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Schema mappings are high-level specifications that describe the relationship between two database
schemas. Two operators on schema mappings, namely the composition operator and the inverse
operator, are regarded as especially important. Progress on the study of the inverse operator was
not made until very recently, as even finding the exact semantics of this operator turned out to be
a fairly delicate task. Furthermore, this notion is rather restrictive, since it is rare that a schema
mapping possesses an inverse.

In this article, we introduce and study the notion of a quasi-inverse of a schema mapping. This
notion is a principled relaxation of the notion of an inverse of a schema mapping; intuitively, it is
obtained from the notion of an inverse by not differentiating between instances that are equivalent
for data-exchange purposes. For schema mappings specified by source-to-target tuple-generating
dependencies (s-t tgds), we give a necessary and sufficient combinatorial condition for the existence
of a quasi-inverse, and then use this condition to obtain both positive and negative results about the
existence of quasi-inverses. In particular, we show that every LAV (local-as-view) schema mapping
has a quasi-inverse, but that there are schema mappings specified by full s-t tgds that have no quasi-
inverse. After this, we study the language needed to express quasi-inverses of schema mappings
specified by s-t tgds, and we obtain a complete characterization. We also characterize the language
needed to express inverses of schema mappings, and thereby solve a problem left open in the
earlier study of the inverse operator. Finally, we show that quasi-inverses can be used in many
cases to recover the data that was exported by the original schema mapping when performing data
exchange.
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1. INTRODUCTION

Schema mappings are high-level specifications that describe the relationship
between two database schemas. More precisely, a schema mapping is a triple
M = (S, T, �) consisting of a source schema S, a target schema T, and a set � of
database dependencies that specify the relationship between the source schema
and the target schema. Since schema mappings form the essential building
blocks of such crucial data interoperability tasks as data integration and data
exchange (see the surveys [Kolaitis 2005; Lenzerini 2002]), several different
operators on schema mappings have been singled out as deserving study in
their own right [Bernstein 2003]. The composition operator and the inverse
operator have emerged as two of the most fundamental operators on schema
mappings. Intuitively, the composition operator takes two schema mappings M
and M′ and produces a schema mapping that has the effect of applying first M
and then M′. The inverse operator takes a schema mapping M and produces a
schema mapping M′ such that, intuitively, if after applying M we then apply
M′, the resulting effect of M′ is to “undo” the effect of M.

By now, the composition operator has been investigated in depth [Fagin et al.
2005c; Madhavan and Halevy 2003; Melnik 2004; Nash et al. 2005]; however,
progress on the study of the inverse operator was not made until very recently,
as even finding the exact semantics of this operator turned out to be a delicate
task. In Fagin [2007] the concept of an inverse of a schema mapping was rigor-
ously defined and its basic properties were studied. The definition of an inverse
was given by first defining the concept of the identity schema mapping Id and
then stipulating that a schema mapping M′ is an inverse of a schema mapping
M if the composition of M with M′ yields the identity schema mapping Id, in
symbols M ◦ M′ = Id.

Unfortunately, the notion of an inverse of a schema mapping turned out to be
rather restrictive, since it is rare that a schema mapping possesses an inverse.
Indeed, as shown in Fagin [2007], if a schema mapping M is invertible, then
M satisfies the unique-solutions property, which asserts that different source
instances must have different spaces of solutions (that is, different sets of tar-
get instances satisfying the specifications of M). The failure of this necessary
condition for invertibility can be used as a simple, yet powerful, sufficient con-
dition for non-invertibility. In particular, none of the following natural schema
mappings possesses an inverse, because it is easy to see that none of them has
the unique-solutions property:

Projection: This is the schema mapping specified by the dependency P (x, y) →
Q(x).

Union: This is the schema mapping specified by the dependencies P (x) → S(x)
and Q(x) → S(x).

ACM Transactions on Database Systems, Vol. 33, No. 2, Article 11, Publication date: June 2008.



Quasi-Inverses of Schema Mappings • 11:3

Decomposition: This is the schema mapping specified by the dependency
P (x, y , z) → Q(x, y) ∧ R( y , z).

Moreover, the invertibility of a schema mapping is not robust, as it is affected
by changes to the source schema, even when the dependencies remain intact.
Specifically, assume that M = (S, T, �) is an invertible schema mapping. If the
source schema S is augmented with a new relation symbol R, then the new
schema mapping M∗ = (S ∪ {R}, T, �) is no longer invertible.

In view of these limitations of the notion of an inverse of a schema mapping,
it is natural to ask: is there a good alternative notion of an inverse that is not
as restrictive as the original notion in Fagin [2007], but is still useful in data
exchange? In what follows, we address this question by formulating the notion
of a quasi-inverse of a schema mapping, by exploring its properties in depth,
and by making a case for its usefulness.

Conceptual contributions. We introduce the notion of a quasi-inverse of a
schema mapping M = (S, T, �) as a principled relaxation of the notion of an
inverse mapping ofM. Intuitively, the notion of a quasi-inverse is obtained from
the notion of an inverse by not differentiating between ground instances (null-
free source instances) that are equivalent for data-exchange purposes. Formally,
we first consider the equivalence relation ∼M between ground instances such
that I1 ∼M I2 holds if I1 and I2 have the same space of solutions, that is, for
every target instance J , we have that (I1, J ) |= � if and only if (I2, J ) |= �. We
then say that a schema mapping M′ = (T, S, M′) is a quasi-inverse of M if, in a
precise technical sense, M◦M′ = Id holds modulo the equivalence relation ∼M.

We show that the concept of a quasi-inverse of a schema mapping is actually
part of a unifying framework in which different relaxations of the notion of an
inverse of a schema mapping can be obtained by using different equivalence
relations that are refinements of the equivalence relation ∼M (i.e., they are
contained in ∼M). This framework captures, as special cases, both inverses and
quasi-inverses. In fact, the notion of an inverse is the strictest one, while the
notion of a quasi-inverse is the most relaxed one; all other relaxations of the
notion of an inverse lie in between.

Numerous non-invertible schema mappings possess natural and useful
quasi-inverses. Indeed, let us revisit the preceding examples of non-invertible
schema mappings.

Projection: The schema mapping specified by P (x, y) → Q(x) has a quasi-
inverse specified by Q(x) → ∃ y P (x, y). Intuitively, this quasi-inverse de-
scribes the “best” you can do to recover ground instances.

Union: The schema mapping specified by the dependencies P (x) → S(x) and
Q(x) → S(x) has a quasi-inverse specified by S(x) → P (x) ∨ Q(x). Quasi-
inverses need not be unique up to logical equivalence (the same holds true
for inverses as well). Indeed, the schema mapping specified by S(x) → P (x)
is also a quasi-inverse, as are the schema mapping specified by S(x) →
Q(x) and the schema mapping specified by S(x) → P (x) ∧ Q(x).

Decomposition: The schema mapping specified by the dependency P (x, y , z) →
Q(x, y) ∧ R( y , z) has a quasi-inverse specified by Q(x, y) ∧ R( y , z) →
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P (x, y , z). Another quasi-inverse of this schema mapping is specified by
Q(x, y) → ∃z P (x, y , z) and R( y , z) → ∃x P (x, y , z).

Finally, if M = (S, T, �) is an invertible schema mapping and we augment S
with a new relation symbol R, then every inverse of M is a quasi-inverse of the
resulting non-invertible schema mapping M∗ = (S ∪ {R}, T, �). Moreover, if a
schema mapping M′ = (T, S, �′) is a quasi-inverse of a schema mapping M,
then the schema mapping M′′ = (T, S∪{R}, �′) is a quasi-inverse of M∗. Thus,
unlike the notion of an inverse, the notion of a quasi-inverse is robust when
relation symbols are added to the source schema.

Technical contributions. Our results span three different directions: an exact
criterion for the existence of quasi-inverses, complete characterizations of lan-
guages needed to express quasi-inverses and inverses, and results on the use
of quasi-inverses in data exchange.

Existence of quasi-inverses. For schema mappings specified by source-to-
target tuple-generating dependencies (s-t tgds), we give a necessary and suf-
ficient combinatorial condition, called the subset property, for the existence of
a quasi-inverse. We apply this condition to obtain both positive and negative
results about the existence of quasi-inverses. On the positive side, we use the
subset property as a sufficient condition for quasi-invertibility to show that
every LAV (local-as-view) schema mapping has a quasi-inverse; this result pro-
vides a unifying explanation for the quasi-invertibility of the Projection, Union,
and Decomposition schema mappings. On the negative side, we use the subset
property as a necessary condition for quasi-invertibility to show that there are
simple schema mappings specified by full s-t tgds that have no quasi-inverse.
We also show that a variation of the subset property is necessary and sufficient
for the existence of an inverse.

The language of inverses and quasi-inverses. We investigate the language
needed to express quasi-inverses of schema mappings specified by s-t tgds, and
we obtain a complete characterization. Specifically, we show that if a schema
mapping specified by a finite set of s-t tgds is quasi-invertible, then it has a
quasi-inverse specified by a finite set of target-to-source disjunctive tgds with
constants and inequalities (in fact, inequalities among constants suffice). More-
over, we give an exponential-time algorithm QuasiInverse (exponential in the
size of the input schema mapping) for constructing such a quasi-inverse. The
premise of a target-to-source disjunctive tgd with constants and inequalities is
a conjunction of target atoms, formulas of the form Constant(x) that evaluate to
true only when x is instantiated to a constant (nonnull) value, and inequalities
xi �= x j ; the conclusion is a disjunction of conjunctive queries over the source.
We show that our expressibility result is optimal by proving that no proper
fragment of the language of disjunctive tgds with constants and inequalities
suffices to express quasi-inverses; that is, both constants and inequalities in the
premise of dependencies are needed, as are both disjunctions and existential
quantifiers in the conclusion of dependencies. For schema mappings specified
by a finite set of full s-t tgds, we show that if such a schema mapping is quasi-
invertible, then it has a quasi-inverse specified by a finite set of target-to-source
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disjunctive tgds with inequalities; in other words, the predicate Constant is not
needed in this case. We also show that every LAV schema mapping has a quasi-
inverse specified by a finite set of target-to-source tgds with inequalities and
constants; thus, in this case, there is no need for disjunctions in the conclusion
of dependencies.

For schema mappings specified by s-t tgds, Fagin [2007] focused only on
inverses specified by target-to-source tgds, and left open the problem of char-
acterizing the language needed to express inverses of schema mappings. We
settle this problem by showing that if a schema mapping specified by a finite
set of s-t tgds is invertible, then it has an inverse specified by a finite set of
target-to-source tgds with constants and inequalities. This turns out to be an
optimal result as well.

Although we have characterized the language needed to express quasi-
inverses and inverses of schema mappings specified by a finite set of s-t tgds,
the complexity of deciding the existence of a quasi-inverse remains open. In
fact, even decidability is open. The complexity of deciding the existence of an
inverse, which was left open in Fagin [2007], was resolved in Fagin and Nash
[2007], where it was shown to be coNP-complete.

Using quasi-inverses in data exchange. Since schema mappings rarely have
inverses, we cannot hope to always obtain an exact copy of the original ground
instance from target instances. The notion of a quasi-inverse is motivated by
the idea that “similarity up to the space of solutions” is often good enough
for data-exchange applications; hence, the definition of a quasi-inverse of a
schema mapping M relaxes exact equality between ground instances to ∼M-
equivalence. We show that, even though it is not possible to recover an exact
copy of the original source instance, in many cases quasi-inverses allow us
to recover a source instance that has “equivalent” properties from the data-
exchange point of view.

More concretely, we introduce two additional notions, of sound and of faith-
ful, which are relevant for data exchange, and then show how quasi-inverses
relate to the two notions. Formally, assume that M = (S, T, �) is a schema
mapping specified by a finite set of s-t tgds and M′ = (T, S, �′) is a “reverse”
schema mapping specified by a finite set of target-to-source disjunctive tgds
with constants and inequalities. We say that M′ is sound with respect to M
if the following property holds. Let I be an arbitrary ground instance and let
U be the result of chasing I with �. Suppose we chase U back from target
to source with the disjunctive dependencies in �′ to obtain a set V of source
instances and then we chase every member of V with the dependencies in � to
obtain a set U ′ of target instances. Then U ′ contains a target instance U ′ that
can be mapped homomorphically into U ; thus, the target instance U ′ contains
(up to a homomorphism) only facts of U , although not necessarily all of them.
Furthermore, we say that M′ is faithful with respect to M if the set U ′ contains
a target instance U ′ that is homomorphically equivalent to U (thus, there are
homomorphisms in both directions). In other words, there is a source instance
V in V whose chase with � is homomorphically equivalent to U . This instance
V is thus “data-exchange equivalent” to the original source instance I .
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We then give two main results that relate quasi-inverses to the notions of
soundness and faithfulness. The first main result asserts that if M = (S, T, �)
is a schema mapping specified by a finite set of s-t tgds and M′ = (T, S, �′) is a
quasi-inverse of M specified by a finite set of target-to-source disjunctive tgds
with constants and inequalities among constants, then M′ is always sound. We
also give an example that shows that not every such quasi-inverse is faithful,
even though, by the previous result, it is sound. The second main result, how-
ever, asserts that if M′ is obtained by applying our QuasiInverse algorithm for
constructing a quasi-inverse of M, then M′ is faithful. In particular, if M is
a schema mapping (not necessarily quasi-invertible) specified by a finite set
of s-t tgds, there is always a schema mapping M′ that is faithful with respect
to M.

Relation to Earlier Conference Version. This article is the full, extended ver-
sion of Fagin et al. [2007]. It differs from Fagin et al. [2007] in the following
ways: (a) It contains proofs of all results. Many of these proofs are technically
challenging and introduce new techniques. (b) Section 3 contains several new
results, namely Theorem 3.3 and all the results in Section 3.3. (c) Section 6 con-
tains a number of new results. In particular, Theorem 6.12 extends Theorem
6.8 in Fagin et al. [2007]. In addition, Theorems 6.9 and 6.10 are new.

2. PRELIMINARIES

A schema R is a finite sequence (R1, . . . , Rk) of relation symbols, each of a fixed
arity. An instance I over R or, simply, an R-instance is a sequence (R I

1 , . . . , R I
k ),

where each R I
i is a finite relation of the same arity as Ri and with entries from

some set of values. We shall often use Ri to denote both the relation symbol and
the relation R I

i that interprets it. An atom (over R) is a formula P (v1, . . . , vm),
where P is a relation symbol in R and v1, . . . , vm are variables, not necessarily
distinct. A fact (over R) is a formula P (w1, . . . , wm), where P is a relation symbol
in R and w1, . . . , wm are values, not necessarily distinct. It is often convenient
to identify an instance with its set of facts.

Schema mappings. A schema mapping is a triple M = (R1, R2, �), where
R1, R2 are schemas and � is a set of constraints describing the relationship
between R1 and R2. We say that M is specified by �. Typically, constraints
are formulas in some logical formalism; in this sense, a schema mapping is a
syntactic object. The set of instances of M is

Inst(M) = {(I, J ) : I is an R1-instance, J is an R2-instance, and (I, J ) |= �}.
For all practical purposes, a schema mapping M = (R1, R2, �) can be identified
with the triple M = (R1, R2, Inst(M)); in this sense, a schema mapping is a
semantic object specified by Inst(M). Sometimes we give a schema mapping
M as a semantic object by giving the two schemas R1, R2, and describing the
(I, J ) pairs that constitute Inst(M).

Data Exchange. Let Const be a fixed infinite set of constants and let Var be an
infinite set of nulls that is disjoint from Const. From now on, we assume that
S and T are two fixed schemas. We call S the source schema and T the target
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schema. We assume that all S-instances have individual values from the set
Const of constants only, while all target instances have individual values from
Const ∪ Var. We refer to S-instances as ground S-instances or, simply, ground
instances to emphasize the fact that all individual values in such instances are
constants. Intuitively, schema mappings of the form M = (S, T, �) model the
situation in which we perform data exchange from S to T: the individual values
of source instances are known, while incomplete information in the specification
of data exchange may give rise to null values in the target instances.

We review several notions from Fagin et al. [2005a] that will be needed in
this article. Let M = (S, T, �) be a schema mapping. If I is a ground instance,
then a solution for I under M is a target instance J such that (I, J ) |= �. The
set of all solutions for I under M is denoted by Sol(M, I ).

Let J , J ′ be two target instances. A function h from Const∪Var to Const∪Var is
a homomorphism from J to J ′ if for every c in Const, we have that h(c) = c, and
for every relation symbol R in T and every tuple (a1, . . . , an) ∈ R J , we have that
(h(a1), . . . , h(an)) ∈ R J ′

. The instances J and J ′ are said to be homomorphically
equivalent if there are homomorphisms from J to J ′ and from J ′ to J .

Given a schema mapping M = (S, T, �) and a ground instance I , a universal
solution for I underM is a solution J for I underM such that for every solution
J ′ for I under M, there is a homomorphism h : J → J ′. Intuitively, universal
solutions are the “most general” solutions among the space of all solutions for I .

A source-to-target tuple-generating dependency (or s-t tgd) is a first-order
formula of the form ∀x(ϕ(x) → ∃yψ(x, y)), where ϕ(x) is a conjunction of atoms
over S, ψ(x, y) is a conjunction of atoms over T, and every variable in x occurs
in an atom in ϕ(x). (Not every variable in x needs to occur in ψ(x, y).) If there
are no existential quantifiers, then the s-t tgd is full.

If M = (S, T, �) is a schema mapping specified by a finite set � of s-t tgds,
then chasing1 I with � produces a target instance U such that U is a universal
solution for I under M. We often write U = chase�(I ) and say that U is the
result of the chase. (In general, there may be several such instances U but they
are all homomorphically equivalent.)

Our goal in this paper is to investigate inverses and quasi-inverses of schema
mappings M = (S, T, �), where � is a finite set of s-t tgds. In particular, we will
identify the languages needed for expressing such inverses and quasi-inverses,
and will show that these languages must be richer than the language of target-
to-source tgds. The following definition introduces the richer classes of depen-
dencies needed.

Definition 2.1. Let Constant be a relation symbol that is different from all
relation symbols in S and T.

1. A disjunctive tgd with constants and inequalities from T to S is a first-order
formula of the form ∀x(ϕ(x) → ∨n

i=1 ∃yiψi(x, yi)), where:
� the formula ϕ(x) is a conjunction of

(1) atoms over T, such that every variable in x occurs in one of them;
(2) formulas of the form Constant(x), where x is a variable in x;

1A standard reference for the chase procedure is [Abiteboul et al. 1995].
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(3) inequalities x �= x ′, where x and x ′ are variables in x.
� Each formula ψi(x, yi) is a conjunction of atoms over S.
Naturally, a formula Constant(x) evaluates to true if and only if x is inter-
preted by a value in Const.

2. A disjunctive tgd with constants and inequalities among constants is a dis-
junctive tgd with inequalities and constants where the formulas Constant(x)
and Constant(x ′) occur as conjuncts of ϕ(x) whenever the inequality x �= x ′

is a conjunct of ϕ(x).

Clearly, disjunctive tgds with constants and inequalities extend the language
of tgds with three features: (1) formulas of the form Constant(x) in the premise;
(2) inequalities in the premise; and (3) disjunctions in the conclusion. If the
conclusion consists of a single disjunct, then we talk about tgds with constants
and inequalities. The concepts of disjunctive tgds with inequalities, tgds with
inequalities, and other such special cases of Definition 2.1 are defined in an
analogous way. For example,

P (x, y , z) ∧ Constant(x) ∧ x �= y → ∃wQ(x, w) ∨ Q(x, y)

is a disjunctive tgd with constants and inequalities,

P (x, y , z) ∧ x �= y → ∃wQ(x, w) ∨ Q(x, y)

is a disjunctive tgd with inequalities, and

P (x, y , z) ∧ x �= y → Q(x, y)

is a tgd with inequalities. Note that, for convenience, we have dropped the
universal quantifiers in the front.

Composing and Inverting Schema Mappings. We recall the concept of the
composition of two schema mappings, introduced in Fagin et al. [2004] and
Melnik [2004], and the concept of an inverse of a schema mapping, introduced
in Fagin [2007].

—Let M12 = (S1, S2, �12) and M23 = (S2, S3, �23) be schema mappings. The
composition M12 ◦M23 is a schema mapping (S1, S3, �13) such that for every
S1-instance I and every S3-instance K , we have that (I, K ) |= �13 if and only
if there is an S2-instance J such that (I, J ) |= �12 and (J, K ) |= �23. When
the schemas are understood from the context, we will often write �12 ◦ �23
for the composition M12 ◦ M23.

—Let Ŝ be a replica of the source schema S, that is, for every relation symbol R
of S, the schema Ŝ contains a relation symbol R̂ that is not in S and has the
same arity as R; moreover, Ŝ-instances have individual values from the set
Const of constants only. We also assume that R̂ and Ŝ are distinct when R
and S are distinct. Clearly, every ground instance I has a replica Ŝ-instance
Î that is also ground.

—The identity schema mapping is, by definition, the schema mapping Id =
(S, Ŝ, �Id), where �Id consists of the dependencies R(x) → R̂(x) as R ranges
over the relation symbols in S. Thus, Inst(Id) consists of all pairs (I1, I2) of a
ground S-instance I1 and a ground Ŝ-instance I2 such that Î1 ⊆ I2.
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—Let M = (S, T, �) be a schema mapping. We say that a schema mapping
M′ = (T, Ŝ, �′) is an inverse of M if Inst(Id) = Inst(M ◦ M′). This means
that, for every pair (I1, I2) of a ground S-instance I1 and a ground Ŝ-instance
I2, we have that Î1 ⊆ I2 if and only if there is a target instance J such that
(I1, J ) |= � and (J, I2) |= �′.

From now on and for notational simplicity, we will write S to also denote its
replica Ŝ; it will be clear from the context if we refer to S or to its replica.
Moreover, we will use the same symbol to denote both a ground S-instance I
and its replica Ŝ-instance Î .

3. QUASI-INVERSES OF SCHEMA MAPPING: BASIC NOTIONS AND FACTS

In this section, we develop a unifying framework for defining and studying a
spectrum of notions that relax the notion of an inverse of a schema mapping in
a principled manner. The key idea is to group together ground instances that
are equivalent for data-exchange purposes, and not differentiate between such
equivalent instances. This idea is formalized by first introducing an equivalence
relation on ground instances and then using it to define relaxations of the notion
of inverse.

3.1 Data-Exchange Equivalent Ground Instances

Definition 3.1. Let M = (S, T, �) be a schema mapping and let I1, I2 be
two ground instances.

If Sol(M, I1) = Sol(M, I2), then we say that I1 and I2 are data-exchange
equivalent with respect to M, and we write I1 ∼M I2 to denote this. When M is
understood from the context, we may write ∼ in place of ∼M.

As an example, consider the Union schema mapping M specified by the
dependencies P (x) → S(x) and Q(x) → S(x). It is easy to verify that if I1 and
I2 are two ground instances, then I1 ∼M I2 if and only if P I1 ∪ Q I1 = P I2 ∪ Q I2 .

On the face of Definition 3.1, testing whether I1 ∼M I2 appears to be a
difficult task, since the space of solutions of a ground instance may be an infinite
set. We will show, however, that this task can be carried out in polynomial time if
the schema mapping M is specified by a finite set of s-t tgds. The starting point
is Part 2 of Proposition 2.6 in Fagin et al. [2005a], which yields the following
characterization of the equivalence relation ∼M.

PROPOSITION 3.2. [Fagin et al. 2005a]. Let M = (S, T, �) be a schema
mapping in which � is a finite set of s-t tgds. Let I1, I2 be two ground in-
stances, J1 a universal solution for I1, and J2 a universal solution for I2. Then
Sol(M, I1) ⊆ Sol(M, I2) if and only if there is a homomorphism h : J2 → J1.
Consequently, Sol(M, I1) = Sol(M, I2) if and only if J1 and J2 are homomorphi-
cally equivalent.

We are now ready to establish the first result of this article.

THEOREM 3.3. Let M = (S, T, �) be a schema mapping in which � is a finite
set of s-t tgds. Then the equivalence relation ∼M is decidable in polynomial time,
that is to say, the following decision problem is solvable in polynomial time: given
two source instances I1 and I2, is Sol(M, I1) = Sol(M, I2)?
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PROOF. To show that the equivalence relation ∼M is decidable in polynomial
time, it suffices to give a polynomial-time algorithm for the following prob-
lem: given ground instances I1 and I2, is Sol(M, I2) ⊆ Sol(M, I1)? In turn, by
Proposition 3.2, this problem is equivalent to: given ground instances I1 and
I2, is there a homomorphism from the canonical universal solution J1 for I1 to
the canonical universal solution J2 for I2? As in Fagin et al. [2005a], the canon-
ical universal solution of a source instance I is the target instance obtained by
chasing I with the dependencies � of the schema mapping M.

Let J be a target instance. The Gaifman graph of the nulls of J is defined
as follows: (i) the nodes of this graph are the nulls of J ; (ii) there is an edge
between two nulls of J if and only if they appear together in some fact of J .
A block of J is a connected component of the Gaifman graph of the nulls of
J . These concepts were introduced in Fagin et al. [2005b] and used there to
design a polynomial time algorithm for computing the core of the universal
solutions in schema mappings specified by s-t tgds. In what follows, we use
properties of blocks to design a greedy, backtrack-free algorithm for the problem:
given ground instances I1 and I2, is there a homomorphism from the canonical
universal solution J1 for I1 to the canonical universal solution J2 for I2?

Algorithm GREEDY BLOCKS ALGORITHM for the schema mapping M = (S, T, �).

Input: Ground instances I1 and I2.
Output: A homomorphism h : J1 → J2 from the canonical universal solution J1 for I1
to the canonical universal solution J2 for I2, if such a homomorphism exists ; “No,” if no
such homomorphism exists.
(1) Compute the canonical universal solutions J1 and J2 for I1 and I2, respectively.
(2) Compute the blocks of J1.
(3) For every block B of J1, use exhaustive search to determine if there is a

homomorphism from J1[B] to J2; here, J1[B] is the subinstance of J1 consisting
of the facts P (w1, . . . , wm) of J1, where each wi is a constant of J1 or a null of B.
(a) If such a homomorphism hB exists, then keep this homomorphism and proceed

to the next block of J1.
(b) If no such homomorphism is found, then exit and return “No”.

(4) Return the union of all homomorphisms hB found in Step 3. More formally, return
the following function h : J1 → J2:

h(x) =
{

hB(x) if x ∈ B;
x if x is a constant.

Note that the function h is well defined, since blocks are disjoint; moreover,
it extends every function hB found by the algorithm, since homomorphisms
map each constant to itself. To prove the correctness of the algorithm, assume
first that the algorithm terminates by returning a function h : J1 → J2. Let
R(w1, . . . , wk) be a fact of J1. Then all the nulls occurring in {w1, . . . , wk} must
be in the same block, say, B of J1. Consider the homomorphism hB : J1[B] → J2
found by the algorithm. It follows that h(wi) = hB(wi), for 1 ≤ i ≤ k, and hence
R(h(w1), . . . , h(wk)) is a fact of J2, since hB is a homomorphism from J1[B] to
J2. For the other direction of correctness, observe that if g : J1 → J2 is a
homomorphism and B is a block of J1, then the restriction of g on J1[B] is a
homomorphism from J1[B] to J2. Thus, if a homomorphism from J1 to J2 exists,
then the algorithm will indeed produce such a homomorphism.
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It remains to show that the running time of the algorithm is polynomial in
the sizes n1 and n2 of I1 and I2, respectively, where the size of an instance is the
number of its facts. Let a be the maximum number of universally quantified
variables over all s-t tgds in �, and let bbe the maximum number of existentially
quantified variables over all s-t tgds in �. Since � is fixed, both a and b are
constants. It is not hard to show that the size of Ji is O(na

i ), i = 1, 2. Moreover,
each block in J1 has at most b elements. It follows that J1 has O(na

1) many
blocks. For every block B of J1, the algorithm takes O((na

2)b) = O(nab
2 ) steps

to exhaustively search over all potential homomorphisms from J1[B] to J2,
and, for each such function it takes O(na

1na
2) steps to test if the function is

indeed a homomorphism. So, altogether the algorithm takes O(na
1na

1na
2nab

2 ) =
O(n2a

1 na+ab
2 ) steps, which shows that it is of polynomial running time.

Note that the preceding Theorem 3.3 is about the data complexity of the
equivalence relation ∼M, because the schema mapping M is kept fixed. One
can also consider the combined complexity of the equivalence relation ∼M, that
is, the complexity of the following decision problem: given a schema mapping
M = (S, T, �), where � is a finite set of s-t tgds, and two source instances I1 and
I2, is I1 ∼M I2? The analysis of the running time of the algorithm in the proof of
Theorem 3.3 shows that the combined complexity of ∼M is in exponential time.

3.2 (∼1, ∼2)-Inverses: A Unifying Framework

Let M = (S, T, �) be a schema mapping. Recall that a schema mapping M′ =
(T, S, �′) is an inverse of M if Inst(Id) = Inst(M ◦ M′). This means that, for
every pair (I1, I2) of a ground S-instance I1 and a ground S-instance I2, we have
that I1 ⊆ I2 if and only if there is a target instance J such that (I1, J ) |= � and
(J, I2) |= �′.

Suppose now that ∼1 and ∼2 are two equivalence relations on ground in-
stances such that ∼1⊆∼M and ∼2⊆∼M. We introduce the notion of a (∼1, ∼2)-
inverse of M, which, intuitively, formalizes the idea that the equation Inst(Id) =
Inst(M ◦ M′) holds modulo the equivalence relations ∼1 and ∼2. In what fol-
lows, we will use the notation ∼(1,2) to denote the product equivalence relation
of two equivalence relations ∼1 and ∼2. Thus, (I1, I2) ∼(1,2) (I ′

1, I ′
2) if and only if

I1 ∼1 I ′
1 and I2 ∼2 I ′

2.

Definition 3.4. Assume that M = (S, T, �) is a schema mapping and ∼1,
∼2 are two equivalence relations on ground instances such that ∼1⊆∼M and
∼2⊆∼M. We say that a schema mapping M′ = (T, S, �′) is a (∼1, ∼2)-inverse
of M if, for every pair (I1, I2) of ground instances, the following statements are
equivalent:
1. There are ground instances I ′

1 and I ′
2 such that (I1, I2) ∼(1,2) (I ′

1, I ′
2) and

I ′
1 ⊆ I ′

2.
2. There are ground instances I ′′

1 and I ′′
2 and a target instance J such that

(I1, I2) ∼(1,2) (I ′′
1 , I ′′

2 ), (I ′′
1 , J ) |= �, and (J, I ′′

2 ) |= �′.
Thus, M′ = (T, S, �′) is a (∼1, ∼2)-inverse of M precisely if

∼1 ◦ Inst(Id) ◦ ∼2 = ∼1 ◦ Inst(M ◦ M′) ◦ ∼2,
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where the occurrence of the symbol ◦ in the expression M ◦ M′ denotes the
composition operator on schema mappings, while all other occurrences of this
symbol denote the composition of two binary relations.

Clearly, a schema mapping M′ is an inverse of a schema mapping M if and
only if M′ is a (=, =)-inverse of M. In this paper, our main focus will be on
(∼M, ∼M)-inverses, which from now on will be referred to as quasi-inverses.
Intuitively, the concept of a quasi-inverse relaxes the equation Inst(Id) =
Inst(M ◦ M′) by not distinguishing between ground instances that are data-
exchange equivalent with respect to M.

Definition 3.5. LetM = (S, T, �) be a schema mapping. A schema mapping
M′ = (T, S, �′) is a quasi-inverse of M if M′ is a (∼M, ∼M)-inverse of M, that
is, if, for every pair (I1, I2) of ground instances, the following statements are
equivalent:
1. There are ground instances I ′

1 and I ′
2 such that I1 ∼M I ′

1, I2 ∼M I ′
2, and

I ′
1 ⊆ I ′

2.
2. There are ground instances I ′′

1 and I ′′
2 and a target instance J such that

I1 ∼M I ′′
1 , I2 ∼M I ′′

2 , (I ′′
1 , J ) |= �, and (J, I ′′

2 ) |= �′.
So as before, M′ = (T, S, �′) is a quasi-inverse of M precisely if

∼M ◦ Inst(Id) ◦ ∼M = ∼M ◦ Inst(M ◦ M′) ◦ ∼M .

We say that M is quasi-invertible if it has a quasi-inverse, and invertible if
it has an inverse.

Example 3.6. To illustrate these concepts, consider again the Union
schema mapping M specified by the tgds P (x) → S(x) and Q(x) → S(x).
As mentioned in the Introduction, this mapping is not invertible; it is not hard
to verify, however, that the schema mapping M′ specified by the dependency
S(x) → P (x) ∨ Q(x) is a quasi-inverse of M. For instance, assume that I1, I2
are ground instances for which there are ground instances I ′′

1 , I ′′
2 and a target

instance J such that I1 ∼M I ′′
1 , I2 ∼M I ′′

2 , (I ′′
1 , J ) satisfies the tgds P (x) → S(x)

and Q(x) → S(x), and (J, I ′′
2 ) satisfies the dependency S(x) → P (x) ∨ Q(x). It

follows that P I ′′
1 ∪ Q I ′′

1 ⊆ SJ ⊆ P I ′′
2 ∪ Q I ′′

2 . If we take I ′
1 = I ′′

1 and I ′
2 = I ′′

1 ∪ I ′′
2 ,

then clearly I1 ∼M I ′
1, I2 ∼M I ′

2, and I ′
1 ⊆ I ′

2, as desired.

Example 3.7. Let M be the Decomposition schema mapping specified by
the tgd P (x, y , z) → Q(x, y) ∧ R( y , z). As mentioned in the Introduction, this
mapping is not invertible. However, it is not hard to show that the schema
mapping M′ = (T, S, �′) with �′ consisting of the tgd Q(x, y) ∧ R( y , z) →
P (x, y , z) is a quasi-inverse of M. It is also not hard to show that another
quasi-inverse of M is the schema mapping M′′ = (T, S, �′′), where �′′ consists
of the tgds Q(x, y) → ∃z P (x, y , z) and R( y , z) → ∃x P (x, y , z). This also shows
that a quasi-inverse of a schema mapping need not be unique up to logical
equivalence. The same is true for inverses [Fagin 2007].

Next, we establish certain elementary, but quite useful, facts about (∼1, ∼2)-
inverses. We begin by introducing an auxiliary concept.
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Definition 3.8. Let ∼1 and ∼2 be two equivalence relations on ground in-
stances, and let D be a binary relation between ground instances. We set

D[∼1, ∼2] = ∼1 ◦ D ◦ ∼2,

where the symbol ◦ denotes the composition of two binary relations. This means
that

D[∼1, ∼2] = {(I1, I2) : ∃I ′
1 I ′

2((I1, I2) ∼(1,2) (I ′
1, I ′

2) ∧ (I ′
1, I ′

2) ∈ D)}.
Note that, using this notation, M′ is a (∼1, ∼2)-inverse of M if and only if

Inst(Id)[∼1, ∼2] = Inst(M ◦ M′)[∼1, ∼2].

Definition 3.8 can be viewed as a transformation that takes as input a triple
(D, ∼1, ∼2) and returns the binary relation D[∼1, ∼2] as output. The next propo-
sition, which follows easily from the definitions and the properties of equiva-
lence relations, states some basic properties of this transformation.

PROPOSITION 3.9. Let D and D′ be binary relations on ground instances, and
let ∼1, ∼2, ∼3, ∼4 be equivalence relations on ground instances. The following
statements hold.

1. D ⊆ D[∼1, ∼2].
2. Monotonicity Property I: If D ⊆ D′, then D[∼1, ∼2] ⊆ D′[∼1, ∼2].
3. Monotonicity Property II: If ∼1⊆∼3 and ∼2⊆∼4, then D[∼1, ∼2] ⊆

D[∼3, ∼4].
4. Idempotence Property: (D[∼1, ∼2])[∼1, ∼2] = D[∼1, ∼2].
5. D[∼1, ∼2] ⊆ D′[∼1, ∼2] if and only if D ⊆ D′[∼1, ∼2].
6. D[∼1, ∼2] = D′[∼1, ∼2] if and only if D ⊆ D′[∼1, ∼2] and D′ ⊆ D[∼1, ∼2].

The following fact is an immediate consequence of Part (6) of Proposition 3.9.
In what follows, it will be used repeatedly in the proofs of several theorems.

COROLLARY 3.10. Let M = (S, T, �), M′ = (T, S, �′) be two schema map-
pings and let ∼1, ∼2 be two equivalence relations on ground instances such that
∼1⊆∼M and ∼2⊆∼M. Then the following are equivalent.

1. M′ is a (∼1, ∼2)-inverse of M, i.e., Inst(Id)[∼1, ∼2] = Inst(M ◦ M′)[∼1, ∼2].
2. Inst(Id) ⊆ Inst(M ◦ M′)[∼1, ∼2] and Inst(M ◦ M′) ⊆ Inst(Id)[∼1, ∼2].

By varying the equivalence relations ∼1 and ∼2, we can obtain a variety of
(∼1, ∼2)-inverses. The next proposition provides a tool for comparing them.

PROPOSITION 3.11. Let M be a schema mapping and let ∼1, ∼2, ∼3, ∼4
be four equivalence relations on ground instances such that ∼1⊆∼3⊆∼M and
∼2⊆∼4⊆∼M. Every (∼1, ∼2)-inverse of M is also a (∼3, ∼4)-inverse of M.

PROOF. Assume that Inst(Id)[∼1, ∼2] = Inst(M◦M′)[∼1, ∼2]. We must show
that Inst(Id)[∼3, ∼4] = Inst(M ◦ M′)[∼3, ∼4]. By Corollary 3.10, it suffices to
show that Inst(Id) ⊆ Inst(M◦M′)[∼3, ∼4] and Inst(M◦M′) ⊆ Inst(Id)[∼3, ∼4].
These hold because, using the hypothesis and Parts (1) and (3) of Proposition 3.9,
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we have that

Inst(Id) ⊆ Inst(Id)[∼1, ∼2] = Inst(M ◦ M′)[∼1, ∼2] ⊆ Inst(M ◦ M′)[∼3, ∼4]

and

Inst(M ◦ M′) ⊆ Inst(M ◦ M′)[∼1, ∼2] = Inst(Id)[∼1, ∼2] ⊆ Inst(Id)[∼3, ∼4].

From Proposition 3.11, we see that the spectrum of (∼1, ∼2)-inverses has
both “strongest” and “weakest” elements. Indeed, if M′ is an (=, =)-inverse of
M (i.e.,M′ is an inverse ofM), thenM′ is also a (∼1, ∼2)-inverse ofM, for every
two equivalence relations ∼1 and ∼2 contained in ∼M. At the other end of the
spectrum, if M′ is a (∼1, ∼2)-inverse of M, then M′ is also a (∼M, ∼M)-inverse
of M.

3.3 The Most General (∼1, ∼2)-Inverse and the Candidate (∼1, ∼2)-Inverse

Let M = (S, T, �) be a schema mapping from the source schema S to the target
schema T. In this section, we first point out that ifMhas a (∼1, ∼2)-inverse, then
it has a “most general” (∼1, ∼2)-inverse. After this, we give a schema mapping
M∗ = (T, S, �∗), which we shall refer to as the candidate (∼1, ∼2)-inverse of
M, that has the following property: if M has a (∼1, ∼2)-inverse, then M∗ is
a (∼1, ∼2)-inverse of M and, in fact, is the “most general one”. Note that if
M′ = (T, S, �′) is a schema mapping from the target schema T to the source
schema S, then

Inst(M′) = {(J, I ) : J is a T-instance, I is a ground S-instance,
and (J, I )) |= �′}

Definition 3.12. Let M1 = (T, S, �1) and M2 = (T, S, �2) be two schema
mappings from T to S.

—We say that M2 contains M1, or that M2 is more general than M1, if

Inst(M1) ⊆ Inst(M2).

—We say that a schema mapping M′ = (T, S, �′) is the union of M1 and M2 if

Inst(M′) = Inst(M1) ∪ Inst(M2).

In other words, for every T-instance J and every ground S-instance I , we
have that (J, I ) |= �′ if and only if (J, I ) |= �1 or (J, I ) |= �2.

—In general, if {Mk : k ∈ K } is a set of schema mappings from T to S, then the
union of the schema mappings in this set is a schema mappingM′ = (T, S, �′)
such that

Inst(M′) =
⋃
k∈K

Inst(Mk).

We write
⋃

k∈K Mk to denote the union of all schema mappings in {Mk : k ∈
K }.
Note that “M2 contains M1” means that whenever J is a target instance

and I is a ground instance such that (J, I ) |= �1, then (J, I ) |= �2. This is a
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notion of weak implication, a slightly weaker notion than logical implication,
which would make the same requirement even when I is a source instance that
is not ground. For (∼1, ∼2)-inverses, weak implication is a natural notion, since
we care only about ground source instances. Note also that, when referring to
the union of two schema mappings or to the union of a set of schema mappings,
we are viewing schema mappings as semantic objects described by giving two
schemas and a set of pairs of instances from these two schemas.

PROPOSITION 3.13. Assume that M = (S, T, �) is a schema mapping and
∼1, ∼2 are two equivalence relations on ground instances such that ∼1⊆∼M and
∼2⊆∼M. If {Mk : k ∈ K } is a nonempty set of schema mappings from T to S
such that each Mk is a (∼1, ∼2)-inverse of M, then the union

⋃
k∈K Mk is also a

(∼1, ∼2)-inverse of M.

PROOF. Use Corollary 3.10 and the easily verifiable fact that Inst(M ◦
(
⋃

k∈K Mk)) = ⋃
k∈K Inst(M ◦ Mk).

COROLLARY 3.14. Assume that M = (S, T, �) is a schema mapping and ∼1,
∼2 are two equivalence relations on ground instances such that ∼1⊆∼M and
∼2⊆∼M. IfMhas a (∼1, ∼2)-inverse, then the unionM∗ of all (∼1, ∼2)-inverses of
M is also a (∼1, ∼2)-inverse of M. Moreover, M∗ contains every (∼1, ∼2)-inverse
of M, and hence M∗ is the most general (∼1, ∼2)-inverse of M.

Next, given a schema mappingM = (S, T, �), we describe a schema mapping
M′ = (T, S, M′) such that if M has a (∼1, ∼2)-inverse, then M′ is the most
general (∼1, ∼2)-inverse of M. Let I be a ground instance. Let τ(∼1,∼2)(�, I )
define the set of all pairs (J, I2) such that J is a target instance, I2 is a ground
instance, and such that if (I, J ) |= �, then there are ground instances I ′ and
I ′

2 such that (I, I2) ∼(1,2) (I ′, I ′
2) and I ′ ⊆ I ′

2. Later, we refer to τ(∼1,∼2)(�, I ) as
the constraint associated with I . Let cand(∼1,∼2)(�) be the set of all constraints
τ(∼1,∼2)(�, I ) (one for every ground instance I ). Thus, (J, I2) |= cand(∼1,∼2)(�)
precisely if I2 is a ground instance and for every ground instance I such that
(I, J ) |= �, there are ground instances I ′ and I ′

2 such that (I, I2) ∼(1,2) (I ′, I ′
2)

and I ′ ⊆ I ′
2. Let M′ = (T, S, cand(∼1,∼2)(�)); in what follows, we refer to M′ as

the candidate (∼1, ∼2)-inverse of M.

THEOREM 3.15. Assume that M is a schema mapping that has a (∼1, ∼2)-
inverse. Then the candidate (∼1, ∼2)-inverse of M is a (∼1, ∼2)-inverse of M;
moreover, it contains every (∼1, ∼2)-inverse of M, and hence is the most general
(∼1, ∼2)-inverse of M.

PROOF. Let M′ = (T, S, �′) be the candidate (∼1, ∼2)-inverse of M we have
defined. Let M′′ = (T, S, �′′) be a (∼1, ∼2)-inverse of M. Since M′′ is a (∼1, ∼2)-
inverse of M, we know that Inst(Id)[∼1, ∼2] = Inst(M ◦ M′′)[∼1, ∼2]. We must
show that Inst(Id)[∼1, ∼2] = Inst(M ◦ M′)[∼1, ∼2] holds, and also that M′

contains M′′.
We first show that M′ contains M′′. Assume not; we shall derive a contra-

diction. Since M′ does not contain M′′, there is some pair (J, I2) such that I2
is a ground instance and (J, I2) |= �′′ but (J, I2) �|= �′. Since (J, I2) �|= �′, there
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is some ground instance I such that (I, J ) |= �, but there is no choice of I ′, I ′
2

such that (I, I2) ∼(1,2) (I ′, I ′
2) and I ′ ⊆ I ′

2. Since (I, J ) |= � and (J, I2) |= �′′, it
follows that (I, I2) is in Inst(M ◦M′′)[∼1, ∼2]. However, since there is no choice
of I ′, I ′

2 such that (I, I2) ∼(1,2) (I ′, I ′
2) and I ′ ⊆ I ′

2, it follows that (I, I2) is not in
Inst(Id)[∼1, ∼2]. This contradicts the hypothesis that M′′ is a (∼1, ∼2)-inverse-
inverse of M. So M′ contains M′′.

Since M′ contains M′′, we have that Inst(M ◦ M′′)[∼1, ∼2] ⊆ Inst(M ◦
M′)[∼1, ∼2]. Since Inst(Id)[∼1, ∼2] = Inst(M ◦ M′′)[∼1, ∼2], we also have that
Inst(Id)[∼1, ∼2] ⊆ Inst(M◦M′)[∼1, ∼2]. So, to prove Inst(Id)[∼1, ∼2] = Inst(� ◦
�′)[∼1, ∼2], we need only show that Inst(M ◦ M′)[∼1, ∼2] ⊆ Inst(Id)[∼1, ∼2].
By Part (5) of Proposition 3.9, it is sufficient to show Inst(M ◦ M′) ⊆ Inst(Id)
[∼1, ∼2].

If (I1, I2) ∈ Inst(M ◦ M′), there is J such that (I1, J ) |= � and (J, I2) |= �′.
If we let I1 play the role of I in the definition of �′, we see that there are I ′

1, I ′
2

such that (I1, I2) ∼(1,2) (I ′
1, I ′

2) and I ′
1 ⊆ I ′

2. So (I1, I2) ∈ Inst(Id)[∼1, ∼2], as
desired.

In Section 5.1, we apply Theorem 3.15 to inverses (i.e., (=, =)-inverses), to
prove that if a schema mapping specified by a finite set of s-t tgds has an inverse,
then it has an inverse specified by a finite set of full s-t tgds with constants and
inequalities.

3.4 The (∼1, ∼2)-Subset Property and Its Applications

In this section, we introduce a combinatorial property, which we call the (∼1,
∼2)-subset property, and show that it gives an exact criterion for the existence
of (∼1, ∼2)-inverses; in particular, we obtain necessary and sufficient conditions
for the existence of quasi-inverses and for the existence of inverses.

Definition 3.16. Assume that M = (S, T, �) is a schema mapping and ∼1,
∼2 are two equivalence relations on ground instances such that ∼1⊆∼M and
∼2⊆∼M.

� We say that M has the (∼1, ∼2)-subset property if for every pair (I1, I2) of
ground instances such that Sol(M, I2) ⊆ Sol(M, I1), there is a pair (I ′

1, I ′
2) of

ground instances such that (I1, I2) ∼(1,2) (I ′
1, I ′

2) and I ′
1 ⊆ I ′

2.
� In particular, a schema mapping M has the (=, =)-subset property if for every

pair (I1, I2) of ground instances such that Sol(M, I2) ⊆ Sol(M, I1), we have
that I1 ⊆ I2.

Before stating any technical results, let us give some insight to the (=, =)-
subset property and to the (∼1, ∼2)-subset property. Using Proposition 3.2, it is
easy to see that if � is a set of s-t tgds and I1, I2 are two ground instances such
that I1 ⊆ I2, then Sol(M, I2) ⊆ Sol(M, I1). Thus, the (=, =)-subset property
is the converse of this fact. More generally, the (∼1, ∼2)-subset property is the
converse of the following fact, which follows also from Proposition 3.2: if I1, I2
are two ground instances such that there are two ground instances I ′

1, I ′
2 with

(I1, I2) ∼(1,2) (I ′
1, I ′

2) and I ′
1 ⊆ I ′

2, then Sol(M, I2) ⊆ Sol(M, I1).
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We now give two examples: one of a schema mapping M that has the
(∼M, ∼M)-subset property, and one of a (full) schema mapping M that does
not have the (∼M, ∼M)-subset property.

Example 3.17. Let M be the Decomposition schema mapping of
Example 3.7. We now show that M has the (∼M, ∼M)-subset property. To see
this, let I1 and I2 be two ground instances such that Sol(M, I2) ⊆ Sol(M, I1). Let
J be the solution for I2 obtained by taking Q J = π12(P I2 ) and R J = π23(P I2 ).2

Since Sol(M, I2) ⊆ Sol(M, I1), we have that J is also in Sol(M, I1), so π12(P I1 ) ⊆
π12(P I2 ) and π23(P I1 ) ⊆ π23(P I2 ). Let I ′

2 = I1 ∪ I2. From the two inclusions we
have just established, it follows that I ′

2 ∼M I2; moreover, we have that I1 ⊆ I ′
2.

This shows that M has the (∼M, ∼M)-subset property (actually, this shows that
M has the stronger (=, ∼M)-subset property).

Example 3.18. Let M be the schema mapping specified by the full s-t tgd
E(x, z) ∧ E(z, y) → F (x, y) ∧ M (z). We claim that M does not have the (∼M
, ∼M)-subset property. Towards the claim, consider the following two ground
instances I1 and I2:

I1 = {E(1, 4), E(4, 3), E(1, 2), E(2, 5), E(4, 2)} and
I2 = {E(1, 2), E(2, 3), E(1, 3)}.

For i = 1, 2, let Ji be the result of the chase of Ii with �. It is easy to see that

J1 = {F (1, 3), F (1, 5), F (4, 5), F (1, 2), M (2), M (4)} and J2 = {F (1, 3), M (2)}.
Since J2 ⊆ J1 and since Ji is a universal solution for Ii, i = 1, 2, we have
that Sol(M, I1) ⊆ Sol(M, I2). We will show that there are do not exist ground
instances I ′

1 and I ′
2 such that I1 ∼M I ′

1, I2 ∼M I ′
2, and I ′

2 ⊆ I ′
1.

Towards a contradiction, assume that such ground instances I ′
1 and I ′

2 do
exist. For i = 1, 2, let J ′

i be the result of the chase of I ′
i with �. Since Ii ∼M I ′

i ,
we must have that Ji = J ′

i , for i = 1, 2. In particular, F (1, 3) ∈ J ′
2, which implies

that there is an element n in the active domain of I ′
2 such that E(1, n) ∈ I ′

2 and
E(n, 3) ∈ I ′

2. In turn, this implies that M (n) ∈ J ′
2 = J2, which forces n = 2.

Consequently, we have that I2 ⊆ I ′
2, which implies that I2 ⊆ I ′

1 (since I ′
2 ⊆ I ′

1).
Let us now focus attention on I ′

1. Since J1 = J ′
1, we have that F (4, 5) ∈ J ′

1,
which implies that there is an element m in the active domain of I ′

1 such that
E(4, m) ∈ I ′

1 and E(m, 5) ∈ I ′
1. In turn, this implies that M (m) ∈ J ′

1 = J1,
which means that either m = 2 or m = 4. If m = 2, we have that E(4, 2) ∈ I ′

1;
however, E(2, 3) ∈ I ′

1, since E(2, 3) ∈ I2 ⊆ I ′
1. This implies that F (4, 3) ∈ J ′

1,
which contradicts the assumption that J ′

1 = J1. If m = 4, then we have that
E(4, 4) ∈ I ′

1, which implies that F (4, 4) ∈ J ′
1; this contradicts the assumption

that J1 = J ′
1.

The next theorem asserts that the (∼1, ∼2)-subset property is a necessary and
sufficient condition for the existence of a (∼1, ∼2)-inverse of a schema mapping
M = (S, T, �) in which � is a finite set of s-t tgds.

2π12(P I2 ) is the result of projecting P I2 onto its first two columns, and similarly for π23(P I2 ).
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THEOREM 3.19. Assume that M = (S, T, �) is a schema mapping in which
� is a finite set of s-t tgds and let ∼1, ∼2 be two equivalence relations on ground
instances such that ∼1⊆∼M and ∼2⊆∼M. Then the following statements are
equivalent:

1. M has a (∼1, ∼2)-inverse.
2. M has the (∼1, ∼2)-subset property.

PROOF. We first show that (1) ⇒ (2). Let M′ = (T, S, �′) be a (∼1, ∼2)-
inverse of �. Assume that (I1, I2) is a pair of ground instances such that
Sol(M, I2) ⊆ Sol(M, I1). Since (I2, I2) ∈ Inst(Id), it follows that (I2, I2) ∈
Inst(M◦M′)[∼1, ∼2]. Therefore, there is a pair (I3, I4) of ground instances and a
target instance J such that (I2, I2) ∼(1,2) (I3, I4), and such that (I3, J ) |= � and
(J, I4) |= �′. Since I2 ∼1 I3 and ∼1⊆∼M, we obtain that I2 ∼M I3. Therefore,
since (I3, J ) |= �, it follows that (I2, J ) |= �. Since Sol(M, I2) ⊆ Sol(M, I1),
we have that (I1, J ) |= �. Consequently, (I1, I4) ∈ Inst(M ◦ M′), which implies
that (I1, I4) ∈ Inst(Id)[∼1, ∼2]. In turn, this implies that there is a pair (I ′

1, I ′
4) of

ground instances such that (I1, I4) ∼(1,2) (I ′
1, I ′

4) and I ′
1 ⊆ I ′

4. Since I2 ∼2 I4 and
I4 ∼2 I ′

4, we have that I2 ∼2 I ′
4. Therefore, (I1, I2) ∼(1,2) (I ′

1, I ′
4) where I ′

1 ⊆ I ′
4.

This establishes the implication (1) ⇒ (2).
Towards the reverse implication, assume that M has the (∼1, ∼2)-subset

property. Put

D = {(J, I ) : J is a universal solution for I with respect to M}.

Let M′ = (T, S, �′) be the schema mapping such that (J, I ) |= �′ if and only
if (J, I ) ∈ D. We claim that M′ is a (∼1, ∼2)-inverse of �. By Corollary 3.10,
it suffices to prove that Inst(Id) ⊆ Inst(M ◦ M′)[∼1, ∼2] and Inst(M ◦ M′) ⊆
Inst(Id)[∼1, ∼2].

Assume that (I1, I2) ∈ Inst(Id), that is, I1 ⊆ I2. We must show that (I1, I2) ∈
Inst(M ◦ M′)[∼1, ∼2]. Let J = chase�(I2). So J is a universal solution for I2
with respect to M. We thus have (I2, J ) |= � and (J, I2) |= �′. Since I1 ⊆ I2
and (I2, J ) |= �, and since � is a set of s-t tgds, it follows that (I1, J ) |= �.
Since (I1, J ) |= � and (J, I2) |= �′, we have that (I1, I2) ∈ Inst(M ◦ M′) ⊆
Inst(M ◦ M′)[∼1, ∼2], as desired. Observe that we did not use the (∼1, ∼2)-
subset property in proving this inclusion.

For the other inclusion, assume that (I1, I2) ∈ Inst(M ◦ M′); we must show
that (I1, I2) ∈ Inst(Id)[∼1, ∼2]. Since (I1, I2) ∈ Inst(M◦M′), it follows that there
is a target instance J such that (I1, J ) |= � and (J, I2) |= �′. Since (J, I2) |= �′,
we know that J is a universal solution for I2 with respect to M. We claim that
Sol(M, I2) ⊆ Sol(M, I1). To see this, assume that J ′ is a target instance such
that J ′ ∈ Sol(M, I2); we must show that J ′ ∈ Sol(M, I1). Since J is a universal
solution for I2, it follows that there is a homomorphism h : J → J ′. Since � is
a set of s-t tgds and (I1, J ) |= �, we have that (I1, J ′) |= � (to find witnesses in
J ′ for the existential quantifiers in the tgds in �, we apply h to the witnesses
in J ). So J ′ ∈ Sol(M, I1), as desired. This completes the proof of the claim that
Sol(M, I2) ⊆ Sol(M, I1).
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Since Sol(M, I2) ⊆ Sol(M, I1). and since M has the (∼1, ∼2)-subset property,
it follows that there are I ′

1, I ′
2 such that (I1, I2) ∼(1,2) (I ′

1, I ′
2) and I ′

1 ⊆ I ′
2. So

(I1, I2) ∈ Inst(Id)[∼1, ∼2], as desired.

COROLLARY 3.20. Assume that M = (S, T, �) is a schema mapping in which
� is a finite set of s-t tgds. Then the following statements are equivalent:

1. M has a quasi-inverse.
2. M has the (∼M, ∼M)-subset property. That is, if (I1, I2) is a pair of ground

instances such that Sol(M, I2) ⊆ Sol(M , I1), then there is a pair (I ′
1, I ′

2) of
ground instances such that I1 ∼M I ′

1, I2 ∼M I ′
2, and I ′

1 ⊆ I ′
2.

The (∼M, ∼M)-subset property can be used to show that several natural
schema mappings that are not invertible have quasi-inverses. In particular,
this holds true for the Projection, Union, and Decomposition schema mappings
discussed in the Introduction. We showed explicitly in Example 3.17 that the
Decomposition schema mapping has the (∼M, ∼M)-subset property.

The Projection, Union, and Decomposition schema mappings are LAV (local-
as-view) schema mappings, that is, the premise of each dependency is a single
atom. The next result shows that every LAV schema mapping has a quasi-
inverse. The proof generalizes the argument in Example 3.17.

PROPOSITION 3.21. If M = (S, T, �) is a LAV schema mapping, then M has
the (∼M, ∼M)-subset property. Consequently, every LAV schema mapping has a
quasi-inverse.

PROOF. Assume that I1 and I2 are two ground instances such that
Sol(M, I2) ⊆ Sol(M, I1). Let J1 be a universal solution for I1, and let J2 be
a universal solution for I2. There is a homomorphism from J1 to J2, since
J2 is a solution for I1. Let I ′

2 = I1 ∪ I2. Clearly, I1 ⊆ I ′
2. It remains to show

that I2 ∼M I ′
2, that is, Sol(M, I2) = Sol(M, I ′

2). Since I2 ⊆ I ′
2, we have that

Sol(M, I ′
2) ⊆ Sol(M, I2). For the other inclusion, let J be a solution for I2. We

have to show that J is also a solution for I ′
2. Consider an arbitrary s-t tgd in �;

since � is LAV, the tgd must be of the form ∀x(R(x) → ∃yϕ(x, y)), where R(x)
is an atom.

Let a be a tuple of constants such that I ′
2 |= R(a). We must show that J |=

∃yϕ(a, y). Since I ′
2 |= R(a), there are two possibilities: either R(a) is a fact of

I1, or R(a) is a fact of I2. If R(a) is a fact of I1, then J1 |= ∃yϕ(a, y), since
J1 is a solution for I1. Since there is a homomorphism from J1 to J2 and a
homomorphism from J2 to J (because J2 is a universal solution for I2) we have
that there is a homomorphism from J1 to J . Hence, J |= ∃yϕ(a, y), as desired.
If R(a) is a fact of I2, then again J |= ∃yϕ(a, y), since J is a solution for I2. So
in both cases, J |= ∃yϕ(a, y), as desired.

An inspection of the proof of Proposition 3.21 reveals that actually a stronger
fact holds: if M is a LAV schema mapping, then M has the (=, ∼M)-subset
property; consequently, every LAV mapping has a (=, ∼M)-inverse.

Our next result asserts that, in contrast to LAV schema mappings, there are
schema mappings specified by full s-t tgds that have no quasi-inverses.
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PROPOSITION 3.22. There is a schema mapping M that is specified by a single
full s-t tgd and has no quasi-inverse.

PROOF. Let M be the schema mapping in Example 3.18. It is specified by
a single full s-t tgd, and we showed in Example 3.18 that M does not have
the (∼M, ∼M)-subset property. So by Corollary 3.20, it follows that M has no
quasi-inverse.

The full s-t tgd E(x, z)∧E(z, y) → F (x, y)∧M (z) in Example 3.18 is logically
equivalent to the set consisting of the following two full s-t tgds:

E(x, z) ∧ E(z, y) → F (x, y) and E(x, z) ∧ E(z, y) → M (z).

It is not hard to show that each of these two full s-t tgds specifies schema
mappings that have a quasi-inverse. Thus, the schema mapping specified by
the union of the set of constraints of two quasi-invertible schema mappings
need not be quasi-invertible.

Note that the (∼M, ∼M)-subset property is used “positively” in the proof
of Proposition 3.21 and “negatively” in the proof of Proposition 3.22. Indeed,
the (∼M, ∼M)-subset property is used as a sufficient condition for the exis-
tence of quasi-inverses in Proposition 3.21 and as a necessary condition in
Proposition 3.22.

3.5 The (=, =)-Subset Property and Inverses of Schema Mappings

Theorem 3.19 yields a necessary and sufficient condition for the existence of an
inverse:

COROLLARY 3.23. Assume that M = (S, T, �) is a schema mapping where �

is a finite set of s-t tgds. Then the following statements are equivalent:

1. M has an inverse.
2. M has the (=, =)-subset property. That is, if I1 and I2 are two ground in-

stances such that Sol(M, I2) ⊆ Sol(M, I1), then I1 ⊆ I2.

As mentioned in the Introduction, the unique-solutions property was identi-
fied in Fagin [2007] as a necessary condition for a schema mapping M to have
an inverse. By definition, this property says that if I1 and I2 are ground in-
stances such that I1 �= I2, then we have that Sol(M, I1) �= Sol(M, I2). It is easy
to see that the (=, =)-subset property implies the unique-solutions property.
Indeed, if Sol(M, I1) = Sol(M, I2), then by applying the (=, =)-subset property
twice, we have that I1 ⊆ I2 and I2 ⊆ I1, and so I1 = I2.

The unique solutions property implies that if a schema mapping M is invert-
ible, then the equivalence relation ∼M coincides with the equality relation = on
ground instances. In turn, this observation shows that the following proposition
is true.

PROPOSITION 3.24. Every quasi-inverse of an invertible schema mapping M
is an inverse of M.
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Thus, for invertible schema mappings, there is no distinction between in-
verses and quasi-inverses (and (∼1, ∼2)-inverses as well).

The failure of the unique solutions property is typically used as a sufficient
condition for proving non-invertibility. In particular, the Projection, Union, and
Decomposition schema mappings are not invertible because none of them pos-
sesses the unique solutions property. In Fagin [2007], it was shown that for
LAV schema mappings, the unique solutions property is a necessary and suffi-
cient condition for invertibility. The question of whether the unique solutions
property is not just necessary but also sufficient for invertibility of general (not
necessarily LAV) schema mappings specified by a finite set of s-t tgds was left
open. The next theorem resolves this problem, by showing that the unique-
solutins problem is not sufficient for invertibility.

THEOREM 3.25. There is a schema mapping specified by a finite set of s-t tgds
that has the unique solutions property but does not have an inverse.

PROOF. Let S consist of unary relation symbols A and B. Let T consist of
a unary relation symbol C and a binary relation symbol R. Let M = (S, T, �)
where � consists of the tgds:

A(x) → R(x, x), B(x) → ∃ y R(x, y), A(x) ∧ B(x) → C(x).

We shall show that M has the unique solutions property but does not have
an inverse. We begin by showing that M does not satisfy the (=, =)-subset
property, and hence does not have an inverse. Let I1 have the single fact B(0),
and let I2 have the single fact A(0). Then Sol(M, I1) consists of those target
instances that contain some fact of the form R(0, y), and Sol(M, I2) consists
of those target instances that contain the fact R(0, 0). Therefore, Sol(M, I2) ⊆
Sol(M, I1). Since I1 �⊆ I2, it follows that M does not satisfy the (=, =)-subset
property, and hence does not have an inverse.

We now sketch a proof that M has the unique solutions property. Let I1 and
I2 be ground instances that have the same set of solutions; we must show that
I1 = I2.

First, it is straightforward to show that I1 and I2 have the same active do-
main. Now every member a of this active domain has one of three possible types
in I1: a is in AI1 and in BI1 ; a is in AI1 but not in BI1 ; or a is in BI1 but not in AI1 .
Similarly, we define the corresponding types of a in I2. It is straightforward to
show that whatever type a has in I1, it has the corresponding type in I2. This
implies that I1 = I2, as desired.

4. THE LANGUAGE OF QUASI-INVERSES

In this section, we identify the language needed to express quasi-inverses of
schema mappings specified by s-t tgds.

4.1 The General Case

One of our main results is the following characterization of the language for
quasi-inverses of schema mappings specified by tgds.
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THEOREM 4.1. Let M be a schema mapping specified by a finite set of s-t tgds.
If M has a quasi-inverse then the following hold.

1. M has a quasi-inverse M′ specified by a finite set of disjunctive tgds with
constants and inequalities.

2. There is an exponential-time algorithm for producing M′.
3. Statement (1) is not necessarily true if we disallow either constants or in-

equalities in the premise, or disallow disjunctions or existential quantifiers
in the conclusion.

In fact, the quasi-inverse our algorithm produces has inequalities only among
constants.

We illustrate the intuition behind the construction of M′, with two examples.
We begin with the Union example, where � consists of the s-t tgds P (x) → S(x)
and Q(x) → S(x). There are two possible “generators” of S(x), namely P (x) and
Q(x). These possibilities are reflected by the disjunctive tgd S(x) → P (x)∨Q(x)
(we shall put a variation of this disjunctive tgd into �′). As another example,
let � consist of the s-t tgds S(x, y) → P (x, y) and T (x, y) → P (x, x). There is
only one possible generator of P (x, y) if x and y are different, namely S(x, y),
and this is reflected by the tgd with inequalities P (x, y) ∧ (x �= y) → S(x, y).
But there are two possible generators of P (x, x), namely S(x, x) and T (x, y),
and this is reflected by the disjunctive tgd P (x, x) → S(x, x) ∨ ∃ yT (x, y).
The algorithm for producing quasi-inverses systematically considers all such
generators.

We now introduce the machinery behind the algorithm to produce M′, in-
cluding a formal definition of “generator.” If α is a conjunction of atoms (or an
instantiation of atoms), define Iα to be an instance whose facts are the conjuncts
of α. Note that Iα is not an instance in the usual sense, since the active domain
consists of variables. Thus, Iα is a type of canonical instance. Let x be a vector
of distinct variables. A complete description δ(x) is a conjunction of equalities
and inequalities among members of x such that for each xi, x j in x, exactly one
of the formulas xi = x j or xi �= x j is a conjunct of δ(x), and such that δ(x) is
satisfiable (in other words, consistent).

Let � be a finite set of s-t tgds. We now define a set �∗ that includes �

and that is logically equivalent to �. For each member σ of �, and for each
complete description δ of the variables that each appear in both the premise
and the conclusion of σ , select a unique representative of each equivalence class
determined by δ, and let σδ be obtained from σ by replacing every variable in
σ by the representative of its equivalence class. Let �∗ consist of � and all
such formulas σδ (for all choices of σ in � and all complete descriptions δ of
the variables that each appear in both the premise and the conclusion of σ ).
For example, if σ is R(x1, x2, x3, x4) → ∃ y(Q(x1, y) ∧ S( y , x2, x3)), and if δ is
(x1 = x3) ∧ (x1 �= x2) ∧ (x2 �= x3), then {x1, x3} forms one equivalence class and
{x2} is the other equivalence class, and σδ is R(x1, x2, x1, x4) → ∃ y(Q(x1, y) ∧ S
( y , x2, x1)).
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Definition 4.2. Let β(x, z) be a conjunction of source atoms, and let ψT(x, y)
be a conjunction of target atoms, where the members of x, y, z are all distinct,
and the members of x are exactly the variables that appear in both β(x, z) and
ψT(x, y). Let � be a finite set of s-t tgds. We say that β(x, z) is a generator of
∃yψT(x, y) (with respect to �) if the s-t tgd β(x, z) → ∃yψT(x, y) is a logical
consequence of �.

When � is understood, we shall often drop the words “with respect to �”. It
follows easily from the standard theory of the chase that β(x, z) is a generator
of ∃yψT(x, y) with respect to � if and only if the chase of Iβ(x,z) with � gives at
least IψT(x,y′) for a substitution where some y′ substitutes for y.

Definition 4.3. The source formula β(x, z) is a minimal generator of
∃yψT(x, y) if β(x, z) is a generator of ∃yψT(x, y) and there is no β ′(x, z) that
is a conjunction of a strict subset of the conjuncts of β(x, z) such that β ′(x, z) is
a generator of ∃yψT(x, y).

We shall make use of the following simple lemma.

LEMMA 4.4. Let � be a finite set of s-t tgds, each with at most s1 conjuncts in
its premise. Let ψT(x, y) be a conjunction of s2 target atoms. Then every minimal
generator of ∃yψT(x, y) with respect to � has at most s1s2 conjuncts.

PROOF. At most s2 chase steps are required to generate ψT(x, y) from β(x, z)
(one chase step for every conjunct of ψT(x, y)). Each chase step involves at
most s1 conjuncts of β(x, z). So if β(x, z) is minimal, it has at most s1s2
conjuncts.

From Lemma 4.4, we see that there is a simple exhaustive-search algorithm
for finding minimal generators:

Algorithm MinGen(M, ∃yψT(x, y))

Input: A schema mappingM = (S, T, �), where � is a finite set of s-t tgds, and a formula
∃yψT(x, y), where ψT(x, y) is a conjunction of target atoms, and where the variables in
x, y are all distinct, and all appear in ψT(x, y).
Output: A finite set of the minimal generators of ∃yψT(x, y) with respect to �.
1. (Initialization.) Initialize the set G of minimal generators of ∃yψT(x, y) to ∅.
2. (Exhaustive search.) Let s1 and s2 be as in Lemma 4.4. Systematically check every

conjunction β(x, z) (up to renaming of variables in z) of at most s1s2 atoms where the
variables in z are distinct and distinct from members of x, y, to see if the chase of
Iβ(x,z) with � gives at least IψT(x,y′) for a substitution where some y′ substitutes for y.
If so, add β(x, z) to G.

3. (Minimize.) For each member β(x, z) of G, check to see if there is some other β ′(x, z′)
in G whose conjuncts are a subset of the conjuncts of β(x, z) (up to renaming of
variables in z, z′). If so, remove β(x, z) from G. Continue the process until there is no
more change in G. Return G.
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The next algorithm produces a finite set of disjunctive tgds with con-
stants and inequalities that we shall prove specifies a quasi-inverse if one
exists.

Algorithm QuasiInverse(M)

Input: A schema mapping M = (S, T, �), where � is a finite set of s-t tgds.
Output: A schema mapping M′ = (T, S, �′), where �′ is a finite set of disjunctive tgds
with constants and inequalities, that is a quasi-inverse ofM ifMhas a quasi-inverse.
1. (Create �∗.) Create �∗ from � as defined just before Definition 4.2.
2. (Create the formulas σ ′.) For each member σ of �∗, create an implication σ ′ as follows.

Assume that σ is ϕS(x, u) → ∃yψT(x, y), where the variables in x are distinct, and
consist exactly of the variables that appear in both ϕS(x, u) and ψT(x, y). The premise
of σ ′ is the conjunction of ψT(x, y), along with each of the formulas Constant(x) for
members x of x, along with the formulas xi �= x j for each pair xi , x j of distinct
variables in x. For each formula β(x, z) in the output of MinGen(M, ∃yψT(x, y)), let
∃zβ(x, z) be a disjunct in the conclusion of σ ′.

3. (Construct �′.) Let �′ consist of each of these formulas σ ′. Return M′ = (T, S, �′).

Note that the disjunction in the conclusion that is created in Step (2) of
the algorithm is nonempty, since ϕS(x, u), the premise of σ , is a generator of
∃yψT(x, y), and so some subset of the conjunctions of ϕS(x, u) forms a minimal
generator.

It is interesting to note that the schema mapping M′ that is the output of
the algorithm QuasiInverse(M) is the same no matter what the choice is for
(∼1, ∼2) (as long as ∼1⊆∼M and ∼2⊆∼M). However, it may happen that M′ is
a (∼1, ∼2)-inverse of M and yet M′ fails to be a (∼′

1, ∼′
2)-inverse of M. This

is because M′ is guaranteed to be a (∼′
1, ∼′

2)-inverse of M only if M has a
(∼′

1, ∼′
2)-inverse.

Example 4.5. Let � consist of the tgds

P (x1, x2, x3) → ∃ y(S(x1, x2, y) ∧ Q( y , y)) T (x3, x4) → S(x4, x4, x3)
U (x1) → ∃ y(S(x1, x1, y) ∧ Q( y , y) ∧ Q(x1, y)) R(x1, x2, x4) → Q(x1, x2).

Let σ1 be the first tgd in �, and let σ2 be the result of replacing each occurrence
of x2 in σ1 by x1 (so σ2 is P (x1, x1, x3) → ∃ y(S(x1, x1, y) ∧ Q( y , y))). Then σ1
and σ2 are both in �∗. To show Step (2) of the algorithm QuasiInverse, in this
example we shall produce σ ′

1 from σ1, and we shall produce σ ′
2 from σ2. Thus,

the algorithm puts σ ′
1 and σ ′

2 into �′.
The only generator of the conclusion ∃ y(S(x1, x2, y) ∧ Q( y , y)) of σ1 is

P (x1, x2, x3), so σ ′
1 is S(x1, x2, y)∧ Q( y , y)∧Constant(x1)∧Constant(x2)∧ (x1 �=

x2) → ∃x3 P (x1, x2, x3). There are four minimal generators of ∃ y(S(x1, x1, y) ∧
Q( y , y)), the conclusion of σ2. The first is P (x1, x1, x3), the premise of σ2. The
second is U (x1), since its chase yields S(x1, x1, y), Q( y , y), Q(x1, y), which in-
cludes the conjuncts in the conclusion of σ2. The third is T (x1, x1)∧ R(x1, x1, x4),
since chasing the two facts in this conjunct yields S(x1, x1, x1), Q(x1, x1), where
the role of y in the conclusion of σ2 is played by the variable x1. The fourth is
T (x3, x1) ∧ R(x3, x3, x4), since the chase of the two facts in this conjunct yields
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S(x1, x1, x3), Q(x3, x3), where the role of y in the conclusion of σ2 is played by
the variable x3. Then σ ′

2 is

S(x1, x1, y) ∧ Q( y , y) ∧ Constant(x1) → (∃x3 P (x1, x1, x3) ∨ U (x1)
∨ ∃x4(T (x1, x1) ∧ R(x1, x1, x4)) ∨ ∃x3∃x4(T (x3, x1) ∧ R(x3, x3, x4))

)
Note that the fourth disjunct in the conclusion of σ ′

2 is implied by the third
disjunct (by letting the role of x3 be played by x1). So the third disjunct could
be removed, since we need only keep the more general disjunct.

We shall soon prove that that the QuasiInverse algorithm defines a quasi-
inverse of M if one exists. We first need a lemma, which follows from the stan-
dard theory of the chase.

LEMMA 4.6. Assume that � is a finite set of s-t tgds. Let β(x, z) be a conjunc-
tion of source atoms, and ψT(x, y) a conjunction of target atoms. Assume that x
and z are vectors of distinct variables, with no variables in common, and x̄, z̄
are an assignment of distinct constants to x, z. Assume that ȳ is an assignment
where the members of ȳ may be constants in x̄, constants in z̄, or nulls. Assume
that a chase of Iβ(x̄,z̄) with � yields at least IψT(x̄,ȳ). Then β(x, z) is a generator of
∃yψT(x, y).

We now show that the QuasiInverse algorithm defines a quasi-inverse of M
if one exists. This implies Part (1) of Theorem 4.1.

THEOREM 4.7. Let M = (S, T, �) be a schema mapping, where � is a finite
set of tgds. Let ∼1, ∼2 be two equivalence relations on ground instances such
that ∼1⊆∼M and ∼2⊆∼M. The following are equivalent.

1. M has a (∼1, ∼2)-inverse.
2. The output M′ of QuasiInverse(M) is a (∼1, ∼2)-inverse of M. The schema

mapping M′ is specified by a finite set of disjunctive tgds with constants and
inequalities among constants.

PROOF. It is obvious that (2) implies (1). We now show that (1) implies (2). Let
M′ = (T, S, �′), where M′ is the output of QuasiInverse(M). By construction,
the schema mapping M′ is specified by a finite set of disjunctive tgds with
constants and inequalities among constants. Assume that M has a (∼1, ∼2)-
inverse. We now show that M′ is a (∼1, ∼2)-inverse of M.

By Corollary 3.10, we must show that Inst(Id) ⊆ Inst(M ◦ M′)[∼1, ∼2] and
Inst(M ◦ M′) ⊆ Inst(Id)[∼1, ∼2]. We first show that Inst(Id) ⊆ Inst(M ◦ M′)
[∼1, ∼2]. By Part (1) of Proposition 3.9, it is sufficient to show that Inst(Id) ⊆
Inst(M ◦ M′). Towards this, let I1, I2 be ground instances such that I1 ⊆ I2.
Let J1 be the result of doing a chase of I1 with �. Clearly, (I1, J1) |= �. We
claim that (J1, I2) |= �′, which implies that (I1, I2) ∈ Inst(M ◦ M′), as desired.
Let σ and σ ′ be as in Step (2) of QuasiInverse(M). To show that (J1, I2) |= �′,
we need only show that (J1, I2) |= σ ′. Assume that x̄, ȳ are an assignment
of values to x, y such that the premise of σ ′ holds in J1. We need only show
that there is a minimal generator β(x, z) of ∃yψT(x, y) where also ∃zβ(x̄, z)
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holds in I1, and hence in I2. Since the entries of x̄ are constants (because of
the formulas Constant(x) in the premise of σ ′), and since J1 is the result of
doing a chase of I1 with �, there is a vector z of distinct variables, all distinct
from the variables in x, and an assignment z̄ of distinct constants in I1, all
distinct from the constants in x̄, and a conjunction β ′′(x̄, z̄) of facts of I1, such
that a chase of Iβ ′′(x̄,z̄) with � yields at least IψT(x̄,ȳ). The members of x̄ are
distinct, because of the inequalities in the premise of σ ′. So by Lemma 4.6,
we see that β ′′(x, z) is a generator of ∃yψT(x, y). Note that ∃zβ ′′(x̄, z) holds
in I1. Let β(x, z) be obtained from β ′′(x, z) by removing as many conjuncts as
possible so that β(x, z) is still a generator of ∃yψT(x, y). So β(x, z) is a minimal
generator of ∃yψT(x, y). Since ∃zβ ′′(x̄, z) holds in I1, so does ∃zβ(x̄, z). So β(x, z)
is a minimal generator of ∃yψT(x, y), and ∃zβ(x̄, z) holds in I1. This was to be
shown.

For the other direction, assume that I1, I2 are ground instances such that
(I1, I2) ∈ Inst(M ◦ M′); we must show that (I1, I2) ∈ Inst(Id)[∼1, ∼2]. Since
(I1, I2) ∈ Inst(M ◦ M′), there is a target instance J such that (I1, J ) |= �

and (J, I2) |= �′. We now show that Sol(M, I2) ⊆ Sol(M, I1). Assume J∗ ∈
Sol(M, I2); we must show that J∗ ∈ Sol(M, I1). Let σ be a member of �; we must
show that (I1, J∗) |= σ . Let σ be ϕS(x, u) → ∃yψT(x, y), where the variables in
x are distinct, and are exactly the variables that appear in both ϕS(x, u) and
ψT(x, y). Assume that ϕS(x̄, ū) holds in I1; we must show that ∃yψT(x̄, y) holds
in J∗. Let δ be a complete description such that δ(x̄) holds. Let σ1 be σδ, as de-
fined earlier in our construction of �∗. Assume that σ1 is ϕ1(x′, u) → ∃yψ1(x′, y),
where x′ is obtained from x (as in the construction of �∗) by replacing each
member of x by a representative of its equivalence class with respect to δ. Let x̄′

be the assignment of values to x′ obtained from x̄. In particular, the members of
x̄′ are distinct constants. Also, ϕ1(x̄′, ū) is the same as ϕS(x̄, ū), and ψ1(x̄′, y) is
the same as ψT(x̄, y). So we know that ϕ1(x̄′, ū) holds in I1, and we need to show
that ∃yψ1(x̄′, y) holds in J∗. Since ϕ1(x̄′, ū) holds in I1, and since (I1, J ) |= σ1,
it follows that ∃yψ1(x̄′, y) holds in J . So there is ȳ such that ψ1(x̄′, ȳ) holds in
J . Let σ ′

1 be obtained from σ1 as in Step (2) of QuasiInverse(M). Let ψ ′
1(x′, y)

be the premise of σ ′
1. Then ψ ′

1(x̄′, ȳ) holds in J , since ψ1(x̄′, ȳ) holds in J , and
the members of x̄′ are distinct constants. Since (J, I2) |= �′, we know that
(J, I2) |= σ ′

1. Since ψ ′
1(x̄′, ȳ) holds in J , and since (J, I2) |= σ ′

1, there is a minimal
generator β(x′, z) of ∃yψ1(x′, y) such that ∃zβ(x̄′, z) holds in I2. Now (I2, J∗) sat-
isfies �, and ∃zβ(x̄′, z) holds in I2. It follows from the definition of a generator
that ∃yψ1(x̄′, y) holds in J∗, which was to be shown. So Sol(M, I2) ⊆ Sol(M, I1),
as desired.

Since by assumption, M has a (∼1, ∼2)-inverse, it follows that M has the
(∼1, ∼2)-subset property. Therefore, since Sol(M, I2) ⊆ Sol(M, I1), it follows
that (I1, I2) ∈ Inst(Id)[∼1, ∼2], which was to be shown.

4.2 The Full Case

In this section, we consider the case of schema mappings specified by a finite set
of full s-t tgds. The next proposition implies that the constant predicate then
plays no role.
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PROPOSITION 4.8. Let M = (S, T, �) and M′ = (T, S, �′), where � is a finite
set of full s-t tgds, and �′ is a finite set of disjunctive tgds with constants and
inequalities. Let I1 and I2 be ground instances.

1. (I1, I2) |= � ◦ �′ if and only if (chase�(I1), I2) |= �′.
2. Let �′′ be obtained from �′ by removing every conjunct of the form Constant(v)

from members of �′. Then
a. (I1, I2) |= � ◦ �′ if and only if (I1, I2) |= � ◦ �′′.
b. M′ is a (∼1, ∼2)-inverse of M if and only if M′′ is a (∼1, ∼2)-inverse of M.

PROOF. Let J∗ = chase�(I1). Then J∗ is ground (since � is full), and
(I1, J∗) |= �. We now prove (1). Assume first that (I1, I2) |= � ◦ �′. Then there
is J such that (I1, J ) |= � and (J, I2) |= �′. Now J∗ ⊆ J , since J∗ = chase�(I1).
It is easy to see that since (a) (J, I2) |= �′, (b) J∗ ⊆ J , and (c) �′ is a finite set
of disjunctive tgds with constants and inequalities, it follows that (J∗, I2) |=
�′. This was to be shown. Conversely, assume that (J∗, I2) |= �′. Since
(I1, J∗) |= � and (J∗, I2) |= �′, it follows that (I1, I2) |= � ◦ �′. This was to be
shown.

We now prove (2a). Assume first that (I1, I2) |= �◦�′. By Part (1), we see that
(J∗, I2) |= �′. Since J∗ consists only of constants, it follows that (J∗, I2) |= �′′ if
and only if (J∗, I2) |= �′. So (J∗, I2) |= �′′. Since (I1, J∗) |= � and (J∗, I2) |= �′′,
it follows that (I1, I2) |= � ◦ �′′, as desired. The proof of the converse is exactly
the same, but where the roles of �′ and �′′ are reversed.

We now prove (2b). It follows from Part (2a) that Inst(M ◦ M′)[∼1, ∼2] =
Inst(M ◦ M′′)[∼1, ∼2]. Therefore, Inst(Id)[∼1, ∼2] = Inst(M ◦ M′)[∼1, ∼2] if
and only if Inst(Id)[∼1, ∼2] = Inst(M ◦ M′′)[∼1, ∼2]. This implies (2b).

We obtain the following modified version of Theorem 4.1 in the full case:

THEOREM 4.9. Let M be a schema mapping specified by a finite set of full s-t
tgds. If M has a quasi-inverse then the following hold.

1. M has a quasi-inverse M′ specified by a finite set of disjunctive tgds with
inequalities.

2. There is an exponential-time algorithm for producing M′.
3. Statement (1) is not necessarily true if we disallow either disjunctions,

inequalities, or existential quantifiers (disallowing existential quantifiers
means requiring full dependencies).

Part (1) follows from Part (1) of Theorem 4.1, along with Part (2b) of Propo-
sition 4.8. We shall prove Part (3) in Section 4.4.

In the full case, we can still, of course, make use of the algorithms MinGen
to obtain the minimal generators. However, we now give an algorithm that is
especially tailored to the full case. We can assume without loss of generality
that the conclusion of every member of � is a single atom. Let �∗ be as be-
fore. We are interested in obtaining minimal generators only of formulas that
are the conclusion of members of �∗, and hence only of atoms. The algorithm
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MinGenFull that applies in this case to produce minimal generators does not
need to use exhaustive search.

Algorithm MinGenFull(M, R(x))

Input: A schema mapping M = (S, T, �), where � is a finite set of full tgds with
singleton conclusions, and an atom R(x).
Output: A finite set G of the minimal generators of R(x) with respect to �.
1. (Create �∗.) Create �∗ from � as defined just before Definition 4.2.
2. (Initialization.) Initialize the set G of minimal generators of R(x) to ∅.
3. (Look for matches.) For each member σ of �∗, check to see if there is a formula σ ′ that

can be obtained from σ by renaming variables, so that the conclusion becomes R(x).
When this succeeds, and when the premise of σ ′ is β(x, z), where z consists of the
distinct variables in the premise of σ ′ that do not appear in R(x), then add β(x, z) to
the set G.

4. (Minimize.) For each member β(x, z) of G, check to see if there is some other β ′(x, z′)
in G whose conjuncts are a subset of the conjuncts of β(x, z) (up to renaming of
variables in z, z′). If so, remove β(x, z) from G. Continue the process until there is no
more change in G. Return G.

It is straightforward to verify that MinGenFull produces all minimal genera-
tors (up to renaming of variables). In the full case, we can modify the algorithm
QuasiInverse not only by making use of MinGenFull instead of MinGen, but
also (because of Part (2b) of Proposition 4.8) by no longer including the formulas
Constant(x).

4.3 The LAV Case

Proposition 3.21 tells us that every LAV schema mapping has a quasi-inverse.
The next theorem asserts that disjunctions are not needed in the language of
quasi-inverses of LAV schema mappings.

THEOREM 4.10. Every LAV schema mapping has a quasi-inverse specified by
a finite set of tgds with constants and inequalities. Thus, disjunctions are not
needed.

We prove this theorem by giving an algorithm that we prove produces a
quasi-inverse.

Define a prime atom to be one that contains precisely the variables
x1, x2, . . . , xk for some k, and where the initial appearance of xi precedes the
initial appearance of x j if i < j . For example, P (x1, x2, x1, x3, x2) is a prime
atom, but Q(x2, x1) and R(x2, x3) are not. Note that for every atom, there is a
unique renaming of variables to obtain a prime atom. Define a prime instance
to be an instance whose only fact is a single prime atom. As with our definition
of Iα, a prime instance is not an instance in the usual sense, but is a type of
canonical instance.
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The algorithm for producing a quasi-inverse is as follows:

Algorithm LAV(M)

Input: A LAV schema mapping M = (S, T, �).
Output: A schema mapping M′ = (T, S, �′), where �′ is a finite set of tgds with con-
stants and inequalities, and M′ is a quasi-inverse of M.
1. (Generate all prime source atoms in lexicographic order.) For example, if R is a ternary

source relation symbol, the atomic formulas involving R, in lexicographic order, are
R(x1, x1, x1), R(x1, x1, x2), R(x1, x2, x1), R(x1, x2, x2), R(x1, x2, x3).

2. (Construct a tgd for each prime atom α.) For each prime atom α generated in Step
(1), let Iα be the prime instance containing only α. Let ψα be the conjunction of the
facts of chase�(Iα). Let y consist of the distinct variables in α that appear in ψα, and
let z consist of the remaining distinct variables in α. Let ψ ′

α be the conjunction of ψα

along with the formulas Constant( y) for each variable y in y, along with inequalities
yi �= y j for each pair yi , y j of distinct variables in y. Let τα be ψ ′

α → ∃zα, which is a
tgd with constants and inequalities.

3. (Construct �′.) Let �′ consist of each of these formulas τα, one for each prime atom
α. Return M′ = (T, S, �′).

Note that as before, the quasi-inverse M′ that our algorithm produces has
inequalities only among constants.

THEOREM 4.11. If M is a LAV schema mapping, then the output of the
algorithm LAV(M) is a quasi-inverse of M. Hence, every LAV schema map-
ping has a quasi-inverse specified by a finite set of tgds with constants and
inequalities.

PROOF. LetM = (S, T, �) be a LAV schema mapping, and letM′ = (T, S, �′)
be the output of LAV(M). Let α be a prime atom, which we shall write as α(y, z),
where y, z are as in the algorithm. Let us say that α affects the chase if chase�(Iα)
is not the empty set. The terminology is justified by the LAV assumption, which
implies that if α does not affect the chase under our definition, and if ȳ, z̄ is an
assignment of values where every variable is assigned a distinct value, then
chase�(I ) = chase�(I \α(ȳ, z̄)) for every instance I (here \ is the set difference).

We now show that M′ is a quasi-inverse of M. Assume first that I1 and
I2 are ground instances such that (I1, I2) ∈ Inst(M ◦ M′). So there is J such
that (I1, J ) |= � and (J, I2) |= �′. Let I ′

1 consist of those facts α(ȳ, z̄) in I1
such that α(y, z) affects the chase and ȳ, z̄ is an assignment of values where
every variable is assigned a distinct value. It is straightforward to see that
chase�(I1) = chase�(I ′

1), and so I1 ∼ I ′
1. In particular, (I ′

1, J ) |= �. Let I ′
2 =

I2 ∪ I ′
1. Clearly I ′

1 ⊆ I ′
2. We shall show that I2 ∼ I ′

2. This proves the second
inclusion in Part (2) of Corollary 3.10.

Let α(ȳ, z̄) be a fact in I ′
1, where ȳ, z̄ is an assignment such that every vari-

able is assigned a distinct value. Since (I ′
1, J ) |= �, it follows that J contains

a homomorphic image of the result of chasing α(ȳ, z̄) with � (note that the
members of ȳ, being constants, are each mapped onto themselves by the homo-
morphism). Therefore, since �′ contains τα, and since (J, I2) |= �′, there is some
assignment a to z such that α(ȳ, a) is a fact in I2. Now the chase of α(ȳ, z̄) with
� is contained in the chase of α(ȳ, a) with �: this is because (1) by definition
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of z, it follows that no member of z̄ appears in the chase of α(ȳ, z̄) with �, and
(2) z̄i = z̄ j precisely when i = j , whereas there may be additional equalities
among the entries of in a. So adding α(ȳ, z̄) to I2 does not change its chase with
�. Since α(ȳ, z̄) is an arbitrary fact in I ′

1, this tells us that adding I ′
1 to I2 does

not affect its chase with � (again, we are using the LAV assumption). That
is, chase�(I2) = chase�(I2 ∪ I ′

1). But I2 ∪ I ′
1 = I ′

2. So chase�(I2) = chase�(I ′
2).

Therefore, I2 ∼ I ′
2, as desired.

Assume now that I1 ⊆ I2. Let J = chase�(I2), and let I = chase�′ (J ). Clearly
(I2, J ) |= � and (J, I ) |= �′. Since (I2, J ) |= � and I1 ⊆ I2, we see that (I1, J ) |=
�. Let I ′

2 be a ground instance obtained from I by replacing each distinct null
in I by a new constant. Since (J, I ) |= �′, it follows easily that (J, I ′

2) |= �′.
Let I ′′

2 = I2 ∪ I ′
2. Since (J, I ′

2) |= �′ and I ′
2 ⊆ I ′′

2 , it follows that (J, I ′′
2 ) |= �′.

Since (I1, J ) |= � and (J, I ′′
2 ) |= �′, we see that (I1, I ′′

2 ) ∈ Inst(M◦M′). We must
show I2 ∼ I ′′

2 to prove the first inclusion in Part (2) of Corollary 3.10. This will
complete the proof that both inclusions in Part (2) of Corollary 3.10 hold, and
so (by Corollary 3.10) M′ is a quasi-inverse of M.

Let γ be a fact in I ′
2. So γ is obtained from a fact γ ′ in I by replacing each

distinct null in γ ′ by a new constant. Since γ ′ is a fact in I , it is obtained by
chasing J with some member τα of �′. Let ψα and ψ ′

α be as in the algorithm. Let
y and z be as in the algorithm, and let w consist of the distinct variables in ψα

that are not in y. Let us write ψα and ψ ′
α as ψα(y, w) and ψ ′

α(y, w) respectively.
For notational convenience, let us take w̄ to consist of distinct nulls and let the
chase of Iα with � be ψα(y, w̄). There are assignments ȳ, z̄, z̄′ such that γ ′ is
α(ȳ, z̄′) and γ is α(ȳ, z̄), and the members of ȳ are distinct constants (because
of the constant predicates and inequalities in ψ ′

α(y, w)), the members of z̄′ are
distinct nulls (distinct since γ ′ is obtained from J by chasing J with τα), and the
members of z̄ are distinct constants (because γ is obtained from γ ′ by replacing
each distinct null in γ ′ by a new constant). Now γ ′ is obtained from J by chasing
J with τα. Therefore, there is w̄′ such that ψα(ȳ, w̄′) holds in J . Let h be the
function where h( ȳi) = ȳi for each yi in y, and h(w̄ j ) = w̄ j

′ for each of the
nulls w̄ j in w̄. Then h is a homomorphism from Iψα (ȳ,w̄) to J (since ψα(ȳ, w̄′)
holds in J ). By construction of τα, we know that chase�(Iα(y,z)) is Iψα (y,w̄). Since
the members of y, z are all distinct, as are the members of ȳ, z̄, it follows that
chase�(Iα(ȳ,z̄)) is Iψα (ȳ,w̄). Thus, the result of chasing (with �) the fact γ of I ′

2 is
Iψα (ȳ,w̄), which has a homomorphic image (under h) in J . Hence, chase�(I2 ∪{γ })
is homomorphically equivalent to J = chase�(I2). Since γ is an arbitrary fact
in I ′

2, and since M is LAV, it follows that chase�(I2 ∪ I ′
2) is homomorphically

equivalent to chase�(I2). That is, chase�(I ′′
2 ) is homomorphically equivalent to

chase�(I2). So I2 ∼ I ′′
2 , as desired.

4.4 Necessity of the Language

In this section, we prove Part (3) of Theorem 4.1, which says that constants,
inequalities, disjunctions, and existential quantifiers are needed in general to
express a quasi-inverse. We also prove Part (3) of Theorem 4.9, which says
that in the full case, inequalities, disjunctions, and existential quantifiers are
needed in general to express a quasi-inverse. We also prove that the result of
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Theorem 4.10 is optimal, in that constants, inequalities, and existential quan-
tifiers are needed in general to specify a quasi-inverse of a LAV mapping.

4.4.1 Necessity of Constants. We begin with a theorem about the necessity
of constants for an inverse, and as a corollary show the necessity of constants
for a quasi-inverse.

THEOREM 4.12. There is a LAV schema mapping that has an inverse, but
does not have an inverse specified by a set of disjunctive tgds with inequalities.

To prove this, we shall prove a stronger result. Let σ be a formula that
involves only source and target relation symbols. Let us say that σ is indifferent
to constants if whenever (J, I ) |= σ , and (J ′, I ′) is isomorphic to (J, I ) (but where
the isomorphism may map constants into either constants or nulls, and may
map nulls into either constants or nulls), then (J ′, I ′) |= σ . It is easy to see
that disjunctive tgds with inequalities (but not with constants) are indifferent
to constants. We shall prove the following theorem, which immediately implies
Theorem 4.12.

THEOREM 4.13. There is a LAV schema mapping that has an inverse, but
does not have an inverse specified by a set of formulas that are indifferent to
constants.

PROOF. Let S consist of a binary relation symbol P , and let T consist of
a binary relation symbol Q . Let � consist of the tgd P (x, y) → ∃z(Q(x, z) ∧
Q(z, y)), and let M = (S, T, �). We now show that M has an inverse (specified
by a full tgd with constants), but does not have an inverse specified by a set of
formulas that are indifferent to constants.

Let �′ be Q(x, z) ∧ Q(z, y) ∧ Constant(x) ∧ Constant( y) → P (x, y), and
let M′ = (T, S, �′). We now show that M′ is an inverse of M. Assume first
that I1 and I2 are ground instances and (I1, I2) |= � ◦ �′. So there is J such
that (I1, J ) |= � and (J, I2) |= �′. It is easy to see by definition of � and �′

that I1 ⊆ I2. Conversely, assume that I1 and I2 are ground instances with
I1 ⊆ I2. Let J = chase�(I1). It is straightforward to verify that if x and y repre-
sent constants and Q(x, z) and Q(z, y) hold in J = chase�(I1), then P (x, y)
holds in I1, and hence in I2. It follows easily that (J, I2) |= �′. Since also
(I1, J ) |= �, it follows that (I1, I2) |= � ◦ �′. So M′ is an inverse of M, as
desired.

Assume now that M has an inverse M′′ = (T, S, �′′), where �′′ is a set of
formulas that are indifferent to constants; we shall derive a contradiction. Let α

be the formula Q(x, z)∧ Q(z, y) → P (x, y). We now prove that �′′ logically im-
plies α. Assume not; we shall derive a contradiction. Since �′′ does not logically
imply α, there are J, I such that (J, I ) |= �′′ but (J, I ) �|= α. Since (J, I ) �|= α,
there are x̄, ȳ , z̄ such that Q(x̄, z̄) and Q(z̄, ȳ) hold in J but P (x̄, ȳ) does not
hold in I . Since the formulas in �′′ are indifferent to constants, we can assume
(by renaming the nulls to new constants, if needed) that the active domains of
J and I (including x̄, ȳ , and z̄) consist only of constants. Let I ′ consist of the
single fact P (x̄, ȳ). Then (I ′, J ) |= �, since J contains the facts Q(x̄, z̄) and
Q(z̄, ȳ). Since also (J, I ) |= �′′, it follows that (I ′, I ) |= � ◦ �′′. But it is false
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that I ′ ⊆ I , since P (x̄, ȳ) does not hold in I . This contradicts the definition of
inverse. So indeed, �′′ logically implies α.

Let I be the ground instance consisting of the two facts P (0, 1) and P (1, 0).
Since M′′ is an inverse of M, it follows that (I, I ) |= � ◦ �′′. So there is J such
that (I, J ) |= � and (J, I ) |= �′′. Since �′′ logically implies α, it follows that
(J, I ) |= α. Since (I, J ) |= �, there is z1 such that Q(0, z1) and Q(z1, 1) hold in
J , and there is z2 such that Q(1, z2) and Q(z2, 0) hold in J . Since Q(z1, 1) and
Q(1, z2) hold in J and since (J, I ) |= α, it follows that P (z1, z2) holds in I . So
either z1 = 0 and z2 = 1, or z1 = 1 and z2 = 0. By symmetry, we can assume
without loss of generality that z1 = 0 and z2 = 1. So Q(0, 0), Q(0, 1), Q(1, 1)
and Q(1, 0) hold in J . Because Q(0, 1) and Q(1, 0) hold in J , and (J, I ) |= α, it
follows that P (0, 0) holds in I , which is our desired contradiction.

COROLLARY 4.14. There is a LAV schema mapping that has a quasi-inverse,
but does not have a quasi-inverse specified by a set of disjunctive tgds with
inequalities.

PROOF. By Theorem 4.12, there is a schema mapping M specified by a finite
set of s-t tgds that has an inverse, but does not have an inverse specified by a
set of disjunctive tgds with inequalities. Since M has an inverse, it has a quasi-
inverse (every inverse is a quasi-inverse). Moreover, if M′ is a quasi-inverse of
M, then M′ is an inverse of M, by Proposition 3.24. Thus, if M were to have
quasi-inverse specified by a set of disjunctive tgds with inequalities, then it
would have an inverse specified by a set of disjunctive tgds with inequalities,
which is a contradiction.

4.4.2 Necessity of Inequalities. We begin this section with results about
the necessity of inequalities for an inverse, and the necessity of inequalities for
a quasi-inverse.

THEOREM 4.15. There is a LAV schema mapping specified by a finite set of
full s-t tgds that has an inverse, but does not have an inverse specified by a finite
set of disjunctive tgds with constants.

PROOF. Let S consist of the binary relation symbol P and the unary relation
symbol T . Let T consist of the binary relation symbol P ′ and the unary relation
symbols Q and T ′. Let � = {P (x, y) → P ′(x, y), P (x, x) → Q(x), T (x) → T ′(x),
T (x) → P ′(x, x)}, and let M = (S, T, �).

We now show that M has the (=, =)-subset property. Assume that I1 and I2
are ground instances such that Sol(M, I2) ⊆ Sol(M, I1). Let J1 = chase�(I1)
and J2 = chase�(I2). Since Sol(M, I2) ⊆ Sol(M, I1), it follows that chase�(I1) ⊆
chase�(I2), that is, J1 ⊆ J2. We will show that P I1 ⊆ P I2 and T I1 ⊆ T I2 , which
means that I1 ⊆ I2, as desired. If (a, b) ∈ P I1 and a �= b, then (a, b) ∈ P

′ J1 ⊆ P
′ J2 .

Since a �= b, the only way for P
′ J2 (a, b) to hold is to have (a, b) ∈ P I2 . If a = b

and P I1 (a, a) holds, then Q J1 (a) holds, and so Q J2 (a) also holds, hence P I2 (a, a)
holds. This shows that P I1 ⊆ P I2 . We also have that T I1 = T

′ J1 = T
′ J2 = T I2 .

This completes the proof that I1 ⊆ I2. So M has the (=, =)-subset property,
which implies that M has an inverse.
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Assume now that M has an inverse M′ = (T, S, �′), where �′ is a set of
disjunctive tgds with constants but without inequalities; we shall derive a con-
tradiction. Let �′′ be obtained from �′ by removing every conjunct of the form
Constant(v). Let M′′ = (T, S, �′′), By Part (2b) of Proposition 4.8, it follows that
M′′ is an inverse of M. Now �′′ is a set of disjunctive tgds, without inequalities
or constants.

Let χ be a member of �′′ such that the relation symbol Q does not occur in
the premise of χ . We claim that the conclusion of χ must contain a disjunct
whose conjuncts are of the form ∃ yT ( y) or of the form T (x). To see this, let I
be the source instance with P I = ∅ and T I = {a}, for some constant a. Since
(I, I ) ∈ Inst(Id) and M′′ is an inverse of M, we know that (I, I ) |= � ◦ �′′, so
there is a target instance J such that (I, J ) |= � and (J, I ) |= �′′. Clearly, J
contains the facts T ′(a) and P ′(a, a). Since (J, I ) |= χ and Q does not occur
in the premise of χ , it follows that the premise of χ becomes true when all
universally quantified variables in χ take value a. Consequently, there is a
disjunct ∃yϕ(x, y) in the conclusion of χ , such that ∃yϕ(x̄, y) holds in I , where
x̄ assigns a to every variable in x. Since P I = ∅, it must be the case that P does
not occur in ϕ(x, y), which means that each conjunct of ϕ(x, y) is of the form
∃ yT ( y) or of the form T (x).

Let I1 = {P (a1, a2), T (a1), T (a2)} and I2 = {T (a1), T (a2)}. Clearly, I1 �⊆ I2
and (I1, chase�(I1)) |= �. We claim that (chase�(I1), I2) |= �′′, which would
imply that (I1, I2) ∈ Inst(� ◦ �′′) = Inst(Id), thus arriving at a contradiction.
Observe that chase�(I1) consists of the facts {P ′(a1, a2), P ′(a1, a1), P ′(a2, a2)};
in particular, it contains no fact involving the relation symbol Q . Let us con-
sider an arbitrary dependency χ in �′′. If Q occurs in the premise of χ , then
(chase�(I1), I2) |= χ , since the premise of χ never becomes true. So, assume
that Q does not occur in the premise of χ . If there is an assignment of values
to the universally quantified variables in χ so that (chase�(I1), I2) satisfies the
premise of χ , then each variable must be assigned value a1 or a2. Since, by the
claim in the preceding paragraph, the conclusion of χ contains a disjunct con-
sisting of conjunctions of the form ∃ yT ( y) or of the form T (x), we have that the
conclusion of χ becomes true in I2, since I2 contains the facts T (a1) and T (a2).
This completes the proof of the claim that (chase�(I1), I2) |= �′′, which was to
be shown.

COROLLARY 4.16. There is a LAV schema mapping specified by a finite set of
full s-t tgds that has a quasi-inverse, but does not have a quasi-inverse specified
by a finite set of disjunctive tgds with constants.

PROOF. This follows from Theorem 4.15 just as Corollary 4.14 follows from
Theorem 4.12.

4.4.3 Necessity of Disjunctions.

THEOREM 4.17. There is a schema mapping specified by a finite set of full
tgds that has a quasi-inverse, but no quasi-inverse that is specified by a set of
tgds with constants and inequalities.
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PROOF. Let S consist of four unary relation symbols P1, P2, P3, P4. and let
T consist of six unary relation symbols S1, S2, R13, R14, R23, R24.

Let � consist of the following eight full tgds:

P1(x) → S1(x) P2(x) → S1(x) P3(x) → S2(x) P4(x) → S2(x)
Pi(x) ∧ Pj (x) → Rij (x), for i ∈ {1, 2} and j ∈ {3, 4}

We now show that M satisfies the (∼M, ∼M)-subset property, and hence
has a quasi-inverse. In fact, we shall show that M satisfies the (∼M, =)-subset
property. Thus, we shall show that if (I1, I2) is a pair of ground instances, where
Sol(M, I1) ⊆ Sol(M, I2), then there is a ground instance I ′

2 such that I2 ∼ I ′
2

and I ′
2 ⊆ I1.

Let us refer to members of P I1
1 or P I1

2 as members of the top half of I1.
Similarly, let us refer to members of P I1

3 or P I1
4 as members of the bottom half

of I1. Likewise, define the top half and bottom half of I2. Each constant in the
active domain of I1 must be in the top half of I1, the bottom half of I1, or both,
and similarly for I2.

We now define a ground instance I ′
2 with the same active domain as I2. We

shall show that I2 ∼ I ′
2, and I ′

2 ⊆ I1, as desired. We shall define I ′
2 by saying,

for each constant c in the active domain of I2, for which relations Pi we have
P

I ′
2

i (c). There are three cases.
Case 1: c is a constant in both the top half and the bottom half of I2. For

definiteness, assume that c ∈ P I2
i , where i is either 1 or 2, and c ∈ P I2

j , where
j is either 3 or 4. We now show that c ∈ P I1

i and c ∈ P I1
j . Assume not. Let

J = chase�(I1). Then R J
ij does not contain c. But every solution J ′ for I2 has

c ∈ R J ′
i j . So J is a solution for I1 but not for I2. This is a contradiction, since

Sol(M, I1) ⊆ Sol(M, I2). Put c in the Pi relation of I ′
2 precisely if c is in the Pi

relation of I2, for i ∈ {1, 2, 3, 4}, Therefore, by what we just showed, if c is in the
Pi relation of I ′

2, then c is in the Pi relation of I1, for i ∈ {1, 2, 3, 4}.
Case 2: c is a constant in the top half of I2 but not in the bottom half of I2. We

show that c is in the top half of I1. Assume not. Let J = chase�(I1). Then SJ
1

does not contain c. But every solution J ′ for I2 has c ∈ SJ ′
1 . So J is a solution

for I1 but not for I2. This is a contradiction, since Sol(M, I1) ⊆ Sol(M, I2). So
c is in the top half of I1. Therefore, c is in either P I1

1 or P I1
2 . If c is in P I1

1 , then
put c in the P1 relation of I ′

2; otherwise, put c in the P2 relation of I ′
2.

Case 3: c is a constant in the bottom half of I2 but not in the top half of I2. By
a similar argument to what we gave in Case 2, we see that c is in the bottom
half of I1. Since c is in the bottom half of I1, we know that c is in either P I1

3 or
P I1

4 . If c is in P I1
3 , then put c in the P3 relation of I ′

2; otherwise, put c in the P4
relation of I ′

2.
This completes the definition of I ′

2. By considering, for each constant c in the
active domain of I2, which of the three possible cases c satisfies, it is straight-
forward to verify that chase�(I2) = chase�(I ′

2), and so I2 ∼ I ′
2. By the comments

we made during our construction of I ′
2, it follows easily that I ′

2 ⊆ I1. This com-
pletes the proof that M satisfies the (∼M, =)-subset property, and so satisfies
the (∼M, ∼M)-subset property. Therefore,M has a quasi-inverse.
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Assume now that M has a quasi-inverse M′ = (T, S, �′) where �′ is a set of
tgds with constants and inequalities. We shall derive a contradiction. Let J1 be
the target instance

{
S1(0)

}
. We now show that chase�′ (J1) contains either the

fact P1(0) or the fact P2(0). Assume not. Let I1 = {
P1(0)

}
. Then J1 = chase�(I1).

Let I2 be the result of replacing each null in chase�′ (J1) by a constant other
than 0. Then (J1, I2) |= �′, and I2 is a ground instance that contains neither
the fact P1(0) nor the fact P2(0). Since (I1, J1) |= � and (J1, I2) |= �′, it follows
that (I1, I2) |= �◦�′. So by the definition of quasi-inverse, there are I ′

1, I ′
2 where

I1 ∼ I ′
1 and I2 ∼ I ′

2, and I ′
1 ⊆ I ′

2. Since I1 ∼ I ′
1, and since I1 contains the fact

P1(0), it follows that I ′
1 contains either the fact P1(0) or the fact P2(0). Since

I2 ∼ I ′
2, and since I2 contains neither the fact P1(0) nor the fact P2(0), it follows

that I ′
2 contains neither the fact P1(0) nor the fact P2(0). But this is impossible,

since I ′
1 ⊆ I ′

2. So there is a member σ1 of �′ such that the chase of J1 with
σ1 contains either the fact P1(0) or the fact P2(0). Without loss of generality,
assume that the chase of J1 with σ1 contains the fact P1(0).

Let J2 be the target instance {S2(0)}. By the same argument, but where we
replace P1 by P3, and replace P2 by P4, we see that there is a member σ2 of �′

such that the chase of J2 with σ2 contains either the fact P3(0) or the fact P4(0).
Without loss of generality, assume that the chase of J2 with σ2 contains the fact
P3(0).

Let I1 = {P2(0), P4(0)}. Since (I1, I1) ∈ Inst(Id), it follows from the defi-
nition of a quasi-inverse that (I1, I1) ∈ Inst(� ◦ �′)[∼M, ∼M]. So there are
I ′

1, I ′′
1 with I1 ∼ I ′

1 and I1 ∼ I ′′
1 such that (I ′

1, I ′′
1 ) |= � ◦ �′. Hence, there

is J such that (I ′
1, J ) |= � and (J, I ′′

1 ) |= �′. Since I1 ∼ I ′
1, it follows

that chase�(I1) = chase�(I ′
1). Now chase�(I1) contains the facts S1(0), S2(0).

So chase�(I ′
1) contains the facts S1(0), S2(0), and hence J contains the facts

S1(0), S2(0). We showed that there is σ1 in �′ such that the chase of {S1(0)}
with σ1 contains the fact P1(0). So the result of chasing J with σ1 contains
the fact P1(0). Since every fact about constants in the result of chasing J with
σ1 is forced to hold for all solutions for J with respect to σ1, it follows that
I ′′

1 contains the fact P1(0). We also showed that there is σ2 in �′ such that
the chase of {S2(0)} with σ2 contains the fact P3(0), and so by a similar ar-
gument it follows that I ′′

1 contains the fact P3(0). Since I ′′
1 contains the facts

P1(0), P3(0), it follows that every solution of I ′′
1 with respect to � contains R13(0).

Let J∗ = chase�(I1) = {S1(0), S2(0), R24(0)}. Then J∗ is a solution of I1 with
respect to �, and hence of I ′′

1 with respect to �, since I1 ∼ I ′′
1 . But J∗ does not

contain R13(0). This is our desired contradiction.

4.4.4 Necessity of Existential Quantifiers. In Theorem 5.1, the inverse is
specified by full tgds with constants and inequalities. By contrast, in Theo-
rem 4.1, the disjunctive tgds with constants and inequalities that specify the
quasi-inverse are not required to be full. In this section, we show that this is
inevitable. We begin with an example where it seems at first that there is no
full disjunctive tgd that specifies a quasi-inverse, but there actually is.

Example 4.18. Let M = (S, T, �) where � = {P (x, y) → R(x)}. It
is straightforward to verify that the (nonfull) s-t tgd R(x) → ∃ y P (x, y)
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specifies a quasi-inverse of M. Since R is unary and P is binary, it is natural
to believe that existential quantification is necessary. However, it is straight-
forward to verify that R(x) → P (x, x) also specifies a quasi-inverse of M, and
is full.

We now show that, in fact, we cannot always avoid the existential quantifiers.

THEOREM 4.19. There is a LAV schema mapping specified by a finite set of
full tgds that has a quasi-inverse, but does not have a quasi-inverse specified by
a set of full disjunctive tgds with constants and inequalities.

PROOF. Let S consist of a single binary relation symbol P , and let T consist
of two unary relation symbols R and S. Let � = {P (x, y) → R(x), P (x, x) →
S(x)}, and let M = (S, T, �). Since M is a LAV mapping, it has a quasi-inverse.

Assume now that M′ = (T, S, �′) is a quasi-inverse of M, where �′ is a
set of full disjunctive tgds with constants and inequalities; we shall derive a
contradiction. There are two cases.

Case 1: Every member of �′ has either S or an inequality in the premise.
Let I1 consist of the fact P (0, 1), and let J = chase�(I1) = {R(0)}. Clearly
(I1, J ) |= �. Let I2 be the empty instance. Let σ be an arbitrary member of �′.
Since by assumption σ has either S or an inequality in the premise, there is no
assignment of values to the variables in the premise of σ that is true in J . So
(J, I2) |= σ . Since σ is an arbitrary member of �′, it follows that (J, I2) |= �′.
Therefore, (I1, I2) |= � ◦ �′. Since M′ is a quasi-inverse of M, it follows that
there are I ′

1, I ′
2 with I1 ∼ I ′

1 and I2 ∼ I ′
2, and with I ′

1 ⊆ I ′
2. Since I1 ∼ I ′

1, we see
that I ′

1 is nonempty. Since I2 ∼ I ′
2, we see that I ′

2 is empty. So it is not possible
to have I ′

1 ⊆ I ′
2. This is our desired contradiction.

Case 2: Some member of �′ does not have S in the premise and does not
have an inequality in the premise. Again, let I1 consist of the fact P (0, 1). Since
M′ is a quasi-inverse of M, it follows that there are I ′

1, I ′′
1 with I1 ∼ I ′

1 and
I1 ∼ I ′′

1 , where (I ′
1, I ′′

1 ) |= � ◦ �′. Since I1 ∼ I ′
1, it is easy to see that I ′

1 consists
of a nonempty set of facts all of the form P (0, x), where x �= 0. Identically, I ′′

1
consists of a nonempty set of facts all of the form P (0, x), where x �= 0.

Since (I ′
1, I ′′

1 ) |= � ◦ �′, there is J such that (I ′
1, J ) |= � and (J, I ′′

1 ) |= �′.
Since (I ′

1, J ) |= �, clearly J contains chase�(I1) = {R(0)}. By assumption, there
is a member σ of �′ that does not have S in the premise and does not have
an inequality in the premise. By assumption, σ is a full disjunctive tgd with
constants and inequalities. Take a truth assignment that assigns 0 to every
variable in the premise of σ (and hence to every variable in the conclusion
of σ , since σ is full). The premise is then a conjunction of formulas R(0) and
Constant(0), all of which hold in J . The conclusion is simply a disjunction of
conjunctions of formulas P (0, 0), since P is the only relation symbol in the
conclusion, and every variable is assigned the value 0. So the conclusion is
equivalent to P (0, 0). Since (J, I ′′

1 ) |= �′, it follows that P (0, 0) holds in I ′′
1 . This

is our desired contradiction.

4.4.5 Putting Together the Necessity Results. Part (3) of Theorem 4.1 fol-
lows from Corollary 4.14 (necessity of constants), Corollary 4.16 (necessity of
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inequalities), Theorem 4.17 (necessity of disjunctions), and Theorem 4.19 (ne-
cessity of existential quantifiers). Part (3) of Theorem 4.9 follows from the fact
that for each of the examples used to prove Part (3) of Theorem 4.1 (except the
necessity of constants), the s-t tgds in � are full. Note also that Corollary 4.14
(necessity of constants), Corollary 4.16 (necessity of inequalities), and Theo-
rem 4.19 (necessity of existential quantifiers) all use LAV mappings. Hence,
the result of Theorem 4.10 is optimal, in that constants, inequalities, and ex-
istential quantifiers are needed in general to specify a quasi-inverse of a LAV
mapping.

5. THE LANGUAGE OF INVERSES

The focus in Fagin [2007] is on inverses that are specified by a finite set of tgds.
For example, given a schema mapping M specified by a finite set of s-t tgds,
Fagin [2007] gives an algorithm for constructing a schema mapping specified
by finite set of tgds that is an inverse of M if and only if there is an inverse of
M that is specified by a finite set of tgds. If there is an inverse M′ but there is
no inverse specified by a finite set of tgds, then the algorithm in Fagin [2007]
will not find M′. The “language of inverses” is left as an open problem in Fagin
[2007]. This is the question as to what language is needed to specify the inverse
of M, when M is specified by a finite set of s-t tgds. The next theorem resolves
this open problem.

THEOREM 5.1. Let M be a schema mapping specified by a finite set of s-t tgds.
If M has an inverse then the following hold.

1. M has an inverse M′ specified by a finite set of full tgds with constants and
inequalities.

2. There is an exponential-time algorithm for producing M′.
3. Statement (1) is not necessarily true if we disallow either constants or inequal-

ities in the premise, even if we allow existential quantifiers in the conclusion
(and so allow nonfull dependencies to specify M′).

In fact, the inverse our algorithm produces has inequalities only among con-
stants.

We now discuss the machinery used to prove Theorem 5.1.

Definition 5.2. A schema mapping M = (S, T, �), where � is a finite set of
s-t tgds, satisfies the constant-propagation property if for every ground instance
I , every member of the active domain of I is in the active domain of chase�(I ).

It is straightforward to see that M satisfies the constant-propagation prop-
erty precisely if, for each relation symbol R in S, the chase of R(x1, . . . , xm) with
� includes each of the m distinct variables x1, . . . , xm, where m is the arity
of R.

We shall use the following proposition from [Fagin 2007].

PROPOSITION 5.3. [Fagin 2007] Every invertible schema mapping that is
specified by a finite set of s-t tgds satisfies the constant-propagation property.
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We now give an algorithm that produces an inverse if one exists.

Algorithm Inverse(M)

Input: A schema mapping M = (S, T, �), where � is a finite set of s-t tgds.
Output: A schema mapping M′ = (T, S, �′), where �′ is a finite set of full tgds with
constants and inequalities, and M′ is an inverse of M if M has an inverse. There is no
output if M does not satisfy the constant-propagation property.
1. (Verify that M satisfies the constant-propagation property.) Check to see if, for each

relation symbol R in S, the chase of R(x1, . . . , xm) with � includes each of the m
distinct variables x1, . . . , xm, where m is the arity of R. If not, halt without output.
If so, continue to the next step.

2. (Generate all prime source atoms in lexicographic order.) For example, if R is a ternary
source relation symbol, the atoms for R, in lexicographic order, are R(x1, x1, x1),
R(x1, x1, x2), R(x1, x2, x1), R(x1, x2, x2), R(x1, x2, x3).

3. (Construct a full tgd ω(�, I ) with constants and inequalities for each prime instance
I.) For each prime source atom α generated in Step (2), let Iα be the prime instance
containing only α. Let ψα be the conjunction of the facts of chase�(Iα). Form a full
tgd ω(�, Iα) with constants and inequalities whose premise is the conjunction of ψα

with the formulas Constant(x) for each variable x that appears in α, along with
inequalities xi �= x j for each pair xi , x j of distinct variables that appear in α, and
whose conclusion is α.

4. (Construct �′.) Let �′ consist of each of these formulas ω(�, I ), one for each prime
instance I . Return M′ = (T, S, �′).

Assume that M satisfies the constant-propagation property. Then the algo-
rithm gives an output. Furthermore, ω(�, Iα), as formed in Step (3), is then a
well-defined full tgd with constants and inequalities, since every variable in
the conclusion of ω(�, Iα) necessarily appears in the premise.

Note that in the case when M is a schema mapping (LAV or otherwise)
that satisfies the constant-propagation property, the output of Inverse(M)
and LAV(M) is the same. The tgds in �′ that are constructed in Step (2)
of LAV(M) are automatically full when M satisfies the constant-propagation
property.

Example 5.4. Let S consist of a binary relation symbol R. Let T consist
of a binary relation symbol Q , ternary relation symbol S, and unary relation
symbol U . Let M = (S, T, �) where � consists of the tgds:

R(x1, x2) ∧ R(x2, x1) → ∃ y Q(x1, y)
R(x1, x2) → ∃ y S(x1, x2, y)
R(x1, x1) → U (x1)

Then M satisfies the constant-propagation property, since the chase of R(x1, x2)
is S(x1, x2, y), which contains both of the variables x1 and x2 of R(x1, x2).
The two prime source atoms are R(x1, x1) and R(x1, x2). The two prime in-
stances are IR(x1,x1) = {

R(x1, x1)
}

and IR(x1,x2) = {
R(x1, x2)

}
. Then ω(�, IR(x1,x1))

is

Q(x1, y1) ∧ S(x1, x1, y2) ∧ U (x1) ∧ Constant(x1) → R(x1, x1). (1)
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Also, ω(�, IR(x1,x2)) is

S(x1, x2, y) ∧ Constant(x1) ∧ Constant(x2) ∧ (x1 �= x2) → R(x1, x2). (2)

The output of Inverse(M) is M′ = (T, S, �′), where �′ consists of (1) and (2).

Later (Theorem 5.7), we show that if M is invertible, then the output M′ of
the algorithm is an inverse of M.

Proposition 3.24 tells us that every quasi-inverse of an invertible schema
mapping M is an inverse of M. The reader might therefore wonder why we
need both the algorithms QuasiInverse and Inverse, since QuasiInverse will
necessarily produce an inverse if the input is an invertible schema mapping. The
answer is that in this case, QuasiInverse will produce an inverse specified by
disjunctive tgds with constants and equalities where disjunctions may actually
appear, even though there is an inverse specified by full (and non-disjunctive)
tgds with constants and equalities that Inverse will find.

Example 5.5. We now give an example of an invertible schema mapping
specified by full s-t tgds where the output of the QuasiInverse algorithm is an
inverse where disjunctions actually appear. Let S consist of two unary relation
symbols P and Q , and let T consist of three unary relation symbols P ′, Q ′, and
R. Let M = (S, T, �), where � = {P (x) → P ′(x), Q(x) → Q ′(x), P (x) → R(x),
Q(x) → R(x)}. Let M′ = (T, S, �′), where �′ = {P ′(x) → P (x), Q ′(x) → Q(x)}.
It is easy to see that M′ is an inverse of M.

The algorithm Inverse produces a slightly weaker inverse, namely one that is
specified by {P ′(x) ∧ R(x) ∧ Constant(x) → P (x), Q ′(x) ∧ R(x) ∧ Constant(x) →
Q(x)}. Of course, we see directly from Part (2b) of Proposition 4.8 that the
constant predicates are redundant.

The algorithm QuasiInverse produces a schema mapping that is specified
by the set {P ′(x) ∧ Constant(x) → P (x), Q ′(x) ∧ Constant(x) → Q(x), R(x) ∧
Constant(x) → P (x) ∨ Q(x)} of disjunctive tgds with constants. In particular,
the last member actually has a disjunction appear.

5.1 Candidate Inverse

In Section 3.3, we introduced a candidate (∼1, ∼2)-inverse, and showed that if
a schema mapping specified by a finite set of s-t tgds has a (∼1, ∼2)-inverse,
then this candidate (∼1, ∼2)-inverse is a (∼1, ∼2)-inverse. In the case where
(∼1, ∼2) is (=, =), we refer to it as a candidate inverse. Let M′ = (T, S, �′) and
M′′ = (T, S, �′′) be target to source schema mappings. We say that �′′ weakly
implies �′ if whenever J is a target instance and I is a ground instance such
that (J, I ) |= �′′, then (J, I ) |= �′. (This is the notion of weak implication
mentioned in Section 3.3.) Let us say that �′ and �′′ are weakly equivalent if
�′ weakly implies �′′, and �′′ weakly implies �′. Thus, �′ and �′′ are weakly
equivalent precisely if whenever J is a target instance and I is a ground in-
stance, then (J, I ) |= �′ if and only if (J, I ) |= �′′. We may then say that the
schema mappings M′ and M′′ are weakly equivalent.

In this section, we show that if M is an invertible schema mapping that is
specified by a finite set of s-t tgds, then our candidate inverse from Section 3.3
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is weakly equivalent to the schema mapping that is produced by Inverse(M).
We make use of this to show if M is invertible, then the output of Inverse(M)
is an inverse of M.

Recall that cand(=,=)(�), which specifies the candidate inverse, consists of all
of the formulas τ(=,=)(�, I ), the “constraint associated with I”, for every ground
instance I . In turn, τ(=,=)(�, I ) defines the set of all pairs (J, I2) such that I2 is a
ground instance and such that if (I, J ) |= � then I ⊆ I2. The next theorem says
that cand(=,=)(�), which specifies the candidate inverse, is weakly equivalent
to our finite set �(�) of full tgds with constants and inequalities in the schema
mapping that is produced by Inverse(M). Thus, the theorem says that if J is a
target instance, and I2 is a ground instance, then

(J, I2) |= cand(=,=)(�) if and only if (J, I2) |= �(�). (3)

THEOREM 5.6. Let M = (S, T, �) be a schema mapping, where � is a finite
set of s-t tgds. Assume that M satisfies the constant-propagation property. Then
cand(=,=)(�) is weakly equivalent to �(�).

PROOF. Assume that J is a target instance and I2 is a ground instance. We
shall hold J and I2 fixed throughout the proof. For each ground instance I ,
define T (I ) to be the set of all of the constraints τ(=,=)(�, I1) where I1 is a ground
instance that is isomorphic to I (since � is fixed, we do not bother with including
it in our notation T (I )). We first show that if I is a ground instance, then T (I ) is
weakly equivalent to ω(�, I ), as defined in Step (3) of the algorithm Inverse(M).
Let us write ω(�, I ) as ψ(x, y) → ϕ(x), where the members of x are exactly the
active domain of I . (Thus, for convenience, we are treating the constants in the
active domain of I as if they were variables.) Then every member of x actually
appears in both ψ(x, y) and in ϕ(x).

Assume first that (J, I2) |= T (I ); we must show that (J, I2) |= ω(�, I ). Let
x̄, ȳ be an assignment of values to x, y such that ψ(x̄, ȳ) holds in J ; we must
show that ϕ(x̄) holds in I2. Since by construction Constant(xi) appears in ψ(x̄, ȳ)
for each xi in x, and the inequalities xi �= x j appear in ψ(x, y) whenever xi and
x j are distinct members of x, we know that x̄i is a constant for each xi in x, and x̄i
and x̄ j are distinct when xi and x j are distinct variables in x. By construction,
ϕ(x) is a conjunction of the facts of I . Let I1 be the instance whose facts are
given by ϕ(x̄). Since x̄i and x̄ j are distinct constants when xi and x j are distinct
variables in x, it follows that I1 is a ground instance and that I is isomorphic
to I1 under the isomorphism that maps xi into x̄i for each i.

Since ψ(x̄, ȳ) holds in J , it follows that J contains the result of chasing I1
by � and then replacing the nulls in y by the values in ȳ. So (I1, J ) |= �. Now
(J, I2) |= T (I ), and so (J, I2) |= τ(=,=)(�, I1). Since also (I1, J ) |= �, it follows
by definition of τ(=,=)(�, I1) that I1 ⊆ I2. Hence, ϕ(x̄) holds in I2. This was to be
shown.

Conversely, assume that (J, I2) |= ω(�, I ); we must show that (J, I2) |= T (I ).
Assume that I1 is a ground instance isomorphic to I ; we need only show that
(J, I2) |= τ(=,=)(�, I1). To prove this, assume that (I1, J ) |= �; we must show
that I1 ⊆ I2. Now ω(�, I ) is ψ(x, y) → ϕ(x), where the members of x are exactly
the active domain of I . Define x̄ by having the mapping that maps xi into x̄i for
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each i be an isomorphism from I to I1. Since (I1, J ) |= �, there is an assignment
ȳ of values to y such that ψ(x̄, ȳ) holds in J . Since also (J, I2) |= ω(�, I ), that
is, (J, I2) |= (ψ(x, y) → ϕ(x)), it follows that I2 satisfies ϕ(x̄). So I1 ⊆ I2, as
desired.

Let � be the set of all formulas ω(�, I ), one for every ground instance I . We
have shown that T (I ) is weakly equivalent to ω(�, I ), for every ground instance
I . Therefore, cand(=,=)(�) (which is the set of all of the constraints τ(=,=)(�, I ),
one for every ground instance I ) is weakly equivalent to �. We wish to show
that cand(=,=)(�) is weakly equivalent to �(�), which is a subset of �. So the
proof is completed if we show that �(�) weakly implies �.

Let ω(�, I ) be an arbitrary member of �. Let I1, . . . , Ik be one-tuple instances
where I = I1 ∪ · · · ∪ Ik . Let Z be

{
ω(�, I1), . . . , ω(�, Ik)

}
. We need only show

that Z weakly implies ω(�, I ) (this makes use of the fact that for each such
one-tuple instance I j , there is a prime instance I ′

j such that ω(�, I j ) is logically
equivalent to ω(�, I ′

j )).
It is easy to see that (up to a renaming of nulls), every conjunct that appears

in the premise of some member of Z is a conjunct that appears in the premise
of ω(�, I ) (since the union of the results of chasing each individual tuple of I
is a subset of the result of chasing I ). Also, the set consisting of the (singleton)
conclusions of members of Z is precisely the set of conjuncts that appear in the
conclusion of ω(�, I ). It follows immediately that Z weakly implies ω(�, I ), as
desired. This concludes the proof.

We now show that Inverse(M) produces an inverse of M if M is invertible.

THEOREM 5.7. Let M = (S, T, �) be a schema mapping, where � is a finite
set of s-t tgds. The following are equivalent.
1. M has an inverse.
2. The schema mapping that is the output of Inverse(M), which is specified by

a finite set of full tgds with constants and inequalities among constants, is
an inverse of M.

PROOF. The fact that (2) implies (1) is immediate. Assume now that (1) holds;
we shall show that (2) holds. Write cand(=,=)(�) as �c, and let Mc = (T, S, �c).
Write �(�), the set of full tgds with constants and inequalities that specifies
the output of Inverse(M), as ��. Let M� = (T, S, ��). Since (1) holds, it follows
from Theorem 3.15 that cand(=,=)(�) specifies an inverse of M. So Inst(Id)[∼1,
∼2] = Inst(�◦�c)[∼1, ∼2]. We need only show that Inst(Id)[∼1, ∼2] = Inst(�◦
��)[∼1, ∼2]. Let I1 and I2 be ground instances. It is sufficient to show that
(I1, I2) |= � ◦�c if and only if (I1, I2) |= � ◦��. Now (I1, I2) |= � ◦�c if and only
if there is J such that (I1, J ) |= � and (J, I2) |= �c. But Theorem 5.6 tells us
that (J, I2) |= �c if and only if (J, I2) |= ��.

Part (1) of Theorem 5.1 follows from Theorem 5.7. Part (3) of Theorem 5.1
follows from Theorem 4.12 (the necessity of constants) and Theorem 4.15 (the
necessity of inequalities).
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5.2 The Full Case

When � consists of full tgds, we obtain the following modified version of Theo-
rem 5.1:

THEOREM 5.8. Let M be a schema mapping specified by a finite set of full s-t
tgds. If M has an inverse then the following hold.
1. M has an inverse M′ specified by a finite set of full tgds with inequalities.
2. There is an exponential-time algorithm for producing M′.
3. Statement (1) is not necessarily true if we disallow inequalities, even if we

allow existential quantifiers on the conclusion (and so allow nonfull depen-
dencies to specify M′).

Part (1) follows from Part (1) of Theorem 5.1, along with Part (2b) of Propo-
sition 4.8. In the full case, we can modify the algorithm Inverse by no longer
including the formulas Constant(x). Part (3) follows from Theorem 4.15 (the
necessity of inequalities).

6. QUASI-INVERSES IN DATA EXCHANGE

Next, we shall describe two desirable properties that an “inverse” should pos-
sess for data exchange. (Here, we use the term “inverse” loosely, to mean any
schema mapping M′ that goes in the reverse direction of M.) In particular, we
define the two notions of a sound “inverse” and of a faithful “inverse,” which are
relevant for data exchange, and then show how quasi-inverses relate to these
notions.

First, it is desirable for an “inverse” to be sound. Specifically, assume M =
(S, T, �) is a schema mapping where � is a finite set of s-t tgds, and M′ =
(T, S, �′) is an “inverse” schema mapping. For now, assume that �′ is given
by a finite set of tgds. Suppose that we perform data exchange with M, by
chasing a ground instance I with �, to obtain a target instance U , denoted by
U = chase�(I ). We can then perform a reverse data exchange from U with M′

and obtain V (i.e., compute V = chase�′ (U )). Then M′ is sound with respect to
M if the following holds for every choice of ground instance I : When we redo the
original exchange with � but this time starting from V , we obtain a subset of the
facts that are in U (modulo homomorphic images of nulls). Intuitively, the result
of the reverse data exchange with M′, followed by a data exchange with M (i.e.,
chase�(V )), does not introduce any new information that cannot be found in U ).
If, in addition to M′ being sound, U can be embedded homomorphically into
chase�(V ), then no information that is in U has been lost. We then say that M′

is faithful with respect to M.

Example 6.1. Let us revisit the earlier Decomposition example with a
schema mapping M = (S, T, �) where � consists of the s-t tgd P (x, y , z) →
Q(x, y) ∧ R( y , z). Let us recall, from Example 3.17, that M has quasi-inverses
M′ and M′′ specified by the following sets �′ and �′′ of tgds:

�′ = {Q(x, y) ∧ R( y , z) → P (x, y , z)}
�′′ = {Q(x, y) → ∃z P (x, y , z), R( y , z) → ∃x P (x, y , z)}
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Fig. 1. M′ and M′′ are faithful with respect to M.

Let I be the ground instance shown in Figure 1. The result of chasing I with
� (i.e., the result of the data exchange with M) is the instance U shown in
the figure. If we now chase U with �′ (i.e., perform the reverse data exchange
with M′), we obtain the source instance V1. Furthermore, if we now redo the
original data exchange with M starting from V1, the result is identical to U .
In fact, it can be shown that, for every ground instance I , the result of redoing
the original data exchange on V1 is identical to U . Hence, M′ is faithful with
respect to M.

Consider now M′′. Again, let U be the result of the first data exchange
on I with M. Let V2 be obtained, as in the figure, by reverse data exchange
with M′′ from U . If we now redo the original data exchange with M starting
from V2, the result is the instance U2. Now U2 is different from the target in-
stance U because U2 contains extra tuples with nulls. The instances U and
U2, however, are homomorphically equivalent. It can be shown that this is
true for every ground instance I , and therefore M′′ is faithful with respect
to M.

It turns out that it is not an accident that M has faithful quasi-inverses. In
this section, we show that if M is a schema mapping that is specified by a finite
set of s-t tgds and has a quasi-inverse, then M is guaranteed to have a faithful
quasi-inverse (and the algorithm QuasiInverse produces one).

Note that nulls may arise when we chase I with a schema mapping M, and
also when we chase the result U with an “inverse” M′. In particular, the result
V of the reverse data exchange with M′ may not necessarily be a ground in-
stance, but rather a source instance with constants and nulls. For the purposes
of “reverse” data exchange, we now expand the domain of values for source
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instances to be Const ∪ Var. Thus, in addition to the ground instances, we
shall also consider in this section nonground instances such as V2 in Example
6.1. For the bidirectional data exchange scenario where U = chase�(I ) and
V = chase�′ (U ), we note that (I, U ) satisfies the specification given by M and
(U, V ) satisfies the specification given by M′. We point out, however, that (I, V )
is outside of Inst(M◦M′) because V is not ground. Nevertheless, if M′ is faith-
ful, these nulls do not matter: when we redo the data exchange with M from V ,
we obtain a target instance that is homomorphically equivalent to the original
result U .

In order to define soundness and faithfulness in the general case, when M′

is expressed by a set of disjunctive tgds with constants and inequalities, we
need to consider an extension of the chase for this more general language. The
standard notion of the chase can be easily extended to handle the Constant
predicate and the inequalities in the premise of the tgds in �′. However, when
the conclusion of a tgd in �′ contains disjunction, we need to use the disjunc-
tive chase. Chasing with disjunctive dependencies has been considered before
in various contexts [Deutsch and Tannen 2001; Fagin et al. 2005a]; we use a
similar notion here, which we make precise via the following three definitions.
When defining the disjunctive chase, we do not need to assume a separation
into a source and a target schema. However, the subsequent definitions and
results about soundness and faithfulness will apply the disjunctive chase in
the context where such separation exists.

Definition 6.2. Let ϕ(x) be a conjunction of formulas that may include: (1)
atoms, such that every variable in x occurs in one of them, (2) formulas of
the form Constant(x), where x is a variable in x, and, (3) inequalities of the
form x1 �= x2 where x1 and x2 are variables in x. Let K be an instance over
Const ∪ Var. A homomorphism h from ϕ(x) to K is a mapping from the variables
x to values in Const ∪ Var such that: (1) for every atom T (x1, . . . , xk) in ϕ we
have that T (h(x1), . . . , h(xk)) is a fact in K , (2) for every formula Constant(x) in
ϕ, we have that h(x) is in Const, and, (3) for every inequality xi �= x j in ϕ, we
have that h(xi) �= h(x j ).

Definition 6.3 (Disjunctive Chase Step). Let σ be a disjunctive tgd with
constants and inequalities of the form:

∀x[ϕ(x) → (∃y1ψ1(x1, y1) ∨ . . . ∨ ∃ypψp(xp, yp))].

Let σi be the tgd with constants and inequalities that is obtained from σ by
taking the ith disjunct ∀x[ϕ(x) → ∃yiψi(xi, yi)]. Let K be an instance over
Const ∪ Var. Assume that h is a homomorphism from ϕ(x) to K such that for each
i ∈ {1, . . . , p}, there is no extension of h to a homomorphism from ϕ(x)∧ψi(xi, yi)
to K . We say that σ can be applied to K with homomorphism h. Note that this
also means that σi can be be applied to K with homomorphism h (this is the
nondisjunctive definition of a chase step).

Let K1, . . . , K p be the instances that result by applying each of σ1, . . . , σp to
K with homomorphism h. We say that the result of applying σ to K is the set
{K1, . . . , K p}, and write K

σ,h−→ {K1, . . . , K p}.
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Definition 6.4 (Disjunctive Chase). Let � be a finite set of disjunctive tgds
with constants and inequalities. The disjunctive chase of an instance K with
� is a tree (finite or infinite) that has K as a root and for each node K ′, if K ′

has children K1, . . . , K p, then it must be the case that K ′ σ,h−→ {K1, . . . , K p}
for some σ in � and some homomorphism h. Moreover, each leaf L in the tree
has the requirement that there is no σ in � and no homomorphism h such
that σ can be applied to L with h. When the chase tree is finite, we say that
the result of the disjunctive chase of K with � is the set of leaves in the chase
tree.

In the case when the disjunctive tgds are from a schema T to a schema S,
we can chase instances of the form (J, I ) where J is a T-instance and I is
an S-instance. Note that any such chase tree will be finite (since there is no
recursion). Our case of interest is applying the disjunctive chase with �′ to
an instance of the form (U, ∅) where U = chase�(I ), for some ground instance
I . The result of such chase is a set {(U, V1), . . . , (U, Vm)} of instances where
V1, . . . , Vm are S-instances. If V denotes the set {V1, . . . , Vm}, we shall also say
thatV is the result of chasing U with �′ and writeV = chase�′ (U ). Furthermore,
let us denote by U ′ = chase�(V) the set of all instances U ′ that are obtained by
chasing, in the standard way, each member V of V with �.

Definition 6.5. Let M = (S, T, �) be a schema mapping where � is a finite
set of s-t tgds, and let M′ = (T, S, �′) be a schema mapping where �′ is a finite
set of disjunctive tgds with constants and inequalities.
(1) We say that M′ is sound with respect to M if:

for every ground instance I over S, if U = chase�(I ), V = chase�′ (U ) and
U ′ = chase�(V), then there is a homomorphism from some member of U ′ into
U .

(2) We say that M′ is faithful with respect to M if:
for every ground instance I over S, if U = chase�(I ), V = chase�′ (U ) and
U ′ = chase�(V), then there is some member of U ′ that is homomorphically
equivalent to U .

Observe that by definition, if M′ is faithful with respect to M, then M′ is
sound with respect to M. Also observe that when the dependencies in �′ have
no disjunction, the set V of source instances becomes a singleton set. Thus, if M′

is faithful, chasing with �′ recovers a single source instance whose chase (with
�) is homomorphically equivalent to U . In fact, even when the dependencies
in �′ have disjunction, if M′ is faithful, we can still recover a single source
instance: we search among the instances in V to find the source instance whose
chase (with �) is homomorphically equivalent to U .

We shall make use of the following lemma, which is an extension of
Lemma 3.4 in Fagin et al. [2005a] to the case of disjunctive tgds with constants
and inequalities among constants.

LEMMA 6.6. Let σ be a disjunctive tgd with constants and inequalities among
constants, and let K be an instance over Const∪Var. Assume that σ is applicable
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to K with homomorphism h and let K
σ,h−→ {K1, . . . , K p} be the corresponding

disjunctive chase step.
Let K ∗ be an instance over Const ∪ Var such that K ∗ satisfies σ . If there is a

homomorphism g from K to K ∗, then there is an instance Km in {K1, . . . , K p}
and an extension ḡ of g such that ḡ is a homomorphism from Km to K ∗.

PROOF. Let σ be ∀x[ϕ(x) → (∃y1ψ1(x1, y1)∨ . . .∨∃ypψp(xp, yp))]. Since h is a
homomorphism from ϕ(x) to K , it must be the case that each atom R(x1, . . . , xk)
of ϕ is embedded into a fact R(h(x1), . . . , h(xk)) of K . Moreover, for every conjunct
of the form Constant(x) in ϕ, it must be the case that h(x) is a constant in K .
Furthermore, for every inequality xi �= x j in ϕ it must be the case that h(xi) and
h(x j ) are two distinct constants ci and c j in K . (We know that Constant(xi)
and Constant(x j ) must appear in ϕ, since the inequalities are among
constants.)

We now show that g ◦ h is a homomorphism from ϕ(x) into K ∗. Indeed, each
atom R(x1, . . . , xk) of ϕ is embedded into a fact R(g (h(x1)), . . . , g (h(xk))) of K ∗.
We used here the fact that g is a homomorphism from K to K ∗ and R(h(x1), . . .,
h(xk)) is a fact of K . Moreover, for every conjunct of the form Constant(x) in ϕ, we
have that h(x) is a constant c in K , which implies g ◦ h(x) = g (h(x)) = g (c) =
c (since g maps constants to themselves). Furthermore, for every inequality
xi �= x j in ϕ, we know that h(xi) and h(x j ) are two distinct constants ci and
c j in K , which implies that g ◦ h(xi) = g (h(xi)) = g (ci) = ci and g ◦ h(x j ) =
g (h(x j )) = g (c j ) = c j and therefore g ◦ h(xi) �= g ◦ h(x j ). Again we used that g
maps constants to themselves.3

Since g ◦ h is a homomorphism from ϕ(x) to K ∗, and K ∗ satisfies σ , there
must be some m ∈ {1, . . . , p} and some values b1, . . . , bl playing the role of the
variables y such that K ∗ |= ψm(g ◦h(x), b1, . . . , bl ). Let Km be the instance that
is obtained from K , in the chase step with σ and h, by using the mth disjunct
of σ . Thus, Km is obtained by adding the facts ψm(h(x), n1, . . . , nl ) to K , where
n1, . . . , nl are fresh nulls chosen to instantiate the existentially quantified vari-
ables y. Define ḡ so that ḡ (v) = g (v) for every v in dom(g) and ḡ (ni) = bi, for
every 1 ≤ i ≤ l . Clearly, ḡ (c) = c for every constant c. Moreover, ḡ maps the
new facts in ψm(h(x), n1, . . . , nl ) to facts in ψm(g ◦h(x), b1, . . . , bl ), which in turn
are facts of K ∗. Thus, ḡ is a homomorphism from Km to K ∗.

The following proposition states an important property of the disjunctive
chase in the context of bidirectional data exchange, when the disjunctive tgds
(with constants and inequalities among constants) are part of the “reverse”
mapping.

PROPOSITION 6.7. [UNIVERSALITY OF “CHASE OF THE CHASE”] Let M = (S, T, �)
be a schema mapping where � is a finite set of s-t tgds and let M′ = (T, S, �′)
be a schema mapping where �′ is a finite set of disjunctive tgds with constants
and inequalities among constants. Moreover, let I be a ground instance over S.
If U = chase�(I ) and V = chase�′ (U ), then for every ground instance K such

3Note that g in general can collapse nonconstant elements. Thus, it is essential in the above
argument that the inequalities involve variables that appear inside the Constant predicate.
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that (I, K ) ∈ Inst(M ◦ M′), there is V ∈ V such that there is a homomorphism
from V to K .

PROOF. Let K be a ground instance such that (I, K ) ∈ Inst(M ◦ M′). This
implies that there is J over T such that (I, J ) |= � and (J, K ) |= �′. Let
K = chase�′ (J ). The proof proceeds in two parts. First, we show that there is
an instance K ′ in K such that there is a homomorphism from K ′ to K . Then we
show that there is an instance V ∈ V such that there is a homomorphism from
V to K ′. It follows that there is a homomorphism from V to K .

To prove the first part, let g be the identity mapping on the set of values of J
unioned with the set Const of all the constants. Clearly, g is a homomorphism
from (J, ∅) to (J, K ). We know that (J, K ) satisfies all the dependencies in
�′. Thus, by repeatedly applying Lemma 6.6 for the successive steps in the
chase with �′ from (J, ∅), we find an instance K ′ ∈ K and an extension ḡ of
g such that ḡ is a homomorphism from (J, K ′) to (J, K ). In particular, ḡ is a
homomorphism from K ′ to K .

For the second part, note that U is a universal solution [Fagin et al. 2005a]
for I and �. Since J is a solution for I and �, it follows that there is a homomor-
phism h from U to J . Hence, h is a homomorphism from (U, ∅) to (J, K ′) where
K ′ is the instance constructed in the first part of the proof. By the properties
of the disjunctive chase, we have that (J, K ′) satisfies �′, since K ′ is one of
the instances that result after chasing J with �′. Then we can apply the same
Lemma 6.6 to find an instance V ∈ V and an extension h̄ of h such that h̄ is
a homomorphism from (U, V ) to (J, K ′). In particular, h̄ is a homomorphism
from V to K ′.

The next theorem shows that every quasi-inverse specified by disjunctive
tgds with constants and inequalities among constants is sound. We have shown
earlier that this language is sufficient to express quasi-inverses of schema map-
pings that are specified by s-t tgds.

THEOREM 6.8. Let M be a schema mapping specified by a finite set of s-t tgds.
If M′ is a quasi-inverse of M that is specified by a finite set of disjunctive tgds
with constants and inequalities among constants, then M′ is sound with respect
to M.

PROOF. LetM be (S, T, �) and letM′ be (T, S, �′). Assume that I is a ground
instance over S. Let U = chase�(I ), V = chase�′ (U ), and U ′ = chase�(V). We
need to show that there is a homomorphism from a member of U ′ into U .

Since (I, I ) ∈ Inst(Id)[∼, ∼] and Inst(Id)[∼, ∼] ⊆ Inst(M ◦ M′)[∼, ∼], it fol-
lows that (I, I ) ∈ Inst(M ◦M′)[∼, ∼]. This means that there exist I1, J0 and K
such that I1 and K are ground, I ∼ I1, I ∼ K , (I1, J0) |= � and (J0, K ) |= �′.
Because (I1, J0) |= � and I ∼ I1, we have that (I, J0) |= �. This, together
with (J0, K ) |= �′, implies that (I, K ) ∈ Inst(M ◦ M′). By Proposition 6.7, this
implies that there exists V ∈ V and a homomorphism h : V → K .

Now, let U ′ be the result of chasing V with �. In more precise terms, this
means that (V , U ′) is the result of chasing (V , ∅) with �. Since V ⊆ V, it follows
that U ′ is a member of U ′ = chase�(V). Let J denote the result of chasing K
with �. Since h is a homomorphism from (V , ∅) to (K , J ), and (K , J ) |= �, it
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follows from Lemma 3.4 in Fagin et al. [2005a] that there is a homomorphism
h̄, which is an extension of h, from (V , U ′) into (K , J ). Therefore, there is a
homomorphism h̄ : U ′ → J . Furthermore, by definition, I ∼ K means that
Sol(M, I ) = Sol(M, K ). By Proposition 2.6 of Fagin et al. [2005a], this last
equality is equivalent to the fact that every universal solution for K with re-
spect to M is homomorphically equivalent to every universal solution for I with
respect to M. Since J = chase�(K ) and U = chase�(I ) are universal solutions
for K and I , respectively, we obtain that J and U are homomorphically equiv-
alent. In particular, there is a homomorphism g : J → U . Hence, g ◦ h̄ is a
homomorphism from U ′ to U .

In the next two theorems, we give examples that show: (1) the restriction of
allowing inequalities only among constants in the quasi-inverse is necessary
for Theorem 6.8 to hold, and (2) we cannot strengthen Theorem 6.8 to say that
a quasi-inverse specified by a finite set of disjunctive tgds with constants and
inequalities among constants is faithful (in addition to being sound). Hence,
Theorem 6.8 is optimal in two senses. Furthermore, the two examples we give
are strong in that they involve not just quasi-inverses but inverses.

THEOREM 6.9. There exist a schema mapping M specified by a finite set
of s-t tgds and an inverse M′ of M that is specified by a finite set of tgds
with inequalities (not among constants) such that M′ is not sound with respect
to M.

PROOF. Let M = (S, T, �) and M′ = (T, S, �′) where � and �′ are defined
as follows:

�: S1(x) → ∃ y(T (x, y) ∧ T ( y , x))
S2(x) → S′

2(x)
�′: T (x, y) ∧ T ( y , x) → S1(x)

S′
2(x) → S2(x)

T (x, y) ∧ T ( y , x) ∧ y �= x → S2(x)

The third tgd in �′ includes an inequality that is not among constants. We
first show that M′ is an inverse of M. To do this, we show that (I, I ′) |= � ◦ �′

if and only if I ⊆ I ′.
First, it is easy to see that if (I, I ′) |= � ◦ �′, then I ⊆ I ′, because the tgds

in � together with the first two tgds in �′ assert that a copy of I must exist
in I ′. We now show that (I, I ) |= � ◦ �′, which in turn implies that if I ⊆ I ′,
then (I, I ′) |= � ◦ �′. Let I be an arbitrary ground instance with m facts in
S1 and n facts in S2. That is, I consists of S1(ai) where 1 ≤ i ≤ m, and S2(bj )
where 1 ≤ j ≤ n. Let J consist of T (ai, ai) where 1 ≤ i ≤ m and S′

2(bj ) where
1 ≤ j ≤ n. It is easy to see that (I, J ) |= � and (J, I ) |= �′ (in particular, the
third tgd in �′ is vacuously satisfied). Hence, (I, I ) |= � ◦ �′.

We now show that M′ is not sound. Let I consist of the fact S1(0). Let U =
chase�(I ), V = chase�′ (U ), and U ′ = chase�(V ). The instance U consists of
two facts T (0, X ) and T (X , 0) where X is a null introduced by the chase. Note
that S′

2 is empty in U . Furthermore, the instance V consists of two facts S1(0)
and S2(0). (Note that S2(0) is the result of applying the third tgd in �′, since
X �= 0.) Finally, the instance U ′ consists of three facts: T (0, Y ), T (Y , 0), and
S′

2(0), where Y is a null introduced by the chase. Since S′
2 is empty in U but

not in U ′, there is no homomorphism from U ′ to U .
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THEOREM 6.10. There exist a schema mapping M specified by a finite set of
s-t tgds and an inverse M′ of M specified by a finite set of tgds with constants
such that M′ is sound but not faithful with respect to M.

PROOF. Let M = (S, T, �) and M′ = (T, S, �′) where � and �′ are defined
below:

�: P (x) → ∃ y Q(x, y) �′: Q(x, y) ∧ Constant( y) → P (x)
Q(x, y) → P ( y)

Observe that �′ consists of a finite set of tgds with constants. We first show
that M′ is a inverse of M. To do this, we need to show that (I, I ′) |= � ◦ �′ if
and only if I ⊆ I ′.

First, let I be a ground instance that consists of n facts P (x1), . . . , P (xn) and
let J be {Q(xi, xi) | 1 ≤ i ≤ n}. It is easy to see that (I, J ) |= � and (J, I ) |= �′.
Hence, (I, I ) |= � ◦ �′ which implies that if I ⊆ I ′, then (I, I ′) |= � ◦ �′. Next,
assume that I and I ′ are ground instances such that (I, I ′) |= � ◦ �′; we shall
show that I ⊆ I ′. Since (I, I ′) |= � ◦ �′, there is J such that (I, J ) |= � and
(J, I ′) |= �′. Suppose I consists of n facts P (x1), . . . , P (xn). Since (I, J ) |= �,
we know that J contains {Q(xi, yi) | 1 ≤ i ≤ n}, for some choices of y1, . . . , yn.
There are two cases:
� Case 1. Some yi is not a constant. Then I ′ contains P ( yi), and so is not ground.

Hence, this case is not possible.
� Case 2. Every yi is a constant. Then I ′ contains P (xi), 1 ≤ i ≤ n, and so

I ⊆ I ′, as desired.

We now show M′ is sound but not faithful with respect to M. Since M′ is
specified by a finite set of tgds with constants, M′ is sound by Theorem 6.8. We
now showM′ is not faithful. Let I be a ground instance consisting of a single fact
P (0). Then the chase of I with � is U = {Q(0, Y )} for a null Y , the chase of U
with �′ is V = {P (Y )}, and the chase of V with � is U ′ = {Q(Y , Y ′)} for another
null Y ′. Clearly, there is no homomorphism from {Q(0, Y )} to {Q(Y , Y ′)}. Hence,
M′ is not faithful.

In the following lemma, we prove that if M′ is the result of applying the
algorithm QuasiInverse on M, and I , U and U ′ are as in Definition 6.5, then
there exists a homomorphism from U into every member U ′ of U ′.

LEMMA 6.11. Let M = (S, T, �) be a schema mapping where � is a finite set
of s-t tgds and let M′ = (T, S, �′) be the schema mapping returned by applying
the algorithm QuasiInverse on M. Assume that I is a ground instance over
S. Let U = chase�(I ), V = chase�′ (U ) and U ′ = chase�(V). Then there is a
homomorphism from U into every member U ′ of U .

PROOF. Let U ′ be a member of U ′, that is, U ′ = chase�(V ) for some V in V.
We will show that there is a homomorphism from U to U ′, by adapting an argu-
ment in the proof of Theorem 4.7. In the second direction of that proof, we have
shown the following fact: if I1 and I2 are ground instances such that there is a
target instance J such that (I1, J ) |= � and (J, I2) |= �′ (where �′ is the set con-
structed from � in the QuasiInverse algorithm), then Sol(M, I2) ⊆ Sol(M, I1).
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The main observation is that the proof of the preceding fact continues to hold
even when I2 is non-ground (the proof did not use the assumption that I2 is
ground). We apply this to our situation as follows. We have that (I, U ) |= � and
(U, V ) |= �′, where I is ground. Then, by the previous argument where I plays
the role of I1 and V plays the role of I2, we have that Sol(M, V ) ⊆ Sol(M, I ).
Since U ′ is a solution for M and V , we thus obtain that U ′ is a solution for M
and I . Since U is a universal solution for M and I , it follows that there is a
homomorphism from U to U ′.

The final theorem says that the schema mapping obtained by applying the
QuasiInverse algorithm is always faithful. This implies that, in particular,
when quasi-inverses exist, the schema mapping returned by the QuasiInverse
algorithm is a faithful quasi-inverse.

THEOREM 6.12. Let M be a schema mapping specified by a finite set of s-t
tgds. Let M′ be the schema mapping returned by applying the algorithm Quasi-
Inverse on M. Then M′ is faithful with respect to M. In particular, if M has a
quasi-inverse, then M′ is a faithful quasi-inverse of M.

PROOF. Let M = (S, T, �) and M′ = (S, T, �′), where � is a finite set of s-t
tgds and �′ is the finite set of disjunctive tgds with constants and inequalities
among constants that is constructed by the QuasiInverse algorithm. Let U =
chase�(I ), V = chase�′ (U ) and U ′ = chase�(V). We shall show that there is a
a member U ′ of U ′ that is homomorphically equivalent to U , by showing that
there is a member U ′ of U ′ such that there is a homomorphism from U ′ to U .
The existence of a reverse homomorphism from U to U ′, which follows from
Lemma 6.11, completes the proof of the theorem.

We now show that there is a member U ′ of U ′ such that there is a homomor-
phism from U ′ to U . As shown in the proof of Theorem 4.7, the schema mapping
M′ produced by the QuasiInverse algorithm satisfies Inst(Id) ⊆ Inst(M ◦ M′).
Since (I, I ) ∈ Inst(Id), it follows that (I, I ) ∈ Inst(M◦M′). By the “universality
of the chase of the chase” (Proposition 6.7), the following holds for every ground
instance I over S: For every ground instance K such that (I, K ) ∈ Inst(M◦M′),
there is V ∈ V such that there is a homomorphism from V to K . Since
(I, I ) ∈ Inst(M ◦ M′), there is V ∈ V such that there is a homomorphism h
from V to I . So h is a homomorphism from (V , ∅) to (I, U ) and (I, U ) |= �. Let
U ′ = chase�(V ). Clearly, U ′ ∈ U ′. By repeatedly applying Lemma 3.4 in [Fagin
et al. 2005a] for the successive steps in the chase with � from (V , ∅), we find
an extension h̄ of h such that h̄ is a homomorphism from (V , U ′) to (I, U ). In
particular, h̄ is a homomorphism from U ′ to U .

It is interesting to note that the QuasiInverse algorithm, which was designed
to produce quasi-inverses if they exist, turns out to have the desirable prop-
erty that it always produces faithful mappings. The mappings produced by the
algorithm are faithful even when the original schema mapping is not quasi-
invertible. This also means, in particular, that faithful mappings (of schema
mappings given by finite sets of s-t tgds) always exist, even when quasi-inverses
may not exist.
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7. CONCLUDING REMARKS

The notion of an inverse of a schema mapping is rather restrictive, since it
is rare that a schema mapping has an inverse. We therefore introduced and
studied a more relaxed notion of a quasi-inverse of a schema mapping. Both
inverses and quasi-inverses are special cases of a unifying framework that
we developed. We gave exact criteria for the existence of quasi-inverses and
inverses, complete characterizations of the languages needed to express quasi-
inverses and inverses, and results regarding the use of quasi-inverses in data
exchange.

Some of the important remaining problems are decision and complexity is-
sues. We have shown that for LAV schema mappings, a quasi-inverse always
exists. However, the complexity of the decision problem for the existence of a
quasi-inverse of a schema mapping specified by a finite set of s-t tgds (even in the
full case) remains open. We do not know whether the problem is even decidable.
Another open problem concerns the optimality of the algorithms QuasiInverse
and Inverse. Given a schema mapping specified by a finite set of s-t tgds, these
algorithms produce a schema mapping that is exponential in the size of the
input schema mapping. We do not know whether the size of a quasi-inverse is
necessarily exponential. If it turns out that there is always a polynomial-size
quasi-inverse, this raises the question of finding a polynomial-time algorithm
that can produce it. Similarly, the same question arises for inverses. Finally,
the notion of faithfulness deserves further exploration. This is especially true
since for each schema mapping M specified by a finite set of s-t tgds, there is
always a schema mapping M′ that is faithful with respect to M.
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