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An inverse of a schema mapping M is intended to undo what M does, thus providing a way to perform
reverse data exchange. In recent years, three different formalizations of this concept have been introduced
and studied, namely the notions of an inverse of a schema mapping, a quasi-inverse of a schema mapping,
and a maximum recovery of a schema mapping. The study of these notions has been carried out in the context
in which source instances are restricted to consist entirely of constants, while target instances may contain
both constants and labeled nulls. This restriction on source instances is crucial for obtaining some of the
main technical results about these three notions, but, at the same time, limits their usefulness, since reverse
data exchange naturally leads to source instances that may contain both constants and labeled nulls.

We develop a new framework for reverse data exchange that supports source instances that may contain
nulls, and we thereby overcome the semantic mismatch between source and target instances of the previous
formalizations. The development of this new framework requires a careful reformulation of all the important
notions, including the notions of the identity schema mapping, inverse, and maximum recovery. To this
effect, we introduce the notions of extended identity schema mapping, extended inverse, and maximum
extended recovery, by making systematic use of the homomorphism relation on instances. We give results
concerning the existence of extended inverses and of maximum extended recoveries, and results concerning
their applications to reverse data exchange and query answering. Moreover, we show that maximum extended
recoveries can be used to capture in a quantitative way, the amount of information loss embodied in a schema
mapping specified by source-to-target tuple-generating dependencies.
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1. INTRODUCTION

Background and Motivation. Schema mappings are high-level specifications of how
data from a source schema is to be transformed to data in a different schema, called
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11:2 R. Fagin et al.

the target schema. More formally, a schema mapping is a triple M = (S, T, �), where S
is a source schema, T is a target schema, and � is a set of database dependencies that
specify the relationship between S and T. In recent years, an extensive investigation
of schema mappings and of their uses in data exchange and data integration has been
carried out. One particular direction of this investigation has focused on the study
of operators on schema mappings. Among all such operators originally introduced
in Bernstein [2003], the composition operator and the inverse operator have been
recognized as two fundamental ones. The intuition behind these two operators is as
follows. Given two schema mappings, M12 and M23, such that the target schema of
M12 is the same as the source schema of M23, the composition operator yields a schema
mapping M13 that is equivalent to the successive application of M12 and M23, thus
providing a way to perform data exchange directly between the source schema of M12
and the target schema of M23. Given a schema mapping M, the inverse operator yields
a schema mapping M′ that undoes what M did, thus providing a way to do reverse data
exchange. Clearly, these two operators are of interest in their own right; furthermore,
when combined together, they attain even greater power, since in combination, they
can be used to analyze schema evolution [Bernstein 2003; Fagin et al. 2011].

By now, the composition operator has been investigated in depth, and consensus has
been achieved on what the definitive semantics for composition ought to be [Bernstein
et al. 2008; Fagin et al. 2005b; Madhavan and Halevy 2003; Nash et al. 2005]. The state
of affairs concerning the inverse operator, however, is more complicated and by far less
definitive. In Fagin [2007], rigorous semantics for the inverse operator was given for
the first time. The notion of inverse introduced in Fagin [2007] turned out to be rather
restrictive, as most schema mappings specified by source-to-target tuple generating
dependencies (s-t tgds) are not invertible. For this reason, the notion of a quasi-inverse
of a schema mapping was introduced and studied in Fagin et al. [2008]. After this,
a competing notion of a maximum recovery of a schema mapping was introduced
and studied in Arenas et al. [2009]. For invertible schema mappings, the notions of
inverse, quasi-inverse, and maximum recovery, coincide. In contrast, for noninvertible
schema mappings, the notions of quasi-inverse and maximum recovery differ in
general. Moreover, every schema mapping specified by a set of s-t tgds has a maximum
recovery, whereas there are such schema mappings that are not quasi-invertible.

Their differences notwithstanding, all previous studies of inverse operators (inverse,
quasi-inverse, and maximum recovery) have the following basic assumption in common.
The source instances are ground, that is, they consist entirely of constants, while, on
the contrary, target instances may contain both constants and labeled nulls (variables).
In particular, some of the key technical results in Arenas et al. [2009]; Fagin [2007];
and Fagin et al. [2008] very much depend on the assumption that source instances do
not contain labeled nulls. However, applications of inverse operators naturally lead to
source instances that may contain labeled nulls, in addition to constants. The following
example illustrates this scenario.

Example 1.1. Let M be the schema mapping specified by the tuple-generating
dependency

P(x, y, z) → Q(x, y) ∧ R (y, z),

which describes a decomposition of a source relation P into two target relations, Q
and R. It was shown in Fagin et al. [2008] that M is not invertible but is quasi-
invertible. Furthermore, a natural inverse of M, which is both a quasi-inverse of M
and a maximum recovery of M is the schema mapping M′ specified by the following
set of reverse tgds.

�′ = {Q(x, y) → ∃zP(x, y, z), R (y, z) → ∃xP(x, y, z)}.
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Consider the ground source instance I = {P(a, b, c)}, where a, b, c, are constants. The
result of chasing I with M (the result of performing data exchange with M) is the
instance U = {Q(a, b), R(b, c)}. If we now chase U with M′ (perform the reverse data
exchange with M′), we obtain the source instance V = {P(a, b, Z), P(X, b, c)}, where Z
and X are nulls. Note that V , which is the canonical result of reverse data exchange,
is no longer a ground instance, and thus it is ruled out from the semantics.

Another limitation of restricting source instances to be ground is that data exchange
cannot be performed on source instances that are the result of a prior data exchange
with s-t tgds, since in general, labeled nulls may be generated by chasing source in-
stances with tgds to produce universal solutions [Fagin et al. 2005a]. Thus, the preced-
ing considerations suggest that previous studies of inverse, quasi-inverse, and maxi-
mum recovery suffer from a semantic mismatch that stems from the assumption that
only ground instances are allowed.

Summary of Contributions. Our goal in this article is to develop a new framework for
reverse data exchange, which overcomes this semantic mismatch. This new framework
supports source instances with nulls, and makes it possible to recover source instances
using reverse data exchange and to permit target instances that result from one data
exchange to be used as source instances of another data exchange (thus, in the long
run, this framework will enable the analysis of schema evolution using composition
and inverse). This framework is tailored mainly for schema mappings specified by
finite sets of s-t tgds. However, the main definitions are stated for arbitrary schema
mappings and some of the results are proved for this level of generality.

The development of this new framework requires a careful reformulation of all the
important notions, including the notions of the identity schema mapping (which was
used in the definition of inverse [Fagin 2007]), inverse, and maximum recovery. This
is so because these earlier notions, which were studied under the assumption that
only ground source instances are allowed, lose their desirable properties when schema
mappings are used to perform data exchange between source and target instances that
may both contain nulls. For example, although a key result of Arenas et al. [2009] is
that every schema mapping specified by a finite set of s-t tgds has a maximum recovery
(when only ground source instances are allowed), we show (Proposition 4.2) that the
schema mapping specified by the tgd P(x, y) → ∃z(Q(x, z) ∧ Q(z, y)) has no maximum
recovery when source instances may contain nulls.

The key to finding the right notions in the new framework is to replace the con-
tainment relation I1 ⊆ I2 between instances by the homomorphism relation I1 → I2,
which holds if there is a homomorphism from I1 to I2 that maps constants to them-
selves (note that if I1 is a ground instance, then I1 → I2 if and only if I1 ⊆ I2).
We use the notation → to denote the binary relation {(I1, I2) | I1 → I2} between in-
stances that may contain nulls. The next step is to replace the identity schema mapping
Id = {(I1, I2) | I1, I2 are ground instances such that I1 ⊆ I2} with the extended identity
schema mapping e(Id) = →. Thus,

e(Id) = {(I1, I2) | I1, I2 are instances such that I1 → I2}. (1)

In fact, even the notion of a solution needs to be reformulated in the new framework.
Specifically, we say that a target instance J is an extended solution for a source instance
I with respect to a schema mapping M = (S, T, �) if there are a source instance I′
and a target instance J′ such that I → I′, (I′, J′) |= �, and J′ → J. In effect, an
extended solution J for I with respect to M is a solution for I with respect to the
schema mapping e(M) = → ◦M ◦ →, which we call the homomorphic extension of
M. (It is easy to verify that e(Id) under this definition is exactly as given in (1).) The
intuition behind extended solutions is that, since labeled nulls represent unknown
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information, it is legal to homomorphically map them to other values before or after
taking the standard notion of solution. In a sense, the notion of an extended solution is
a relaxation of the notion of solution, where the exact values of the labeled nulls (in both
the source instance and the target instance) do not matter. Further, our definition of
extended solutions relaxes the notion of solution even more by allowing the possibility
that additional facts may be present (in the spirit of the “open-world assumption”).1
With these new notions at hand, we can then define the notions of extended inverse,
extended recovery, and maximum extended recovery by systematically replacing the
identity schema mapping Id by the extended identity schema mapping e(Id), and the
composition M ◦ M′, by the composition e(M) ◦ e(M′) of the homomorphic extensions
of M and M′. Specifically, we say that M′ is an extended inverse of M if e(M)◦ e(M′) =
e(Id). We say that M′ is an extended recovery of M if for every source instance I, we
have that (I, I) ∈ e(M) ◦ e(M′); finally, we say that M′ is a maximum extended recovery
of M if M′ is an extended recovery of M and for every extended recovery M′′ of M we
have that e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).

The first group of our technical results concerns the properties of the extended inverse
and its relation to the inverse. We give a necessary and sufficient condition for an
arbitrary schema mapping to have an extended inverse and then focus on schema
mappings specified by s-t tgds. We show that if M is specified by s-t tgds and is
extended invertible, then it is invertible, but not vice versa. An extended inverse,
however, need not be an inverse (and, of course, an inverse need not be an extended
inverse, since invertibility does not imply extended invertibility). We also show that if
M and M′ are schema mappings such that both are specified by tgds, then M′ is an
extended inverse of M if and only if M′ is a chase-inverse of M, that is, if and only
if every source instance I is homomorphically equivalent to chaseM′(chaseM(I)). (By
chaseM′(chaseM(I)), we mean the source instance obtained from I by first chasing with
M and then with M′.) This result reveals that extended inverses specified by tgds
are ideally suited for reverse data exchange, since if the original source instance I is
no longer available, we can recover a homomorphically equivalent one by chasing a
universal solution for I with an extended inverse specified by tgds. It should be noted
that this result does not hold for non-extended inverses.

After this, we focus on maximum extended recoveries and obtain the main technical
results of this article. We show that every schema mapping M specified by s-t tgds
has a maximum extended recovery M′. Note that if both M′ and M′′ are maximum
extended recoveries of M, then

e(M) ◦ e(M′) = e(M) ◦ e(M′′).

For schema mappings M specified by s-t tgds, we characterize the quantity e(M)◦e(M′)
in terms of M alone by showing that e(M) ◦ e(M′) = →M, where

→M = {(I1, I2) | chaseM(I1) → chaseM(I2)}.
This result makes it possible to capture in a quantitative way, the information loss
embodied in a schema mapping. Specifically, we can define the information loss of a
schema mapping M specified by s-t tgds as the set-theoretic difference →M \ e(Id);
note also that e(Id) ⊆ →M. In effect, the information loss of a schema mapping M
specified by s-t tgds measures the amount by which M deviates from being extended
invertible, since we show that M is extended invertible if and only if →M = e(Id).
The concept of information loss can also be used to compare two schema mappings in
a quantitative way and determine which of the two is “more invertible.”

1This is automatic in the case of schema mappings specified by dependencies, such as s-t tgds.
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We also embark on an investigation of the language needed to express maximum
extended recoveries of schema mappings specified by s-t tgds. For schema mappings
that are specified by s-t tgds, we give a polynomial-time algorithm for producing a
maximum extended recovery that is specified in existential second-order logic. It is an
open problem as to whether every schema mapping that is specified by s-t tgds has a
maximum extended recovery that can be specified in first-order logic.

Finally, we show that maximum extended recoveries specified by disjunctive tgds
can be used to perform reverse data exchange and reverse query answering, where the
latter means answering queries over the source schema when the source instance is
no longer available. A key notion that is central to all these applications (reverse
data exchange, reverse query answering, and also comparing schema mappings) is
the notion of a disjunctive relaxed chase-inverse of a schema mapping, which provides
a procedural counterpart to the notion of maximum extended recovery of a schema
mapping.

Differences from Conference Version. A preliminary version of this article appeared
in the proceedings of the 2009 ACM PODS conference [Fagin et al. 2009]. The differ-
ences between the present article and the conference version are as follows. Section 4.3,
which gives an alternative notion of an extended recovery, is new. Section 4.4, which
is also new, contains a discussion comparing our treatment of nulls with other work in
the literature on incomplete databases. Theorem 5.1 in the conference version about a
first-order language for maximum extended recoveries for schema mappings specified
by full s-t tgds has been removed, because the proof was incorrect. However, Section 5
contains a new polynomial-time algorithm for producing a maximum extended recov-
ery, specified in existential second-order logic, for a schema mapping specified by s-t
tgds (not necessarily full). In addition, the present article contains a number of new
examples, especially in Section 6. Finally, most of the proofs in this article did not
appear in the conference version.

2. BACKGROUND, BASIC NOTIONS, AND NOTATION

A schema R is a finite sequence 〈R1, . . . , Rk〉 of relation symbols, each of a fixed arity.
An instance I over R is a sequence (RI

1, . . . , RI
k), where each RI

i is a finite relation of
the same arity as Ri. We shall often use Ri to denote both the relation symbol and
the relation RI

i that instantiates it. A fact of an instance I (over R) is an expression
RI

i (v1, . . . , vm) (or simply Ri(v1, . . . , vm)), where Ri is a relation symbol of R and v1, . . . , vm

are values such that (v1, . . . , vm) ∈ RI
i . We shall often identify an instance with its set

of facts.
We assume that we have a fixed countably infinite set Const of constants and count-

ably infinite set Var of labeled nulls that is disjoint from Const. A ground instance over
some schema is an instance such that all values occurring in its relations are constants.
We will also assume that S is a fixed source schema and T is a fixed target schema.
Starting with Fagin et al. [2005a], earlier work on data exchange was carried out under
the assumption that instances over the source schema S are ground, while instances
over the target schema T may contain both constants and labeled nulls. This models
the situation in which we perform data exchange from S to T under the assumption
that the individual values of source instances are known, while the underspecification
of a data exchange setting may give rise to null values in the target instances. In this
article, we will drop the assumption that source instances are ground; instead, we will
assume that instances over both the source and the target schema may have individual
values from Const ∪ Var. By allowing source instances to contain both constants and
labeled nulls, we model the situation where source instances may also contain
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incomplete information. In particular, under this assumption, the target instance of
one data exchange can be used as source instances of another data exchange.

Next, we define two crucial concepts, homomorphism and homomorphic equivalence,
that we use frequently throughout this article.

Definition 2.1. Let I1 and I2 be instances over a schema R, where the values of I1 and
I2 are drawn from Const ∪ Var. A function h from Const ∪ Var to Const ∪ Var is a homo-
morphism from I1 to I2 if for every c in Const, we have that h(c) = c, and for every rela-
tion symbol R in R and every tuple (a1, . . . , an) ∈ RI1 , we have that (h(a1), . . . , h(an)) ∈ RI2 .

We use the notation I1 → I2 to denote that there is a homomorphism from I1 to
I2. We say that I1 is homomorphically equivalent to I2 if I1 → I2 and I2 → I1. Let
→R denote the binary relation {(I1, I2) | I1 and I2 are instances over R and I1 → I2}. In
what follows and for simplicity of notation, we will use → instead of →R because the
schema R will be understood from the context.

Schema mappings. A schema mapping is a triple M = (S, T, �), where � is a set of
constraints (typically, formulas in some logic) that describe the relationship between S
and T. We say that � specifies M. This is the syntactic view of schema mappings. For
all practical purposes, however, a schema mapping can be identified with the binary
relation:

{(I, J) | I is an S-instance, J is a T-instance, (I, J) |= �}.
This is the semantic view of schema mappings. In what follows, we will switch freely
between the syntactic view and the semantic view of schema mappings. In particular,
we will use the notation (I, J) ∈ M to denote that the ordered pair (I, J) satisfies the
constraints of M; furthermore, we will sometimes define schema mappings by simply
defining the set of ordered pairs (I, J) that constitute M (instead of giving a set of
constraints that specify M). Note that → is itself a schema mapping in which the
source schema is the same as the target schema. An important property of → that we
shall often use is that → ◦ → = →.

We say that J is a solution for I with respect to M if (I, J) ∈ M. We use SolM(I)
to denote the set of all solutions of I with respect to M. We say that J is a universal
solution for I with respect to M if J ∈ SolM(I) and for every J′ ∈ SolM(I), we have
J → J′.

Dependencies and schema mappings. A source-to-target tuple-generating dependency,
in short, an s-t tgd, is a first-order formula of the form ∀x(ϕ(x) → ∃yψ(x, y)), where ϕ(x)
is a conjunction of atomic formulas over S, ψ(x, y) is a conjunction of atomic formulas
over T, and every variable in x occurs in an atomic formula in ϕ(x). A full s-t tgd
is a tgd with no existential quantifiers ∃y. In this article, we will focus on schema
mappings M = (S, T, �) with � a finite set of s-t tgds. Our goal is to study extended
inverses and maximum extended recoveries of such schema mappings. In particular, we
will also investigate the language needed to express maximum extended recoveries. In
the full case, this will require bringing into the picture a richer class of dependencies
(disjunctive tgds with inequalities) that was first considered in the study of quasi-
inverses of schema mappings [Fagin et al. 2008] and then in the study of maximum
recoveries [Arenas et al. 2009]. In the general (not necessarily full) case, we make use
of existential second-order logic (as was done in Arenas et al. [2009] for maximum
recoveries).

Let Constant be a relation symbol that is different from all relation symbols in S and
T. A disjunctive tgd with constants and inequalities from T to S is a first-order formula:

∀x(ϕ(x) →
n∨

i=1

∃yiψi(x, yi)),

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 11, Publication date: May 2011.



Reverse Data Exchange: Coping with Nulls 11:7

where:

—The formula ϕ(x) is a conjunction of:
(1) atoms over T, such that every variable in x occurs in at least one of them;
(2) formulas of the form Constant(x) with x a variable in x;
(3) inequalities x = x′ with x and x′ variables in x.

—Each formula ψi(x, yi) is a conjunction of atoms over S.

Naturally, a formula Constant(x) evaluates to true if and only if x is instantiated by a
value in Const.

In this article, we also make use of disjunctive tgds with inequalities, which are
obtained by not allowing condition (2) in the preceding definition. Moreover, if neither
condition (2) nor (3) is allowed, then we refer to these formulas simply as disjunctive
tgds. We shall also make use of tgds with constants, which are obtained by disallowing
both disjunction and condition (3).

Composing and inverting schema mappings. Next, we recall the concept of the com-
position of two schema mappings, introduced in Fagin et al. [2005b] and Melnik [2004],
and the concept of an inverse of a schema mapping, introduced in Fagin [2007].

If M12 = (S1, S2, �12) and M23 = (S2, S3, �23) are two schema mappings, their
compositionM12◦M23 is a schema mapping (S1, S3, �13) such that for every S1-instance
I and every S3-instance K, we have that (I, K) |= �13 if and only if there is a S2-instance
J such that (I, J) |= �12 and (J, K) |= �23. When the schemas involved are understood
from the context, we will often write �12 ◦ �23 to denote the composition M12 ◦ M23.

The study of inverses of schema mappings in Fagin [2007] assumes that source
instances are ground. Let Ŝ be a replica of the source schema S. That is, for every
relation symbol R of S, the schema Ŝ contains a relation symbol R̂ that is not in S and
has the same arity as R. Thus, every source instance I has a replica instance Î over Ŝ.

The identity schema mapping is Id = (S, Ŝ, �Id), where �Id consists of the dependen-
cies R(x) → R̂(x) as R ranges over the relation symbols in S. Thus, from the semantic
point of view, Id is the set of all pairs (I1, I2) such that I1 is a ground S-instance, I2 is a
ground Ŝ-instance, and Î1 ⊆ I2. We note that the identity mapping is sometimes called
the copy mapping.

Let M = (S, T, �) be a schema mapping. We say that a schema mapping M′ =
(T, Ŝ, �′) is an inverse of M if M ◦ M′ = Id (as sets of pairs of instances). This means
that, for every pair (I1, I2) of a ground S-instance I1 and a ground Ŝ-instance I2, we
have that Î1 ⊆ I2 if and only if there is a target instance J such that (I1, J) |= � and
(J, I2) |= �′.

From now on and for notational simplicity, we will write S to also denote its replica
Ŝ; it will be clear from the context if we refer to S or to its replica. Moreover, we will
use the same symbol to denote both a ground S-instance I and its replica Ŝ-instance Î.

3. EXTENDED INVERSES

In this section, we introduce and study the notion of an extended inverse of a schema
mapping. For this, we first need the notions of an extended solution and of the extended
identity mapping.

Definition 3.1. Let M be a schema mapping. We say that J is an extended solution
of I with respect to M if there exist instances I′ and J′ such that I → I′, (I′, J′) ∈ M,
and J′ → J. This is the same as saying that (I, J) ∈ → ◦M ◦ →. We use eSolM(I) to
denote the set of all extended solutions of I with respect to M.
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11:8 R. Fagin et al.

Example 3.2. Recall the earlier Example 1.1. The target instance U = {Q(a, b),
R(b, c)} is not a solution for the source instance V = {P(a, b, Z), P(X, b, c)} with respect
to schema mapping M because every solution for V with respect to M must contain
R(b, Z) and Q(X, b). However, U is an extended solution for V with respect to M. To
see this, consider the target instance:

U ′ = {Q(a, b), Q(X, b), R(b, c), R(b, Z)},
which is a solution for V with respect to M. Furthermore, there is a homomorphism
from U ′ to U (where X is mapped to a, and Z is mapped to c). Thus, (V,U ′) ∈ M, and
U ′ → U . Hence, U is an extended solution for V with respect to M.

Another way to see that U is an extended solution for V with respect to M is to
observe that if I is as in Example 1.1, then V → I, and U itself is a solution for I with
respect to M.

As this example illustrates, the main idea behind extended solutions is that, since
nulls represent unknown information, it is legal to homomorphically map them to other
values either before or after taking the standard notion of solution.

The following proposition shows that extended solutions coincide with solutions in
an important special case.

PROPOSITION 3.3. If I is a ground source instance and M is a schema mapping
specified by s-t tgds, then eSolM(I) = SolM(I).

PROOF. By the definitions of SolM(I) and eSolM(I), it is immediate that SolM(I) ⊆
eSolM(I). Next, we will show that the reverse inclusion also holds. Assume that J ∈
eSolM(I). Hence, there exists I′ and J′ such that I → I′, (I′, J′) ∈ M, and J′ → J. Since
I is a ground instance, we know that I ⊆ I′. Therefore, since (I′, J′) ∈ M, it follows
that (I, J′) ∈ M (this property of tgds is sometimes referred to as being closed down on
the left). Since J′ → J and since s-t tgds are preserved under target homomorphisms,
it follows that J is a solution for I with respect to M.

Based on extended solutions, we define extended universal solutions by mimicking
the definition of universal solutions in Fagin et al. [2005a].

Definition 3.4. Let M be a schema mapping. We say that J is an extended universal
solution for I with respect to M if J ∈ eSolM(I) and, for every J′ ∈ eSolM(I), we have
that J → J′.

We now define the notion of a homomorphic extension of a schema mapping. This
plays a central role in what follows.

Definition 3.5. Let M be a schema mapping. The homomorphic extension of M,
denoted by e(M), is the schema mapping → ◦M ◦ →.

Note that for every source instance I, the extended solutions for I with respect to M
are exactly the standard solutions of I with respect to e(M).

In the same spirit as the extended notion of solution, we now consider an extended
notion of the identity schema mapping. This is obtained by applying the homomorphic
extension operator e on the standard identity schema mapping Id.

Definition 3.6. The extended identity schema mapping is the schema mapping e(Id).

Note that, by definition, e(Id) = → ◦ Id ◦ →. It is easy to see that → ◦ Id ◦ → is
the same as →, and therefore, e(Id) = →. Thus, the key difference from the standard
notion of the identity schema mapping is that e(Id) considers pairs (I1, I2) of instances
such that I1 is not necessarily a subset of I2, but instead, I1 can be homomorphically
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mapped into I2. Intuitively, I1 is a subset of I2 up to homomorphic mapping of nulls.
Note that when I1 and I2 are ground, we have that I1 → I2 if and only if I1 ⊆ I2. Thus,
for ground instances, e(Id) coincides with Id.

We are now ready to give the definition of an extended inverse of a schema mapping.

Definition 3.7. Let M be a schema mapping.

—A schema mapping M′ is an extended inverse of M if

e(M) ◦ e(M′) = e(Id).

Since → ◦ → = →, this equation is the same as

→ ◦M ◦ → ◦M′ ◦ → = →.

—M is extended-invertible if it has an extended inverse.

We next introduce the notion of a capturing function, which will be used to charac-
terize extended invertibility.

Definition 3.8. Let M be a schema mapping.

—We say that a target instance J captures a source instance I (for M) if the following
two conditions hold: (a) J ∈ eSolM(I); and (b) if K is a source instance such that
J ∈ eSolM(K), then K → I.

—A capturing function for M is a (total) function F from source instances to target
instances such that for every source instance I, we have that F(I) captures I.

The definitions imply that if J captures both I1 and I2, then I1 and I2 are homo-
morphically equivalent. Thus, the source instance that is captured by J is unique up
to homomorphic equivalence. In general, for a given I, there may not exist a J that
captures I. If such J exists for every I, then a capturing function for M exists.

We note that the notion of a target instance capturing a source instance is an extended
version of the notion of a strong witness solution in Arenas et al. [2009]. We now
give a lemma that will be used in the following theorem, which shows that extended
invertibility is equivalent to the existence of a capturing function.

LEMMA 3.9. Assume that the schema mapping M′ is an extended inverse of the
schema mapping M. If (I, J) ∈ e(M) and (J, I) ∈ e(M′), then J captures I.

PROOF. Assume that K is a source instance such that J ∈ eSolM(K); we must show
that K → I. Since J ∈ eSolM(K), it follows that (K, J) ∈ e(M). Since also (J, I) ∈ e(M′),
we have that (K, I) ∈ e(M) ◦ e(M′). Therefore, since e(M) ◦ e(M′) = e(Id), it follows
that (K, I) ∈ e(Id), and so K → I, as desired.

THEOREM 3.10. Let M be a schema mapping. The following statements are equiva-
lent.

(1) M is extended-invertible.
(2) There exists a capturing function for M.

Furthermore, if M is extended-invertible and F is a capturing function for M, then
M′ = {(J, I) | J = F(I)} is an extended inverse of M.

PROOF. Assume first that M is extended-invertible; we will show that there exists a
capturing function for M. Let M′ be an extended inverse of M.

Let I be an arbitrary source instance. We shall show that there is a target instance
J that captures I, and we can then define the value F(I) of the capturing function F to
be J. Since M′ is an extended inverse of M, we know that e(M) ◦ e(M′) = e(Id). Since
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(I, I) ∈ e(Id), it follows that (I, I) ∈ e(M) ◦ e(M′). So there is J such that (I, J) ∈ e(M)
and (J, I) ∈ e(M′). By Lemma 3.9, it follows that J captures I.

Assume now that there exists a capturing function F for M, Let M′ = {(J, I) | J =
F(I)}. The proof is concluded if we show that M′ is an extended inverse of M, that is,
that e(M) ◦ e(M′) = e(Id).

Assume first that (I1, I2) ∈ e(Id), that is, I1 → I2; we must show that (I1, I2) ∈
e(M) ◦ e(M′). Let J = F(I2). By definition of M′, we have that (J, I2) ∈ M′. Since J
captures I2, we have in particular that (I2, J) ∈ e(M), that is, (I2, J) ∈ → ◦M◦ →.
Since also I1 → I2, we have (I1, J) ∈ → ◦ → ◦M◦ → = → ◦M◦ → = e(M) (with the
first equality holding since → ◦ → = →). Since (I1, J) ∈ e(M) and (J, I2) ∈ M′ ⊆ e(M′),
we have (I1, I2) ∈ e(M) ◦ e(M′), as desired.

Assume now that (I1, I2) ∈ e(M) ◦ e(M′); we must show that (I1, I2) ∈ e(Id), that is,
that I1 → I2. Since (I1, I2) ∈ e(M) ◦ e(M′) = → ◦M◦ → ◦M′ → = e(M) ◦ (M′◦ →),
there is J such that (I1, J) ∈ e(M) and (J, I2) ∈ M′◦ →. Since (J, I2) ∈ M′◦ →, there is
I3 such that (J, I3) ∈ M′ and I3 → I2. Since (J, I3) ∈ M′, it follows from the definition
of M′ that J captures I3. Since J captures I3, and since (I1, J) ∈ e(M), we have that
I1 → I3. But we also have that I3 → I2, so by composing homomorphisms we see that
I1 → I2, as desired.

3.1. Extended Inverses of Mappings Specified by s-t tgds

We now address the important case in which the schema mapping M is specified by
a finite set of s-t tgds. First we relate extended-invertibility of such schema mappings
to the existence of a special capturing function given by the chase, and also to a
homomorphism-based property, which we define shortly. We consider here the standard
chase with tgds as introduced in Beeri and Vardi [1984] (see also Abiteboul et al. [1995])
but applied to data exchange [Fagin et al. 2005a]. In particular, given a source instance
I, we write chaseM(I) to denote a target instance J such that (I, J) is the result of
chasing (I,∅) with the dependencies in M. Note here that (I,∅) and (I, J) are instances
over the combined source and target schema.

Since the chase is rather well-known, we do not include its basic definition here.
Note that there are different variants of the chase, and each variant may produce
nonisomorphic results depending on the chase sequence followed. However, all these
different outputs are homomorphically equivalent to each other, and the choice of a
particular output has no effect on the concepts and results. Note also that the reader
can find the more general definition of the disjunctive chase in Section 6, where it is
used for reverse data exchange.

The following proposition is analogous to (and follows easily from) the result in Fagin
et al. [2005a] that chaseM(I) is a universal solution for I.

PROPOSITION 3.11. Let M be a schema mapping specified by a finite set of s-t tgds. If
J is a universal solution for I with respect to M, then J is an extended universal solution
for I with respect to M. In particular, chaseM(I) is an extended universal solution for I.

PROOF. Let J be a universal solution for I, and let J′ be an extended solution for
I. We must show that J → J′. Since J′ is an extended solution for I, there are I1
and J1 such that I → I1, (I1, J1) ∈ M, and J1 → J′. Since I → I1, it follows that
chaseM(I) → chaseM(I1). Since J is a universal solution for I, and since chaseM(I) is a
solution for I, it follows that J → chaseM(I). Since chaseM(I1) is a universal solution
for I1, and since (I1, J1) ∈ M, it follows that chaseM(I1) → J1. Moreover, J1 → J′, so by
composing these four homomorphisms, we have J → J′, as desired.
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We now show that when M is extended invertible and J is an extended universal
solution for a source instance I according to M, then J captures I. However, the
converse may not be true, even when M is specified by s-t tgds.

PROPOSITION 3.12. Let M be a schema mapping that is extended invertible. If J is an
extended universal solution for I, then J captures I.

PROOF. First, we have that J is an extended solution for I. Next, let K be a source
instance such that J ∈ eSolM(K); we must show that K → I. Since M is extended
invertible, it follows from Theorem 3.10 that there is J∗ that captures I. Since J∗
captures I, it follows in particular that J∗ is an extended solution for I, and so J → J∗
by universality of J. Since J ∈ eSolM(K), we have that (K, J) ∈ → ◦M◦ →. Combining
this with J → J∗, we have that (K, J∗) ∈ → ◦M◦ → ◦ → = → ◦M◦ →, with the
equality holding, since → ◦ → = →. Therefore, J∗ ∈ eSolM(K). Since also J∗ captures
I, it follows that K → I, as desired.

Note that we do not assume in Proposition 3.12 that M is specified by s-t tgds. We
now show that the converse to Proposition 3.12 fails, even if M is specified by s-t tgds.

PROPOSITION 3.13. There exists an extended-invertible schema mapping specified by
an s-t tgd, and there exist a source instance I and a target instance J, such that J
captures I, but J is not an extended universal solution for I.

PROOF. Consider the schema mapping M = (S, T, �), where the source schema S
consists of one unary relation symbol P, the target schema T consists of one binary
relation symbol Q, and � consists of the following s-t tgd:

P(x) → ∃z(Q(x, z) ∧ Q(z, x)).

To show that M is extended invertible, consider the schema mapping M′ = (T, S, �′),
where �′ consists of the following s-t tgd:

Q(x, z) ∧ Q(z, x) → P(x).

In Section 3.2, we shall define and study the notion of a chase-inverse. There we shall
show (Example 3.24) that M′ is an extended inverse of M, by showing that M′ is a
chase-inverse of M, and showing that this implies that M′ is an extended inverse of M.

Let I be the source instance
{

P(0)
}
, and let J be the target instance

{
Q(0, 0)

}
. We

now show that J captures I, but J is not an extended universal solution for I.
It is easy to see that (I, J) ∈ M and (J, I) ∈ M′. So by Lemma 3.9, it follows that J

captures I. Let J′ be
{
Q(0, n), Q(n, 0)

}
, where n is a null value. Clearly, J′ is a solution

for I, but there is no homomorphism from J into J′. So J is not an extended universal
solution for I.

Definition 3.14. Assume that M is a schema mapping specified by a finite set of s-t
tgds. We say that M has the homomorphism property if for all source instances I1 and
I2, the following holds: if chaseM(I1) → chaseM(I2), then I1 → I2.

Note that when M is a schema mapping specified by a finite set of s-t tgds, then
the converse of the homomorphism property always holds. That is, if I1 → I2, then it
follows that chaseM(I1) → chaseM(I2).

THEOREM 3.15. Let M be a schema mapping specified by a finite set of s-t tgds. The
following statements are equivalent.

(1) M is extended-invertible.
(2) There exists a capturing function for M.
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(3) The function F with F(I) = chaseM(I) is a capturing function for M.
(4) M has the homomorphism property.

Moreover, if M is extended-invertible, then the schema mapping M∗ = {(J, I) | J =
chaseM(I)} is an extended inverse of M.

PROOF. The equivalence of (1) and (2) follows from Theorem 3.10. It is immediate
that (3) ⇒ (2). We now show that (1) ⇒ (3), and so (1), (2), and (3) are equivalent.
We know from Fagin et al. [2005a] that chaseM(I) is a universal solution for I. So
by Proposition 3.11, it follows that chaseM(I) is an extended universal solution for I.
Therefore, by Proposition 3.12, we have that chaseM(I) captures I. So (3) follows.

We now show that (3) ⇒ (4). Assume that (3) holds. Assume that chaseM(I1) →
chaseM(I2); we must show that I1 → I2. Now (I1, chaseM(I1)) ∈ M, and there-
fore (I1, chaseM(I2)) ∈ M◦ →. Hence, chaseM(I2) ∈ eSolM(I1). By (3), we have that
chaseM(I2) captures I2. Therefore, since chaseM(I2) ∈ eSolM(I1), we have I1 → I2, as
desired.

We conclude the proof by showing that (4) ⇒ (3). Assume that the homomorphism
property holds; we must show that chaseM(I) captures I. First, chaseM(I) is a solution
for I, and hence an extended solution for I. Assume now that chaseM(I) ∈ eSolM(K);
the proof is complete if we show that K → I. Now chaseM(K) is a universal solution
for K; hence, chaseM(K) is an extended universal solution for K by Proposition 3.11.
Therefore, since chaseM(I) ∈ eSolM(K), we have that chaseM(K) → chaseM(I). So by
the homomorphism property, we have K → I, as desired.

Theorems 3.10 and 3.15 provide useful tools for verifying whether a schema map-
ping is extended invertible or not. Next, we give an example that illustrates how
Theorem 3.15 can be applied to show that a schema mapping specified by s-t tgds is
not extended invertible.

Example 3.16. Consider the “union” schema mapping M specified by the s-t tgds
P(x) → R(x) and Q(x) → R(x). We now prove that M is not extended-invertible by
showing that M does not have the homomorphism property. Let I1 = {P(0)} and I2 =
{Q(0)}. Clearly, chaseM(I1) → chaseM(I2); however, I1 → I2.

We next relate the notions of extended invertibility and extended inverses to the
notions of invertibility and inverses.

THEOREM 3.17. The following hold.

(1) If M is a schema mapping specified by a finite set of s-t tgds and M is extended
invertible, then M is invertible.

(2) There is a schema mapping M specified by a finite set of s-t tgds that is invertible
but not extended-invertible.

(3) There is a schema mapping M specified by a finite set of s-t tgds that is extended-
invertible and such that:
(a) M has an extended inverse M′ that is not an inverse of M.
(b) M has an inverse M′′ that is not an extended inverse of M.

PROOF. Part (1) follows from the fact that the homomorphism property, which by The-
orem 3.15 is equivalent to extended invertibility, implies the subset property (defined
next), which by Corollary 3.23 of Fagin et al. [2008] is equivalent to invertibility.

A schema mapping M has the subset property (which is referred to in Fagin et al.
[2008] as the (=,=)-subset property) if for all ground instances I1 and I2 such that
SolM(I2) ⊆ SolM(I1), necessarily I1 ⊆ I2. It is shown in Fagin et al. [2008] that a
schema mapping specified by a finite set of s-t tgds has the subset property if and only
if it is invertible.
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Assume that M is an extended-invertible schema mapping specified by a finite set
of s-t tgds. Therefore, by Theorem 3.15, it follows that M has the homomorphism
property. We now show that M has the subset property, which will complete the proof
of part (1). Assume that I1 and I2 are ground instances such that SolM(I2) ⊆ SolM(I1);
we must show that I1 ⊆ I2. Since SolM(I2) ⊆ SolM(I1); we have in particular that
chaseM(I2) ∈ SolM(I1). Since chaseM(I1) is a universal solution for I1, it follows that
chaseM(I1) → chaseM(I2). So by the homomorphism property, it follows that I1 → I2.
Since I1 is a ground instance, this implies that I1 ⊆ I2, as desired.

For part (2), consider the schema mapping M that is specified by the following s-t
tgds:

P(x) → ∃yR(x, y) Q(y) → ∃xR(x, y).

We now show that M is invertible but not extended-invertible. First, it can be easily
verified that the schema mapping M′ specified by the following s-t tgds with constants
is an inverse of M:

R(x, y) ∧ Constant(x) → P(x)
R(x, y) ∧ Constant(y) → Q(y)

Thus, M is invertible. We now show that M is not extended-invertible by showing it
fails to satisfy the homomorphism property. Consider the source instances I1 = {P(n1)}
and I2 = {Q(n2)}, where n1 and n2 are nulls. Then chaseM(I1) and chaseM(I2) are
homomorphically equivalent. In particular, chaseM(I1) → chaseM(I2). However, it is
not the case that I1 → I2.

For part (3), consider the schema mapping M specified by the following s-t tgd:

P(x, y) → ∃z(Q(x, z) ∧ Q(z, y)).

Moreover, consider the following reverse schema mappings M′ and M′′ given, respec-
tively, by the following dependencies:

M′ : Q(x, z) ∧ Q(z, y) → P(x, y)
M′′ : Q(x, z) ∧ Q(z, y) ∧ Constant(x) ∧ Constant(y)

→ P(x, y).

We shall show in the next subsection (Example 3.23) that M′ is an extended inverse
of M. At the same time, it was shown in Fagin et al. [2008] that there is no inverse of
M that is specified by s-t tgds without the Constant predicate. Hence, M′ cannot be an
inverse of M. Thus, M′ is an extended inverse of M that is not an inverse of M. As for
condition (b), it was shown in Fagin et al. [2008] that M′′ is an inverse of M. We show
in the next subsection (Example 3.25) that M′′ is not an extended inverse of M.

Theorem 3.17 tells us that the notion of extended invertibility is stronger than
invertibility. Intuitively, it is harder for a schema mapping to be extended invertible,
since there are more instances (nonground source instances) to consider. Furthermore,
extended inverses and inverses do not necessarily coincide, even for schema mappings
that are extended-invertible (hence, also invertible).

3.2. The Goodness of Extended Inverses

In this section, we show that extended inverses that are specified by s-t tgds have
desirable properties that make them ideally suited for reverse data exchange. The
data exchange problem associated with a schema mapping M is to materialize a “good”
solution, J, from a source instance I, based on M. The canonical procedure for data
exchange [Fagin et al. 2005a] uses the chase of I with M to produce a canonical
universal solution. The reverse data exchange problem is then to materialize a source
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instance I′ from a target instance J according to a reverse schema mapping M′ (from
the target schema to the source schema). Reverse data exchange is typically performed
after an initial data exchange with M was performed; in such a case, the goal of reverse
data exchange is to recover a source instance that is as “close as possible” to the original
source instance I.

Definition 3.18. Let M = (S, T, �) and M′ = (T, S, �′) be schema mappings, where
� and �′ are finite sets of s-t tgds. We say that M′ is a chase-inverse of M if I and
chaseM′(chaseM(I)) are homomorphically equivalent, for every source instance I.

Note that a chase-inverse makes it possible to recover the original source instance up
to homomorphic equivalence. Fagin and Nash [2010] showed that if M is an invertible
schema mapping specified by s-t tgds, then M has a normal inverse M′ such that I =
chaseM′(chaseM(I)), for every source instance I. A normal inverse is an inverse specified
by s-t tgds with constants and inequalities, and with certain syntactic restrictions. In
contrast, our Definition 3.18 requires only homomorphic equivalence, not equality, of I
and chaseM′(chaseM(I)).

We now show that if there is a chase-inverse, then there is a full chase-inverse, that
is a chase-inverse specified by a finite set of full s-t tgds. This is analogous to (and with
a similar proof as) the result of Fagin [2007] that if a schema mapping specified by a
finite set of s-t tgds has an inverse specified by a finite set of s-t tgds, then it has an
inverse specified by a finite set of full s-t tgds.

We begin with some definitions from Fagin [2007]. Let γ be the tgd ∀x(φ(x) →
∃yψ(x, y)). Assume that all of the variables in x appear in φ(x) (but not necessarily in
ψ(x, y)). Let ψ f (x) be the conjunction of all atoms in ψ(x, y) that do not contain any
variables in y (the f stands for “full”). Define γ f to be the full tgd ∀x(φ(x) → ψ f (x)).
As an example (where we do not bother to write the universal quantifiers), if γ is
P(x1, x2) → ∃y(Q(x1, x1) ∧ Q(x2, y)), then γ f is P(x1, x2) → Q(x1, x1). If ψ f (x) is an
empty conjunction, then γ f is a dummy tgd where the conclusion is “Truth” (and so
the dummy tgd itself is “Truth”). Let M1 = (T, S, �1) be a schema mapping, where �1

is a finite set of s-t tgds (our case of interest is where M1 is a chase-inverse). Let �
f

1 be
the set of γ f where γ ∈ �1 and where γ f is not a dummy tgd, and let M f

1 = (T, S, �
f

1 )

THEOREM 3.19. Assume that M and M1 are schema mappings, each specified by a
finite set of s-t tgds, where M1 is a chase-inverse of M. Then M f

1 is also a chase-inverse
of M.

PROOF. Since M1 is a chase-inverse of M, we know that I and chaseM1 (chaseM(I))
are homomorphically equivalent, for every source instance I. We must show that I
and chaseM f

1
(chaseM(I)) are homomorphically equivalent, for every source instance I.

Since chaseM f
1
(chaseM(I)) ⊆ chaseM1 (chaseM(I)), and since there is a homomorphism

from chaseM1 (chaseM(I)) to I, there is a homomorphism from chaseM f
1
(chaseM(I)) to I.

So we need only show that there is a homomorphism from I to chaseM f
1
(chaseM(I)). It

is sufficient to show that I ⊆ chaseM f
1
(chaseM(I)).

Assume first that I is ground. Since I is ground, and since there is a homomorphism
from I to chaseM1 (chaseM(I)), it follows that I ⊆ chaseM1 (chaseM(I)). But this implies
the desired result that I ⊆ chaseM f

1
(chaseM(I)), since all of the facts that appear in

chaseM1 (chaseM(I)) but not in chaseM f
1
(chaseM(I)) contain nulls.

Assume now that I is an arbitrary source instance (not necessarily ground). Let I′
be the result of replacing every null in I by a distinct new constant. By what we just
showed in the ground case, we know that I′ ⊆ chaseM f

1
(chaseM(I′)). But this implies
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the desired result that I ⊆ chaseM f
1
(chaseM(I)), since I and I′ are isomorphic (under an

isomorphism that ignores whether values are constants or nulls), and computing the
chase (or, in this case, the chase of the chase) using s-t tgds is a mechanical procedure
that performs the same on isomorphic instances.

We have the following immediate corollary of Theorem 3.19.

COROLLARY 3.20. Let M be a schema mapping specified by a finite set of s-t tgds, for
which a chase-inverse exists. Then M has a chase-inverse specified by a finite set of full
s-t tgds.

Our next theorem shows that extended inverses that are specified by s-t tgds have
an equivalent characterization as chase-inverses. This characterization is a precise
measure of the goodness of extended inverses for reverse data exchange. The proof of
the theorem makes use of the following basic property about the chase, which appears
as Lemma 3.4 in Fagin et al. [2005a].

LEMMA 3.21 (TRIANGLE LEMMA). Let K1 and K2 be instances such that K2 is obtained
from K1 via a chase step with a tgd σ . Moreover, let K be an instance such that (1) K
satisfies σ , and (2) K1 has a homomorphism into K. Then K2 has a homomorphism
into K.

THEOREM 3.22. Let M = (S, T, �) be a schema mapping specified by a finite set of
s-t tgds, and let M′ = (T, S, �′) be a schema mapping specified by a finite set of s-t tgds.
The following statements are equivalent:

(1) M′ is an extended inverse of M.
(2) M′ is a chase-inverse of M.

PROOF. We first show that if M′ is an extended inverse of M, then M′ is a chase-
inverse of M. Assume that M′ is an extended inverse of M. Let I be a source instance,
let J = chaseM(I), and let I∗ = chaseM′(J). We have to show that I → I∗ and I∗ → I.

Since (I, J) ∈ M and (J, I∗) ∈ M′, we have (I, I∗) ∈ M ◦M′ ⊆ e(M) ◦ e(M′) = →, and
so I → I∗, which was to be shown.

Since (I, I) ∈ →, we have that (I, I) ∈ e(M) ◦ e(M′). This means that there are I1,
I2, J1, and J2, such that I → I1, (I1, J1) ∈ M, J1 → J2, (J2, I2) ∈ M′, and I2 → I.
Since (I,∅) → (I1, J1) and (I1, J1) ∈ M, the triangle lemma for tgds applied repeatedly
implies that (I, J) → (I1, J1). In particular, J → J1 and so J → J2 (since J1 → J2). So,
we now have that (J,∅) → (J2, I2) and (J2, I2) ∈ M′, which again by the triangle lemma
for tgds applied repeatedly, implies that (J, I∗) → (J2, I2). In particular, we have that
I∗ → I2. Since I2 → I, we conclude that I∗ → I, which was to be shown.

We now show that if M′ is a chase-inverse of M, then M′ is an extended inverse of
M. Assume that M′ is a chase-inverse of M. To show that M′ is an extended inverse of
M, we must show that e(M) ◦ e(M′) = →. We first show that e(M) ◦ e(M′) ⊆→. Since
→ ◦ → = →, it suffices to show that M◦ → ◦M′ ⊆ →. Assume that (I1, I2) ∈ M◦ →
◦M′. Thus, there are J1 and J2 such that (I1, J1) ∈ M, J1 → J2, and (J2, I2) ∈ M′. Let
J = chaseM(I1), and let K = chaseM′(J). Since M′ is a chase-inverse of M, we have I1
and K are homomorphically equivalent. Since J is a universal solution for I1 and M,
we have J → J1, and therefore J → J2. This last fact, together with the fact that (J,∅)
chases with M′ to (J, K), and the fact that (J2, I2) ∈ M′, implies that (J, K) → (J2, I2),
by applying the triangle lemma repeatedly. In particular, we have K → I2. Since I1 and
K are homomorphically equivalent, we obtain I1 → I2. Thus, (I1, I2) ∈ →.

We now show that →⊆ M ◦ M′◦ →. This inclusion implies →⊆ e(M) ◦ e(M′). Let
(I1, I2) ∈ →. Thus, I1 → I2. Let J = chaseM(I1), and let K = chaseM′(J). Since M′ is a
chase-inverse of M, we have I1 and K are homomorphically equivalent. Since I1 → I2,
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it follows that K → I2. Thus, we obtained: (I1, J) ∈ M, (J, K) ∈ M′, and K → I2. It
follows that (I1, I2) ∈ M ◦ M′◦ →.

Theorem 3.22 easily extends to the case when M′ is given by tgds with constants,
and we also allow these as chase-inverses. Also, Theorem 3.22 gives us another tool to
verify whether a schema mapping M′ is an extended inverse of a schema mapping M.

Example 3.23. As in the proof of part (3) of Theorem 3.17, consider the schema
mapping M specified by the s-t tgd:

P(x, y) → ∃z(Q(x, z) ∧ Q(z, y)).

Let M′ be the schema mapping specified by the tgd Q(x, z) ∧ Q(z, y) → P(x, y). We can
show that M′ is an extended inverse of M by showing that M′ is a chase-inverse of
M. Indeed, let I be a source instance, let U = chaseM(I) and let V = chaseM′(U ). We
shall show that I ⊆ V and that V → I, which imply that V and I are homomorphically
equivalent.

First, we observe that every fact P(a, b) in I generates (via the chase with M) two
facts in U , namely Q(a, Zab) and Q(Zab, b), where Zab is a fresh new null, distinct for
every choice of a and b. (Moreover, these are the only types of facts that are generated
in V .) Then V must contain every fact P(a, b) (in order to satisfy M′ for Q(a, Zab) and
Q(Zab, b)). Thus, I ⊆ V .

We now observe that every extra fact of V (not in I) can only be of the form P(Zab, Zbc),
arising via M′ from two facts of U of the form Q(Zab, b) and Q(b, Zbc). But then U must
contain two additional facts, Q(a, Zab) and Q(Zbc, c). At the same time, the only way
to have Q(a, Zab) and Q(Zab, b) in U is to have the fact P(a, b) in I. Consider now the
mapping h where h(x) = x for members x of I, where h(Zab) = a and h(Zbc) = b. Then h
is a homomorphism from V to I. In particular, for every extra fact P(Zab, Zbc) in V , we
have that P(h(Zab), h(Zbc)) is P(a, b), which is in I.

We have already noted that the schema mapping M′ in the above example cannot be
an inverse of M (since, as shown in Fagin et al. [2008], such an inverse would have to
make use of the Constant predicate, for this particular M). Thus, this example shows
in particular that the characterization via chase-inverses does not hold for inverses
(since M′ is a chase-inverse of M but not an inverse of M).

Example 3.24. Let us revisit the schema mapping M in the proof of Proposi-
tion 3.13. This schema mapping M is, specified by the s-t tgd:

P(x) → ∃z(Q(x, z) ∧ Q(z, x)).

We now show that the schema mapping M′ specified by:

Q(x, z) ∧ Q(z, x) → P(x),

is an extended inverse of M, by showing that M′ is a chase-inverse of M.
To do this, we must show that I is homomorphically equivalent to chaseM′(chaseM(I)),

for every source instance I. This is clearly true if I is empty. So assume that I is
nonempty, and so contains some fact P(a). It is easy to see that chaseM′(chaseM(I))
consists of I, along with facts P(n) for some nulls n that do not appear in I. Let h
be a function that maps each such null onto a, and is otherwise the identity. It is
clear that h is a homomorphism that maps chaseM′(chaseM(I)) onto I. Since also I ⊆
chaseM′(chaseM(I)), we have that chaseM′(chaseM(I)) is homomorphically equivalent
to I, as desired. So M′ is a chase-inverse of M.

The next example uses Theorem 3.22 to prove that a schema mapping M′′ is not an
extended inverse of a schema mapping M.
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Example 3.25. As in the proof of part (3) of Theorem 3.17 and Example 3.23,
consider the schema mapping M specified by:

P(x, y) → ∃z(Q(x, z) ∧ Q(z, y)).

Moreover, let M′′ be the schema mapping specified by:

Q(x, z) ∧ Q(z, y) ∧ Constant(x) ∧ Constant(y) → P(x, y).

It was shown in Fagin et al. [2008] that M′′ is an inverse of M. We now show that M′′
is not an extended inverse of M by showing that M′′ fails to be a chase-inverse of M.
(Here we allow chase-inverses to be specified by tgds with constants, as discussed after
Theorem 3.22.)

To show that M′′ is not a chase-inverse of M, consider the source instance I =
{P(W, Z)}, where W and Z are nulls. Let U = chaseM(I). Then U = {Q(W, Y ), Q(Y, Z)},
where Y is a null. Further, chaseM′(U ) = ∅, since there are no constants in U . Hence,
chaseM′′(chaseM(I)) and I are not homomorphically equivalent.

These two examples point out problems with the notion of inverse, which do not arise
for the new notion of extended inverse. Example 3.23 shows a natural “inverse” (the
chase-inverse) that is not captured by the notion of inverse. Conversely, Example 3.25
shows an inverse that fails to be a chase-inverse.

Most schema mappings occurring in practice do not possess extended inverses, since
they do not even possess inverses. Invertibility and extended invertibility are strong
notions that, intuitively cover the case of “no information loss” in a schema mapping.
To address schema mappings with information loss, which is the frequent case, we will
go beyond extended invertibility and study extended recoveries in Section 4.

4. EXTENDED RECOVERIES

In this section, we consider the notion of a recovery and a maximum recovery, which
were introduced in Arenas et al. [2009]. One of the key results in Arenas et al. [2009]
is that every schema mapping specified by s-t tgds has a maximum recovery. We show
that this result fails when source instances may contain null values. We introduce
the notions of an extended recovery and a maximum extended recovery, and show that
every schema mapping specified by s-t tgds has a maximum extended recovery. For
schema mappings specified by s-t tgds, we give a characterization of maximum extended
recoveries, and use this to capture in a quantitative way the information loss embodied
in such a schema mapping. Intuitively, the information loss of the schema mapping M
specified by s-t tgds measures the amount by which M deviates from being extended
invertible. In particular, the schema mapping has no information loss if and only if it
is extended invertible.

Definition 4.1. ([Arenas et al. 2009]). Let M be a schema mapping from a source
schema S to a target schema T. A schema mapping M′ from T to S is a recovery of M
if for every source instance I, the pair (I, I) is in M ◦ M′. The schema mapping M′ is
a maximum recovery of M if (1) M′ is a recovery of M, and (2) for every recovery M′′
of M, we have that M ◦ M′ ⊆ M ◦ M′′.

Thus, a maximum recovery is a recovery that is optimal among all recoveries in the
sense that the composition of M with M′ is the smallest among the compositions of M
with every other recovery. Similar to the framework in Fagin [2007] and Fagin et al.
[2008], the study of recoveries in Arenas et al. [2009] is carried out in the context in
which source instances are ground. While some of the results in Arenas et al. [2009]
continue to hold even when source instances are not restricted to be ground, certain
other results do not. In particular, one of the most important results in Arenas et al.
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[2009] is that every schema mapping specified by s-t tgds has a maximum recovery.
However, we show in the next proposition that there is a schema mapping specified by
s-t tgds with no maximum recovery when source instances can be nonground.

PROPOSITION 4.2. Let M = (S, T, �) be a schema mapping where � = {P(x, y) →
∃z(Q(x, z) ∧ Q(z, y))}. Then M has no maximum recovery when source instances can be
nonground.

PROOF. Our proof makes use of the notion of a witness solution from Arenas et al.
[2009]. An instance J over T is a witness for a ground instance I over S under the
schema mapping M if for every ground source instance I′ over S, if J ∈ SolM(I′), then
SolM(I) ⊆ SolM(I′). In addition, if J ∈ SolM(I), then J is called a witness solution for
I under M.

We will show that M has no witness solution for a specific instance I, when source
instances may be nonground. Using a straightforward generalization of Theorem 3.5 of
Arenas et al. [2009] to nonground instances, we will then infer that M has no maximum
recovery. This generalization states that a schema mapping M given by s-t tgds has
a maximum recovery if and only if for every ground or nonground source instance I,
there exists a witness solution for I under M.

Let I = {P(0, 1), P(1, 0)}, and let JI denote chaseM(I), which is {Q(0,U ), Q(U, 1),
Q(1, V ), Q(V, 0)}, where U and V are nulls created by the chase. It is easy to see that
any witness solution J for I under M must contain the tuples Q(0, X), Q(X, 1), Q(1, Y ),
Q(Y, 0), for some values X and Y , which may be nulls or constants. We consider four
cases that cover all possibilities of values for X and Y and show that in each of the
cases, J cannot be a witness solution.

Case 1. X = Y . In this case, J contains the following four tuples:

Q(0, X), Q(X, 1), Q(1, X), Q(X, 0).

Let I′ = {P(0, 0), P(1, 1)}. Obviously, J ∈ SolM(I′) but SolM(I) ⊆ SolM(I′), since JI ∈
SolM(I) but JI ∈ SolM(I′).

Case 2. X = Y and at least one of X or Y is not 0 or 1. Let I′ = {P(X, Y ), P(Y, X)} and
let J′ = {Q(0, a), Q(a, 1),
Q(1, b), Q(b, 0)}, where a and b are values different from X and Y . Clearly, J ∈ SolM(I′)
but SolM(I) ⊆ SolM(I′), since J′ ∈ SolM(I) but J′ ∈ SolM(I′).

Case 3. X = Y and X = 0 and Y = 1. In this case, J contains the following four
tuples:

Q(0, 0), Q(0, 1), Q(1, 1), Q(1, 0).

Let I′ = {P(0, 0), P(1, 1)}. Obviously, J ∈ SolM(I′) but SolM(I) ⊆ SolM(I′), since JI ∈
SolM(I) but JI ∈ SolM(I′).

Case 4. X = Y and X = 1 and Y = 0. This case is similar to Case 3.

Next, we define the notions of extended recovery and maximum extended recovery.

Definition 4.3. A schema mapping M′ is an extended recovery of a schema mapping
M if (I, I) ∈ e(M) ◦ e(M′), for every source instance I.

We note that it is straightforward to verify that the condition (I, I) ∈ e(M) ◦ e(M′) is
equivalent to e(Id) ⊆ e(M) ◦ e(M′).

Definition 4.4. A schema mapping M′ is a maximum extended recovery of a schema
mapping M if (1) M′ is an extended recovery of M, and (2) for every extended recovery
M′′ of M, we have e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).
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In Arenas et al. [2009a] (which appeared after Fagin et al. [2009]), it was pointed
out that M′ is a maximum extended recovery of M if and only if e(M′) is a maximum
recovery of e(M), where maximum recovery is the same notion as given in Arenas et al.
[2009] with the difference that source instances may contain nulls.

Clearly, if M1 and M2 are two maximum extended recoveries of a schema mapping
M, then e(M) ◦ e(M1) = e(M) ◦ e(M2). Thus, the quantity e(M) ◦ e(M′), where M′ is
a maximum extended recovery of M, is a constant CM that depends only on M. In
particular, it is independent of the choice of M′. Furthermore, by Definition 4.3, CM
is the smallest superset of e(Id) among all sets e(M) ◦ e(M′′), as M′′ ranges over the
extended recoveries of M. In a precise sense, CM is the closest we can get to extended
identity schema mapping e(Id) via extended recoveries. This discussion suggests the
following definition.

Definition 4.5. Let M be a schema mapping that admits a maximum extended
recovery M′. Then the information loss of M is defined as the set difference (e(M) ◦
e(M′)) \ →.

In what follows, we will show that the information loss of a schema mapping M
specified by a finite set of s-t tgds can be characterized solely in terms of M.

4.1. Characterization of Maximum Extended Recoveries

Definition 4.6. Let M be a schema mapping. We say that I1 →M I2 if eSolM(I2) ⊆
eSolM(I1).

The next proposition characterizes →M when M is specified by a finite set of s-t tgds.

PROPOSITION 4.7. Let M be a schema mapping specified by a finite set of s-t tgds. For
all source instances I1, I2, we have I1 →M I2 if and only if chaseM(I1) → chaseM(I2).

PROOF. By the definition of I1 →M I2, we have eSolM(I2) ⊆ eSolM(I1). From Propo-
sition 3.11, it follows that chaseM(I1) and chaseM(I2) are extended universal solu-
tions for I1 and, respectively, I2, under M. Since eSolM(I2) ⊆ eSolM(I1), we have
chaseM(I2) ∈ eSolM(I1). By the universality of chaseM(I1), it follows that chaseM(I1)
→ chaseM(I2).

Now suppose chaseM(I1) → chaseM(I2) and that J ∈ eSolM(I2). We will show that
J ∈ eSolM(I1). Since chaseM(I2) is an extended universal solution for I2 under M, it
follows that chaseM(I2) → J. So, chaseM(I1) → J. Since chaseM(I1) is an extended
solution of I1 under M and chaseM(I1) → J, it follows that J is an extended solution
of I1 under M.

We shall show that if M is a schema mapping specified by a finite set of s-t tgds, then
M has a maximum extended recovery. We shall actually prove something stronger, for
which we need yet another definition.

Definition 4.8. A schema mapping M′ is a strong maximum extended recovery of a
schema mapping M if (1) M′ is an extended recovery of M, and (2) for every extended
recovery M′′ of M, we have e(M′) ⊆ e(M′′).

Note that, by monotonicity of composition, every strong maximum extended recovery
of M is a maximum extended recovery of M. Thus, a strong maximum extended
recovery M′ not only minimizes e(M) ◦ e(M′′) among all extended recoveries M′′, but,
even more, minimizes e(M′′) among all extended recoveries M′′.

LEMMA 4.9. Let M be a schema mapping specified by a finite set of s-t tgds. Put

M∗ = {(chaseM(I), I) | I is a source instance}.
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If M′ is an extended recovery of M, then M∗ ⊆ e(M′); equivalently, e(M∗) ⊆ e(M′).

PROOF. Let I be a source instance. Since M′ is an extended recovery, we have that
(I, I) ∈ e(M) ◦ e(M′). Hence, there is a J such that (I, J) ∈ e(M) and (J, I) ∈ e(M′).
In particular, J is an extended solution for I under M. Since chaseM(I) is an ex-
tended universal solution for I under M, we have that chaseM(I) → J. Thus,
(chaseM(I), I) ∈ → ◦ e(M′) = e(M′). Finally, since → ◦ e(M′) ◦ → = e(M′), we have
M∗ ⊆ e(M′) if and only if e(M∗) ⊆ e(M′).

THEOREM 4.10. Every schema mapping M specified by a finite set of s-t tgds has a
strong maximum extended recovery. Specifically, the schema mapping

M∗ = {(chaseM(I), I) | I is a source instance}
is a strong maximum extended recovery of M.

PROOF. M∗ is an extended recovery of M because, for every source instance I, we
have that (I, I) ∈ M◦M∗ ⊆ e(M)◦e(M∗). Now, assume that M′ is an extended recovery
of M. By Lemma 4.9, we have that e(M∗) ⊆ e(M′).

We now show that there is no analog to Theorem 4.10 for maximum recoveries. This
is another advantage of extended recoveries over recoveries.

If M is a schema mapping, define a strong maximum recovery of M to be a schema
mapping M′ such that (1) M′ is a recovery of M, and (2) for every recovery M′′ of M,
we have M′ ⊆ M′′. If M′ = (T, S, �′) and M′′ = (T, S, �′′), then saying that M′ ⊆ M′′
is the same as saying that �′ logically implies �′′. So a strong maximum recovery M′
has a specification �′ that is strongest possible among all recoveries. We now show that
schema mappings with a strong maximum recovery are rare. In particular, no schema
mapping specified by a finite set of s-t tgds has a strong maximum recovery.

THEOREM 4.11. A schema mapping has a strong maximum recovery if and only
if every source instance has exactly one solution. In particular, no schema mapping
specified by a finite set of s-t tgds has a strong maximum recovery. These results hold
whether we restrict source instances to being ground or not.

PROOF. The proof is the same whether we restrict source instances to being ground
or not.

Assume first that every source instance I has exactly one solution JI . Then it is
easy to see that there is a unique recovery, which consists of all pairs (JI, I). Since this
recovery is unique, it is of course a strong maximum recovery.

Assume now that the schema mapping M has a strong maximum recovery M′; we
shall show that every source instance has exactly one solution with respect to M. If
some source instance I0 has no solution, then clearly (I0, I0) ∈ M◦M′, and so M′ is not
a recovery, which is a contradiction. Assume now that there is some source instance I0
with more than one solution; we shall derive a contradiction. Let J1 and J2 be distinct
solutions for I0. Define the schema mapping M′′

1 as follows. If I = I0, then (J, I) ∈ M′′
1

if and only if (J, I) ∈ M′. If I = I0, then (J, I) ∈ M′′
1 if and only if J = J1. We now

show that M′′
1 is a recovery of M. First, (I0, I0) ∈ M ◦ M′′

1, since (I0, J1) ∈ M and
(J1, I0) ∈ M′′

1. Further, if I = I0, we know (since M′ is a recovery) that (I, I) ∈ M ◦ M′,
and so there is J such that (I, J) ∈ M and (J, I) ∈ M′. But (J, I) is also in M′′

1, and so
(I, I) ∈ M◦M′′

1. So M′′
1 is indeed a recovery of M. Now define the schema mapping M′′

2
analogously (but using J2 instead of J1), as follows. If I = I0, then (J, I) ∈ M′′

2 if and
only if (J, I) ∈ M′. If I = I0, then (J, I) ∈ M′′

1 if and only if J = J2. By an analogous
argument to that we used to show that M′′

1 is a recovery of M, we have that M′′
2 is a

recovery of M. Since M′ is a strong maximum recovery of M, we have M′ ⊆ M′′
1 and

M′ ⊆ M′′
2. Hence, M′ ⊆ M′′

1 ∩M′′
2. But the only J with (J, I0) ∈ M′′

1 is J1, and the only
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J with (J, I0) ∈ M′′
2 is J2. Hence, there is no J with (J, I0) ∈ M′′

1 ∩ M′′
2, and so since

M′ ⊆ M′′
1 ∩ M′′

2, there is no J with (J, I0) ∈ M′. Therefore, (I0, I0) ∈ M ◦ M′. It follows
that M′ is not a recovery of M, which is our desired contradiction.

As for the “in particular,” let M be a schema mapping specified by a finite set of s-t
tgds. Then no source instance I has a unique solution J, as we now show. Let F be
a fact not in J (such a fact F exists since J is finite). Then J ∪ {F} is also a solution
for I.

Our next main result is Theorem 4.14, which shows that the quantity CM = e(M) ◦
e(M′), where M′ is a maximum extended recovery, coincides with →M. The proof of
Theorem 4.14 makes use of Proposition 4.12 and Lemma 4.13.

PROPOSITION 4.12. Let M be a schema mapping specified by a finite set of s-t tgds.
Then →M = → ◦ →M ◦ →.

PROOF. The containment →M ⊆ → ◦ →M ◦ → is obvious. The reverse inclusion can
be shown by observing that → ⊆ →M.

LEMMA 4.13. Let M be a schema mapping specified by a finite set of s-t tgds. If
M∗ = {(chaseM(I), I) | I is a source instance }, then e(M) ◦ e(M∗) = →M.

PROOF. We first show that →M ⊆ M ◦ → ◦ M∗. Assume that chaseM(I1) →
chaseM(I2). Then we have (I1, chaseM(I1)) ∈ M, chaseM(I1) → chaseM(I2), and
(chaseM(I2), I2) ∈ M∗; hence, (I1, I2) ∈ M◦ → ◦M∗.

We now show thatM ◦ → ◦ M∗ ⊆ →M. If (I1, I2) ∈ M◦ → ◦M∗, then there is a target
instance J such that (I1, J) ∈ M and J → chaseM(I2). Since chaseM(I1) is a universal
solution for I1, we have that chaseM(I1) → J; hence, chaseM(I1) → chaseM(I2).

We have shown that M◦ → ◦M∗ = →M. So by Proposition 4.12, we have e(M) ◦
e(M∗) = →M.

THEOREM 4.14. Let M be a schema mapping specified by a finite set of s-t tgds. The
following statements are equivalent:

(1) M′ is a maximum extended recovery of M.
(2) e(M) ◦ e(M′) = →M.

PROOF. Assume first that M′ is a maximum extended recovery of M. By Theorem
4.10, we know that M∗ is a maximum extended recovery of M, and so e(M) ◦ e(M′) =
e(M)◦e(M∗). But by Lemma 4.13, we have that e(M)◦e(M∗) = →M. So e(M)◦e(M′) =
→M, as desired.

Assume now that e(M) ◦ e(M′) = →M. Then M′ is an extended recovery of M, since
(I, I) ∈→M, and so (I, I) ∈ e(M) ◦ e(M′). Let M′′ be an arbitrary extended recovery.
Since M∗ is a maximum extended recovery, we have e(M)◦e(M∗) ⊆ e(M)◦e(M′′). So by
Lemma 4.13, we have →M⊆ e(M)◦e(M′′). Therefore, e(M)◦e(M′) ⊆ e(M)◦e(M′′). Since
M′′ is an arbitrary extended recovery, this implies that M′ is a maximum extended
recovery.

The preceding results yield a characterization of the information loss of a schema
mapping specified by s-t tgds.

COROLLARY 4.15. If M is a schema mapping specified by a finite set of s-t tgds, then
the information loss of M is →M \ →. In other words, for every maximum extended
recovery M′ of M, we have that (e(M) ◦ e(M′)) \ → =→M \ →.

PROOF. The proof is immediate from the definition of information loss (Definition
4.5) and Theorem 4.14.
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Note that if schema mapping M specified by s-t tgds is extended invertible, then
→M = e(Id) = →, and hence the information loss is empty.

COROLLARY 4.16. Let M be a schema mapping specified by a finite set of s-t tgds.
The following are equivalent:

(1) M is extended invertible.
(2) →M = →.
(3) M has no information loss, that is, →M \ → = ∅.

PROOF. It is always true (for schema mappings specified by s-t tgds) that → ⊆ →M.
It follows from Proposition 4.7 that the reverse inclusion →M ⊆ → is equivalent to the
homomorphism property. So the equivalence of (1) and (2) follows from Theorem 3.15.
The equivalence of (2) and (3) is immediate from the definition of information loss.
Note that information loss is defined only for schema mappings that have a maximum
extended recovery, but we know from Theorem 4.10 that M has a maximum extended
recovery.

The final result of this section relates extended inverses to maximum extended
recoveries.

PROPOSITION 4.17. Let M be a schema mapping specified by a finite set of s-t tgds
and let M′ be an arbitrary schema mapping. If M is extended invertible, then M′ is a
maximum extended recovery of M if and only if M′ is an extended inverse of M.

PROOF. Assume that M′ is an extended inverse of M. Then e(M) ◦ e(M′) = e(Id).
Since (I, I) ∈ e(Id), it follows that (I, I) ∈ e(M) ◦ e(M′), and so M′ is an extended
recovery of M. Since e(Id) ⊆ e(M) ◦ e(M′′) for every recovery M′′, it follows that M′ is
a maximum extended recovery. Note that we did not use yet the assumption that M is
specified by a finite set of s-t tgds.

Assume now that M is extended invertible, and M′ is an extended maximum re-
covery of M. By Theorem 4.14, we have that e(M) ◦ e(M′) = →M. By Corollary 4.16,
we have that →M′ = →. So e(M) ◦ e(M′) = →. Since → = e(Id), it follows that
e(M) ◦ e(M′) = e(Id). Therefore, M′ is an extended inverse of M.

4.2. Information Loss on Ground Instances

We now consider schema mappings specified by a finite set of s-t tgds but restrict the
source instances to be ground. As shown in Arenas et al. [2009], every such schema
mapping M has a maximum recovery M′. By the definition of a maximum recovery, the
quantity M ◦ M′ is a constant that depends only on M. This motivates the following
notion.

Definition 4.18. Let M be a schema mapping specified by a finite set of s-t tgds.
The information loss of M on ground instances is the set difference (M◦M′)\Id, where
M′ is a maximum recovery of M and Id is the identity schema mapping on ground
instances.

Intuitively, the information loss of M measures how much M deviates from being
an invertible mapping. Next, we introduce a notion that is an adaptation to ground
instances of the earlier notion of →M, and use it to characterize the information loss
of M on ground instances.

Definition 4.19. Let M be a schema mapping specified by a finite set of s-t tgds. We
write →M,g to denote the following schema mapping:

{(I1, I2) | I1, I2 are ground instances and SolM(I2) ⊆ SolM(I1)}.

ACM Transactions on Database Systems, Vol. 36, No. 2, Article 11, Publication date: May 2011.



Reverse Data Exchange: Coping with Nulls 11:23

We are now ready to state a few properties of maximum recoveries.

PROPOSITION 4.20. Let M be a schema mapping. If M′ is a recovery of M, then
→M,g ⊆ M ◦ M′.

PROOF. Let I1 and I2 ground instances such that SolM(I2) ⊆ SolM(I1). Since M′ is a
recovery of M, we have that (I2, I2) ∈ M ◦ M′. This means that there is a J such that
(I2, J) ∈ M and (J, I2) ∈ M′. Hence, J is a solution for I2 with respect to M, so the
hypothesis implies that J must also be a solution for I1 with respect to M. Thus, we
have that (I1, J) ∈ M and (J, I2) ∈ M′, and so (I1, I2) ∈ M ◦ M′.

Definition 4.21. If M is a schema mapping specified by a finite set of s-t tgds,
then we write M∗

g to denote the schema mapping M∗
g = {(chaseM(I), I) | I is a ground

instance}.

PROPOSITION 4.22. If M is a schema mapping specified by a finite set of s-t tgds, then
M∗

g is a recovery of M.

PROOF. For every ground instance I, we have that (I, I) ∈ M ◦ M∗
g. This is because

(I, chaseM(I)) ∈ M and (chaseM(I), I) ∈ M∗
g.

PROPOSITION 4.23. If M is a schema mapping specified by a finite set of s-t tgds, then

→M,g = {(I1, I2) | I1, I2 are ground instances and chaseM(I1) → chaseM(I2)}.
PROOF. Let I1 and I2 be ground instances such that SolM(I2) ⊆ SolM(I1). It follows

that chaseM(I2) ∈ SolM(I1). Hence, since chaseM(I1) is a universal solution for I1, we
have that chaseM(I1) → chaseM(I2). This shows that:

→M,g ⊆ {(I1, I2) | I1, I2 are ground instances and chaseM(I1) → chaseM(I2)}.
For the other direction, assume that I1 and I2 are ground instances such that
chaseM(I1) → chaseM(I2). Let J be a solution for I2. Hence, chaseM(I2) → J, which
implies that chaseM(I1) → J. Since M is a schema mapping specified by a finite set
of s-t tgds, and I1 is ground, it follows that J is a solution for I1. This shows that
{(I1, I2) | I1, I2 are ground instances and chaseM(I1) → chaseM(I2)} ⊆→M,g.

PROPOSITION 4.24. If M is a schema mapping specified by a finite set of s-t tgds, then

→M,g = M ◦ M∗
g.

PROOF. It follows from Proposition 4.20 and Proposition 4.22 that →M,g ⊆ M ◦ M∗
g.

For the other direction, assume that I1, I2 are ground instances such that (I1, I2) ∈ M◦
M∗

g. It follows that there is a target instance J such that (I1, J) ∈ M and (J, I2) ∈ M∗
g.

By Definition 4.21, it must be that J = chaseM(I2), which means that (I1, chaseM(I2)) ∈
M. In turn, this implies that chaseM(I1) → chaseM(I2), hence, by Proposition 4.23, we
have that (I1, I2) ∈ →M,g. This shows that M ◦ M∗

g ⊆ →M,g.

PROPOSITION 4.25. Let M be a schema mapping specified by a finite set of s-t tgds. If
M′ is a maximum recovery of M, then M◦M′ = →M,g . Consequently, the information
loss of M on ground instances is equal to →M,g \ Id.

PROOF. By Proposition 4.20, we have that →M,g ⊆ M ◦M′. By Proposition 4.22, we
have that M∗

g is a recovery of M, hence M ◦M′ ⊆ M ◦M∗
g. Since, by Proposition 4.24,

M ◦ M∗
g = →M,g, we have that M ◦ M′ ⊆ →M,g.

We note that the preceding proposition can be obtained from results in the full version
of Arenas et al. [2009], which however, does not have the notion of information loss.
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4.3. An Alternative Notion of Extended Recovery

To cope with nulls in source instances, we replaced the notion of a solution of a source
instance with respect to a schema mapping M by that of an extended solution, and
then worked with the homomorphic extension e(M) of M. Furthermore, we obtained
the notions of extended recovery and maximum extended recovery from the notions
of recovery and maximum recovery introduced in Arenas et al. [2009] by replacing
not only M by e(M), but also replacing every mention of a schema mapping N in
the definition of each of these two notions by its homomorphic extension e(N ). In
particular, the composition M ◦ M′ of two schema mappings M and M′ was replaced
by the composition e(M) ◦ e(M′) of their homomorphic extensions.

Our approach of coping with nulls in source instances can also be construed as chang-
ing the semantics of satisfaction of dependencies so that extended solutions are used in
place of solutions.2 In turn, this suggests an alternative notion of extended recovery and
a corresponding alternative notion of maximum extended recovery. Specifically, given
a schema mapping M, we consider the notions of a recovery of e(M) and of a maximum
recovery of e(M). In other words, we use the notions of recovery and maximum recov-
ery introduced in Arenas et al. [2009], but apply them directly to the homomorphic
extension e(M) of a schema mapping M, where source instances may contain nulls.
We show that on the one hand these alternative notions differ from those of extended
recovery and maximum extended recovery, but on the other hand they give rise to the
same information loss for schema mappings specified by a finite set of s-t tgds.

Before stating and proving the results of this section, we spell out the meaning of the
alternative notions we study here. Let M be a schema mapping. A schema mapping
M′ is a recovery of e(M) if (I, I) ∈ e(M) ◦ M′, for every source instance I. A schema
mapping M′ is a maximum recovery of e(M) if (1) M′ is a recovery of e(M), and (2) for
every recovery M′′ of e(M), we have e(M) ◦ M′ ⊆ e(M) ◦ M′′. Thus, in these notions,
only the schema mapping M is replaced by its homomorphic extension e(M).

PROPOSITION 4.26. Let M be a schema mapping.

(1) If M′ is a recovery of e(M), then M′ is an extended recovery of M.
(2) If M′ is a maximum recovery of e(M), then M′ is a maximum extended recovery

of M.

PROOF. The first part follows from the definitions and the fact that M′ ⊆ e(M′),
for every schema mapping M′. For the second part, assume that M′ is a maximum
recovery of e(M). By the first part, we know that M′ is an extended recovery of M.
So, it remains to show that if M′′ is an extended recovery of M, then e(M) ◦ e(M′) ⊆
e(M) ◦ e(M′′). Since M′′ is an extended recovery of M, we have that e(M′′) is a recovery
of e(M), hence e(M) ◦ M′ ⊆ e(M) ◦ e(M′′) (since M′ is a maximum recovery of e(M)).
It follows that e(M) ◦ M′◦ → ⊆ e(M) ◦ e(M′′)◦ →, which in turn, easily implies that
e(M) ◦ e(M′) ⊆ e(M) ◦ e(M′′).

The next result reveals that neither converse of Proposition 4.26 is true.

PROPOSITION 4.27. Let M = (S, T, �) be the schema mapping with � = {P(x, y) →
∃z(Q(x, z) ∧ Q(z, y))}, and let M′ be the schema mapping M′ = (T, S, �′) with �′ =
{Q(x, z) ∧ Q(z, y) → P(x, y)}. Then M′ is a maximum extended recovery of M (in fact, it
is an extended inverse of M), but it is not a recovery of e(M), and so it is not a maximum
recovery of e(M).

2This viewpoint was pointed out to us by M. Arenas, J. Pérez, J. Reutter, and C. Riveros in a private
communication.
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PROOF. The schema mapping M′ was shown to be an extended inverse of M in
Example 3.23; consequently, by Proposition 4.17, M′ is also a maximum extended
recovery of M. We will show that M′ is not a recovery of e(M) by exhibiting a source
instance I such that (I, I) ∈ e(M) ◦ M′. For this, consider the ground source instance
I = {P(a, b), P(b, c)}. Towards a contradiction, assume that (I, I) ∈ e(M) ◦ M′. Then
there is a source instance I′ and two target instances J and J′ such that I → I′,
(I′, J′) ∈ M, J′ → J, and (J, I) ∈ M′. Since a, b, and c are constants, it follows that J
must contain the facts Q(a,U ), Q(U, b), Q(b, V ), Q(V, c), for some values (constants or
nulls) U and V . Furthermore, since (J, I) ∈ M′, we must have that P(U, V ) ∈ I, which
implies that either U = a and V = b or U = b and V = c. If U = a, then J contains
the fact Q(a, a), and so I must contain the fact P(a, a), which is false. If U = b, then J
contains the fact Q(b, b), and so I must contain the fact P(b, b), which is false as well.
We conclude that (I, I) ∈ e(M) ◦M′ and, consequently, M′ is not a recovery of e(M).

Propositions 4.26 and 4.27 imply that the notions of a recovery of e(M) and a maxi-
mum recovery of e(M) are stricter notions than those of an extended recovery of M and
a maximum extended recovery of M, respectively. Note that Proposition 4.27 exhibits a
natural extended recovery M′ of M that has good properties for reverse data exchange
(M′ is a chase-inverse), whereas M′ is not a maximum recovery of e(M).

Now, suppose that M is a schema mapping, M′ is a maximum recovery of e(M), and
M′′ is a maximum extended recovery of M. From the definitions of these notions, it
follows that the quantities e(M)◦M′ and e(M)◦e(M′′) depend only on M; in particular,
they are independent of the actual choices of M′ and M′′ as a maximum recovery of
e(M) and a maximum extended recovery of M, respectively. Furthermore, since e(M′′)
is also a recovery of e(M), we have that e(M)◦M′ ⊆ e(M)◦ e(M′′). Thus, at first sight,
it appears that the notion of maximum recovery of e(M) may lead into a new notion of
information loss of a schema mapping M (namely, the set difference (e(M) ◦M′) \ →,
where M′ is a maximum recovery of e(M)) that could be strictly smaller than the notion
of information loss arising from the notion of maximum extended recovery. Our next
result, however, implies that, for schema mappings specified by a finite set of s-t tgds,
this is not the case.

THEOREM 4.28. If M is a schema mapping specified by a finite set of s-t tgds, then the
schema mapping M∗ = { (chaseM(I), I) | I is a source instance } is a maximum recovery
of e(M). Furthermore, we have that e(M) ◦ M∗ = e(M) ◦ e(M∗).

PROOF. First, M∗ is a recovery of e(M) because (I, I) ∈ M◦M∗ ⊆ e(M)◦M∗. Suppose
now that M′ is a recovery of e(M). We will show that e(M) ◦M∗ ⊆ e(M) ◦M′. Actually,
we will show a stronger statement, namely, that M∗ ⊆ → ◦M′, which implies that
e(M) ◦M∗ ⊆ e(M)◦ → ◦M′ = e(M) ◦M′. Let I be an arbitrary source instance. Since
M′ is a recovery of e(M), we have that (I, I) ∈ e(M)◦M′. It follows that there is a target
instance J such that (I, J) ∈ e(M) and (J, I) ∈ M′. Since J is an extended solution
for I with respect to M and since chaseM(I) is a universal extended solution for I
with respect to M, we have that chaseM(I) → J, and so (chaseM(I), I) ∈→ ◦M′. This
completes the proof that M∗ ⊆ → ◦M′, which in turn implies that M∗ is a maximum
recovery of e(M).

Next we show that e(M) ◦M∗ ⊆ e(M) ◦ e(M∗). To begin with, since M∗ ⊆ e(M∗), we
have that e(M) ◦ M∗ ⊆ e(M) ◦ e(M∗). For the other containment, we will show that
e(M) ◦ M∗◦ → ⊆ e(M) ◦ M∗, which easily implies that e(M) ◦ e(M∗) ⊆ e(M) ◦ M∗.
Let I, I′, and I′′ be source instances such that (I, I′) ∈ e(M) ◦M∗ and I′ → I′′. We have
to show that (I, I′′) ∈ e(M) ◦ M∗. Let K be a target instance such that (I, K) ∈ e(M)
and (K, I′) ∈ M∗. Then K = chaseM(I′) and so we have that (I, chaseM(I′)) ∈ e(M)
and (chaseM(I′), I′) ∈ M∗. Since I′ → I′′, we also have that chaseM(I′) → chaseM(I′′).
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Consequently, (I, chaseM(I′′)) ∈ e(M) and (chaseM(I′′), I′′) ∈ M∗, which implies that
(I, I′′) ∈ e(M) ◦M∗. This completes the proof that e(M) ◦M∗◦ → ⊆ e(M) ◦M∗ and the
proof of the theorem.

COROLLARY 4.29. Let M be a schema mapping specified by a finite set of s-t tgds. If
M′ is a maximum recovery of e(M) and M′′ is a maximum extended recovery of M, then
e(M) ◦ M′ = e(M) ◦ e(M′′).

PROOF. This follows from Theorem 4.28 and the fact that M∗ is not only a maximum
recovery of e(M), but also (by Theorem 4.10) a maximum extended recovery of M.

Let M be a schema mapping specified by a finite set of s-t tgds. The final result
of this section sheds additional light on the relationship between maximum extended
recoveries of M and maximum recoveries of e(M).

COROLLARY 4.30. Let M be a schema mapping specified by a finite set of s-t tgds and
let M′ be a recovery of e(M). Then the following statements are equivalent.

(1) M′ is a maximum recovery of e(M).
(2) M′ is a maximum extended recovery of M.

PROOF. We have that (1) ⇒ (2) by part (2) of Proposition 4.26. We now show that (2)
⇒ (1). Clearly, we have that e(M) ◦ M′ ⊆ e(M) ◦ e(M′). Since by assumption M′ is a
maximum extended recovery of M, and since, by Theorem 4.10 we know that M∗ is also
a maximum extended recovery of M, it follows that e(M)◦ e(M′) = e(M)◦ e(M∗). Now
e(M) ◦ e(M∗) = e(M) ◦ M∗, by Theorem 4.28. Putting together what we have shown,
we have that e(M) ◦ M′ ⊆ e(M) ◦ M∗. Therefore, since M∗ is a maximum recovery of
e(M), we have that M′ is a maximum recovery of e(M).

4.4. Relationship to Query Answering in Incomplete Databases

As it has become quite clear by now, the notion of an extended solution (Definition
3.1) has been central to our study of reverse data exchange. This notion can also be
construed as an alternative semantics of satisfaction of an s-t tgd ψ by a pair (I, J) of
a source instance I and a target instance J, where both I and J may contain labeled
nulls. In effect, we have replaced the standard notion (I, J) |= ψ of satisfaction by a
notion of extended satisfaction (I, J) |=e ψ , where (I, J) |=e ψ means that there exist
instances I′ and J′ such that I → I′, (I′, J′) |= ψ , and J′ → J. In symbols, we have
that |=e is → ◦ |= ◦ →.

There is a large body of work in the literature addressing the semantics of queries
(and, in particular, of first-order formulas) when the instances are allowed to contain
labeled nulls. In this section, we examine the relationship between this work and the
notion of extended satisfaction that we considered here.

The papers Imieliński and Lipski [1983, 1984] have become a standard reference
for the semantics of queries posed over incomplete databases, that is databases in
which facts may contain labeled nulls as values. Assume that R is a schema and K
is an instance over R whose facts contain values from Const ∪ Var. Imieliński and
Lipski argued that K represents an infinite set Rep(K) of ground instances over R,
where a ground instance K′ is a member of Rep(K) if and only if K → K′. They
then went on to define the semantics of a query q on K as the intersection

⋂{q(K′) :
K′ ∈ Rep(K)}. In other words, if we let |=IL denote the Imieliński-Lipski semantics,
then for a first-order sentence ψ , we have that K |=IL ψ if and only if K′ |= ψ , for
every ground instance K′ ∈ Rep(K). Imieliński and Lipski were mainly concerned with
answering unions of conjunctive queries over incomplete databases, in which case their
semantics is nontrivial and, in fact, interesting. On the other hand, this semantics can
be quite trivial when applied to s-t tgds. For example, consider the unary copy s-t
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tgd P(x) → P ′(x). Let I be an arbitrary source instance and J an arbitrary target
instance. Then there are ground instances I′ and J′ such that (I′, J′) ∈ Rep((I, J)), but
(I′, J′) |= P(x) → P ′(x). To see this, take ground instances I′′ and J′′ obtained from
I and J, respectively, by replacing each labeled null by a distinct constant, and let I′
be the ground instance obtained from I′′ by adding a ground fact P(a) such that P ′(a)
does not occur in J′′; finally, put J′ = J′′. Then, it is indeed the case that (I′, J′) ∈
Rep((I, J)), but (I′, J′) |= P(x) → P ′(x). Consequently, for every source instance I and
every target instance J, we have that (I, J) |=IL P(x) → P ′(x). In general, the notion
of |=IL satisfaction gives rise to trivial semantics for those s-t tgds that export values
from the source to the target.

More recently, Afrati, Li, and Pavlaki [Afrati et al. 2008] studied the semantics and
the complexity of query answering in the context of data exchange with incomplete
source instances. As a matter of fact, they considered two flavors of certain answers
semantics, namely certain A

M(q, I) and certainB
M(q, I), where M is a schema mapping

specified by s-t tgds, source tgds, and target egds and tgds, q is a query over the
target schema, and I is a source instance that may contain labeled nulls. Note that for
schema mappings M specified by just s-t tgds (which is our concern here), these two
notions of certain answers coincide; thus, in what follows, we will refer to just one of
them, say, to certainB

M(q, I). To define certainB
M(q, I), Afrati, Li, and Pavlaki considered

a notion of solution that is related to, yet is different from, our notion of extended
solution. Assume that M = (S, T, �) is a schema mapping such that � is a finite set
of s-t tgds. Let I be a source instance that may contain nulls. We say that a target
instance J is a B-solution for I with respect to M if there is an instance I′ ∈ Rep(I)
such that (I′, J) |= �. For a query q over the target schema, Afrati et al. [2008] define
certainB

M(q, I) = ⋂{q(J) : J is a B-solution for I with respect to M}. In effect, Afrati
et al. [2008] replace the standard notion |= of satisfaction by the notion |=B, where
(I, J) |=B ψ if there is an instance I′ ∈ Rep(I) such that (I′, J) |= ψ . In symbols, we
have that |=B is

g→ ◦ |=, where
g→ = {(I, I′) : I′ is ground and I → I′}.

Clearly, if (I, J) |=B ψ , then also (I, J) |=e ψ . It is easy to see, however, that the
converse need not be true. In other words, every B-solution is an extended solution, but
there are extended solutions that are not B-solutions. In fact, B-solutions suffer from
a particular limitation that we explain next. As we saw earlier, in Proposition 3.11, if
M is a schema mapping specified by a finite set of s-t tgds, then extended universal
solutions always exist, since for every source instance I, we have that chaseM(I) is an
extended universal solution for I with respect to M. In contrast, chaseM(I) need not be
a B-solution for I, even though it has homomorphisms to every B-solution (since every
B-solution is an extended solution); in particular, this holds true even for the schema
mapping specified by the unary copy s-t tgd P(x) → P ′(x), if I is a source instance
containing nulls. Furthermore, for this schema mapping, if I is a source instance
containing nulls, then no B-solution for I is universal, that is, no B-solution for I has
homomorphisms to every B-solution for I.

Finally, as regards the semantics of conjunctive queries over the target schema,
there is no difference between the certain answers obtained using extended solutions
and those obtained using B-solutions. Specifically, assume that M = (S, T, �) is a
schema mapping such that � is a finite set of s-t tgds. If q is a query over the target
schema and I is a source instance that may contain nulls, let us put certaine

M(q, I) =⋂{q(J) : J is an extended solution for I with respect to M}. It can be shown that if q
is a conjunctive query, then certaine

M(q, I) = certainB
M(q, I), for every source instance

I. This is so because it can be shown that both certaine
M(q, I) and certainB

M(q, I) are
equal to q(chaseM(I))↓, where q(chaseM(I))↓ is the subset of q(chaseM(I)) obtained by
removing all facts containing at least one labeled null.
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Thus, extended solutions are superior to B-solutions because they posses a smoother
theory (e.g., extended universal solutions always exist), while at the same time they
give rise to the same notion of certain answers as the one arising from B-solutions.

5. MAXIMUM EXTENDED RECOVERIES: LANGUAGE

The main result of this section is a polynomial-time algorithm that, given a schema
mappingM specified by s-t tgds, produces a maximum extended recovery ofM specified
by a formula of existential second-order logic. It is an open problem whether or not every
such schema mapping M has a maximum extended recovery specified by a formula of
first-order logic.

We note that Arenas et al. [2009b] gave a polynomial-time algorithm for producing
a maximum recovery of M that is specified in existential second-order logic. It is not
obvious whether the algorithm of Arenas et al. [2009b] can be used to obtain maximum
extended recoveries. We also note that our algorithm is very different from theirs.
However, the fragment of existential second-order logic that we use is very similar
to that used in Arenas et al. [2009b]: both involve formulas that are equivalent to
formulas of the form ∃f(C1 ∧ · · · ∧ Cm), where f is a collection of function symbols,
each Ci is of the form α → (D1 ∨ · · · ∨ Dn) with α a conjunction of atomic formulas
including the Constant predicate, and with each Dj a conjunction of atomic formulas
(including, in our case, also the Null predicate), equalities and inequalities of terms.3
Our construction actually also allows formulas domU to appear in α; we now define
them and show how we can eliminate them.

Let U be a schema. In our cases of interest, we shall let U be either S (the source
schema), T (the target schema), or S ∪ T (which consists of those relation symbols in
either the source schema or the target schema). The formula domU(x) is intended to
be an abbreviation for the statement that the members of x are each members of the
active domain of an instance of U. We now show by example how we represent these
formulas domU(x) in our context, and how we can eliminate them. Assume that U1
consists of the unary relation symbol P and the binary relation symbol Q, and U2
consists of the binary relation symbol R. Let y1 and y2 be new variables. The formula
∀x(domU1 (x1) ∧ domU2 (x2) ∧ α → β) can be taken to be shorthand for the formula:

∀x∀y1∀y2((P(x1) ∨ Q(x1, y1) ∨ Q(y1, x1)) ∧ (R(x2, y2) ∨ R(y2, x2)) ∧ α → β).

This formula is of the form

∀x∀y1∀y2((A1 ∨ A2 ∨ A3) ∧ (B1 ∨ B2) ∧ α → β).

We can replace this formula by the six formulas, ∀x∀y1∀y2(Ai ∧Bj ∧α → β), for 1 ≤ i ≤ 3
and 1 ≤ j ≤ 2.

In the algorithm we shall give shortly, we shall speak of the Skolemized form of an
s-t tgd. This is obtained by replacing each existentialized variable by a new Skolem
function, in the standard way. For example, the Skolemized form of the s-t tgd Q(x3) ∧
R(x3, x4) → ∃x1∃x2 P(x1, x3, x3, x2) is Q(x3) ∧ R(x3, x4) → P( f1(x3, x4), x3, x3, f2(x3, x4)),
where fi is the Skolem function corresponding to the existentially quantified variable
xi, for i = 1, 2. Note that the arguments of f1 and f2 are the variables appearing in the
premise, namely x3 and x4. Note also that the Skolemized form of a full s-t tgd σ is σ
itself.

Let M = (S, T, �), where � is a finite set of s-t tgds. Let

M
 = {(J, I) | J → chaseM(I) and I is a source instance}.
3Both our construction and the construction in Arenas et al. [2009b] actually take each Ci to be of the form
∃x(α → (D1 ∨ · · · ∨ Dn)), but the existential quantifiers can be eliminated by adding extra existentially-
quantified function symbols to ∃f.
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As before, let

M∗ = {(chaseM(I), I) | I is a source instance}.
It is easy to see that M
 =→ ◦M∗. Therefore, e(M
) = e(M∗). Hence, since M∗ is a
strong maximum extended recovery of M by Theorem 4.10, it follows that M
 is a
strong maximum extended recovery of M. We now give an algorithm that generates a
formula σ ′ in existential second-order logic that we shall show specifies M
.

As noted earlier, our existential second-order language for maximum extended re-
coveries makes use of formulas of the form Null(x), which we define to be simply an
abbreviation for ¬Constant(x). Of course, we could instead take Null to be a new re-
lation symbol, and define its semantics similarly to how we defined the semantics of
Constant.

ALGORITHM: MaxExtendedRecovery(M)

Input: A schema mapping M = (S, T, �), where � is a finite set of s-t tgds.
Output: A schema mapping M′ = (T, S, σ ′) that is a strong maximum extended recovery of M,
where σ ′ is a formula in existential second-order logic.

1. (Create a Skolemized and normalized form of �.) Create �1 from � by Skolemizing each s-t
tgd in �. Create �2 from �1 by replacing each member α → (β1 ∧ · · · ∧ βr) in �1, where the
formulas βi are atomic, by the formulas α → β1, . . ., α → βr , so that the conclusions are
singletons.

2. (Create formulas that describe a homomorphism and Skolem functions.) Let f consist of the
Skolem function symbols created in the previous step, and let h be a new unary function
symbol (that will represent a homomorphism). Let �′

1 consist of formulas of the following
form (where, as usual, we do not bother to write the leading universal quantifiers).
a. domT(x) ∧ Constant(x) → (h(x) = x)
b. domS(x) → Null( f (x)), for each f in f
c. domS(x1) ∧ · · · ∧ domS(xn) ∧ domS(x′

1) ∧ · · · ∧ domS(x′
n)

∧( f (x1, . . . , xn) = f (x′
1, . . . , x′

n)) → ((x1 = x′
1) ∧ · · · ∧ (xn = x′

n)), for each f in f
d. domS(x) ∧ domS(x′) → ( f (x) = f ′(x′)), for distinct f, f ′ in f
e. domS(x) ∧ domS∪T(y) → ( f (x) = y)

Thus, (a) says that h maps each constant to itself, (b) says that the range of each Skolem
function consists only of null values, (c) and (d) say that the Skolem functions generate
distinct nulls, and (e) says that these values are all new.

3. (Create formulas about the homomorphism.) For each relation symbol P of T, if P is k-ary,
let y1, . . . , yk be new, distinct variables, and initialize the set SP to be empty. For each
formula α(x) → P(t1, . . . , tk) in �2 (where the conclusion contains the relation symbol P),
add to SP the formula ∃x(α(x) ∧ (h(y1) = t1) ∧ · · · ∧ (h(yk) = tk)). Let τP be the formula
P(y1, . . . , yk) → ∨ {φ | φ ∈ SP}. Let �′

2 consist of these formulas τP (one for each relation
symbol P of T). Let σ be the conjunction of the members of �′

1 ∪ �′
2, and let σ ′ be the

formula ∃h∃fσ .
Return M′ = (T, S, σ ′).

Note that each ti in Step 3 is either a variable or a term of the form f (xi1 , . . . , xik),
where xi1 , . . . , xik are variables in x. Since also α(x) implies domS(x), it follows that
f (xi1 , . . . , xik) is the result of applying f with all of its arguments in the active domain
of the source instance. This is why it was sufficient to restrict variables in (b), (c),
and (d) of Step 2 to be in the active domain of the source instance, and to restrict the
variables of x in (e) of Step 2 to be in the active domain of the source instance.

We now give an example of the application of the algorithm.
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Example 5.1. Assume that � consists of the following two s-t tgds:

A(x1, x2) ∧ B(x1) → P(x1, x2, x1, x1)
C(x1, x2, x2, x3) → ∃y(P(x1, x2, x2, y) ∧ Q(y, x2)).

Then �1 consists of:

A(x1, x2) ∧ B(x1) → P(x1, x2, x1, x1)
C(x1, x2, x2, x3) → (P(x1, x2, x2, f (x1, x2, x3)) ∧ Q( f (x1, x2, x3), x2)).

We then have �2 consisting of:

A(x1, x2) ∧ B(x1) → P(x1, x2, x1, x1)
C(x1, x2, x2, x3) → P(x1, x2, x2, f (x1, x2, x3))
C(x1, x2, x2, x3) → Q( f (x1, x2, x3), x2).

Then �′
2 in Step 3 consists of:

P(y1, y2, y3, y4) → (∃x1∃x2(A(x1, x2) ∧ B(x1)
∧ (h(y1) = x1) ∧ (h(y2) = x2) ∧ (h(y3) = x1) ∧ (h(y4) = x1))

∨ ∃x1∃x2∃x3(C(x1, x2, x2, x3)
∧ (h(y1) = x1) ∧ (h(y2) = x2) ∧ (h(y3) = x2) ∧ (h(y4) = f (x1, x2, x3))

Q(y1, y2) → (C(x1, x2, x2, x3) ∧ (h(y1) = f (x1, x2, x3)) ∧ (h(y2) = x2)).

As before, let �′
1 be the conjunction of the formulas in Step 2, and let σ be the

conjunction of the members of �′
1 ∪ �′

2. Then σ ′ is the formula ∃h∃ f σ .

THEOREM 5.2. Let M = (S, T, �) be a schema mapping where � is a finite set of
s-t tgds. Then MaxExtendedRecovery(M) produces a schema mapping M′ = (T, S, σ ′)
where σ ′ specifies M
.

PROOF. Assume first that (J, I) ∈ M
, so that J → chaseM(I). We now show that
(J, I) |= σ ′. We instantiate h by a homomorphism from J to chaseM(I), and we in-
stantiate the members of f by the Skolem functions that produce the null values that
arise in the naive chase.4 Clearly (J, I) satisfies �′

1 under our choice of the functions.
To conclude the proof that (J, I) |= σ ′, we must show that (J, I) satisfies τP for each
relation symbol P of T. Assume that P(y1, . . . , yk) holds in J. Since h is a homomor-
phism from J to chaseM(I), there is some formula α(x) → P(t1, . . . , tk) in �2 (where
the conclusion contains the relation symbol P), such that the result of chasing I with
α(x) → P(t1, . . . , tk) generates P(h(y1), . . . , h(yk)). Thus, there is some choice of x such
that under this choice of x and for our functions, α(x) holds and h(y1) = t1, . . ., h(yk) = tk.
That is, (J, I) satisfies ∃x(α(x) ∧ (h(y1) = t1) ∧ · · · ∧ (h(yk) = tk)). But τP says exactly that
one such formula holds. So indeed, (J, I) satisfies τP , as desired.

Conversely, assume that (J, I) |= σ ′; we must show that (J, I) ∈ M
. It follows
from the formulas (b), (c), (d), and (e) of Step 2 of the algorithm that the functions
instantiating members of f can play the role of the Skolem functions. The formula
(a) of Step 2 tells us that h maps constants to themselves, and the formulas τP tell
us, as in the proof of the opposite implication, that if P(y1, . . . , yk) holds in J, then
P(h(y1), . . . , h(yk)) holds in chaseM(I). So h is a homomorphism from J to chaseM(I).
Therefore, J → chaseM(I), and so (J, I) ∈ M
, as desired.

4In the naive chase, each time an s-t tgd γ fires, we produce new null values for the existentially-quantified
variables in the conclusion of γ , no matter what the result is of other firings of s-t tgds.
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COROLLARY 5.3. There is a polynomial-time algorithm that, given a schema mapping
specified by a finite set of s-t tgds, produces a strong maximum extended recovery that
is specified in existential second-order logic.

PROOF. This follows from Theorem 5.2, from the fact noted earlier, that M
 is a strong
maximum extended recovery, and from the easily-verified fact that the algorithm Max-
ExtendedRecovery runs in polynomial time.

It is an interesting question whether or not a maximum extended recovery can always
be specified in the language of first-order logic. Although we have not been able to settle
this question, our next theorem shows that this language must necessarily go beyond
s-t tgds and some of their extensions.

THEOREM 5.4. There is a schema mapping M specified by a finite set of full s-t tgds
such that:

(1) M has a maximum extended recovery specified by a finite set of disjunctive tgds
with inequalities.

(2) M has no maximum extended recovery specified by a set of disjunctive tgds.
(3) M has no maximum extended recovery specified by tgds with inequalities.

PROOF. Let S consist of the binary relation symbol P and the unary relation symbol
T , and let T consist of the binary relation symbol P ′. Let M = (S, T, �) be the schema
mapping such that

� = {P(x, y) → P ′(x, y), T (x) → P ′(x, x)}.
Part 1. Let M∗ = (S, T, �∗) be the schema mapping, where �∗ consists of two tgds:

P ′(x, y) ∧ x = y → P(x, y) P ′(x, x) → T (x) ∨ P(x, x).

We claim that M∗ is a maximum extended recovery of M. To begin with, M∗ is an
extended recovery of M because it is easy to verify that (I, I) ∈ M ◦ M∗, for every
source instance I. By Theorem 4.14, we now need to show that →M= e(M) ◦ e(M∗).

Since M∗ is an extended recovery of M and since →M is the minimum value of the
expression e(M)◦e(M′), as M′ varies over all extended recoveries of M (of which there
is at least one by Theorem 4.10), we have that →M⊆ e(M) ◦ e(M∗). So, it suffices to
show that e(M) ◦ e(M∗) ⊆→M. In turn, it suffices to show that M◦ → ◦M∗ ⊆→M.
Towards this goal, assume that (I1, I2) ∈ M◦ → ◦M∗. We will complete the proof by
showing that chaseM(I1) → chaseM(I2). Since (I1, I2) ∈ M◦ → ◦M∗, there are target
instances J1 and J2 such that (I1, J1) ∈ M, J1 → J2, and (J2, I2) ∈ M∗. Since chaseM(I1)
is a universal solution for I1 with respect to M, we have that there is a homomorphism
from chaseM(I1) to J1, hence there is a homomorphism, call it h, from chaseM(I1) to J2.
We claim that h is also a homomorphism from chaseM(I1) to chaseM(I2). Let P ′(u, v)
be a fact of chaseM(I1). It follows that P ′(h(u), h(v)) is a fact of J2. If h(u) = h(v), then
P(h(u), h(v)) is a fact of I2, hence P ′(h(u), h(v)) is a fact of chaseM(I2), which was to be
shown. If h(u) = h(v), then P ′(h(u), h(u)) is a fact of J2, hence T (h(u)) is a fact of I2 or
P(h(u), h(u)) is a fact of I2. From this, it follows that P ′(h(u), h(u)) (which is the same as
P ′(h(u), h(v))) is a fact of chaseM(I2), which was to be shown. This completes the proof
that M∗ is a maximum extended recovery of M.

Part 2. Assume now that M has a maximum extended recovery M′ = (T, S, �′),
where �′ is a set of disjunctive tgds. Hence, e(M) ◦ e(M′) =→M. Let χ be a member
of �′. We claim that the conclusion of χ must contain a disjunct whose conjuncts are
of the form ∃yT (y) or of the form T (x). To see this, let I be the source instance with
PI = ∅ and T I = {a}, for some constant a. Since (I, I) ∈→M and M′ is a maximum
extended recovery of M, we know that (I, I) ∈ e(M) ◦ e(M′). This means that there
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are instances I1, J1, J2, I2 such that I → I1, (I1, J1) ∈ M, J1 → J2, (J2, I2) ∈ M′, and
I2 → I. Since a is a constant and T (a) is a fact of I, we have that T (a) is a fact of I1,
hence P ′(a, a) is a fact of J1, hence P ′(a, a) is a fact of J2. Since (J2, I2) |= χ , it follows
that the premise of χ becomes true when all universally quantified variables in χ take
value a. Consequently, there is a disjunct ∃yϕ(x, y) in the conclusion of χ , such that
∃yϕ(x̄, y) holds in I2, where x̄ assigns a to every variable in x. Since PI = ∅ and I2 → I,
we must have that PI2 = ∅, hence it must be the case that P does not occur in ϕ(x, y),
which means that each conjunct of ϕ(x, y) is of the form ∃yT (y) or of the form T (x).

Let I1 be {P(a1, a2), T (a1), T (a2)} and let I2 be {T (a1), T (a2)}. It is straightforward to
verify that chaseM(I1) = {P ′(a1, a2), P ′(a1, a1), P ′(a2, a2)}. and chaseM(I2) = {P ′(a1, a1),
P ′(a2, a2)}. Consequently, chaseM(I1) → chaseM(I2), which means that (I1, I2) ∈ →M.
We will derive a contradiction by showing that (I1, I2) ∈ e(M) ◦ e(M′); in fact, we
will show that (I1, I2) ∈ M ◦ M′. Clearly, (I1, chaseM(I1)) ∈ M. We will show that
(chaseM(I1), I2) ∈ M′. For this, let χ be a member of �′. If there is an assignment of
values from chaseM(I1) to the universally quantified variables in χ so that chaseM(I1)
satisfies the premise of χ , then each variable must be assigned value a1 or a2. Since, by
the claim in the preceding paragraph, the conclusion of χ contains a disjunct consisting
of conjunctions of the form ∃yT (y) or of the form T (x), we have that the conclusion of
χ becomes true in I2, since I2 contains the facts T (a1) and T (a2). This completes the
proof of Part 2.

Part 3. Finally, assume that M has a maximum extended recovery M′ = (T, S, �′),
where �′ is a set of tgds with inequalities. So e(M) ◦ e(M′) =→M.

Let I1 = {P(a, a)} and I2 = {T (a)} be two ground instances (a is a constant). We
then have chaseM(I1) = {P ′(a, a)} = chaseM(I2), hence we have that I1 →M I2 and
I2 →M I1; in turn, this implies that (I1, I2) ∈ e(M) ◦ e(M′) and (I2, I1) ∈ e(M) ◦ e(M′).
Since (I1, I2) ∈ e(M) ◦ e(M′), there are I3, J3, J4, and I4 such that I1 → I3, (I3, J3) ∈ M,
J3 → J4, (J4, I4) ∈ M′, and I4 → I2. Since I1 is a ground instance, we have that
I1 ⊆ I3 and so (I1, J3) ∈ M (recall that M is specified by tgds, hence it is downward
closed from the left). In turn, this implies that chaseM(I1) → J3 (since chaseM(I1) is a
universal solution for I1), and so chaseM(I1) → J4 since J3 → J4. Since chaseM(I1) =
{P ′(a, a)}, we have that chaseM(I1) ⊆ J4, hence (chaseM(I1), I4) ∈ M′ (note that M′ is
also downward closed from the left, since M′ is specified by tgds with inequalities).
Consider now chaseM′(chaseM(I1)); this is a single source instance (and not a set of
source instances) because M′ is specified by tgds with inequalities (no disjunctions).
Since chaseM′(chaseM(I1)) is a universal solution for chaseM(I1) with respect to M′, we
have that chaseM′(chaseM(I1)) → I4. It follows that chaseM′(chaseM(I1)) → I2. In other
words, we have that chaseM′({P ′(a, a)}) → {T (a)}. This implies that chaseM′({P ′(a, a)})
does not contain any fact of the form P(u, v), where u and v are constants or nulls. By
reversing the roles of I1 and I2, an analogous argument shows that chaseM′({P ′(a, a)}) →
I1, which is the same as saying that chaseM′({P ′(a, a)}) → {P(a, a)}. In turn, this implies
that chaseM′({P ′(a, a)}) does not contain any fact of the form T (u), where u is a constant
or a null. Since chaseM′({P ′(a, a)}) contains no fact involving P and no fact involving T ,
it follows that chaseM′({P ′(a, a)}) = ∅. This, however, leads us to a contradiction. Indeed,
if chaseM′({P ′(a, a)}) = ∅, then chaseM′({P ′(a, a)}) → P(b, b), where b is a constant
different from a. We now have that:

—({P(a, a)}, chaseM({P(a, a)})) ∈ M,
—(chaseM({P(a, a)}), chaseM′(chaseM({P(a, a)})) ∈ M′, and
—chaseM′(chaseM({P(a, a)})) → {P(b, b)}.
It follows that ({P(a, a)}, {P(b, b)}) ∈ M ◦ M′◦ →⊆→M, which is a contradiction since
{P(a, a)} →M {P(b, b)}. This completes the proof of the theorem.
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6. APPLICATIONS TO DATA EXCHANGE AND BEYOND

In this section, we study three applications of maximum extended recoveries: reverse
data exchange, reverse query answering, and comparing schema mappings. Central
to all these applications is the notion of a disjunctive relaxed chase-inverse, which
generalizes the notion of a chase-inverse and provides a procedural counterpart to the
notion of maximum extended recovery.

6.1. Reverse Data Exchange: Disjunctive Relaxed Chase-Inverses

We have seen that extended inverses specified by s-t tgds have an equivalent charac-
terization as chase-inverses. This characterization shows the usefulness of extended
inverses for reverse data exchange. However, for schema mappings that are not ex-
tended invertible, chase-inverses do not exist.

We shall define a relaxation of the notion of chase-inverse, called relaxed chase-
inverse, which is specified by s-t tgds. More generally, we define the notion of a dis-
junctive relaxed chase-inverse which is specified by disjunctive s-t tgds. We argue that
disjunctive relaxed chase-inverses have the desired properties for reverse data ex-
change even when no extended inverse exists. Furthermore, we show that maximum
extended recoveries that are specified by disjunctive tgds coincide with disjunctive
relaxed chase-inverses. This characterization shows, in a precise way, the benefit of
maximum extended recoveries for reverse data exchange.

In the definition of a disjunctive relaxed chase-inverse and in the subsequent results,
we make use of the disjunctive chase with disjunctive tgds. Chasing with disjunctive
dependencies has been considered before in various contexts [Deutsch and Tannen
2001; Fagin et al. 2005a, 2008]. Intuitively, the disjunctive chase is an extension of the
standard chase where each step generates several instances, each satisfying one of the
disjuncts in the dependency that is applied. Thus, the result of the disjunctive chase
is, in general, a set of instances.

Definition 6.1 (Disjunctive Chase Step). Let K be an instance and let σ be a dis-
junctive tgd:

∀x(ϕ(x) →
n∨

i=1

∃yiψi(x, yi)).

We say that σ is applicable to K with homomorphism h if h is a homomorphism from
ϕ(x) to K such that for each i ∈ {1, . . . , n}, there is no extension of h to a homomorphism
h′ from ϕ(x) ∧ ψi(x, yi) to K. For each i with 1 ≤ i ≤ n, let Ki be the union of the facts
in K with the set of facts obtained by: (a) extending h to h′ such that each variable in
yi is assigned a fresh labeled null, followed by (b) taking the image of the atoms of ψi
under h′. We say that the result of applying σ to K (also called a disjunctive chase step)

is the set {K1, . . . , Kn} and write K
σ,h−→ {K1, . . . , Kn}.

Note that in the case where σ is a tgd, the set {K1, . . . , Kn} reduces to a single instance

K′. We then write a chase step as K
σ,h−→ K′.

Definition 6.2 (Disjunctive Chase). Let � be a finite set of disjunctive tgds. The
disjunctive chase of an instance K with � is a tree (finite or infinite) that has K as a
root and for each node K′, if K′ has children K1, . . . , Kp, then it must be the case that

K′ σ,h−→ {K1, . . . , Kp} for some σ in � and some homomorphism h. Moreover, each leaf L
in the tree has the requirement that there is no σ in � and no homomorphism h such
that σ can be applied to L with h. When the chase tree is finite we say that the result
of the disjunctive chase of K with � is the set of leaves in the chase tree.
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Our case of interest is applying the disjunctive chase with �′, where �′ is a set
of disjunctive tgds that specify a schema mapping M′ from the target schema T to
the source schema S. Moreover, the input to the disjunctive chase is an instance of
the form (U,∅), where U = chaseM(I), for some source instance I. The result of the
disjunctive chase is a set {(U, V1), . . . , (U, Vm)} of instances where V1, . . . , Vm are S-
instances. (Note that the chase tree will necessarily be finite, since there is no recursion
in the dependencies of M′). If V denotes the set {V1, . . . , Vm}, we shall also say that V
is the result of chasing U with M′ and write V = chaseM′(U ).

In the proofs of this section, we shall make use of the following lemma, which is a
simplified version of Lemma 6.6 of Fagin et al. [2008], shown there to hold for a slightly
richer language.

LEMMA 6.3 (TRIANGLE LEMMA FOR DISJUNCTIVE TGDS). Let σ be a disjunctive tgd and
let K be an instance. Assume that σ is applicable to K with homomorphism h and let

K
σ,h−→ {K1, . . . , Kn} be the corresponding disjunctive chase step.

Let K∗ be an instance such that (1) K∗ satisfies σ , and (2) K → K∗. Then there is an
instance Km in {K1, . . . , Kn} such that Km → K∗.

We are now ready to define the notion of a relaxed chase-inverse. We define the more
general notion of a disjunctive relaxed chase-inverse afterwards.

Definition 6.4. Let M be a schema mapping specified by a finite set of s-t tgds.
(1) Let M′ be a reverse schema mapping specified by a finite set of tgds. Then M′ is a

relaxed chase-inverse of M if for every source instance I, the following hold for the
instance V = chaseM′(chaseM(I))5:
(a) I →M V .
(b) V → I.

(2) Let M′ be a reverse schema mapping specified by a finite set of disjunctive tgds.
Then M′ is a disjunctive relaxed chase-inverse of M if for every source instance I,
the following hold for the set {V1, . . . , Vk} = chaseM′(chaseM(I)):
(a) We have I →M Vl, for every Vl ∈ {V1, . . . , Vk}.
(b) Vi → I, for some Vi ∈ {V1, . . . , Vk}.

In order to interpret this definition, we first make the following parallel between
→ and →M. In general, condition I1 → I2 can be interpreted as saying that I2 has at
least as much information as I1. The weaker condition I1 →M I2 can be interpreted as
saying that I2 exports at least as much information as I1. More concretely, I1 →M I2
is the same as chaseM(I1) → chaseM(I2), for the case we are considering (where M is
specified by s-t tgds). Thus, I1 →M I2 says that the data that is exported via the chase
with M from I2 has at least as much information as the data that is exported via the
chase with M from I1. Then we can interpret Definition 6.4 as follows.

Part (1) of Definition 6.4 handles the case when M′ has no disjunction and, hence,
the result of reverse data exchange consists of a single source instance V . It follows
from condition (b) that V →M I. If we combine this with condition (a), we see that V
exports the same information as I. Condition (b) is a soundness condition, which tells
us that V has no more information than I.

Note that if we just had → instead of →M in condition (a), then Definition 6.4(1)
would become the same as the earlier definition of a chase-inverse, since we would have
homomorphisms in both directions, and hence homomorphic equivalence of V and I.
Thus in effect, we relaxed the definition of a chase-inverse by replacing → with the

5Since in the nondisjunctive case the result of the chase is always a singleton, we write here, simply, V
instead of {V }.
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weaker →M in one of the two directions (from I to V ) of homomorphic equivalence. The
other direction (from V to I) cannot be weakened, since it is the soundness condition
that we discussed earlier.

Generalizing to the disjunctive case, condition (a) in Definition 6.4(2) states that ev-
ery instance in the set {V1, . . . , Vk} that results after the reverse data exchange exports
at least as much information as the original source instance I. Condition (b) states that
one of the instances Vi is homomorphically contained in the original source instance I,
and hence, Vi contains no extra information. Since Vi → I implies Vi →M I, conditions
(a) and (b) together imply that there is some Vi that exports exactly the same informa-
tion as I. (The existence of such a Vi is what constitutes a faithful schema mapping,
as defined in Fagin et al. [2008]. However, the definition of a disjunctive relaxed chase-
inverse is stronger, since condition (b) is not necessarily implied by faithfulness.)

We illustrate the definition with a concrete example.

Example 6.5. Let us revisit the “union” schema mapping M of Example 3.16,
where we recall that M is specified by the s-t tgds P(x) → R(x) and Q(x) → R(x). We
have shown that M is not extended-invertible. This implies, by Theorem 3.22, that
there can be no chase-inverse of M. In contrast, the schema mapping M′ specified by:

R(x) → P(x) ∨ Q(x),

is a disjunctive relaxed chase-inverse of M. To illustrate why this is the case, consider
the source instance I = {P(a), Q(b)}, where a and b are two distinct constants. Then
chaseM(I) is the instance U = {R(a), R(b)}, while chaseM′(chaseM(I)) is the following
set of four instances:

V1 = {P(a), P(b)}, V2 = {P(a), Q(b)}, V3 = {P(b), Q(a)}, V4 = {Q(a), Q(b)}.
Let us verify that the set {V1, V2, V3, V4} satisfies the two conditions (a) and (b) in
Definition 6.4(2), with respect to the preceding source instance I. (The same type of
argument can be easily extended to work for an arbitrary source instance I.)

First, it is easy to see that for each Vl, with l = 1, . . . , 4, we have that chaseM(Vl) = U .
Since U = chaseM(I), we obtain that chaseM(Vl) = chaseM(I), for every Vl in our set.
In particular, we obtain that I →M Vl, for every Vl in our set. Thus, condition (a) is
satisfied. To verify condition (b), we just need to observe that, among the four instances
in {V1, V2, V3, V4}, the instance V2 is equal to I and, in particular, V2 → I. Intuitively,
the set {V1, . . . , V4} covers all possible cases of the data that could appear in the original
source instance I.

The next theorem states that, when the schema mapping M is extended invertible,
then the relaxed chase-inverses of M coincide with the chase-inverses of M. Thus, the
concept of a relaxed chase-inverse (and its disjunctive generalization) is an extension
of the concept of a chase-inverse.

THEOREM 6.6. Let M be an extended invertible schema mapping specified by a finite
set of s-t tgds, and let M′ be a “reverse” schema mapping specified by a finite set of tgds.
Then M′ is a relaxed chase-inverse of M if and only if M′ is a chase-inverse of M.

PROOF. Assume first that M′ is a chase-inverse of M. Let I be a source instance and
let V be the instance chaseM′(chaseM(I)). Since M′ is a chase-inverse of M, we obtain
that V is homomorphically equivalent to I. In particular, this implies both conditions
(a) and (b) in Definition 6.4(2) (where condition (a) follows by the fact that → ⊆ →M
when M is specified by s-t tgds).

For the reverse direction, assume that M′ is a relaxed chase-inverse of M. Let I be
a source instance and let V be the instance chaseM′(chaseM(I)). Since M′ is a relaxed
chase-inverse of M, we have that I →M V and V → I. Since M is extended invertible,
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we have that →M = → (by Corollary 4.16). It follows that I → V and V → I. Thus, V
and I are homomorphically equivalent and, hence, M′ is a chase-inverse of M.

We now point out that the preceding definition of a disjunctive relaxed chase-inverse
is equivalent to (but not the same as) the definition given in the conference version
[Fagin et al. 2009] of this article. Furthermore, in the conference version, we used
the term universal-faithful for what we now call disjunctive relaxed chase-inverse.
The definition in the conference version had three conditions, which turn out to be
equivalent to the simpler conditions (a) and (b) in Definition 6.4(2). In particular, a third
condition, called universality, appeared in the definition in the conference version. The
next proposition, which we shall find useful later, shows that this condition is automatic.

PROPOSITION 6.7. Let M be a schema mapping specified by a finite set of s-t tgds
and let M′ be a disjunctive relaxed chase-inverse of M. For every source instance I, the
following holds for chaseM′(chaseM(I)) = {V1, . . . , Vk}:
(*) For every I′ such that I →M I′, there is some Vi ∈ {V1, . . . , Vk} such that Vi → I′.

PROOF. Assume that chaseM′(chaseM(I′)) = {V ′
1, . . . , V ′

l }. Furthermore, let us denote
chaseM(I) by U and chaseM(I′) by U ′. Since I →M I′, we have that U → U ′. Assume
now that V ′

j is some arbitrary instance in {V ′
1, . . . , V ′

l }. Since U → U ′, we also have
that (U,∅) → (U ′, V ′

j) (where we now consider instances over the combined target and
source schema). Furthermore, we have that (U ′, V ′

j) ∈ M′, since the chase, including
the disjunctive one, always produces solutions. By repeatedly applying the triangle
lemma for disjunctive tgds (Lemma 6.3), we obtain that there is some Vi in {V1, . . . , Vk}
such that (U, Vi) → (U ′, V ′

j), and in particular, Vi → V ′
j . Since V ′

j was arbitrarily
chosen from {V ′

1, . . . , V ′
l }, we proved that for every V ′

j in {V ′
1, . . . , V ′

l }, there is some
Vi in {V1, . . . , Vk} such that Vi → V ′

j . Since M′ is a disjunctive relaxed chase-inverse,
condition (b) must hold where we take I′ to play the role of I in the definition. It follows
that there is some V ′

j in {V ′
1, . . . , V ′

l } such that V ′
j → I′. Also, we showed earlier that

there is some Vi in {V1, . . . , Vk} such that Vi → V ′
j . By composing homomorphisms, we

obtain that Vi → I′, for some Vi in {V1, . . . , Vk}.
The next theorem shows that disjunctive relaxed chase-inverses are precisely the

maximum extended recoveries that are specified by disjunctive tgds. Theorem 3.22
stated a similar relationship between the more restrictive notions of extended inverse
and chase-inverse. In fact, it is not hard to see that Theorem 6.8 is a generalization
of Theorem 3.22, in the sense that there is a very direct proof of Theorem 3.22 from
Theorem 6.8.

THEOREM 6.8. Let M be a schema mapping specified by a finite set of s-t tgds and
let M′ be a “reverse” schema mapping specified by a finite set of disjunctive tgds. The
following statements are equivalent:

(1) M′ is a maximum extended recovery of M.
(2) M′ is a disjunctive relaxed chase-inverse of M.

PROOF. Assume first that M′ is a maximum extended recovery of M. To prove that
M′ is a disjunctive relaxed chase-inverse of M, let I be a source instance, let U =
chaseM(I), and let {V1, . . . , Vk} = chaseM′(U ). For every Vl in {V1, . . . , Vk}, we have
that (I, Vl) ∈ M ◦ M′, since (I,U ) ∈ M and (U, Vl) ∈ M′, because the chase always
produces solutions. It follows that (I, Vl) ∈ e(M) ◦ e(M′), for every Vl. This implies, by
Theorem 4.14, that (I, Vl) ∈→M. Thus, we obtain I →M Vl, for every Vl in {V1, . . . , Vk},
which is condition (a) in Definition 6.4(2).
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We now prove condition (b) in Definition 6.4(2). Since M′ is an extended recovery,
we have that (I, I) ∈ e(M) ◦ e(M′). Therefore, (I, I) ∈→ ◦M◦ → ◦M′◦ →. Thus, there
exist instances I0, J0, J1, and I1 such that I → I0, (I0, J0) ∈ M, J0 → J1, (J1, I1) ∈ M′,
and I1 → I. We then apply the triangle lemma twice, once for tgds (M) and once for
disjunctive tgds (M′), as follows.

First, we have that I → I0 implies (I,∅) → (I0, J0) (where we now consider instances
over the combined source and target schema). Since (I0, J0) satisfies all the tgds in
M, and since (I,U ) is the result of chasing (I,∅) with M, it follows, by applying the
triangle lemma for tgds repeatedly, that (I,U ) → (I0, J0). In particular, we obtain that
U → J0.

Since also J0 → J1, we obtain that U → J1. Now since (J1, I1) ∈ M′, and U → J1
implies that (U,∅) → (J1, I1), we know, by repeatedly applying the triangle lemma for
disjunctive tgds, that there is some Vi in the result of the disjunctive chase of U such
that Vi → I1. Furthermore, because I1 → I, it follows that Vi → I. This completes the
proof that (1) implies (2).

We now show that (2) implies (1). Assume that M′ is a disjunctive relaxed chase-
inverse of M. We show that M′ is a maximum extended recovery of M, by showing that
e(M) ◦ e(M′) = →M. (Thus, we again use the characterization of maximum extended
recoveries given by Theorem 4.14.) We first show that →M ⊆ e(M) ◦ e(M′). Assume
I →M I′. Let {V1, . . . , Vk} = chaseM′(chaseM(I)). By Proposition 6.7, condition (*) must
hold. So, there is some Vi in {V1, . . . , Vk} such that Vi → I′. On the other hand, we have
that (I, Vi) ∈ M ◦ M′, since (I,U ) ∈ M and (U, Vi) ∈ M′, because the chase always
produces solutions. Thus, we conclude that (I, I′) ∈ M ◦ M′◦ →, which implies that
(I, I′) ∈ e(M) ◦ e(M′).

For the opposite direction, assume that (I, I′) ∈ e(M) ◦ e(M′). Therefore, (I, I′) ∈
→ ◦M◦ → ◦M′◦ →. Thus, there exist instances I0, J0, J1, and I1 such that I → I0,
(I0, J0) ∈ M, J0 → J1, (J1, I1) ∈ M′, and I1 → I′. Furthermore, let U = chaseM(I),
and let {V1, . . . , Vk} = chaseM′(U ). We then apply the triangle lemma twice (as we did
earlier), once for tgds (M) and once for disjunctive tgds (M′), and conclude that there
is some Vi in {V1, . . . , Vk} such that Vi → I′. At the same time, by condition (a) in
Definition 6.4(2), we have that I →M Vi. Putting the last two facts together, we obtain
that I →M I′. (We made use here of the fact that →M ◦ → = →M, which follows as in
Proposition 4.12.)

This theorem gives an additional tool for verifying whether a schema mapping M′
is a maximum extended recovery of a schema mapping M. For instance, the schema
mapping M′ in Example 6.5 is a maximum extended recovery for the union schema
mapping M, since M′ is specified by a disjunctive tgd and since we have shown that
M′ is a disjunctive relaxed chase-inverse of M.

6.2. Reverse Query Answering

Let M = (S, T, �) be a schema mapping, let q be a query over T, and let I be an
instance over S. Since there can be more than one solution for I with respect to M, the
widely adopted semantics for answering q for I with respect to M is the certain-answers
semantics [Lenzerini 2002].

Definition 6.9. The certain-answers of q for I with respect to M, denoted as
certainM(q, I), are defined as

⋂
(I,J)∈M q(J).

In reverse query answering, we assume that we have performed data exchange with
M from a source instance I, and the query q is posed against S instead. This problem
arises in schema evolution, for example, when old data is migrated to a new schema,
but there are still queries that need to access the old data. We note that most research
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on query answering has focused on the direct query answering, where the query is over
the target.

The reverse query answering problem is trivial if I is still available: Simply evaluate
q(I) to answer the query q against I. However, if I is no longer available, a natural
question is whether q(I) can be answered by using a maximum extended recovery.
Since there are many possible source instances I′ that can be returned by a maximum
extended recovery M′, a natural way of defining the semantics of reverse query answer-
ing is to consider all such possible I′. Thus, we can use certaine(M) ◦ e(M′)(q, I) to define
the semantics of reverse query answering, provided that M′ is a maximum extended
recovery of M.

We now prove the following lemma about certain answers before our next theorem.

LEMMA 6.10. Let M and M′ be schema mappings, let q be a source query, and let I
be a source instance. Then all values occurring in certaine(M) ◦ e(M′)(q, I) are constants.

PROOF. Suppose that certaine(M) ◦ e(M′)(q, I) contains a tuple t where one of the com-
ponents is a null u. Let I1 be such that (I, I1) ∈ e(M)◦e(M′). By the definition of certain
answers, we have that t ∈ q(I1). Consider then the instance I2, which is obtained from
I1 by replacing all occurrences of u by a different value v. Clearly, I1 → I2. This fact,
together with the fact that (I, I1) ∈ e(M) ◦ e(M′), implies that (I, I2) ∈ e(M) ◦ e(M′).
Therefore, t must be in q(I2). But this is not possible, since u does not occur in I2.

Our next theorem makes use of the notation J↓, which stands for the instance J
excluding all tuples that contain at least one null. Our theorem implies that if M′ is an
extended inverse of M, then necessarily certaine(M) ◦ e(M′) (q, I), where q is a conjunctive
query, coincides with q(I)↓.

THEOREM 6.11. Let M and M′ be two schema mappings.

(1) If M′ is an extended inverse of M, then certaine(M) ◦ e(M′) (q, I) = q(I)↓, for every
source instance I and every conjunctive query q over the source schema.

(2) If M′ is an extended recovery of M with the property that certaine(M) ◦ e(M′) (q, I)
= q(I)↓, for every source instance I and every conjunctive query q over the source
schema, then M′ is an extended inverse of M.

PROOF. We first prove (1). Assume that M′ is an extended inverse of M, and let I be
a source instance and q a conjunctive query. By using one containment of the equation
e(M) ◦ e(M′) = e(Id), we have that (I, I) (which is in e(Id)) is in e(M) ◦ e(M′). Hence,
certaine(M) ◦ e(M′) (q, I) ⊆ q(I). Since, by Lemma 6.10, certaine(M) ◦ e(M′)(q, I) contains only
constants, it follows that certaine(M) ◦ e(M′) (q, I) ⊆ q(I)↓.

For the reverse inclusion, let t be a tuple in q(I)↓. (In particular, t consists entirely of
constants.) Let I′ be such that (I, I′) ∈ e(M)◦e(M′). By exploiting the other containment
of the equation e(M)◦ e(M′) = e(Id), we have that (I, I′) ∈ e(Id) or, equivalently, I → I′.
Since, (1) t is in q(I), (2) t consists entirely of constants, and (3) I → I′, we obtain that t
is also in q(I′). Thus, we have proved that q(I)↓ ⊆ certaine(M) ◦ e(M′) (q, I). This concludes
the proof of (1).

We now prove (2). Assume that M′ is an extended recovery of M, and moreover,
that certaine(M) ◦ e(M′)(q, I) = q(I)↓, for every source instance I and every conjunctive
query q over the source schema. It suffices to prove that e(M) ◦ e(M′) ⊆ e(Id), since
the reverse inclusion e(Id) ⊆ e(M) ◦ e(M′) holds by the fact that M′ is an extended
recovery of M (See the remark after Definition 4.3). Assume that (I, I′) ∈ e(M) ◦ e(M′),
and let qI be the canonical Boolean query of I (where nulls are replaced by existentially
quantified variables). Clearly, qI(I) = true. Furthermore, by assumption, we have that
certaine(M) ◦ e(M′) (qI, I) = qI(I)↓. Thus, certaine(M) ◦ e(M′) (qI, I) = true. This implies that
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qI(I′) = true, which means that I → I′. We thus proved that (I, I′) ∈ e(Id), which
concludes the proof.

Theorem 6.11 is an indication of the goodness of the certain-answer semantics that
we adopted for reverse query answering, since it shows that in the particular case of an
extended invertible schema mapping M (where the source instance I can be recovered
up to homomorphic equivalence), certaine(M) ◦ e(M′)(q, I) coincides with q(I)↓ (which is
the best we can do).

The next result shows that in the case when M is specified by s-t tgds and there
exists a maximum extended recovery M′ of M that is specified by disjunctive s-t tgds,
we can use the chase to compute certaine(M) ◦ e(M′)(q, I). In particular, assume that we
are given a target instance U that is the result of the original data exchange (chase) of
I with M. We can then employ the reverse chase of U with M′ as follows: compute the
set of source instances that form the result of the reverse (disjunctive) chase, evaluate
the original query over these instances, and then take the intersection of all null-free
tuples. The next result shows that this gives us precisely the certain answers. We note
that this result makes essential use of the fact that a maximum extended recovery
specified by disjunctive tgds is a disjunctive relaxed chase-inverse.

THEOREM 6.12. Let M be a schema mapping specified by a finite set of s-t tgds, let
M′ be a maximum extended recovery of M specified by disjunctive tgds, and let q be
a conjunctive query over the source schema. Then, for every source instance I, we have
that:

certaine(M) ◦ e(M′)(q, I) =
(⋂

V∈V
q(V )

)
↓
,

where V = chaseM′(chaseM(I)).

PROOF. It is immediate that for each V ∈ V, we have (I, V ) ∈ e(M) ◦ e(M′). Hence,
certaine(M)◦e(M′)(q, I) ⊆ (

⋂
V∈V q(V ))↓.

Next, we show that the reverse inclusion also holds. Let c be a tuple of constants in
(
⋂

V∈V q(V ))↓. Assume that (I, I′) ∈ e(M)◦e(M′). We shall show that c ∈ q(I′). Since M′
is a maximum extended recovery, we have, from Theorem 4.14, that →M= e(M)◦e(M′),
and hence, it follows that (I, I′) ∈ →M. By Proposition 6.7, condition (*) must hold. In
particular, we have that V → I′ for some V in V. Hence, it is also the case that c ∈ q(I′),
and therefore, c ∈ certaine(M)◦e(M′)(q, I).

To see the theorem in action, consider the following example.

Example 6.13. Let us revisit the “union" schema mappingM that is specified by the
s-t tgds P(x) → R(x) and Q(x) → R(x). We have shown in Example 6.5 that the schema
mapping M′ specified by the disjunctive tgd R(x) → P(x)∨ Q(x) is a disjunctive relaxed
chase-inverse of M (and, hence, by Theorem 6.8, a maximum extended recovery of M).
Let the conjunctive query q(x) over the source schema be simply P(x), and consider the
earlier source instance I = {P(a), Q(b)} from Example 6.5.

To compute certaine(M) ◦ e(M′)(q, I), it suffices to compute (
⋂

V∈V q(V ))↓, where V is
the set {V1, . . . , V4} obtained in Example 6.5 via the disjunctive chase from U , where
U = chaseM(I). It can be seen that this intersection is empty, since there is no tuple
of P that appears in every instance in V. Hence, certaine(M) ◦ e(M′)(q, I) = ∅. Of course,
this reflects the intuition that, for schema mapping M, there is no way to recover the
original source relations, given only the result of data exchange with M (i.e., given U ).
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6.3. Comparing Schema Mappings

Definition 6.14. A schema mapping M1 is less lossy than another schema mapping
M2 if →M1 ⊆ →M2 . We say M1 is strictly less lossy than M2 if →M1 � →M2 .

If M1 is less lossy than M2, then M1 has a smaller information loss than M2
(according to Definition 4.5). Intuitively, M1 is more invertible than M2.

Example 6.15. Consider the schema mappingsM1 = (S, T, �1) andM2 = (S, T, �2),
where �1 and �2 are as follows:

�1 ={P(x, y) → P ′(x, y)},
�2 ={P(x, y) → ∃zP ′(x, z), P(x, y) → ∃uP ′(u, y)}.

The first schema mapping M1 copies the binary relation P to the target relation
P ′, while the second copies each component of P separately into the same target
relation P ′. We now show that M1 is less lossy than M2, that is, →M1 ⊆ →M2 . Indeed,
if (I1, I2) ∈→M1 , then it follows immediately that I1 → I2, since M1 is a “copying”
schema mapping. Hence, I1 →M2 I2. In fact, M1 is a schema mapping that has no
information loss (that is, →M1= e(Id)), since it is also the case that if I1 → I2, then
(I1, I2) ∈→M1 . Moreover, M1 is strictly less lossy than M2; let I = {P(1, 0)} and let
I′ = {P(1, 1), P(0, 0)}. It is easy to see that (I, I′) ∈→M2 but (I, I′) ∈→M1 .

A theoretical framework for comparing schema mappings can be quite useful towards
the justification of the design of algorithms that generate schema mappings, such
as those of Fuxman et al. [2006] and Popa et al. [2002]. Each of these algorithms
generates schema mappings from a visual specification of the relationship between
two schemas. There are multiple ways to interpret a visual specification in general.
As a simple example, the schema mappings M1 and M2 in Example 6.15 are two
possible interpretations of a visual specification that relates (via arrows) the first, and
respectively, second component of P to the first, and respectively, second component of
P ′. We note that both schema mapping generation algorithms of Fuxman et al. [2006]
and Popa et al. [2002] generate M1, which is the less lossy schema mapping of the two.

Finally, we characterize the property of being “less lossy,” provided the schema map-
pings compared are specified by s-t tgds and have maximum extended recoveries spec-
ified by disjunctive tgds. As in the case of Theorem 6.12, this result makes essential
use of the fact that a maximum extended recovery specified by disjunctive tgds is a
disjunctive relaxed chase-inverse.

THEOREM 6.16. Let M1 and M2 be schema mappings specified by finite sets of s-t
tgds and having the same source schema. Let M′

1 and M′
2 be schema mappings that

are specified by disjunctive tgds and are maximum extended recoveries of M1 and M2,
respectively. The following statements are equivalent:

(1) →M1⊆→M2

(2) For every source instance I and for every member V1 of chaseM′
1
(chaseM1 (I)), there

is a member V2 of chaseM′
2
(chaseM2 (I)) such that V2 → V1.

PROOF. Since M′
1 and M′

2 are disjunctive tgds and are maximum extended recoveries
of M1 and M2 respectively, it follows from Theorem 6.8 that M′

1 and M′
2 are disjunctive

relaxed chase-inverses of M1 and M2 respectively.
We first show that (1) ⇒ (2). Assume that V1 ∈ V1. By condition (a) in Definition 6.4(2),

applied to M1 and M′
1, we have I →M1 V1. Hence, we obtain I →M2 V1. Applying

Proposition 6.7, where we let M2 play the role of M and M′
2 play the role of M′, we

have that there exists V2 ∈ V2 such that V2 → V1.
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We now show that (2) ⇒ (1). Suppose I →M1 I′. Applying Proposition 6.7, this time
for M1 and M′

1, we have that there exists V1 ∈ V1 such that V1 → I′. By assumption,
there exists V2 ∈ V2 such that V2 → V1. Hence, we have V2 → I′ and therefore, it is the
case that V2 →M2 I′. By condition (a) in Definition 6.4(2), applied to M2 and M′

2, we
also have that I →M2 V2. Therefore, we obtain I →M2 I′, which was to be shown.

To see the theorem in action, consider M1 and M2 of Example 6.15. The reverse
schema mapping M′ specified by {P ′(x, y) → P(x, y)} is a maximum extended recovery
for both M1 and M2. It is easy to see that for every source instance I, there is a
homomorphism from chaseM′(chaseM2 (I)) to chaseM′(chaseM1 (I)). Hence, the schema
mapping M1 is less lossy than M2.

Arenas et al. [2010] wrote a follow-up paper to our results here on comparing the
information loss of two schema mappings. Instead of restricting attention to schema
mappings specified by s-t tgds, as we do here, they allow arbitrary schema mappings.
Let M1 and M2 be schema mappings. Arenas et al. say that M1 transfers at least
as much source information as M2 if there is a schema mapping N such that M2 =
M1 ◦N . They show that their definition coincides to ours in the case that we consider.
Concretely, they prove that if M1 and M2 are each specified by s-t tgds, then M1 is
less lossy than M2 (in our sense) if and only if M1 transfers at least as much source
information as M2 (in their sense). Note that Arenas et al. do not give a direct notion
of information loss that applies to a single schema mapping. Instead, they give a way
to compare the information loss of two schema mappings.

7. CONCLUDING REMARKS

We developed a new framework for reverse data exchange that allows source instances
to contain not only constants but also nulls. In the process, we introduced and studied
the notions of maximum extended recovery and information loss of a schema mapping.
We believe that the results presented here may, in the long run, lead to novel applica-
tions in the design and optimization of schema mappings. An immediate problem that
is left open is whether every schema mapping specified by a finite set of s-t tgds has a
maximum extended recovery that is specified by a formula of first-order logic. Another
interesting open problem is whether or not the main technical results concerning max-
imum extended recoveries of schema mappings specified by s-t tgds can be generalized
to results about schema mappings with target constraints.

8. NOTATIONS

In what follows, we provide a list of notations and their corresponding meanings that
were used in this article.

Notation Meaning
I → I′ There is a homomorphism from I to I′, which are instances over the same schema.

→ {(I, I′) | I → I′}
SolM(I) {J | (I, J) ∈ M}
eSolM(I) {J | (I, J) ∈ e(M)}

e(M) → ◦M ◦ →
I1 →M I2 eSolM(I2) ⊆ eSolM(I1).

For s-t tgds: chaseM(I1) → chaseM(I2)
→M {(I1, I2) | eSolM(I2) ⊆ eSolM(I1)}.

For s-t tgds: {(I1, I2) | chaseM(I1) → chaseM(I2)}
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