
straction in entity resolution systems. These efforts, ranging from the earlier AJAX
framework [Galhardas et al. 2001] to the more recent Dedupalog [Arasu et al. 2009]
and HIL [Hernández et al. 2013] languages, represent attempts to specify, in a more
declarative way, the basic ingredients of an entity resolution process. In particular,
instead of using lower-level implementation algorithms, they employ SQL-like con-
structs or constraints expressed in logical formalisms as components of a high-level
language. A common characteristic in these approaches is the use of source-to-link
constraints, that is, constraints that specify the direct creation of the links from the
source data. In turn, this feature has the consequence that operational semantics are
used; hence, the meaning of a specification in such a language is some link relation
resulting from the operational semantics. For example, HIL uses SQL-like statements
to express the creation of links from a set of sources and provides only an operational
procedure to interpret such statements. As for Dedupalog, the specification has the
form of a Datalog-style program with constraints of two types: hard constraints and
soft constraints. The goal is to find a link relation that satisfies the hard constraints
and that minimizes the number of soft constraints violated. Since this turns out to
be a computationally intractable problem, the semantics of Dedupalog is given by an
algorithm that, in many cases, produces an approximately optimal result.

In this article, we take a different approach to declarative entity linking (and, in
particular, to declarative entity resolution), where we clearly separate the specification
from the implementation and also ensure that the implementation always satisfies
the specification. Our goal is to provide a clean and expressive specification language,
with rigorous semantics, which can serve as a foundation for the implementation or
evaluation of entity linking systems. Two salient features of our framework are as
follows.

First, we consider entity resolution as a general problem of defining links between
source values. A (binary) link is modeled as a binary table that relates pairs of values
from the given source relations. While, as described earlier, entity resolution is typically
confined to the problem of matching entities representing the same real-world object,
our framework allows linking entities that are not necessarily of the same type; in
particular, a link relation need not be an equivalence relation. In other words, the
same type of specification is used not only to match person records across multiple
databases (which is a typical entity resolution application) but also to link a subsidiary
company with its parent company or to link a CEO with his or her company.

Second, as in some of the earlier approaches, our specification language is based on
constraints. However, the constraints we adopt are link-to-source constraints, unlike
in earlier approaches where source-to-link constraints were used to dictate how to
populate the link relations. Our approach makes it possible to focus entirely on the
intended properties of the outcome of entity linking, thus separating the constraints
from any procedure of how to achieve that outcome. The core language L0 consists of
link-to-source constraints that specify the desired properties of link relations in terms
of the source relations and built-in predicates, such as similarity measures. Specifically,
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a matching constraint in L0 is an expression of the form

∀x∀y(L(x, y) → ∀u(ψ(x, y, u) → α1 ∨ . . . ∨ αk),

where L is a link relation, ψ(x, y, u) is a (possibly empty) conjunction of source atomic
formulas, the universally quantified variables u must occur in ψ , and each formula
αi is of the form ∃zi φi(x, y, u, zi) with φi a conjunction of source atomic formulas,
equalities, and other built-in or user-defined predicates. The existential fragment ∃L0
of L0 consists of matching constraints of the form

∀x∀y(L(x, y) → α1 ∨ . . . ∨ αk),

where each formula αi is of the form ∃zi φi(x, y, zi) with φi as before. A key feature of
the matching constraints in L0 is that, in their most general form, they are disjunctive
constraints that enable the declarative listing of all the reasons two entities are linked.

We also consider extensions of L0 (and hence of ∃L0) in which other link relations
may be used in the specification of link relations, thus allowing a link to also depend on
other links. We distinguish two such extensions, namely, the language L1 in which no
recursion is allowed in the specification (i.e., no link relation depends on itself) and the
language L2 in which recursion is allowed; these extensions capture what is usually
called collective entity resolution [Bhattacharya and Getoor 2007], which allows for
interdependencies among the various types of links.

In addition to the matching constraints, our specification languages make use of
inclusion dependencies that specify the provenance of the links w.r.t. the source data,
and also allow for functional dependencies that specify when a link relation is many to
one or one to one.

Since all our constraints are link-to-source, they always admit solutions, that is, link
relations that satisfy all the constraints at hand. (The empty link instance is always a
solution, albeit not necessarily a desirable one.) Therefore, one of the main questions
that has to be addressed is: what are the “good” solutions out of the space of all possible
solutions? Moreover, since multiple good solutions may exist for a given specification
and a given source instance, a related important problem is that of identifying the
certain links and the ambiguous links, that is, those links that appear in every good
solution and, respectively, in some, but not in every, good solution. From a practical
point of view, the certain links are the links that should be kept, while the ambiguous
links are the links that must be inspected by a human. In particular, examination of the
ambiguous links may lead to a revised specification that will result in fewer ambiguous
links. Thus, producing the ambiguous links is an important computational task.

As a first candidate for a class of “good” solutions, we consider maximal solutions,
where goodness means maximality among solutions w.r.t. set containment. For each
fixed entity-linking specification in the core language L0, we show that there is a
polynomial-delay algorithm that, for each source instance I, enumerates all of the
maximal solutions for I. (A polynomial-delay algorithm [Johnson et al. 1988] for a
problem is an algorithm that, given an input, generates all solutions to the problem,
one after another, where the first solution is generated in polynomial time, and the next
solution is generated in polynomial time after the previous solution.) We also show
that there are polynomial-time algorithms that, given a source instance I, compute
the certain links and the ambiguous links for I w.r.t. the class of maximal solutions.
However, we point out that, in practice, there are too many maximal solutions, which
implies that quite often there are too few certain links, if any. In other words, the
semantics given by maximal solutions is too coarse grained and does not have enough
differentiating power among solutions. In view of this, we refine the semantics by
considering a subclass of maximal solutions that we call maximum-value solutions,
which maximize the total strength of links. Under this semantics, the strength of a
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link is measured by counting the disjuncts and existential witnesses that “justify” the
existence of a link. For each fixed entity-linking specification in the core language L0,
we show that there is a polynomial-delay algorithm that, for each source instance I,
enumerates all of the maximum-value solutions for I. We also show that there are
polynomial-time algorithms that, for each source instance I, compute the certain links
and the ambiguous links for I w.r.t. the class of maximum-value solutions.

We investigate the relationship between our declarative framework and other ap-
proaches to entity resolution. We first show that, under the maximal solutions se-
mantics, the existential fragment ∃L0 of L0 can capture, in a precise sense, the entity
resolution fragment of the HIL language in Hernández et al. [2013]. We also point
out that ∃L0 (and hence HIL) is a proper fragment of L0 in the sense that there are
entity-linking specifications in L0 whose certain links are different from those of every
entity-linking specification in ∃L0; in particular, ∃L0 is a proper fragment of L0 in terms
of logical equivalence. Furthermore, we establish that some existing probabilistic ap-
proaches for entity resolution can be captured, in a precise sense, by entity-linking
specifications in L0 under a suitable extension of the maximum-value semantics that
allows for weight functions. We start with a well-known class of probabilistic match-
ing algorithms that originated with Fellegi and Sunter [1969] and is at the core of
many commercial systems, including IBM’s QualityStage [Alur et al. 2008]. We show
that the core logic behind these matching algorithms is captured by a fragment of L0
where each disjunct in the matching constraint consists of a single atomic formula. We
then consider the richer probabilistic framework of Markov Logic Networks (MLNs)
[Richardson and Domingos 2006], which in general allows for arbitrary first-order for-
mulas to be interpreted in a probabilistic sense. We show that a class of linear MLNs
that is useful for entity resolution [Singla and Domingos 2006] is captured by a frag-
ment of ∃L0 (under the same extended semantics). Thus, rather surprisingly, a purely
probabilistic approach (based on MLNs) can be captured in a deterministic way. As
a byproduct, we show that for linear MLNs, there is a polynomial-delay algorithm
for enumerating the maximum probability worlds, and polynomial-time algorithms for
computing the certain and ambiguous links (w.r.t. the class of maximum probability
worlds). To the best of our knowledge, these are the first polynomial-time results for
MLN-based entity resolution.

The state of affairs concerning algorithmic aspects of L0 turns out to be dramatically
different for the extended language L1 that allows dependence of a link on other links
but disallows recursive interdependence between links. To begin with, we show that
there is a fixed entity-linking specification in the existential fragment ∃L1 of L1 for
which the following problem is NP-complete: given a source instance I and a positive
integer k, is there a solution for I whose value is at least k? Consequently, there is
no polynomial-delay algorithm for enumerating the maximum-value solutions, unless
P = NP. Moreover, we show that there is a fixed entity-linking specification in ∃L1 for
which there are no polynomial-time algorithms for telling whether a link is certain or
ambiguous w.r.t. the class of maximum-value solutions, unless NP = coNP. It should be
noted that the intractability of recognizing the certain links and the ambiguous links is
established by using results about the computational complexity of recognizing frozen
variables in constraint satisfaction problems [Jonsson and Krokhin 2004]. Since ∃L1 is
a fragment of L1, the same hardness results hold true for L1 as well. On the positive
side, we identify a large syntactic fragment of L1 for which there is a polynomial-
delay algorithm for enumerating maximum-value solutions, as well as polynomial-time
algorithms for computing the certain links and the ambiguous links.

Relation to the conference version [Burdick et al. 2015]. This article is the
expanded full version of a paper that appeared in the proceedings of the ICDT 2015
conference. There are two main differences between the two versions. First, we included
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in the present article complete proofs of all results. Second, we identified and studied
the existential fragment ∃L0 and its variants. We showed that ∃L0 is a proper fragment
of L0 in terms of expressing certain links, and hence in terms of logical equivalence
as well. We also showed that ∃L0 under the maximal solutions semantics can capture,
in a precise sense, the entity resolution fragment of the HIL language [Hernández
et al. 2013]. Finally, via realistic examples, we demonstrated the utility of the more
expressive language L0 for practical cases of entity linking.

2. A DECLARATIVE FRAMEWORK FOR LINKING ENTITIES: BASICS

A source relational schema is a finite sequence S = 〈R1, . . . , Rm〉 of relation symbols,
each of a fixed arity. When attribute names are not essential, we may identify attributes
by their position. A source instance I over S is a sequence (RI

1, . . . , RI
m), where each RI

i
is a finite relation of the same arity as Ri. We often use Ri to denote both the relation
symbol and the relation RI

i that interprets it. Additionally, a link schema is a finite
sequence L = 〈L1, . . . , Ln〉 of link symbols, where each Li is binary. A link instance J
over L is a sequence (LJ

1 , . . . , LJ
n ) of finite binary relations. For a relation T (either

source or link) and a tuple t in T , we denote by T (t) the association between T and t
and refer to it as a fact. When T is a link relation, we may refer to T (t) as a link. An
instance can be conveniently represented by its set of facts. Given instances K and K′,
we say that K is a subinstance of K′ and write K ⊆ K′ if the set of facts in K is a subset
of the set of facts in K′. We write K ⊂ K′ if this subset relationship is strict.

We specify a link relation, implicitly, by defining the properties that it must satisfy.
For each link symbol L, there are three sets of constraints, as follows. The first set
contains at most one matching constraint of the form

L(x, y) → ∀u(ψ(x, y, u) → α1 ∨ . . . ∨ αk),

where ψ(x, y, u) is a (possibly empty) conjunction of atomic formulas over S, where
the universally quantified variables u must occur in ψ , and where αi is of the form
∃zi φi(x, y, u, zi). Each φi is a conjunction of source atomic formulas, along with equali-
ties and other built-in or user-defined predicates (such as similarity, or string contain-
ment). Also, note that x and y are universally quantified, but for simplicity of notation
we omit their quantifiers.

The intuition behind the use of disjunction in the matching constraint is that it lists
all the possible matching conditions (i.e., α1, . . . , αk) for why a link L(x, y) may exist
(provided ψ holds). If a link L(x, y) exists, then one or more of those reasons must be
true. We do not require a matching constraint to be given for each link; for those links
without a matching constraint, the link relation is implicitly defined by the rest of the
constraints. We will give concrete examples of matching constraints shortly. We will
also explain the role of the universal quantification ∀u and of the formula ψ(x, y, u).

The second set of constraints, for a given link symbol L, consists of an inclusion
dependency of the form L[X] ⊆ R[A] and an inclusion dependency of the form L[Y ] ⊆
R′[A′]. Here, X and Y denote the first and the second attribute of L, while A and A′
denote attributes in source relations R and R′. As usual, R[A] denotes the projection
of R on A. The two dependencies specify an upper bound for the set of links that can
appear in L: every link in L will be a pair relating a value in R[A] with a value in R′[A′].
Finally, the third set of constraints, for a given link symbol L, with attributes X and Y ,
consists of zero, one, or both of the functional dependencies L : X → Y and L : Y → X.
Functional dependencies encode basic cardinality constraints on the result of entity
linking. (See also Hernández et al. [2013] for the significance of such constraints in
practice.) The presence of one functional dependency means that the links are required
to be many to one; that is, an entity on one side must be linked with at most one entity
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on the other side. The presence of both functional dependencies means that the links
must be one to one.

Definition 2.1. We write L0 for the language where each formula is either a matching
constraint of the form

L(x, y) → ∀u(ψ(x, y, u) → α1 ∨ . . . ∨ αk),

or an inclusion dependency from a link relation to a source relation, or a functional
dependency on a link relation. We write ∃L0 for the fragment of L0 in which the
matching constraints have the form

L(x, y) → α1 ∨ . . . ∨ αk,

where each formula αi is of the form ∃zi φi(x, y, u, zi), as before. (In particular, there
are no universal quantifiers ∀u and the conjunction ψ is empty, but the formulas αi
may contain existential quantifiers.)

Later, we also consider extensions to L0, such as matching constraints that allow for
interdependencies among the links.

Definition 2.2. An entity-linking specification in L0 is a triple E = (L, S, �), where L
is a link schema, S is a source schema, and � is a set of constraints containing, for each
link symbol L in L, at most one matching constraint in L0, two inclusion dependencies,
and zero, one, or two functional dependencies. An entity-linking specification in ∃L0 is
defined similarly with every matching constraint required to be in ∃L0.

Definition 2.3. Let E = (L, S, �) be an entity-linking specification, and let I be a
source instance. A solution for I w.r.t. E is a link instance J such that (J, I) |= �, where
(J, I) is the instance over the schema L ∪ S obtained by taking the union of the facts in
J and I.

Example 2.4. In this scenario, we link subsidiaries in one database with parent
companies in another database. Consider the following source schema S:

Subsid(sid, sname, location) Company(cid, cname, hdqrt)
Exec(eid, cid, name, title).

This source schema includes the relation symbols Subsid from the first database and
Company and Exec from the second database. A source instance I for S is given here as
a set of facts:

Subsid(s1, “Citibank N.A.”, “New York”) Company(c1, “Citigroup Inc”, “New York”)
Subsid(s2, “CIT Bank”, “Salt Lake City”) Company(c2, “CIT Group Inc”, “New York”)

Exec(e1, c1, “E. McQuade”, “CEO, Citibank N.A.”).

The intention is to generate links between subsidiary ids and corresponding company ids.
Thus, the link schema L consists of a single link symbol L(sid, cid). In the scenario, “Citibank
N.A.” is the name of a true subsidiary of “Citigroup Inc,” while “CIT Bank” is the name of a
true subsidiary of “CIT Group Inc.” We note that this is a real-life example, and “Citigroup
Inc” and “CIT Group Inc” are two different financial institutions. The goal of entity linking
is to identify links such as L(s1, c1) and L(s2, c2), given the available evidence.

The following is an entity-linking specification in L0 that exploits the available
attributes and the relationship between the source tables. (We will see shortly a
second entity-linking specification in ∃L0 that also makes sense for this scenario but
has “weaker” guarantees.) The entity-linking specification is E = (L, S, �), where �
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consists of a matching constraint:

L(sid, cid) → ∀sn, loc, cn, hd (Subsid(sid, sn, loc) ∧ Company(cid, cn, hd)
→ (sn ∼ cn)
∨

∃e, n, t(Exec(e, cid, n, t) ∧ contains(t, sn))),

two inclusion dependencies L[sid] ⊆ Subsid[sid], L[cid] ⊆ Company[cid], and the
functional dependency L : sid → cid. While the inclusion dependencies specify where
L is allowed to take values from, the functional dependency gives the additional
requirement on L that the links must be many to one from sid to cid. Thus, every
subsidiary must link to at most one company, but the converse need not hold. The
matching constraint lists all possible matching conditions as to why a link may exist.
Concretely, if a subsidiary id and a company id are linked, then it must be that one of
the two matching conditions holds: (1) there is a similarity in the names, as specified
by sn ∼ cn, or (2) there is some executive working for the company and this executive
has a title that contains the subsidiary’s name.

The universally quantified conjunction Subsid (sid, sn, loc) ∧ Company (cid, cn, hd)
gives the context surrounding the occurrences of sid and cid in the source relations.
In general, the matching conditions can refer to any variable in the context (e.g., sn,
cn), and each matching constraint’s disjunction must be true for every instantiation
of the universal variables. For example, if a subsidiary id (sid) is associated with two
or more subsidiary names (sn) in the source relation Subsid, then the disjunction of
the two matching conditions must hold for every such name. Thus, we consider every
name variation of the subsidiary; if for some variation sn the matching conditions do
not hold, then that may be an indication that we do not have a true subsidiary.

The following are solutions for I w.r.t. E :

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}.

We assume here that the name similarity predicate ∼ evaluates to true for all pairs
of subsidiary name and company name occurring in our instance I (thus, “Citibank
N.A.” ∼ “Citigroup Inc” but also “Citibank N.A.” ∼ “CIT Group Inc,” and so on). Note
that the link L(s1, c1) satisfies both the ∼ predicate and the Exec-based condition, while
other links satisfy only the ∼ predicate. The link instance J5 = {L(s1, c1), L(s1, c2)} is
not a solution, since it violates the functional dependency. Finally, we note that every
subinstance of a solution is always a solution.

The previous example illustrates that, in general, we allow matching of entities
that are not necessarily of the same type; moreover, a link relation need not be an
equivalence relation.

The entity-linking specification in Example 2.4 made use, in an essential way, of
universal quantification on the right-hand side of the matching constraint. Next, we
consider an entity-linking specification in ∃L0 for the same scenario. As we shall see,
this specification in ∃L0 is not as good as the earlier one in the more expressive language
L0, because it may produce “incorrect” links.

Example 2.5. Consider the same source and link schemas as in Example 2.4. Let
E ′ = (L, S, �′) be the entity-linking specification in ∃L0 that has the same inclusion
dependencies and functional dependency as in Example 2.4 but has the following
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matching constraint:

L(sid, cid) → ∃sn, loc, cn, hd ( Subsid(sid, sn, loc) ∧ Company(cid, cn, hd) ∧ (sn ∼ cn))
∨

∃sn, loc, cn, hd, e, n, t (Subsid(sid, sn, loc) ∧ Company(cid, cn, hd) ∧
Exec(e, cid, n, t) ∧ contains(t, sn)).

The key syntactic difference from the earlier constraint is that the two matching con-
ditions (∼-based and Exec-based) no longer share a common universally quantified
context; instead, each matching condition quantifies existentially the source tuples in
the Subsid and Company relations.

To illustrate the difference in semantics between the two specifications, assume that
we add an extra tuple:

Subsid(s1, “Chase Manhattan”, “New York”)

to the earlier source instance. Let I′ be the resulting source instance. Intuitively, this
source instance contains “errors”: we have two different (conflicting) names for s1, and
for all we know now, s1 could be a subsidiary of “JP Morgan Chase & Co” instead of
“Citigroup Inc.”

It is easy to see that the earlier link instance J1 = {L(s1, c1), L(s2, c1)} is a solution
for I′ with respect to the newer specification E ′. In particular, the right-hand side
of the matching constraint in E ′ holds when s1 and c1 play the roles of sid and cid.
However, J1 is no longer a solution for I′ with respect to the earlier specification E ,
since the link L(s1, c1) is no longer allowed: for some name variation for s1, namely,
“Chase Manhattan,” none of the matching conditions hold. The earlier specification E
requires that the disjunction of matching conditions holds for every subsidiary name
associated to s1. In contrast, the specification E ′ has weaker requirements and allows
the link L(s1, c1) to exist in a solution, which may be incorrect.

Another important feature of our language is that matching constraints do not “force”
the existence of the links. They form only a necessary condition for the existence of the
links. This is a departure from the more traditional approaches based on source-to-link
rules of the form α → L, which eagerly populate (or require) links in L whenever
the matching condition α is true. However, when other constraints are then considered
(e.g., functional dependencies), the links in L may become invalid. As a result, it is often
the case that source instances may have no solutions with respect to specifications that
include source-to-link rules. (This is a theme that we shall revisit later in various
contexts.) In contrast, our notion of entity-linking specification always has solutions. A
large part of this article will then be focused on identifying a subset of “good” solutions
among all the possible solutions.

Before we proceed to define concrete classes of “good” solutions, we first define the
notions of certain, possible, and ambiguous links. These notions can be defined, gen-
erally, w.r.t. an arbitrary class of solutions, that is, w.r.t. a subset C of solutions that
satisfy some property. We may also refer to the solutions in a class C as C-solutions.

Definition 2.6. Assume a class C of solutions and an entity-linking specification
E = (L, S, �). Let I be a source instance.

(i) The set of certain links for I w.r.t. C and E is the set of links that appear in every
C-solution J for I w.r.t. E .

(ii) The set of possible links for I w.r.t. C and E is the set of links that appear in some
C-solution J for I w.r.t. E .

(iii) The set of ambiguous links for I w.r.t. C and E is the set difference between the
possible and the certain links for I w.r.t. E .
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3. A NAIVE SEMANTICS BASED ON MAXIMAL SOLUTIONS

The first class of “good” solutions that we investigate is the class of maximal solutions,
where “goodness” of a solution is defined as maximality w.r.t. set containment.

Definition 3.1. Assume an entity-linking specification E = (L, S, �). Given a source
instance I, a maximal solution for I w.r.t. E is a link instance J such that (1) (J, I)
satisfies �, and (2) there is no J′ such that J ⊂ J′ and (J′, I) satisfies �.

Example 3.2. We revisit Example 2.4. The solutions J1, J2, J3, J4 are maximal for the
given source instance I (and w.r.t. the given E), because in each of the four instances,
we cannot add any further links over the sid- and cid-values in I without violating
the functional dependency. It can also be verified that these four instances are all the
maximal solutions for I.

Maximal solutions versus repairs. We next show a connection with source-to-link
constraints and the framework of repairs [Arenas et al. 1999], which we shall use later
in this section. Given an entity-linking specification E = (L, S, �) in L0, we first extract
a source-to-link specification M = (S, L, �′) as follows. For each matching constraint
mL in �, and given the inclusion dependencies L[X] ⊆ R[A] and L[Y ] ⊆ R′[A′], we add
the following source-to-link constraint in �′:

(m′
L) R(. . . , x, . . .) ∧ R′(. . . , y, . . .) ∧ (∀u(ψ(x, y, u) → α1 ∨ . . . ∨ αk)) → L(x, y).

In this, the occurrence of x in the R-atom is in the position of attribute Aand, similarly,
the occurrence of y in the R′-atom is in the position of attribute A′. Intuitively, the
formula m′

L inverts the direction of the implication in mL. For every pair x, y of values,
with x coming from R[A] and y coming from R′[A′], we check that the left-hand side
of m′

L is satisfied in the source. If that is the case, then m′
L requires the addition of an

appropriate link in L. We can formally define this process of adding links by using the
chase as follows.

First, we note that M can be seen as a schema mapping or data exchange setting
[Fagin et al. 2005] where the link schema plays the role of a target schema. The
constraints in �′ are a particular case of first-order tgds [Arenas et al. 2013], that is,
source-to-target tgds where the left-hand side of the tgd can contain an arbitrary first-
order formula (rather than just a conjunction of atomic formulas). As shown in Arenas
et al. [2013], the chase with first-order tgds behaves in the same way as the chase
with regular source-to-target tgds. In particular, it terminates in polynomial time in
the size of the source instance. Furthermore, since there are no existentially quantified
variables in L, each m′

L is a full first-order tgd; hence, the chase produces no nulls and
its result for a given source instance I is unique.

Let us denote the result of the chase by U = chaseM(I). Intuitively, U contains
all the links that are possible based on just the matching constraints and inclusion
dependencies. However, when we consider the additional functional dependencies in
�, not all the links in U are possible due to conflicts. Thus, U itself is not a solution
for I with respect to the specification given by the source-to-link constraints �′ and
the functional dependencies (and, in general, no such solutions may exist). Instead, we
must consider subinstances of U that are consistent. The maximal subinstances of U
that are consistent are also known as the subset repairs [Arenas et al. 1999] of U.

As it turns out, the subset repairs of U = chaseM(I) w.r.t. the functional dependencies
are precisely the maximal solutions w.r.t. the original entity-linking specification.

PROPOSITION 3.3. Assume an entity-linking specification E = (L, S, �) in L0, and let
M = (S, L, �′) be the source-to-link specification constructed from E . Furthermore, let
F be the set of functional dependencies in �. Then, for every source instance I, the set of

ACM Transactions on Database Systems, Vol. 41, No. 3, Article 17, Publication date: June 2016.



17:10 D. Burdick et al.

maximal solutions for I w.r.t. E is the same as the set of subset repairs of U = chaseM(I)
w.r.t. F.

PROOF. Assume first that J is a maximal solution for I w.r.t. E . Since (J, I) |= �, we
have that (J, I) satisfies mL for every link symbol L. This, together with the fact that
(J, I) also satisfies the inclusion dependencies in E , implies that the relation L in J is
a set of pairs (x, y) such that (1) x occurs in R[A] in I, (2) y occurs in R′[A′] in I, and
(3) I satisfies the right-hand side of mL for the given x and y. But, by definition of m′

L
and by the properties of the chase, we have that U = chaseM(I) contains all such pairs
(x, y). Hence, we obtain that J ⊆ U .

Furthermore, it is also the case that J |= F, where F is the set of functional de-
pendencies in �. We show next there is no J′ such that J ⊂ J′ ⊆ U and such that
J′ |= F. This will imply that J is a maximal subinstance of U that is consistent w.r.t.
F and, hence, J is a subset repair of U w.r.t. F. Assume that there is J′ such that
J ⊂ J′ ⊆ U and such that J′ |= F: we shall derive a contradiction. We have argued
earlier that U contains, for every link L, all pairs (x, y) such that conditions (1), (2), and
(3) hold. Since J′ ⊆ U , we obtain that every pair (x, y) in a link relation L of J′ satisfies
conditions (1), (2), and (3). From (1) and (2), we obtain that (J′, I) satisfies L[X] ⊆ R[A]
and L[Y ] ⊆ R′[A′] for every link L. From condition (3), we obtain that (J′, I) |= mL for
every link L. Furthermore, we also have that J′ |= F, by the assumption on J′. Hence,
J′ is a solution for I w.r.t. E . Since J ⊂ J′, we obtain a contradiction to the fact that J
was a maximal solution for I w.r.t. E .

For the converse, assume that J is a subset repair of U w.r.t. F. Thus, J is a maximal
subinstance of U that is consistent w.r.t. F. Since J ⊆ U , by the same argument we
used for J′ earlier, we obtain that (J, I) satisfies the inclusion dependencies and the
matching constraints in �. Since we also have that J |= F, we obtain that J is a
solution for I w.r.t. E . We show next that there is no J′ such that J ⊂ J′ and such that
(J′, I) |= �. This will imply that J is a maximal solution for I w.r.t. E . Assume that
there is J′ such that J ⊂ J′ and such that (J′, I) |= �. Applying the same argument
used in the first paragraph of the proof to show that (J, I) |= � implies J ⊆ U , we
obtain that J′ ⊆ U . Since J′ |= F, it follows that J′ is a subinstance of U that is
consistent w.r.t. F. Given that J ⊂ J′, we obtain a contradiction to the fact that J is a
maximal subinstance of U that is consistent w.r.t. F.

Based on the previous proposition and known results about the consistent answers
of projection-free queries [Chomicki and Marcinkowski 2005], we immediately obtain
the following tractability results.

THEOREM 3.4. Let E be an entity-linking specification in L0. Then:

• There is a polynomial-delay algorithm that, given a source instance I, enumerates all
maximal solutions for I w.r.t. E .

• There is a polynomial-time algorithm that, given a source instance I, computes the
set of certain links for I w.r.t. the class of maximal solutions and E .

• There is a polynomial-time algorithm that, given a source instance I, computes the
set of ambiguous links for I w.r.t. the class of maximal solutions and E .

Proposition 3.3 provides a useful connection between an entirely declarative specifi-
cation, based on maximal solutions w.r.t. E , and a more procedural approach, based
on chasing with M and then applying repairs. It also gives us polynomial-time algo-
rithms for the three problems of interest. While this connection with repairs is directly
applicable to L0 and the semantics of maximal solutions, the situation becomes more
complex for the more refined semantics that we consider later, where we will need to
employ graph-based techniques to handle link values.
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We close this section by showing that the language L0 has strictly more expressive
power for entity linking than its simpler fragment ∃L0.

THEOREM 3.5. There exists an entity-linking specification E = (L, S, �) in L0 for which
there is no entity-linking specification E ′ = (L, S, �′) in ∃L0 such that for every source
instance I, the set of certain links for I w.r.t. the class of maximal solutions and E ′ is the
same as the set of certain links for I w.r.t. the class of maximal solutions and E .

PROOF. The idea behind the proof is that entity-linking specifications in ∃L0 pos-
sess a monotonicity property that entity-linking specifications in L0 need not possess.
Specifically, suppose that E ′ is an entity-linking specification in ∃L0, I is a source in-
stance, and J is a solution for I w.r.t. E ′. If I′ is a source instance such that I ⊆ I′,
then J is also a solution for I′ w.r.t. to E ′. This is so because every matching constraint
of E ′ is satisfied by the pair (J, I′) since the right-hand side of each such constraint
is a disjunction of existential positive formulas; hence, it is preserved when we pass
from a source instance I to a source instance I′ containing I. Similarly, the inclusion
dependencies of E ′ are satisfied by the pair (J, I′) because they are satisfied by the pair
(J, I) and I ⊆ I′.

Consider the entity-linking specification E in Example 2.4, which is a specification
in L0. Toward a contradiction, assume that there is an entity-linking specification E ′
in ∃L0 such that for every source instance I, the set of certain links for I w.r.t. the
class of maximal solutions and E ′ is the same as the set of certain links for I w.r.t. the
class of maximal solutions and E . Let I be the source instance consisting of the facts
Subsid(s1, “Citibank N.A.”, “New York”) and Company(c1, “Citigroup Inc”, “New York”).
The only maximal solution for I w.r.t. E is the link instance J = {L(s1, c1)}. Hence,
L(s1, c1) is the only certain link for I w.r.t. the class of maximal solutions and
E , as well as the only certain link for I w.r.t. the class of maximal solu-
tions and E ′. Let I′ be the source instance obtained from I by adding the fact
Subsid(s1, “Chase Manhattan”, “New York”). It is easy to see that the empty relation ∅
is the only solution for I′ w.r.t. E ; hence, there are no certain links for I′ w.r.t. to the
class of maximal solutions and E . In contrast, because of the aforementioned mono-
tonicity property, the link instance J = {L(s1, c1)} is a solution for I′ w.r.t. E ′. Further-
more, we claim it is the only maximal solution for I′ w.r.t. E ′. This is so because the
only two inclusion dependencies that are possible for E ′ are L[sid] ⊆ Subsid[sid] and
L[cid] ⊆ Company[cid], and therefore the only possible values that can appear in L are
s1 and c1. We conclude that L(s1, c1) is a certain link for I′ w.r.t. the class of maximal
solutions and E ′, which violates the hypothesis about E ′.

COROLLARY 3.6. There exists an entity-linking specification in L0 that is not logically
equivalent to any entity-linking specification in ∃L0.

The preceding results reveal that universal quantification in the matching con-
straints of L0 is necessary, in the sense that it cannot be expressed in general by
using matching constraints in the syntactically simpler language ∃L0.

4. CONNECTION TO THE HIL LANGUAGE

We now make a connection between our declarative framework for entity linking and
the HIL language [Hernández et al. 2013], which was recently developed at IBM
Research–Almaden and used in the Midas system [Burdick et al. 2011] for entity
extraction and integration from public financial data. We note that HIL is a language
that, in addition to supporting entity linking, contains constructs that support entity
fusion (i.e., merging of linked entities into unified entities). In this section, we will focus
our comparison only on the entity-linking fragment of HIL. Concretely, we show that
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a core entity-linking fragment of HIL is captured, in a precise sense, by the language
∃L0 under the semantics given by maximal solutions.

4.1. HIL: Entity-Linking Fragment and Semantics

We start by introducing, via an example, the core entity-linking fragment of HIL, and
then formulate its operational semantics.

Entity-linking operations in HIL are expressed via SQL-like statements that specify
the type of links being created, the source sets that are used for linking, and the
matching rules. Additionally, a cardinality clause enforces whether the links should
be many to many, many to one, or one to one. Other constructs, which will not be
considered here, include a blocking clause to specify ways to partition the input data
for faster processing, and a form of preference constraints to disambiguate among links
in certain situations.

As a concrete example, we can use the following HIL statement to link subsidiaries
and companies in our running example (see Example 2.4):

create link L as

select [sid : S.sid, cid : C.cid]
from Subsid S, Company C, Exec E
match using

m1 : S.sname ∼ C.cname,

m2 : E.cid = C.cid and contains (E.title, S.sname)
cardinality N : 1

Instead of presenting the semantics of the entity-linking fragment of HIL given
in Hernández et al. [2013], we give an equivalent description that is based on trans-
lating every HIL statement into a set of constraints. Concretely, the previous HIL
statement can be formally translated into a set �, consisting of the following con-
straints:

(π1) Subsid(sid, sn, loc) ∧ Company(cid, cn, hd) ∧ (sn ∼ cn) → L(sid, cid)
(π2) Subsid(sid, sn, loc) ∧ Company(cid, cn, hd) ∧ Exec(e, cid, n, t) ∧ contains(t, sn)

→ L(sid, cid)
(i1) L[sid] ⊆ Subsid[sid]
(i2) L[cid] ⊆ Company[cid]
( f ) L : sid → cid

Thus, the matching rules m1 and m2 in the preceding HIL statement become two
source-to-link tgds (π1) and (π2), which will be used to populate the link relation L from
the relevant source relations. Note that, in order to be faithful to the HIL semantics,
not all source relations in the from clause need to be used in the left-hand side of
a source-to-link tgd. In particular, π1 does not include an atom for Exec because the
matching rule m1 does not use this relation.

We note that the source-to-link tgds used in this translation are a variation on the
notion of source-to-target tgds in data exchange [Fagin et al. 2005] where the link
schema plays the role of a target schema and where the left-hand side of the tgd is
allowed to have built-in or user-defined predicates (in addition to the source atomic
formulas).

When translating well-formed HIL statements, the set of relational atoms in the
left-hand side of each source-to-link tgd is formed based on a subset of the source
relations in the from clause of the HIL statement. This subset contains, minimally, the
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two relational atoms that are needed to form the links (e.g., Subsid and Company for sid
and cid, respectively) and, additionally, any other relational atom that may be required
by the matching rule (e.g., Exec in the case of π2).

Note that the specification � also contains the two inclusion dependencies (i1) and
(i2) and the functional dependency ( f ). The inclusion dependencies reflect how the link
attributes in the select clause of the HIL statement relate to the source relations in
the from clause of the same HIL statement. The functional dependency ( f ) captures the
N:1 cardinality requirement of matching subsidiaries to a single parent company. (Note
that in the case of a 1:1 cardinality constraint in the HIL statement, we will need two
functional dependencies.) Let us refer to such a specification � as a HIL specification.

The following chase-and-remove process describes the operational semantics of a HIL
specification. First, we chase with the source-to-link tgds in �. This means that, given
a source instance I, we construct in polynomial time a link instance U by evaluating
the left-hand side of the source-to-link tgds and by adding the corresponding link facts.
However, some of the links in U may violate the functional dependencies in �. To
address this, HIL removes from U all links involved in the violations. Thus, if two or
more links violate a functional dependency, then all of them are removed. We write
U0 = chase-and-remove(�, I) to denote the subset U0 of U returned by HIL. Note that
the inclusion dependencies (i1) and (i2) do not play a role in the “chase-and-remove”
procedure, but they are guaranteed to be satisfied by the result U0. We carry them
around for the purposes of translation to ∃L0, which we describe next.

4.2. Translation to ∃L0

We now show that the aforementioned entity-linking fragment of HIL, with the oper-
ational semantics described in the previous subsection, is captured in a precise sense
by the language ∃L0 with the semantics given by maximal solutions.

For simplicity of discussion, we assume there is one link relation symbol L. Assume
a HIL specification �, consisting of source-to-link tgds φi(x, y, zi) → L(x, y), for 1 ≤
i ≤ n, together with functional dependencies and inclusion dependencies on the link
relations. We define the corresponding entity-linking specification in ∃L0 to consist of
the matching constraint L(x, y) → ∃z1φ1 ∨· · ·∨∃znφn, together with the same inclusion
dependencies and functional dependencies on L as in the specification �.

THEOREM 4.1. Let � be a HIL specification, let E be the corresponding entity-linking
specification in ∃L0, and let I be a source instance. Then the set chase-and-remove(�, I)
coincides with the set of certain links for I w.r.t. the class of maximal solutions and E .

PROOF. First, we invert the entity-linking specification E = (L, S, �) by constructing a
source-to-link specification M = (S, L, �′) as in Section 3. However, since the matching
constraint in � has the special form L(x, y) → ∃z1φ1(x, y, z1) ∨ · · · ∨ ∃znφn(x, y, zn), it
follows that the corresponding source-to-link constraint in �′ has the form

(m′
L) R(. . . , x, . . .) ∧ R′(. . . , y, . . .) ∧ (∃z1φ1(x, y, z1) ∨ . . . ∨ ∃znφn(x, y, zn)) → L(x, y).

In this, the occurrence of x in the R-atom is in the position of attribute Aand, similarly,
the occurrence of y in the R′-atom is in the position of attribute A′, where we assumed
that the inclusion dependencies are L[X] ⊆ R[A] and L[Y ] ⊆ R′[A′]. We now observe
that each formula φi, for 1 ≤ i ≤ n, arises from the HIL specification �. Then each
such formula already contains two relational atoms R(. . . , x, . . .) and R′(. . . , y, . . .) with
x and y in the positions of A and A′, respectively. It follows that we can eliminate the
two relational atoms for R and R′ on the left-hand side of the previous source-to-link
constraint (m′

L) and obtain an equivalent constraint. We can also eliminate disjunction
by further transforming the source-to-link constraint into a set of source-to-link tgds
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as follows:

φ1(x, y, z1) → L(x, y), . . . , φn(x, y, zn) → L(x, y).

It can now be seen that this is precisely the set of source-to-link tgds in the HIL
specification �. Thus, we showed that the specification M that is used to “invert” E via
the construction in Section 3 is the same as the original HIL specification from which
E was constructed. We now make use of Proposition 3.3 to conclude the proof of this
theorem.

Let I be a source instance. First, by Proposition 3.3, we have that the set of maximal
solutions for I w.r.t. E is the same as the set of subset repairs of U = chaseM(I) w.r.t.
F, where F is the set of functional dependencies. It follows that the set of certain links
for I w.r.t. the class of maximal solutions and E is the same as the set of links that
appear in every subset repair of U = chaseM(I) w.r.t. F. However, it can be seen that
the latter set is exactly the set of links in U that are not involved in any violations
of F (otherwise they would not appear in every subset repair of U ). Hence, the set of
certain links for I w.r.t. the class of maximal solutions and E is the same as the set
chase-and-remove(�, I).

Since by the earlier Theorem 3.5 the language ∃L0 has strictly less expressive power
for entity linking than the language L0, it follows that the language of HIL specifi-
cations has strictly less expressive power for entity linking than the language L0. In
particular, HIL specifications do not take advantage of the universal quantification
feature of L0, whose benefits were illustrated in Section 2.

5. MAXIMUM-VALUE SOLUTIONS

5.1. Deficiency of Maximal Solutions

We now point out the main deficiency or limitation of the semantics based on maximal
solutions, which is that, in general, there may be too many maximal solutions and,
hence, too few certain links. Intuitively, the semantics given by maximal solutions
is too coarse grained and does not have enough discriminating power to identify the
“good” links. This limitation also applies to the core entity-linking fragment of HIL that
was discussed in the previous section, since we established there that the semantics
of a HIL specification is equivalent to the certain links of an ∃L0 specification w.r.t.
maximal solutions.

To exemplify the limitation of maximal solutions, consider our scenario in Exam-
ple 2.4. We showed that there are four maximal solutions, J1, J2, J3, and J4, for the
given source instance I. It can be easily seen that the set of certain links in this ex-
ample is empty: there is no link that appears in all four maximal solutions and, hence,
no link qualifies as a certain link. On the flip side, every link that occurs in one of the
four maximal solutions is possible (and ambiguous). However, some links are clearly
stronger than others. In particular, the link L(s1, c1) relating “Citibank N.A.” to “Citi-
group Inc.” satisfies both the ∼ predicate and the Exec-based matching condition, while
the other links satisfy only the ∼ predicate. Intuitively, there is evidence that suggests
that L(s1, c1) is a strong link that should be differentiated from the other links.

To address this issue, we will refine the class of “good” solutions by assigning value
to links, which in turn will increase the power of discriminating among the links. In
particular, it will allow us to increase the number of links that qualify as certain, thus
reducing ambiguity.

5.2. The Language L0(⊕) and Maximum-Value Solutions

We start by introducing a variation of the core language L0 that allows us to differen-
tiate among the links in a solution, based on the evidence supporting each link. More
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precisely, for each link fact L(a, b) in a solution, we count the number of disjuncts that
are satisfied among all the possible disjuncts α1, . . . , αk in the matching constraint mL.
We also count, for each satisfied disjunct αi = ∃z φi, the number of different instan-
tiations of the existentially quantified variables z that witness the satisfaction of φi.
Intuitively, the larger these numbers are, the better the links are.

While syntactically similar to L0, the new language will be semantically different
due to the presence of counting. In particular, in the new language, one cannot drop
disjuncts that are logically redundant, since such disjuncts may be important for mea-
suring the strength of the links, so dropping them would change the semantics. To
make this behavior explicit, in the notation for a matching constraint mL, we replace
∨ with a new symbol ⊕ as follows:

(mL) L(x, y) → ∀u(ψ(x, y, u) → α1 ⊕ . . . ⊕ αk).

Syntactically, everything else is the same as in L0. We call the resulting language
L0(⊕). Similarly to the case of ∃L0, we denote by ∃L0(⊕) the existential fragment of
L0(⊕).

While the notion of a solution is the same as for L0 and continues to be based on
logical satisfaction (where ⊕ is interpreted as ∨), the notion of a “good” solution in
L0(⊕) will now change to reflect the strength or the value of the links. Concretely, we
will identify, among the maximal solutions, a subclass of solutions that additionally
maximize the total value of the links.

Assume an entity-linking specification E = (L, S, �) in L0(⊕). Let I be a source
instance and J be a solution for I w.r.t. E . We define the value of a link L(a, b) in the
solution J as follows.

First, if there is no matching constraint mL for L, we take the value of L(a, b) to
be 1. This is the case when there are no direct requirements on the link, other than
the inclusion and functional dependencies (if any). Furthermore, the link is consistent
with other links in the given solution (since it appears in the solution). Giving it a
value of 1 (as opposed to 0, for example) ensures that the total value of a solution
strictly increases with an increase in the number of links. Assume now that there is a
matching constraint mL for L. Since (J, I) satisfies mL, it must be that I satisfies the
right-hand side of mL where x and y are instantiated with a and b. Assume first that
there is no instantiation u0 of the vector of universally quantified variables u such
that I |= ψ(a, b, u0). This means that the matching constraint for L(a, b) is satisfied for
vacuous reasons. For the same reasons as earlier (in the case of no matching constraint),
we take the value of the link to also be 1. In all other cases, we let the value of the
link be

Val(L(a, b)) = min
u0

(∑
αi ,z0

1

)
. (1)

In the previous equation, u0 ranges over all the distinct instantiations of the vector of
universally quantified variables u such that I |= ψ(a, b, u0). We take the minimum, over
all such u0, of the strength with which the source instance I satisfies the disjunction
α1 ∨ . . . ∨ αk. This strength is defined as a sum that gives a value of 1 for every disjunct
αi such that I satisfies αi(a, b, u0) and, moreover, for every distinct instantiation z0
of the vector z of existentially quantified variables of αi that makes this satisfaction
hold. (Recall that αi is, in general, of the form ∃z φi(x, y, u, z).) In the case when the
existentially quantified variables are missing, then we count only 1 per disjunct.

Intuitively, the sum in Equation (1) calculates the matching strength by counting the
number of satisfied disjuncts together with the evidence (i.e., the number of existential
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witnesses), while the minimum guarantees that we take the weakest matching strength
among all u0.

The value of a solution J, denoted by Val(J), is then the sum of the values of the
links in J.

Definition 5.1. Assume an entity-linking specification E = (L, S, �) in L0(⊕). Given
a source instance I, a maximum-value solution for I w.r.t. E is a link instance J such
that (1) (J, I) satisfies �, and (2) for every J′ such that (J′, I) satisfies �, we have that
Val(J′) ≤ Val(J).

Example 5.2. Recall Example 2.4. By applying Equation (1), the values of the indi-
vidual links that can be formed between subsidiary ids and company ids, based on the
matching constraint, are

Val(L(s1, c1)) = 2 Val(L(s1, c2)) = Val(L(s2, c1)) = Val(L(s2, c2)) = 1.

The value of 2, for the link L(s1, c1), is obtained as follows. First, for the given s1 and
c1, there is only one way to instantiate the universally quantified variables sn, loc, cn,
and hd in the matching constraint. (This is because there is only one tuple for s1 in
Subsid, and one tuple for c1 in Company.) Hence, the min in Equation (1) is applied over
a single element. Then it can be seen that both disjuncts in the matching constraint
are satisfied for s1 and c1. The first disjunct contributes a value of 1, since the disjunct
is simply the atomic formula sn ∼ cn. The second disjunct also contributes a value of
1, since there is only one way to instantiate the existential variables in the Exec-based
condition (with the values corresponding for “E. McQuade”). Thus, the total strength
with which the disjuncts are satisfied is 2 and, hence, the value of the link is 2. A
similar evaluation takes place for the other three links, with the difference that only
the first disjunct is satisfied.

Consider the earlier solutions J1, J2, J3, and J4, which were shown to be the maximal
solutions. By summing up the values of their links, we obtain that Val(J1) = Val(J2) = 3,
while Val(J3) = Val(J4) = 2. So, J1 and J2 are maximum-value solutions, while J3 and
J4 are not. It can also be seen that there is now one certain link, namely, L(s1, c1), which
appears in both J1 and J2 and correctly relates “Citibank N.A.” with “Citigroup Inc.”
This is in contrast with the case of the maximal solutions semantics where we had
zero certain links. Also, the two links L(s2, c1) and L(s2, c2), relating “CIT Bank” with
either “Citigroup Inc.” or “CIT Group Inc.,” are now ambiguous, whereas in the case of
the maximal solutions semantics all four links were ambiguous. Finally, the ambiguity
of L(s2, c1) and L(s2, c2) is, intuitively, the best we can achieve here, since there is
not enough information to differentiate between the two links, based on the given
specification. A human user is needed at this point to further refine the entity-linking
specification, possibly by using additional information (e.g., additional attributes or
relations).

A simple but important observation for L0(⊕) is that, even though Val(L(a, b)) is
defined relative to a solution J (in which L(a, b) occurs), the actual value of Val(L(a, b))
is independent of J. This is so because, in L0(⊕), the formula ψ and the disjuncts α1,
. . . , αk are over the source schema. In Section 7, we will consider richer languages,
where the αs can also depend on link predicates. Even though the same definitions of
value and maximum-value solutions continue to apply for the richer languages, there
we will have that Val(L(a, b)) depends, in general, on the choice of the solution J in
which it occurs.

PROPOSITION 5.3. If E is an entity-linking specification in L0(⊕) and I is a source
instance, then every maximum-value solution for I w.r.t. E is also a maximal solution
for I w.r.t. E .
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PROOF. Let J be a maximum-value solution. If J is not maximal, then it is possible
to add another fact t to J such that J′ = J ∪ {t} is a solution. But then the value of J′
is more than the value of J, since each additional fact adds value of at least 1. This
contradicts the assumption that J is a maximum-value solution.

The reverse direction for Proposition 5.3 does not hold, as seen in Example 5.2. Thus,
for L0(⊕), maximum-value solutions form a strict subclass of maximal solutions. As a
consequence, the set of certain links over maximum-value solutions is often a strict
superset of the certain links over maximal solutions.

We give next the main complexity result of this section, stating the tractability of
L0(⊕). In contrast with Theorem 3.4, which follows from results on data repairs, the
proof of the following theorem is of a different nature and makes use of algorithms for
matchings in weighted bipartite graphs.

THEOREM 5.4. Let E be an entity-linking specification in L0(⊕). Then:

• There is a polynomial-delay algorithm that, given a source instance I, enumerates all
the maximum-value solutions for I w.r.t. E .

• There is a polynomial-time algorithm that, given a source instance I, computes the
certain links for I w.r.t. the class of maximum-value solutions and E .

• There is a polynomial-time algorithm that, given a source instance I, computes the
ambiguous links for I w.r.t. the class of maximum-value solutions and E .

In the remainder of this section, we give a proof of Theorem 5.4. We begin with a
digression into graph theory and formulate a graph problem that will be used to prove
results for entity-linking specifications, including Theorem 5.4.

A weighted (undirected) graph is a triple (V, E, w), where V is a set of nodes; E is
a set of edges, each of which is a pair (a, b) of distinct nodes; and w is a function that
assigns to each edge a nonnegative integer. A matching of a graph is a subset M of
edges such that each node appears in at most one edge in M. A perfect matching is a
matching in which each node appears in exactly one edge in M. A maximum-weight
matching is a matching M such that the sum of the weights of its edges in M is
maximized among all matchings. Similarly, a maximum-weight perfect matching is a
perfect matching M such that the sum of the weights of its edges in M is maximized
among all perfect matchings. A weighted bipartite graph is a weighted graph whose
nodes can be partitioned into two disjoint sets of nodes V1 and V2 such that every edge
in E connects a node in V1 and a node in V2.

There is a long line of research in algorithms for enumerating maximum weight
perfect matchings in weighted bipartite graphs, including Murty [1968] and Chegireddy
and Hamacher [1987]. The next result, which will be of interest to us in the sequel,
has been recently proven in Droschinsky et al. [2014] for complete bipartite graphs. We
note, however, that a general version (for graphs that are not necessarily complete) can
also be obtained by combining and adapting ideas from the work of Itai et al. [1978]
on the enumeration of maximum matchings in bipartite graphs and from the work
of Chegireddy and Hamacher [1987] on the enumeration of maximum weight perfect
matchings in weighted bipartite graphs.

THEOREM 5.5. There is a polynomial-delay algorithm for enumerating the maximum-
weight matchings in a weighted bipartite graph.

Given a weighted graph, we say that an edge is certain if it is in every maximum-
weight matching. We say that an edge is possible if it is in some maximum-weight
matching. We say that an edge is ambiguous if it is possible but not certain. We next
give a theorem, which will be very useful in our subsequent proofs.
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THEOREM 5.6. For matchings in weighted graphs, there is a polynomial-time algorithm
for computing the set of certain edges and a polynomial-time algorithm for computing
the set of ambiguous edges.

PROOF. Let G = (V, E, w) be a weighted graph. To obtain our polynomial-time algo-
rithms for computing the sets of certain and ambiguous edges, we consider each of the
(polynomially many) edges one by one and decide if it is certain or ambiguous.

To decide if the edge (a, b) is certain, do the following. Find a maximum-weight
matching of G, and call its total weight W . Then delete the edge (a, b), and find the
maximum-weight matching over the remaining edges, and call its total weight W ′. We
now show that the edge (a, b) is certain if and only if W ′ < W . First, if the edge (a, b)
is certain, then every maximum-weight matching that does not include (a, b) has total
weight less than W , and so W ′ < W . Conversely, if W ′ < W , then every maximum-
weight matching that does not use the edge (a, b) has total weight less than W , so (a, b)
is a certain edge.

We now give a polynomial-time algorithm for deciding if an edge is a possible edge.
Since there is also a polynomial-time algorithm for deciding if an edge is a certain
edge, this implies that there is a polynomial-time algorithm for deciding if an edge
is an ambiguous edge. To decide if the edge (a, b) is possible, do the following. Find a
maximum-weight matching of G, and call its total weight W . Then delete the nodes
a, b from G, and delete every edge that contains either a or b. For the remaining
weighted graph, find a maximum-weight matching, and call its total weight W ′. Let
W ′′ = W ′+w((a, b)). It is easy to see that W ′′ is the maximum weight of those matchings
that includes the edge (a, b) (intuitively, we are “forcing” (a, b) into the matching).
Therefore, (a, b) is a possible edge if and only if W ′′ = W .

We can now give the proof of Theorem 5.4.
PROOF OF THEOREM 5.4. For simplicity of description, we assume first that there is

only one link, link1. Later we shall consider the more general case.
Let Rlink1 be the set of all pairs (a, b) that satisfy the inclusion dependencies for link1,

and that satisfy the right-hand side of the matching constraint for link1 when the left-
hand side is instantiated by link1(a, b) (so that (a, b) is a candidate tuple for the link1
relation). We can think of Rlink1 as a weighted bipartite graph, where the weight of the
edge (a, b) is the value assigned to link(a, b) according to our conventions.

There are three possibilities, depending on the FDs of link1:

(a) If link1 has both FDs, then we make use of Theorem 5.5 to give a polynomial-delay
algorithm, and Theorem 5.6 to find the certain and ambiguous links.

(b) If link1 has only one FD, say, A → B, then for each a in the A column of Rlink1 , let Xa
be the set of all B-values b such that (a, b) is in Rlink1 , and such that (a, b) has the
maximum weight among all pairs (a, b′) of Rlink1 (with A entry a). The maximum-
value solutions are exactly those solutions J such that for every a in the A column
of Rlink1 there is exactly one fact link1(a, b) in J, and that choice of b is in XA. It is
then straightforward to systematically enumerate in a polynomial-delay algorithm
the maximum-value solutions. We have that link1(a, b) is certain if and only if b is
the unique member of Xa. Further, link1(a, b) is ambiguous if and only if b ∈ Xa and
there is another member besides b in Xa.

(c) If link1 has no FDs, then the only maximum-value solution is Rlink1 itself. Every
member of Rlink1 is a certain link, and there are no ambiguous links.

This completes the proof when there is only one link. When there are multiple links,
we modify the polynomial-delay algorithm as follows. We take a fixed ordering of the
links, say, link1, link2, link3, . . . , and use a polynomial-delay algorithm to enumerate all
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choices for the link1 relation in a maximum-value solution. As each such link1 relation
appears, we then do a polynomial-delay algorithm to enumerate all choices for the link2
relation in a maximum-value solution. For each pair consisting of a choice for the link1
relation and the link2 relation, we use a polynomial-delay algorithm to enumerate all
choices for the link3 relation in a maximum-value solution, and so on. The certain links
linki(a, b) are exactly those we would get if linki were the only link, and similarly for
the ambiguous links.

6. CONNECTION TO PROBABILISTIC APPROACHES

In this section, we investigate the relationship between our declarative framework
based on disjunctive matching constraints and existing probabilistic methods for entity
resolution.

We start by introducing a simple yet powerful extension of L0(⊕) that incorporates
weights and that we call L0(⊕, w). For each matching constraint

(mL) L(x, y) → ∀u(ψ(x, y, u) → α1 ⊕ . . . ⊕ αk),

and for each disjunct αi ::= ∃z φi(x, y, u, z), there is now a weight function wφi (x, y, u, z)
that returns a number. Intuitively, with each disjunct that returns true or false, we also
have a function that computes a weight (or a score) for that disjunct. The semantics of
L0(⊕, w) is the same as that of L0(⊕) except that when counting existential witnesses
for each disjunct, we also multiply by the number returned by the weight function
for that disjunct. We note that Theorem 5.4 goes through when we replace L0(⊕) by
L0(⊕, w), by the same proof.

Similarly to the case of ∃L0 and ∃L0(⊕), we denote by ∃L0(⊕, w) the existential
fragment of L0(⊕, w).

6.1. Comparison to Probabilistic Matching

The first connection we make is to a well-known class of probabilistic matching al-
gorithms that originated with Fellegi and Sunter [1969] and is at the core of many
commercial systems including IBM’s QualityStage [Alur et al. 2008], which we use as
a representative example.

The probabilistic matching algorithm in QualityStage approaches record matching
in three steps. First, it applies pairwise comparison functions over the individual at-
tributes (or fields) in the two records to be compared. For each pair of attributes, the
function returns a score based on two probabilities (that must be learned or given to
the system a priori): the “match” probability m, which is the probability that two fields
match given that it is known that the two records match, and the “unmatch” (or ac-
cidental match) probability u, which is the probability that two fields match but the
records do not match. Second, the algorithm aggregates the scores returned by individ-
ual comparison functions by taking a weighted sum, where each comparison function
has its own weight (also to be learned or given to the system a priori). Third, a link is
returned if it has a high enough aggregated score (higher than a threshold, which also
must be learned or tuned).

We show by example that the first two steps in the aforementioned algorithm can
be captured by a single disjunctive matching constraint, while the third one can be
captured as an implementation step. We use a canonical example for deduplication of
mailing lists.

Example 6.1. The source schema S consists of two relation symbols: MasterList,
representing a master list of mailing addresses, and NewList, a list with new mailing
addresses that must be deduplicated against the first one. Both relations are assumed
to have the same schema, including personal attributes (e.g., last name ln, first name
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fn, etc.) and address attributes (e.g., street name street, etc.). Furthermore, we assume
that each record has been assigned a record id (rid) and the deduplication problem is
one of linking an rid from the new list to a unique rid in the master list. The core
functionality of a QualityStage algorithm can be logically expressed by an entity-
linking specification E = (L, S, �) in L0(⊕, w), where � consists of a single matching
constraint:

L(rid1, rid2) → ∀ln1, f n1, . . . , street1, ln2, f n2, . . . , street2

(NewList(rid1, ln1, f n1, street1, . . .) ∧ MasterList(rid2, ln2, f n2, street2, . . .)
→ SOUNDEX(ln1, ln2) ⊕ SOUNDEX( f n1, f n2) ⊕ . . . ⊕ EDIT(street1, street2)),

along with the obvious inclusion dependencies. Although QualityStage does not have
cardinality constraints, it is natural to add to our specification the functional dependency
L : rid1 → rid2. In the previous matching constraint, each disjunct calls a QualityStage
built-in comparison function (e.g., SOUNDEX, which compares how similar two names
sound, or edit distance EDIT), by passing the arguments to be compared. In turn, each
call to a QualityStage comparison function returns a weight that depends on the given
arguments and also on the aforementioned probabilities m and u for the particular
attribute. The weight of each possible link is then the sum of the weights for all the
disjuncts. Maximum-value solutions are obtained as solutions (containing nonconflicting
links) that maximize the total value. (QualityStage has the additional requirement that
only links whose weights are above a certain threshold are considered possible. This can
be easily added in an implementation on top of our maximum-value semantics.)

We note that the previous matching constraint is in a very limited fragment of
L0(⊕, w), where each disjunct is a simple atomic formula with no existential quantifi-
cation and no conjunction.

6.2. Comparison to Markov Logic Networks for Entity Resolution

We now connect to a richer probabilistic framework, that of Markov Logic Networks
(MLNs) [Richardson and Domingos 2006], which in general allows for arbitrary first-
order formulas to be interpreted in a probabilistic sense. We show that a class of
MLNs that is useful for entity resolution [Singla and Domingos 2006] is captured,
in a precise sense, by the fragment ∃L0(⊕, w). Thus, rather surprisingly, a purely
probabilistic approach (based on MLNs) can be captured in a deterministic way (via
∃L0(⊕, w)). We make use of this correspondence to obtain a polynomial-delay algorithm
for enumerating the maximum-probability worlds in the MLN setting, and polynomial-
time algorithms for finding the certain and ambiguous links over maximum-probability
worlds. These are the first polynomial-time results, to the best of our knowledge, for
MLN-based entity resolution.

6.2.1. Markov Logic Networks: Preliminaries. We now define a fragment of MLNs that we
call “linear MLNs.” For simplicity of discussion, we assume that there is one single link
symbol L; the same definitions extend immediately to the case of multiple link symbols
in the schema. A linear MLN M is a set of formulas σi → L(x, y) (for 1 ≤ i ≤ n),
each with a weight wi, where σi is a conjunction of atomic formulas over the source,
and where the free variables of σi include x and y. Examples of linear MLN formulas
for entity resolution appear in Singla and Domingos [2006], with the provision that
the role of the link relation is played there by the Equals predicate. Later we also
consider extensions of linear MLNs where a link symbol may also appear in the left-
hand side, thus allowing for interdependencies among the links. We assume that the
same requirements we have for the presence of inclusion dependencies involving the
link relation L in our entity-linking specifications are also required in the MLN setup;
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also, as with our entity-linking specifications, there may be functional dependencies
on L.

Note that the formulas σi → L(x, y) in linear MLNs are source-to-link constraints;
thus, they fall in the category of rules that eagerly populate the link relations. As
discussed earlier in Section 2, such specifications may not have solutions. However, in
the MLN framework, these formulas are not required to be satisfied in a hard logical
sense but rather in a probabilistic sense, which allows for violations and which we
explain next.

Fix a source instance I. For each “possible world,” that is, choice of link instance L0 for
L satisfying the inclusion dependencies w.r.t. I and the functional dependencies on L,
we assign a probability to that possible world, based on the source-to-link formulas in
M and their weights, as follows. Let K be an instance over the combined source and link
schema, and let γ be a formula over the combined schema. A (K, γ )-valuation (or simply
valuation, if K and γ are fixed or understood) is a function v from the free variables of γ
to members of the domain of K. Denote by |γ | the number of valuations that make γ true
in K. Then the probability assigned to a link instance L0 (for a given source instance I)
is proportional (see also Singla and Domingos [2006]) to ew1|σ1→L|+···+wn|σn→L|, where the
role of L is played by L0. (These probabilities are scaled so that they sum up to 1, over
all choices for L0.) Intuitively, the probability of a world increases with the number of
valuations that make a formula in M true and also with the weight of the formula.

Define a link (a tuple over the L schema) to be certain (w.r.t. the class of maximum-
probability worlds) if it is in every maximum-probability world w.r.t. M (for the given
source instance I). Similarly, we define ambiguous links.

6.2.2. Translation to ∃L0(⊕, w). Given the linear MLN with formulas σi → L(x, y) with
weight wi, for 1 ≤ i ≤ n, we define the corresponding entity-linking specification in
∃L0(⊕, w) to consist of the matching constraint L(x, y) → ∃z1σ1 ⊕ · · · ⊕ ∃znσn, where zi
consists of the free variables of σi other than x and y, and where the disjunct ∃ziσi has
weight wi, for 1 ≤ i ≤ n. Also, this corresponding entity-linking specification has the
same inclusion dependencies and functional dependencies on L as the linear MLN. Note
that the weight function for each disjunct σi is a constant, whereas for QualityStage
we needed in general nonconstant weight functions for each disjunct in a matching
constraint.

Let M be an MLN, and let E be the corresponding entity-linking specification
in ∃L0(⊕, w). For a given source instance I, let us denote the set of maximum-
probability worlds w.r.t. M by Max Probability WorldsM(I), the set of solutions
w.r.t. E by SolutionsE (I), and the set of maximum-value solutions w.r.t. E by
Max Value SolutionsE (I). We have the following result, interrelating maximum-value
solutions and maximum-probability worlds.

THEOREM 6.2. Let M be a linear MLN, let E be the corresponding entity-linking
specification in ∃L0(⊕, w), and let I be a source instance. Then:

• Max Value SolutionsE (I) = Max Probability WorldsM(I) ∩ SolutionsE (I).
• The certain links for I w.r.t. the class of maximum-probability worlds and M are

precisely the certain links for I w.r.t. the class of maximum-value solutions and E .

Note that the second part of the theorem holds even though the sets of maximum-
value solutions and of maximum-probability worlds do not coincide. The proof of the
second part is based on a characterization that we shall give of maximum-probability
worlds in terms of maximum-value solutions. As we shall see, we also use that charac-
terization to prove the analog of Theorem 5.4 for linear MLNs, that is, that for linear
MLNs there is a polynomial-delay algorithm for enumerating the maximum-probability
worlds, and polynomial-time algorithms for finding the certain and ambiguous links.
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We now begin the proof of Theorem 6.2. We first prove the first part. We must show
that

Max Value SolutionsE (I) = (2)

Max Probability WorldsM(I) ∩ SolutionsE (I). (3)

Recall that the probability assigned to L0 is proportional to

ew1|σ1→L|+···+wn|σn→L|, (4)

where the role of L is played by L0. Now |σi → L| = |¬σi| + |σi ∧ L| (this relies on the
fact that every variable of σi → L is a variable of σi). So Formula (4) is equal to

ew1|¬σ1|+w1|σ1∧L|+···+wn|¬σn|+wn|σn∧L|. (5)

We see that Formula (5) equals

ew1|¬σ1|+···+wn|¬σn|ew1|σ1∧L|+···+wn|σn∧L|. (6)

Now ew1|¬σ1|+···+wn|¬σn| is independent of L. So to maximize Formula (6), we must maxi-
mize the expression ew1|σ1∧L|+···+wn|σn∧L|; that is, we must maximize

w1|σ1 ∧ L| + · · · + wn|σn ∧ L|. (7)

Assume that L0 ∈ SolutionsE (I). Since Max Value SolutionsE (I) ⊆ SolutionsE (I),
it follows easily that to prove the theorem, we need only show that L0 ∈
Max Value SolutionsE (I) if and only if L0 ∈ Max Probability WorldsM(I). The score
we assign to L0 in the entity-linking specification is obtained by holding fixed a tuple
(a, b) of L0, then taking Aa,b to be the sum over i of wi times the number of assignments
to σi that hold when x is taken to be a, and y is taken to be b, and finally summing Aa,b
over all (a, b) in L0. But we can simply reverse the order of summation by holding i fixed
and taking Bi to be the sum over all (a, b) in L0 of wi times the number of assignments
to σi that hold when x is taken to be a, and y is taken to be b, and finally summing Bi
over all i. But this latter sum is equal to Formula (7), when the role of L is played by
L0.

Hence, we are checking to see whether L0 maximizes the same quantity, namely
Formula (7), to decide if L0 ∈ Max Value SolutionsE (I) and to decide if L0 ∈
Max Probability WorldsM(I). This proves the first part of the theorem.

To prove the second part of Theorem 6.2, we need another connection between
maximum-probability worlds and maximum-value solutions, which we state and prove
next.

THEOREM 6.3. Let M be the linear MLN given by the set of formulas σi → L(x, y)
with weight wi , for 1 ≤ i ≤ n. Let E be the corresponding entity-linking specification in
∃L0(⊕, w), let I be a source instance, and let N = {(a, b) : ¬∃ziσi(a, b) holds in I for
every i}, where zi consists of the variables in σi other than x and y. Then the members
of Max Probability WorldsM(I) are precisely those possible worlds of the form L1 ∪ L2,
where L1 is a member of Max Value SolutionsE (I), and L2 is a subset of N.

PROOF. We now show that if L0 ∈ Max Probability WorldsM(I), then there are L1 and
L2 as in the statement of the theorem. Let L1 = L0 ∩ N, where N is the set of tuples
(a, b) from the domain of I where (a, b) �∈ N, and let L2 = L0 ∩ N. Then L0 = L1 ∪ L2.
Since clearly L2 ⊆ N, we need only show that L1 ∈ Max Value SolutionsE (I). It is
straightforward to see that |σi ∧ L| takes on the same value when the role of L is
played by L0 as when the role of L is played by L1. Hence, Formula (7) takes on the
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same value for both, and so since L0 maximizes Formula (7), so does L1. Therefore,
L1 ∈ Max Value SolutionsE (I), as desired.

Conversely, assume that L0 = L1 ∪ L2, where L1 and L2 are as in the statement of
the theorem. Since L1 ∈ Max Value SolutionsE (I), it follows from Theorem 6.2 that we
have that L1 ∈ Max Probability WorldsM(I). So similarly to before, it follows that we
also have L0 ∈ Max Probability WorldsM(I).

We are now able to prove the second part of Theorem 6.2. Assume first that 
 is a
certain link of E . Let L0 be a member of Max Probability WorldsM(I); we must show
that 
 ∈ L0. By Theorem 6.3, we know that L0 is of the form L1 ∪ L2, where L1 ∈
Max Value SolutionsE (I). Since 
 is a certain link of E , it follows that 
 ∈ L1, and hence

 ∈ L0, as desired.

Conversely, assume that 
 is a certain link of M. Let L1 be a mem-
ber of Max Value SolutionsE (I); we must show that 
 ∈ L1. Now L1 ∈
Max Probability WorldsM(I), by the first part of Theorem 6.2. Therefore, since 
 is
a certain link of M, it follows that 
 ∈ L1, as desired.

The next corollary says that the analog of Theorem 5.4 holds for linear MLNs.

COROLLARY 6.4. Let M be a linear MLN. Then:

• There is a polynomial-delay algorithm that, given a source instance I, enumerates all
the maximum-probability worlds for I w.r.t. M.

• There is a polynomial-time algorithm that, given a source instance I, computes the
certain links for I w.r.t. the class of maximum-probability worlds and M.

• There is a polynomial-time algorithm that, given a source instance I, computes the
ambiguous links for I w.r.t. the class of maximum-probability worlds and M.

PROOF. For convenience, let us refer to the result of replacing L0(⊕) by L0(⊕, w) in
Theorem 5.4 as the L0(⊕, w) version of Theorem 5.4. As we noted earlier, the L0(⊕, w)
version of Theorem 5.4 holds (by the same proof as Theorem 5.4). For all three parts of
the corollary, we shall make use of the L0(⊕, w) version of Theorem 5.4. Let E be the
entity-linking specification in L0(⊕, w) that corresponds to M.

For the first part of the corollary, it is easy to see from the characterization of
maximum-probability worlds in Theorem 6.3 that the polynomial-delay algorithm for
listing the maximum-value solutions for a source instance I w.r.t. E can be modified
to give a polynomial-delay algorithm for listing the maximum-probability worlds of I
w.r.t. M.

The second part of the corollary follows immediately from the second part of Theo-
rem 6.2 and the second part of the L0(⊕, w) version of Theorem 5.4.

We now prove the third part of the corollary. The set of possible links for a source
instance I w.r.t. E is the union of the sets of certain links and ambiguous links. So by the
L0(⊕, w) version of Theorem 5.4, there is a polynomial-time algorithm for computing
the possible links for I w.r.t. E . But it follows easily from Theorem 6.3 that the possible
links for I w.r.t M are exactly the possible links for I w.r.t. E , along with the members
of N. Since also there are polynomial-time algorithms for computing the possible links
for I w.r.t. E and for computing N, it follows that there is a polynomial-time algorithm
for computing the possible links for I w.r.t M. Since the set of ambiguous links is
the set difference between the possible and certain links, this gives a polynomial-time
algorithm for computing the ambiguous links for I w.r.t. M.

In summary, in Sections 6.1 and 6.2, we showed that, under a suitable extension
that allows for weights, our declarative language can capture important classes of
probabilistic methods. While this translation is interesting in itself, we envision our
language to be used as a deterministic framework (i.e., no probabilities) where the rules
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Fig. 1. A hierarchy of languages for entity linking.

that govern the links are written out explicitly, by a domain expert, as semantic rules
with a true/false interpretation and (primarily) with no weights (other than 1) in the
disjuncts. We also point out that in our study, we have focused extensively on the set
of certain links, which is the intersection of the links that appear in maximum-value
solutions (or, alternatively, in maximum-probability worlds in the case of linear MLNs).
Another semantics that is commonly used (especially in probabilistic approaches) is one
where each link is generated together with its score (whether it is a probability or a
value in our framework) as long as the score is above a threshold. The score itself gives
insight into the degree of certainty (or confidence) for a link, especially when the link
may not be a certain link in the aforementioned sense. An interesting future research
question is to formally compare or combine the two semantics, one given by the certain
links and the other given by scores and thresholds.

6.3. Hierarchy of Languages

We close this section with a pictorial view, shown in Figure 1, summarizing the various
languages we discussed so far and their relationships. In the figure, we use the symbol
⊂ to denote the “proper fragment” relationship between languages and use the dotted
arrow to denote when one language is “captured” by another language (typically via a
translation). The left-hand side of the figure is concerned with the maximal solutions
semantics, while the right-hand side is concerned with the maximum-value solutions
semantics and also with weights on the disjuncts.

In more concrete terms, for the maximal solutions semantics, we have that the lan-
guage ∃L0 is a proper fragment of the language L0 in the precise sense established by
Theorem 3.5. We also have that the HIL entity-linking fragment, which was discussed
in Section 4.1, is captured by the ∃L0 language in the precise sense established by
Theorem 4.1. For the maximum-value semantics, we have that the language ∃L0(⊕, w)
is a proper fragment of the language L0(⊕, w). This can be easily verified by using the
same proof of Theorem 3.5, along with the fact that every maximum-value solution
in L0(⊕, w) is a maximal solution. We also showed that linear MLNs are captured by
∃L0(⊕, w), as established by Theorem 6.2. Finally, we also argued earlier (Section 6.1)
that the core functionality of QualityStage can be captured by specifications in L0(⊕, w)
(in fact, by specifications in L0(⊕, w) that use neither conjunction nor existential
quantification).

7. MORE EXPRESSIVE LANGUAGES

We now explore extensions of the core language L0, to allow a matching constraint for
a link to possibly refer to other links. These extensions allow us to express what is
usually called collective entity resolution [Bhattacharya and Getoor 2007], that is, the
process of creating multiple types of links together.
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The matching constraint for a link symbol L has the same form

L(x, y) → ∀u(ψ(x, y, u) → α1 ∨ . . . ∨ αk)

as in Section 2. However, in each disjunct αi ::= ∃z φi(x, y, u, z), the formula φi can now
be a conjunction of source and link atomic formulas, along with equalities and other
built-in or user-defined predicates. If a specification is not allowed to have recursion
among the link predicates, we call the resulting language L1. Thus, in L1, there is a
hierarchy of links, where a matching constraint for a link L may call only links that
are strictly lower in the hierarchy than L. When recursion is allowed, we call the
language L2. So L1 is a sublanguage of L2. The corresponding variations for maximum-
value solutions, L1(⊕) and L2(⊕), are defined as in the case of L0. We also consider
the corresponding weighted versions L1(⊕, w) and L2(⊕, w). Similarly to the case of
∃L0, ∃L0(⊕) and ∃L0(⊕, w), we write ∃L1, ∃L1(⊕), and ∃L1(⊕, w) for the existential
fragments of L1, L1(⊕), and L1(⊕, w).

Example 7.1. Consider a bibliographic example where we link papers (from
one database) with articles (from another database), while also linking the corre-
sponding venues. The source schema S consists of Paper(pid, title, venue, year) and
Article(ano, title, journal, year). Here, pid is a unique id assigned to Paper records,
while venue could be a conference, a journal, or some other place of publication. The
Article relation represents publications that appeared in journals, and ano is a unique
id assigned to such records. The link schema L consists of two relations: PaperLink
(pid, ano) and VenueLink (venue, journal). The first relation is intended to link paper
ids from Paper with article numbers from Article when they represent the same pub-
lication. The second relation is intended to relate journal values that occur in Article
(e.g., “ACM TODS”) to journal values that occur under the venue field in Paper (e.g.,
“TODS”).

A possible entity-linking specification in L2 is E = (L, S, �), where � contains the
following:

VenueLink(ven, jou) → (ven ∼1 jou)
∨ ∃pid, t1, y1, ano, t2, y2(Paper(pid, t1, ven, y1)

∧ Article(ano, t2, jou, y2)
∧ PaperLink(pid, ano))

PaperLink(pid, ano) →
∀ t1, ven, y1, t2, jou, y2(Paper(pid, t1, ven, y1) ∧ Article(ano, t2, jou, y2)

→ ((t1 ∼2 t2) ∧ (y1 = y2))
∨ ((t1 ∼2 t2) ∧ VenueLink(ven, jou))).

The first constraint specifies that we may link a venue with a journal only if their
string values are similar (via some similarity predicate ∼1) or if there are papers and
articles that have been published in the respective venue and journal and that are
linked via PaperLink. The second constraint specifies that we may link a paper with an
article only if their titles are similar (via a similarity predicate ∼2) and their years of
publication match exactly, or if their titles are similar and their venues of publications
are linked via VenueLink.

Additionally, � includes two functional dependencies on PaperLink: pid →
ano, ano → pid, to reflect that each paper id in Paper must match to at most one
article number in Article, and vice versa. We do not require any functional depen-
dencies on VenueLink; thus, we could have multiple venue strings in Paper matching
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with a journal string in Article, and vice versa. We also include in � the expected
inclusion dependencies from the link attributes to the corresponding source attributes
(e.g., PaperLink[pid] ⊆ Paper[pid]).

With a simple modification, where we remove the second disjunct in the matching
constraint for PaperLink, we obtain a different entity-linking specification that is in
L1. While the advantage of such specification is that it is nonrecursive, the modified
specification is more constrained: the matching conditions for PaperLink are stricter
now (whereas before we had a disjunction of conditions). As a result, there will be less
possible links for the modified specification.

7.1. Results for L1 and L2

We now focus on the computational complexity of the relevant problems (computing/
enumerating maximum-value solutions and computing certain and ambiguous links).
We show that we hit intractability in general, even in the case of ∃L1, the existential
nonrecursive fragment of L2. On the other hand, we show that there is a large syntactic
fragment of L1 that is tractable. Finally, we show that the earlier correspondence
between ∃L0(⊕, w) and MLNs breaks when we go to the richer ∃L1(⊕, w).

Our first result, for ∃L1(⊕), states the NP-completeness of determining whether
there exists a solution of at least a given value. In turn, this implies that there is
no polynomial-time algorithm to compute one maximum-value solution (unless P =
NP). Hence, there is no polynomial-delay algorithm for the problem of enumerating
maximum-value solutions (again, unless P = NP).

THEOREM 7.2. There is a fixed entity-linking specification E in ∃L1(⊕) for which the
following problem is NP-complete: given source instance I and positive integer k, is there
a solution for I w.r.t. E of value at least k?

PROOF. We shall make use of the NP-completeness of the 3-colorability decision
problem. The 3-colorability problem asks: given a graph G(V, E), does there exist a
function f such that for every v ∈ V , we have f (v) ∈ {r, b, g}, and for every (u, v) ∈ E,
we have f (u) �= f (v)? Without loss of generality, we shall assume that every node in G
belongs to some edge.

The entity-linking specification E = (L, S, �) is defined as follows. There are five
relations D, E, R, G, and B in the source schema S. There are two links F and C in the
link schema L, and � consists of the matching constraint,

(m) F(x, y) → ∃u∃v(C(x, u) ∧ C(y, v) ∧ D(u, v) ∧ E(x, y)),

the functional dependency,

( f ) C[1] → C[2],

on the link relation C, and the following inclusion dependencies:

(i1) C[1] ⊆ E[1] (i2) C[2] ⊆ D[1]
(i3) F[1] ⊆ E[1] (i4) F[2] ⊆ E[2].

The functional dependency f states that the first attribute of C is a key. In addition,
i1 states that a value in the first attribute of C is a vertex, and i2 states that a value in
the second attribute of C is a color. The last two inclusion dependencies state that the
values in the first or second attributes of F are vertices in E. The matching constraint
m states that if there is pair in F, then that pair must be an edge in E such that the
vertices of that edge are colored with different colors.

Given an instance of the 3-colorability problem, we can translate it, in polynomial
time, into a source instance I as follows. First, D is a binary relation that contains all
pairs of distinct colors of r, g, and b. In other words, D = {(r, g), (g, r), (b, g), (g, b), (r, b),
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(b, r)}. The relation E is the edge relation from the graph G, and R, G, and B are unary
relations that each contains a single tuple for r, g, and b, respectively.

We are now ready to show that G is 3-colorable if and only if there is a solution for I
w.r.t. E of value at least |V | + |E|.

Suppose G is 3-colorable. Then let f be a 3-coloring function that maps each node of
G to one of the colors r, g, or b so that for every edge (x, y) ∈ E, we have f (x) �= f (y).
Define (x, u) ∈ C if and only if f (x) = u and define (x, y) ∈ F if and only if (x, y) ∈ E.
It is straightforward to see that C satisfies f , i1, and i2, and F satisfies i3 and i4.
Furthermore, since every pair of adjacent nodes has different colors, the matching
constraint m is also satisfied. Hence, C and F form a solution for I w.r.t. E . Next, we
show that the total value of this solution is at least |V | + |E|. Indeed, the value of all
links in C is |V |, since every node is colored with one color. The value of all links in F
is |E|, since F is the edge relation E and for every edge, there is only one instantiation
for the existential variables of m. Hence, the total value of the solution is |V | + |E|.

For the converse, assume that there is a solution of value at least |V | + |E|; we will
show that G is 3-colorable. First, observe that C can contribute at most |V | to the value
of the solution. Next, observe that F, through m, can contribute at most |E| to the value
of the solution since every tuple in F must be an edge in E and every value in the
first component of C is associated with exactly one value in the second component of
C. Since the solution has a value of at least |V | + |E|, it must be that C contributes |V |
and F contributes |E| to the value of the solution. In other words, the relation C in the
solution assigns a unique color (among r, g, b) to every node in G. Furthermore, since
every edge in E exists in F in the solution and every pair of colors assigned to nodes of
an edge must be different, we must have that the graph G is 3-colorable.

We now turn our attention to the problems of computing certain and ambiguous links.
If C is a class of solutions and E = (L, S, �) is a fixed entity-linking specification, then
recognizing certain links w.r.t. C and E is the following decision problem: given a source
instance I and a link l, is l a certain link for I w.r.t. C and E? The problem of recognizing
ambiguous links w.r.t. C and E is defined in a similar way. Here, we investigate the
complexity of recognizing certain and ambiguous links for the class of all maximum-
value solutions for entity-linking specifications in ∃L1(⊕). The main result is that there
is an entity-linking specification in ∃L1(⊕) for which no polynomial-time algorithms for
recognizing certain and ambiguous links exist, unless NP = coNP.

By Theorem 7.2, there is an entity-linking specification E in ∃L1(⊕) such that the
following problem is NP-complete: given a source instance I and a positive integer k, is
there a solution for I of value at least k? For that particular specification, recognizing
certain links and recognizing ambiguous links are trivial problems because no link
is certain and every link is ambiguous; intuitively, this is so because E encodes 3-
COLORABILITY, a problem that has “symmetries.”

To establish the intractability of recognizing certain and ambiguous links, we bring
into the picture the concept of a frozen variable from constraint satisfaction. An instance
of the constraint satisfaction problem consists of a set of variables, a domain of values
for each variable, and a set of constraints that restrict the combinations of values that
some tuples of variables may take. A solution to such an instance is an assignment of
values to variables so that all constraints are satisfied. A variable is frozen if it takes
the same value in all solutions of a given instance. Jonsson and Krokhin [2004] showed
that for every constraint satisfaction problem over a two-element domain, the problem
of recognizing frozen variables exhibits the following trichotomy: it is in PTIME or it is
coNP-complete or it is DP-complete. Recall that DP is the class of all decision problems
that can be written as the intersection of a problem in NP and a problem in coNP; in
particular, both NP and coNP are subclasses of DP (see also Papadimitriou [1994]).
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Constraint satisfaction problems over a two-element domain can be thought of as
variants of Boolean satisfiability. An important such NP-complete variant is POSITIVE-
1-IN-3-SAT, which asks: given a positive 3CNF-formula ϕ (i.e., a 3CNF-formula in
which each clause has the form (x ∨ y∨ z)), is there a 1-in-3 satisfying truth assignment
(i.e., a truth assignment that makes exactly one variable true in every clause of ϕ)?
Theorem 6.1 in Jonsson and Krokhin [2004] implies that the following problem is DP-
complete: given a positive 3CNF-formula ϕ and a variable x of ϕ, is it true that there is a
1-in-3 satisfying truth assignment for ϕ and the variable x is frozen? By exploiting this
result, we are able to establish the intractability of recognizing certain and ambiguous
links for entity-linking specifications in ∃L1(⊕).

THEOREM 7.3. There is a fixed entity-linking specification E in ∃L1(⊕) such that:

• Unless NP = coNP, there is no polynomial-time algorithm for recognizing certain
links w.r.t. to the class of all maximum-value solutions and E .

• Unless NP = coNP, there is no polynomial-time algorithm for recognizing ambiguous
links w.r.t. to the class of all maximum-value solutions and E .

PROOF. Let E = (L, S, �) be the following entity-linking specification:

• The link schema L consists of two binary link relations L1 and L2.
• The source schema S consists of two binary relations P and D, and three unary

relations U , Zero, and One.
• The inclusion dependencies for L1 are L1[1] ⊆ P[2] and L1[2] ⊆ U [1].
• The inclusion dependencies for L2 are L2[1] ⊆ P[1] and L2[2] ⊆ P[2].
• There is one functional dependency for L1, namely, L1[1] → L1[2].
• There are no functional dependencies for L2.
• There is no matching constraint for L1.
• There is one matching constraint for L2:

L2(c, x) → ∃y, z, v1, v2, v3(P(c, x) ∧ P(c, y) ∧ P(c, z) ∧
D(y, z) ∧ L1(x, v1) ∧ L1(y, v2) ∧ L1(z, v3) ∧
One(v1) ∧ Zero(v2) ∧ Zero(v3)).

Given a positive 3CNF-formula ϕ, we construct a source instance Iϕ as follows:

• P = {(c, x) : c is a clause of ϕ and x is a variable of ϕ}.
• D = {(x, y) : x, y are variables of ϕ such that x �= y}.
• U = {0, 1}, Zero = {0}, One = {1}.

Suppose that ϕ has n variables and m clauses. We begin with two observations
concerning the maximum-value solutions for Iϕ w.r.t. E . Assume that J is a maximum-
value solution for Iϕ w.r.t. E . First, we claim that the link relation L1 contains precisely
n links. Indeed, the inclusion dependencies for L1 and the functional dependency for
L1 imply that L1 cannot have more than n members. Moreover, if L1 had fewer than
n members, then there exists a variable x of ϕ such that neither (x, 0) nor (x, 1) are
member of L1. But then we can augment L1 with one of the pairs (x, 0) and (x, 1),
and obtain a solution of bigger value, which contradicts the assumption that J is a
maximum-value solution. Second, we claim that the value of every solution J for Iϕ
w.r.t. E is at most n + 2m. To see this, observe that each link in L1 has value 1, while
each link in L2 has value 2. The latter claim follows from the fact that if (c, x) ∈ L2,
then there are exactly two pairs witnessing the existential quantifiers ∃y and ∃z, while
the quantifiers ∃v1, ∃v2, and ∃v3 have unique witnesses. Using these two observations,
it is easy to verify that the following statements are equivalent:
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1. ϕ has a 1-in-3 satisfying truth assignment.
2. If J is a maximum-value solution for Iϕ w.r.t. E , then Val(J) = n + 2m.
3. If J is a maximum-value solution for Iϕ w.r.t. E , then Val(J) ≥ n + 2m.

Moreover, there is a 1-1 correspondence between 1-in-3 satisfying truth assignments
of ϕ and solutions of Iϕ of value n + 2m. Specifically, if s is a 1-in-3 satisfying truth
assignment s for ϕ, then we can construct a solution J for Iϕ with Val(Js) = n + 2m by
populating L1 with the pairs (w, s(w)), where w is a variable of ϕ, and by populating
L2 with the pairs (c, x) such that c is a clause of ϕ and x is the unique variable of c
such that s(x) = 1. Vice versa, if J is a solution for Iϕ with Val(J) = n + 2m (hence, a
maximum-value solution), then the truth assignment s, where s(x) = 1 if and only if
(x, 1) ∈ L1, is a 1-in-3 satisfying truth assignment of ϕ.

We are now ready to focus on the certain links for Iϕ w.r.t. the class of maximum-value
solutions and E . The following claim follows easily from the preceding discussion and
the definitions.

Claim 1: The following statements are equivalent for ϕ and for a variable x of ϕ:

1. There is a 1-in-3 satisfying truth assignment for ϕ and the variable x is frozen.
2. There is a maximum-value solution J for Iϕ with Val(J) ≥ n + 2m and either the

link (x, 0) is certain or the link (x, 1) is certain.

Assume now that there a polynomial-time algorithm for recognizing certain links w.r.t.
the class of maximum-value solutions and E . The preceding Claim 1 easily implies that
the following problem is in NP: given a positive 3CNF-formula ϕ and a variable x, is
it the case that there is a 1-in-3 satisfying truth assignment for ϕ and the variable
x is frozen? However, as stated earlier, Jonsson and Krokhin [2004] showed that this
problem is DP-complete. This implies that DP ⊆ NP, which in turn implies that coNP ⊆
NP, and hence NP = coNP. Thus, unless NP = coNP, there is no polynomial-time
algorithm for recognizing certain links w.r.t. the class of maximum-value solutions and
the entity-linking specification E .

Next, we focus on the ambiguous links for Iϕ w.r.t. the class of maximum-value solu-
tions and E . As observed earlier, for every variable x, we have that if J is a maximum-
value solution for Iϕ w.r.t. E , then the link relation L1 contains exactly one of the links
(x, 0) and (x, 1). Therefore, we have that (x, 1) is a certain link for Iϕ w.r.t. E if and only
if (x, 0) is not a possible link for Iϕ w.r.t. E . Similarly, (x, 0) is a certain link for Iϕ w.r.t.
E if and only if (x, 1) is not a possible link for Iϕ w.r.t. E . Consequently, the following
statements are equivalent for ϕ and for a variable x of ϕ:

1. There is no 1-in-3 satisfying truth assignment for ϕ or the variable x is not frozen.
2. There is no maximum-value solution J for Iϕ with Val(J) ≥ n+ 2m or the link (x, 0)

is not certain and the link (x, 1) is not certain.
3. There is no maximum-value solution J for Iϕ with Val(J) ≥ n+ 2m or the link (x, 1)

is possible and the link (x, 0) is possible.
4. There is no maximum-value solution J for Iϕ with Val(J) ≥ n+ 2m or the link (x, 1)

is ambiguous and the link (x, 0) is ambiguous.

Assume now that there a polynomial-time algorithm for recognizing ambiguous links
w.r.t. the class of maximum-value solutions and E . The preceding discussion implies
that the following problem is in coNP: given a positive 3CNF-formula ϕ and a variable
x, is it the case that there is no 1-in-3 satisfying truth assignment for ϕ or the variable x
is not frozen? Since this problem is coDP-complete, it follows that coDP ⊆ coNP, which
in turn implies that NP ⊆ coNP, and hence NP = coNP. Thus, unless NP = coNP,
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there is no polynomial-time algorithm for recognizing ambiguous links w.r.t. the class
of maximum-value solutions and the entity-linking specification E .

This completes the proof of intractability of recognizing certain links and ambiguous
links w.r.t. the class of maximum-value solutions and entity-linking specifications in
∃L1(⊕).

While these complexity results show intractability for ∃L1(⊕), and hence for L1(⊕)
as well, the next theorem identifies a fragment of L1(⊕) for which the same problems
become tractable. Moreover, if any of the conditions defining this fragment are removed,
then we fall back into intractability. We say that an entity-linking specification is two-
level hierarchical if the link relations each fall into one of two disjoint sets, the “top-level
links” and the “bottom-level links.” The right-hand side of the matching constraints for
the bottom-level link relations can refer only to source relations and built-in predicates
(like equality, similarity, and string containment). The right-hand side of the matching
constraints for the top-level link relations can refer only to bottom-level link relations,
source relations, and built-in predicates.

THEOREM 7.4. Assume that the entity-linking specification is two-level hierarchical.
Assume also the following three conditions:

(1) The top-level links have no FDs.
(2) There are no universal quantifiers in the right-hand side of the matching constraints

for the top-level links.
(3) Each disjunct in each matching constraint for each top-level link refers to at most

one bottom-level link relation.

Then there is a polynomial-delay algorithm to enumerate the maximum-value solutions,
and there are polynomial-time algorithms to compute the certain and the ambiguous
links.

Furthermore, if any of the three assumptions (1), (2), or (3) is violated, then it may be
NP-complete even to decide the following: given source instance I and positive integer
k, is there a solution for I of value at least k?

Because of its length, we defer the proof of Theorem 7.4 until the next subsection,
to avoid breaking the flow. As an immediate application of this theorem, recall the
entity-linking specification in L2 for VenueLink and PaperLink in Example 7.1, and
the entity-linking specification in L1 obtained from it by the modification described
in the same Example 7.1. The entity-linking specification in L1, where VenueLink is
the top-level link and PaperLink is the bottom-level link, satisfies the assumptions of
Theorem 7.4, and so enjoys the desirable properties in the conclusions of (the positive
part of) the theorem. Interestingly enough, it turns out that even the entity-linking
specification in L2 for this example enjoys the desirable properties.

We close this section by considering the weighted versions L1(⊕, w) and L2(⊕, w).
Theorem 6.2 shows a precise correspondence between a linear MLN and its corre-
sponding entity-linking specification in ∃L0(⊕, w). Does this correspondence carry over
to ∃L1(⊕, w) or ∃L2(⊕, w)? Let us define extended linear MLNs to be defined like linear
MLNs, except that instead of taking σi to be a conjunction of atomic formulas over the
source, we allow these atomic formulas to also involve another link relation. We then
define the corresponding entity-linking specification as before. The next theorem says
that the analog of Theorem 6.2 fails. Thus, the two frameworks, one based on deter-
ministic entity-linking specifications, the other based on probabilistic Markov Logic
Networks, diverge when allowing for interdependencies among links.
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THEOREM 7.5. There is an extended linear MLN and a source instance I
such that if E is the corresponding entity-linking specification in ∃L1(⊕, w), then
Max Value SolutionsE (I) and Max Probability WorldsM(I) are disjoint.

PROOF. Let M consist only of L1(x, y) → L2(x, y), with weight 1. Then the corre-
sponding entity-linking specification in ∃L1(⊕, w) has the formula L2(x, y) → L1(x, y),
with weight 1. Assume that L1 has no FDs, and L2 has both FDs. Let I = {R(0), R(1)},
and let the inclusion dependencies say that both components of each of L1 and L2 are
contained in R. A necessary and sufficient condition for an instance J that satisfies the
inclusion dependencies and FDs to be a maximum-probability world is

LJ
1 ⊆ LJ

2 . (8)

This is because in this example, the probability is the highest possible if and only if for
every assignment to the variables, the member of M holds, which happens precisely if
inclusion (8) holds. But it is straightforward to see that the maximum-value solutions
J all have LJ

2 with two tuples (a maximum matching) and LJ
1 with all four possible

tuples consistent with the inclusion dependencies. Thus, no maximum-value solution
satisfies inclusion (8), whereas every maximum-probability world does satisfy inclusion
(8). This proves the theorem.

7.2. Proof of Theorem 7.4

For readability, we break this proof into parts.
Finding a single maximum-value solution: We first give a polynomial-time al-

gorithm for finding a single maximum-value solution. Then we shall show how to use
the ideas in the algorithm to obtain a polynomial-delay algorithm for enumerating the
maximum-value solutions.

It follows from our assumptions that each top-level link, link2, can have only one
matching constraint, of the form

link2(x, y) → α1(x, y) ⊕ · · · ⊕ αk(x, y), (9)

where each αi(x, y) is existentially quantified and contains at most one bottom-level
link occurring in it. In particular, the matching constraint for link2 has no universal
quantifiers.

We shall deal separately for now with each bottom-level link and each top-level link.
Let link1 be a bottom-level link, and let link2 be a top-level link. Let Rlink1 be the set
of all pairs (a, b) that satisfy the inclusion dependencies for link1, and that satisfy
the right-hand side of the matching constraint for link1 when the left-hand side is
instantiated by link1(a, b) (so that (a, b) is a candidate tuple for the link1 relation). We
think of Rlink1 as a weighted graph, where the weight of the edge (a, b) is the value
assigned to link1(a, b) according to our conventions. For each pair (a, b) in Rlink1 , define
the discretionary link1 value of (a, b) to be the value that would be obtained from the
link1 matching constraint alone if (a, b) were in the link1 relation of a solution. Let Tlink2

be the set of candidates for the link2 relation (because of the inclusion dependencies).
For each pair (c, d) in Tlink2 and each bottom-level link (link1) and each (a, b) in Rlink1 ,
define the discretionary link2 value of (c, d) due to link1(a, b) to be the incremental
value for link2(c, d) that would be caused by the presence of (a, b) in the link1 relation.
This is obtained by adding the values that would be caused by disjuncts αi of matching
constraint (9) that contain link1(w, z) for some variables w,z, when (w, z) is instantiated
by (a, b). For each pair (c, d) in Tlink2 , define the nondiscretionary link2 value of (c, d)
to be 1 if there is no matching constraint for link2, and otherwise the incremental
weight for link2(c, d) that would be caused by the disjuncts αi of matching constraint
(9) that do not contain any bottom-level link. Note that the total value of a solution J
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is the sum of (1) the sum over all bottom-level links, link1, and all (a, b) in the link1
relation of J of the discretionary link1 value of (a, b); (2) the sum over all bottom-level
links, link1, and top-level links, link2, and all (a, b) in the link1 relation of J and all
(c, d) in the link2 relation of J of the discretionary link2 value (c, d) due to link1(a, b);
and (3) the sum over all top-level links, link2, and all (c, d) in the link2 relation of
J of the nondiscretionary link2 value of (c, d). Since every solution J has the same
value for (3), our goal in finding a maximum-value solution is to maximize the sum of
(1) and (2).

Let us do bookkeeping by allocating to each (a, b) in Rlink1 not only the discretionary
link1 value of (a, b) but also the discretionary link2 value of (c, d) due to link1(a, b) for
every top-level link, link2, and every (c, d) in Tlink2 . Thus, for each bottom-level link,
link1, each (a, b) in Rlink1 , define flink1 (a, b) to be the result of adding the discretionary
link1 value of (a, b) and the sum over all top-level links, link2, and all (c, d) in Tlink2

of the discretionary link2 value of (c, d) due to link1(a, b). Intuitively, flink1 (a, b) is the
incremental value of a maximum-value solution caused by the presence of (a, b) in the
link1 relation.

It follows that the maximum-value solutions are exactly those solutions J where for
each bottom-level link, link1, the link1 relation of J is chosen to maximize the sum of
flink1 (a, b) over all (a, b) in the link1 relation of J, and where the link2 relation of J is
chosen to consist of all (c, d) such that either the nondiscretionary link2 value of (c, d)
is positive or there is a bottom-level link, link1 and there is (a, b) in the link1 relation
of J such that the discretionary link2 value of (c, d) due to link1(a, b) is positive. This
is because there is no functional dependency for link2.

So we need only describe how to obtain a link1 relation that maximizes the sum of
flink1 (a, b) over all (a, b) in link1. This is just as in the proof of Theorem 5.4, where there
are three possibilities, depending on whether link1 has two FDs, one FD, or no FDs.
This completes the description of the polynomial-time algorithm to compute a single
maximum-value solution.

A polynomial-delay algorithm: We now discuss how to use the ideas in the al-
gorithm to obtain a polynomial-delay algorithm for enumerating the maximum-value
solutions. For simplicity of description, we assume first that there is only one top-level
link, link2, and only one bottom-level link, link1. Later we shall consider the more
general case.

We make use of the polynomial-delay algorithm as described in the proof of Theo-
rem 5.4 for enumerating the link1 relation in maximum-value solutions, and as each
such link1 relation is generated, we then generate the corresponding link2 relation,
as described in the polynomial-time algorithm we gave. This completes the proof
that there is a polynomial-delay algorithm for enumerating the maximum-value so-
lutions when there is only one top-level link and only one bottom-level link. When
there are possibly multiple top-level links and/or bottom-level links, we modify the
polynomial-delay algorithm very similarly to the modification used in the proof of
Theorem 5.4.

Finding the certain and ambiguous links: We now show that there are
polynomial-time algorithms for computing the certain links and the ambiguous links.

To determine the certain and ambiguous links, we first determine, for each bottom-
level link, link1, the certain and ambiguous links for link1 just as we do in the proof of
Theorem 5.4.

We now find the certain and ambiguous top-level links. It is convenient to find the
possible links instead of the ambiguous links, and we can then obtain the ambiguous
links as those that are possible but not certain.

Assume that the matching constraint for the top-level link, link2, is matching con-
straint (9) in the first part of the proof, and we are trying to decide if link2(c, d) is a
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certain or possible link, where (c, d) is playing the role of (x, y) in matching constraint
(9). There are two cases.

Case 1: There is i such that αi has no bottom-level link occurring in it (and so αi
refers only to base relations) and αi(c, d) holds for the base relations. Then link2(c, d)
is a certain link.

Case 2: There is no such i as described in Case 1. Let Ilink1 be the set of all indices
i such that αi contains an occurrence of the bottom-level link, link1. For each i in
Ilink1 , we now define a set B(c,d)

link1,i that consists of some formulas of the form link1(a, b).
Assume that the occurrence of link1 in αi is link1(x1, x2). Recall that the left-hand side
of matching constraint (9) is link2(x, y). For each mapping μ that maps x to c and
maps y to d, and that maps the existentially quantified variables in αi to values in
the domain determined by the inclusion dependencies, we do the following. For every
base relation atom Q(z1, . . . , zk) that appears in αi, we check whether Q(μ(z1), . . . , μ(zk))
holds. If this is true for every base relation atom Q(z1, . . . , zk) that appears in αi, then we
put link1(μ(x1), μ(x2)) into B(c,d)

link1,i. Intuitively, B(c,d)
link1,i is the set of all possible formulas

link1(a, b) that can make αi hold, when the left-hand side of matching constraint (9) is
instantiated as link2(c, d). Let B(c,d)

link1
be the union of B(c,d)

link1,i over all i in Ilink1 . Intuitively,

B(c,d)
link1

is the set of all formulas link1(a, b) that can make the right-hand side of matching
constraint (9) hold in a maximum-value solution, when the left-hand side of matching
constraint (9) is instantiated as link2(c, d). Let B(c.d) be the union of B(c,d)

link1
over all

bottom-level links, link1. Intuitively, B(c.d) is the set of all formulas link1(a, b) for bottom-
level links, link1, that can make the right-hand side of matching constraint (9) hold
in a maximum-value solution, when the left-hand side of matching constraint (9) is
instantiated as link2(c, d). Now there is only a polynomial number of choices for μ as
earlier, where the exponent is the number of existentially quantified variables in αi.
Hence, there is a polynomial-time algorithm to construct B(c.d).

It is not hard to see that link2(c, d) is a possible link precisely if either we are in Case 1
or we are in Case 2 and there is a member of B(c.d) that is a possible bottom-value link
(i.e., there is a bottom-level link, link1, such that the member of B(c.d) is link1(a, b),
and such that link1(a, b) is a possible link). From this characterization of the possible
links for link2, and from the fact that we have a polynomial-time algorithm to construct
B(c.d), it follows that there is a polynomial-time algorithm for finding possible links for
the top-level links.

We now show that link2(c, d) is a certain link precisely if either (1) we are in Case 1, or
(2) we are in Case 2 and for every maximum-value solution S for the bottom-level links
alone, there is a member of B(c.d) that is a fact of S (note the order of quantification).
To see this, assume first that (1) or (2) holds; we must show that link2(c, d) is a certain
link. Clearly if (1) holds, then link2(c, d) is a certain link. Assume now that (2) holds. We
now use the fact that the maximum-value solutions for the bottom-level links and the
top-level links together are precisely those obtained from a maximum-value solution
for the bottom-level links and then putting everything possible into the top-level links
(i.e., by putting (c, d) into the link2 relation if the right-hand side of matching constraint
(9) holds when c and d play the role of x and y). It therefore follows that if (2) holds,
then link2(c, d) is a certain link.

Assume now that link2(c, d) is a certain link; we must show that (1) or (2) holds.
Assume that (1) and (2) fail. Since (1) fails, we are in Case 2, and since (2) fails, there
is a maximum-value solution S for the bottom-level links such that no member of B(c.d)

is a fact of S. We use S to create a maximum-value solution for all links together as
before. In this solution, we see that the right-hand side of matching constraint (9) fails,
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so link2(c, d) is not in this maximum-value solution, which contradicts our assumption
that link2(c, d) is a certain link.

The only problematic issue in giving a polynomial-time algorithm for finding certain
links for link2 is whether there is a polynomial-time algorithm for deciding whether,
for every maximum-value solution S for the bottom-level links, there is a member of
B(c.d) that is a fact of S. We now show that this question is equivalent to the question
of asking whether there is a bottom-level link, link1, such that for every maximum-
value solution Slink1 for link1, there is a member of B(c,d)

link1
that is a fact of Slink1 . It is

straightforward to see that the latter implies the former. The former also implies the
latter, because if the latter fails, then for each bottom-level link, link1, let Slink1 be a
maximum-value solution for link1 that does not contain any member of B(c,d)

link1
. Then the

union of Slink1 over all bottom-level links, link1, is a maximum-value solution S for the
bottom-level links that does not contain any member of B(c.d).

So we need only show that there is a polynomial-time algorithm that, for a fixed
bottom-level link, link1, decides whether for every maximum-value solution Slink1 for
link1, there is a member of B(c,d)

link1
that is a fact of Slink1 . To decide this, we let R′

link1

be the result of removing all of the members of B(c,d)
link1

from Rlink1 , and as before taking
the weight of each remaining edge (a, b) as flink1 (a, b). We then compute a maximum
weighted matching of R′

link1
, and call its weight M′. Let M be the weight of a maximum

weighted matching of Rlink1 . It is easy to see that M′ < M if and only if for every
maximum-value solution Slink1 for link1, there is a member of B(c,d)

link1
that is a fact of

Slink1 .
NP-hardness if assumption (1) of the theorem fails: We now give an example

where the top-level links have FDs, but all of the other assumptions hold, and where
it is NP-hard to decide if there is a solution of at least a given value.

We shall make use of the NP-hardness of perfect 3-dimensional matching (one of
Karp’s original NP-complete problems). This problem asks the following. Assume that
we are given a ternary relation P with the same number n of distinct elements in each
column. Is there a subrelation Q of P that is a perfect matching, in the sense that Q
contains n tuples, no two of which agree on any attribute (coordinate)? It is easy to see
that this is equivalent to asking that the projection of Q on the first two attributes is
a perfect matching for the projection of P on the first two attributes, and similarly for
the last two attributes.

Here is our set of matching constraints where we will show that it is NP-hard to
decide if there is a solution of at least a given value:

link2(y, z) → ∃x(link1(x, y) ∧ P(x, y, z))
link1(x, y) → R(x, y).

We assume that both FDs hold for both link1 and link2. Note that the value for link2(y, z)
is at most 1 because of the FDs for link1, and the value for link1(x, y) is at most 1. We
take the inclusion dependencies that say that the first argument of link1 is in the first
column of P, the second argument of link1 and the first argument of link2 are in the
second column of P, and the second argument of link2 is in the third column of P.

Given a ternary relation P that we want a perfect 3-dimensional matching for, where
each attribute has the same number n of distinct elements, we take R to be the binary
relation that is the projection of P onto the first two attributes. Note that we have the
matching constraint for link1 as it is rather than link1(x, y) → ∃zP(x, y, z), so that the
value for link1(x, y) is at most 1. So because of the FDs, the total value is at most 2n.
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We now show that there is a solution with value at least 2n if and only if P has a
perfect 3-dimensional matching. If P has a perfect 3-dimensional matching Q, then let
link1 be the projection of Q on the first two attributes, and let link2 be the projection of
Q on the last two attributes. Then the value for this solution is 2n.

Conversely, if the value is at least 2n (and hence 2n, since 2n is the maximum possible
value), then let Q = {(x, y, z) : link1(x, y) and link2(y, z)}. Let P12 be the projection of
P onto its first two attributes, and let P23 be the projection of P onto its last two
attributes. Similarly, let Q12 be the projection of Q onto its first two attributes, and let
Q23 be the projection of Q onto its last two attributes. Since the total value is 2n, the
value for each of link1 and link2 is n, so link1 is a perfect matching for P12, and link2 is a
perfect matching for P23. We now show that Q12 = link1 (a similar argument shows that
Q23 = link2). By definition of Q, we know that Q12 ⊆ link1. Assume now that link1(x, y)
is a link; we must show that Q12(x, y) holds. Since link2 is a perfect matching for P12,
there is z such that link2(y, z) is a link. Since link1(x, y) and link2(y, z) are links, it
follows by definition of Q that Q(x, y, z) holds, and so Q12(x, y) holds, as desired. Hence,
Q12 is a perfect matching for P12, and Q23 is a perfect matching for P23. Further, Q ⊆ P,
as we now show. Assume that Q(x, y, z) holds, and so link1(x, y) and link2(y, z) are links.
Since link2(y, z) is a link, by the matching constraint for link2, we know that there is x′
such that link1(x′, y) is a link and P(x′, y, z) holds. Since link1(x, y) and link1(x′, y) are
links, it follows by the FDs on link1 that x′ = x; hence, P(x, y, z) holds. It follows that
Q is a perfect 3-dimensional matching for P.

NP-hardness if assumption (2) of the theorem fails: We now give an example
where there are universal quantifiers for the top-level links, and where it is NP-hard
to decide if there is a solution of at least a given value. There is a single matching
constraint:

link2(u, w) → (∀c(C(c) →
∃v∃t(T (t) ∧ R+(c, v) ∧ link1(v, t))
⊕
∃v∃t(F(t) ∧ R−(c, v) ∧ link1(v, t))).

We shall make use of the NP-hardness of SAT. Assume that we are given an SAT
problem. Assume for convenience that the clauses and (positive) propositional atoms
are numbered. Define the relation C to consist of all indices of clauses, and the relation
A to consist of all indices of atoms. Define the relation R+ to consist of those tuples
(c, v) where the atom v appears positively in the clause c, and define the relation R−
to consist of those tuples (c, v) where the atom v appears negatively in the clause c.
Define the relation T to consist of the single tuple (1) (“true”), the relation F to consist
of the single tuple (0) (“false”), the relation TF to consist of the two tuples (0) and
(1), and the relation D to consist of the single tuple (0, 0). We have the FD that says
that the first attribute of link1 functionally determines the second attribute of link1 (so
that, intuitively, each atom is assigned at most one truth value). We have the inclusion
dependencies that say that each projection of link2 onto one variable is a subset of the
corresponding column of D. We also have the inclusion dependencies that say that the
first argument of link1 is a subset of the only column of A, and the second argument of
link1 is a subset of the only column of TF.

It is not hard to see that every maximum-value solution assigns a truth value to
each atom (i.e., more formally, that in a maximum-value solution, the projection of
link1 on the first column consists of the indices of all propositional atoms). Intuitively,
it does not hurt to assign values to all of the atoms. Let N be the number of atoms. We
then have that if the propositional formula is not satisfiable, then the value of every
maximum-value solution is N (since every link1 link is assigned value 1, and there is
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no link2 link). However, if the propositional formula is satisfiable, then the maximum-
value solution has a value strictly greater than N, because of the additional link2 value.
So there is a solution with value at least N + 1 if and only if the propositional formula
is satisfied.

If the reader is concerned that u and w do not appear in the right-hand side of the
matching constraint, we can add a new disjunct D(u, w). Or we can simply add D(u, w)
as a conjunct to each of the disjuncts.

NP-hardness if assumption (3) of the theorem fails: This follows from the proof
of Theorem 7.2.

This concludes the proof of Theorem 7.4.

8. RELATED WORK

As mentioned in the introduction, there has been extensive work on entity resolu-
tion; for overviews, see the surveys of Fan and Geerts [2012] and Ganti and Sarma
[2013] and the tutorial of Getoor and Machanavajjhala [2012]. We have also made
connections to existing probabilistic approaches for entity resolution, and to the HIL
language [Hernández et al. 2013]. We now comment briefly on other declarative ap-
proaches to entity resolution.

Our framework is more declarative than prior approaches, such as Dedupalog [Arasu
et al. 2009], in the following precise sense. In our framework, a user declares the con-
straints for the links, and then the semantics is based on instances that are guaranteed
to satisfy the constraints. In particular, the solutions (both maximal and maximum
value) always satisfy the constraints, and the certain links are the links that appear
in all such solutions. Furthermore, in the case of L0 (and its variations L0(⊕) and
L0(⊕, w)), the set of certain links itself forms a solution; in other words, the certain
links, when taken as an instance, satisfy the given constraints. Dedupalog is also based
on a high-level specification given as Datalog-style constraints. However, by design, the
result of Dedupalog may violate some of the constraints (the soft constraints). In effect,
the Dedupalog specification is only a guideline for the implementation, which is an
algorithm that attempts to minimize the number of violations of soft constraints and,
as a result, makes its own choices of which links will survive and which will not. Thus,
a significant part of the semantics of Dedupalog is hidden in the algorithm.

An early argument in favor of using link-centric constraints to specify links in a
declarative manner appeared in Alexe et al. [2013], but no formal language, semantics,
or algorithms were given there. The language LinQL [Hassanzadeh et al. 2009] uses
SQL-like syntax to define similarity predicates among string-valued attributes only. In
contrast, we create links among structured entities, and the LinQL similarity functions
could be used as one ingredient in our framework. Matching dependencies (MDs) were
introduced in Fan [2008] to enforce equality on attribute values based on matching
conditions. In effect, MDs are source-to-link constraints that may lead to modifications
of the source relations. MDs have been given operational semantics in Bertossi et al.
[2013] via a variation of the chase procedure that fixes violations of a given set of MDs.
Like Dedupalog, MDs look only at equivalence (same-as) type of linkage.

Blocking is a technique that is widely used in practice to avoid unnecessary com-
parisons between records (see Christen [2012] for a survey). Blocking amounts to
preventing records (or entities) from being compared to each other unless they fall in
the same block, where a block is typically defined by a key based on one or more of the
available attributes. For example, if the blocking key is given by the first three digits
of the zip code, then two records will be compared only if the first three digits of the
zip codes are the same. It should be pointed out that such blocking conditions can be
easily incorporated in our framework as conjunctions of equality predicates that guard
all the disjuncts in a matching constraint. More precisely, we can write a disjunctive
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matching constraint of the form

L(x, y) → ∀u(ψ(x, y, u) → ∃z1(B1 ∧ φ1) ∨ . . . ∨ ∃zk(B1 ∧ φk)),

where B1 is a conjunction of equality predicates that represents a blocking condition.
In effect, this prevents any links from being generated unless the condition B1 is
satisfied. We also note that multiple blocking conditions B1, B2, . . . can be incorporated
by repeating the previous disjunction pattern for each Bi. This captures a “union” of
blocking conditions, which is also widely used in practice.

9. CONCLUDING REMARKS

We laid the foundation for a truly declarative entity-linking framework that is based on
specifying only the desired properties of the links. We identified a class of maximum-
value solutions for entity-linking specifications and studied the computational com-
plexity of producing such solutions and identifying certain and ambiguous links. This
work opens up several new directions in reasoning about entity-linking specifications.
These include studying the implication and equivalence of entity-linking specifications
(e.g., deciding when two such specifications have the same certain links), as well as
delineating the expressive power of the languages we introduced. More broadly, this
work may also provide a different perspective for linking heterogeneous entities in the
semantic web.
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