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Abstract 

We present a powerful and versatile new sufficient condition for the second player (the “du- 
plicator”) to have a winning strategy in an Ehrenfeucht-Fra’isst game on graphs. We accomplish 
two things with this technique. First, we give a simpler and much easier-to-understand proof 
of Ajtai and Fagin’s result that reachability in directed finite graphs is not in monadic NP. 
(Monadic NP, otherwise known as monadic Xi, corresponds to existential second-order logic 
with the restriction that the second-order quantifiers range only over sets, and not over relations 
of higher arity, such as binary relations.) Second, we show that this result holds in the presence 
of a larger class of built-in relations than was known before. 

1. Introduction 

The computational complexity of a problem is the amount of resources, such as time 

or space, required by a machine that solves the problem. The descriptive complexity 

of a problem is the complexity of describing the problem in some logical formalism 

[ 181. The two complexities are sometimes related. This was first discovered by Fagin, 

who showed [9] that the complexity class NP coincides with the class of properties of 
finite structures expressible in existential second-order logic, otherwise known as Et. 
Consequently, NP =co-NP if and only if existential and universal second-order logic 
have the same expressive power over finite structures, i.e., if and only if YZt = II:. In 

a similar vein, Immerman and Vardi proved that the complexity class P coincides with 

the class of properties of finite ordered structures expressible in fixpoint logic [ 17,221. 

Tbe famous conjectures of computational complexity theory, such as NP # co-NP, 

seem difficult to prove. Therefore their connection to questions in descriptive com- 

plexity holds the promise that techniques from one domain can be brought to bear on 
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questions in the other domain. In particular, there is a standard technique in finite-model 

theory for proving separation results: Ehrenfeucht-Fraisse games (see Section 3). Fagin 

showed that Xi # IIt if and only if such a separation can be proven via second-order 

Ehrenfeucht-Fraisse games [lo]. In the same paper, Fagin also suggested that partial 

progress on the Xt # IIt question could be made by restricting the expressive power 

of these classes: instead of allowing second-order quantification (i.e., over relations of 

arbitrary arity), allow quantification only over sets. Since quantifying over sets corre- 

sponds to quantification over monadic relations, Fagin et al. [12] term these restricted 

classes as monadic NP and monadic co-NP respectively, a terminology that has since 

gained acceptance. Note that, in spite of its seemingly restrictive syntax, monadic NP 

contains nontrivial problems, including NP-complete ones such as 3-colorability and 

satisfiability. 

Fagin [lo] showed that monadic NP # monadic co-NP. Specifically, he showed that 

connectivity of finite graphs - a property that is easily seen to be in monadic co-NP - 

is not in monadic NP. His proof uses a certain Ehrenfeucht-FraIssC game on graphs. 

Such games have since been used in many other nonexpressibility results. 

An Ehrenfeucht-Fraisst game is played between two players, called the spoiler 

and the duplicator; nonexpressibility results involve proving that the duplicator has a 

winning strategy. Often this proof of existence is quite complicated (see e.g. [lo, l]), 

which is not surprising: a spoiler’s strategy may be arbitrarily complicated, and the 

proof has to argue that no strategy prevails against the duplicator. Thus, it seems quite 

important to develop tools for proving that the duplicator wins. 

Several such conditions have been identified. Among these are (a) a formulation of 

second-order Ehrenfeucht-Fraisse games by Ajtai and Fagin [l], for which it seems 

easier to prove that the duplicator has a winning strategy; (b) a sufficient condition 

(due essentially to Hanf [16]) for the duplicator to have a winning strategy; and (c) 

the idea of playing Ehrenfeucht-Fraisse games over random structures. Techniques (a) 

and (c) were used by Ajtai and Fagin [l], and all three techniques were used by Fagin 

et al. [12]. 

Thus a “library” of tools seems to be emerging, each of which further simplifies 

the task of showing that the duplicator has a winning strategy. Clearly, it is important 

to enlarge this library with tools that are as intuitive and natural as possible, so that 

researchers have an easier time in proving nonexpressibility results. To give an example, 

the three “library” tools mentioned above were used by Fagin et al. as follows: (1) they 

give a simple proof (much simpler than Fagin’s) that connectivity is not in monadic 

NP, and (2) they show that connectivity is not in monadic NP in the presence of a 

large class of built-in relations (this was previously known only for a built-in successor 

relation [6]; we discuss built-in relations shortly). 

In this paper we give a new sufhcient condition for the duplicator to have a winning 

strategy. We hope that this condition will prove useful and intuitive. We use it as 

follows. (1) We give a proof that directed reachability (given a directed graph and two 

distinguished vertices s and t in it, the problem of deciding whether there is a directed 

path from s to t) is not in monadic NP. The proof is much easier than the earlier proof 
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by Ajtai and Fagin [ 11. (2) We show that directed reachability is not in monadic NP in 

the presence of a larger class of built-in relations than was known before. (3) We note 

that the condition can also be used in place of Hanf’s condition in proof of Fagin et 

al. for the connectivity problem. (It is arguable, though, whether this makes the proof 

simpler.) 

There are several reasons for interest in connectivity and directed reachability, the 

two problems considered in this paper. Cosmadakis [5] has shown that connectivity 

reduces (via a very weak kind of reduction) to a host of other problems, including 

non-3-colorability. So the fact that connectivity is not in monadic NP implies that 

these problems are not in monadic NP. Thus, connectivity seems to have a special 

significance. 

Directed reachability is an interesting problem because it is known in some senses 

to be a more difficult problem to deal with than connectivity. For instance, a surprising 

result of Kanellakis (private communication, 1986; see also [2]) says that undirected 
reachability (where we consider only undirected graphs) is in monadic NP. (In con- 

trast, undirected connectivity is not in monadic NP, as mentioned above.) Furthermore, 

Cosmadakis has shown that connectivity does not reduce, in his sense, to directed reach- 

ability. This suggests that if directed reachability is not in monadic NP, then proving 

this requires techniques different from those used to show that connectivity is not in 

monadic NP. Ajtai and Fagin [l] resolved the status of directed reachability by proving 

that it is in fact not in monadic NP. The current paper greatly simplifies their proof. 

The nonexpressibility results in this paper also hold in the presence of a larger 

class of built-in relations than those allowed in [ 1, 121. There are three main reasons 

why built-in relations are important. First, proving nonexpressibility results for monadic 

NP in the presence of built-in relations seems to provide a good training ground for 

attacking the general (not monadic) case. For instance, before proving nonexpressibility 

results for “binary” NP, one clearly needs to deal with the case of monadic NP with 

a built-in successor or linear order relation, since the existence of such relations can 

be expressed by a binary second-order existential quantifier. 

Another reason for interest in built-in relations is that there are known examples of 

classes for which built-in relations provably add to their expressive power. For exam- 

ple, the property “evenness” (i.e., the graph having an even number of nodes) is not in 

monadic NP, but it is in monadic NP with a built-in successor relation. Furthermore, 

some connections between computational complexity and descriptive complexity are 

known to hold only in the presence of built-in relations. As mentioned earlier, Immer- 

man and Vardi showed that a property is in P iff it can be expressed in fixpoint logic 

with a built-in successor relation (or a built-in linear order). Allowing successor is 

crucial in this case, since evenness is not definable in fixpoint logic without successor 

[41. 
Finally, built-in relations can be viewed as adding an element of nonuniformity to 

the class, and thus changing it somewhat (this is analogous to the way circuit-based 

computational complexity differs from Turing-machine based complexity). Proving that 

a problem is not in monadic NP even in the presence of certain built-in relations shows 
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that the problem cannot even be captured in certain nonuniform ways (since the built-in 
relations vary from universe to universe), which is a stronger result. 

The rest of the paper is organized as follows. In Section 2, we give definitions 
and conventions. In Section 3, we discuss first-order Ehrenfeucht-Fraisd games. In 
Section 4, we give our new sufficient condition for the duplicator to have a winning 
strategy. In Section 5, we define monadic NP and Ajta-Fagin games. In Section 6, 
we give our first application of our sufficient condition for the duplicator to have a 
winning strategy, by giving a simple proof of Fagin’s result that connectivity is not in 
monadic NP (our proof is modeled after that of Fagin et al.). In Section 7, we consider 
the directed reachability problem. In Section 7.1, we sketch Ajtai and Fagin’s proof [l] 
that directed reachability is not in monadic NP. In Section 7.2, we give our simplified 
proof of this result. This is our main application of our new sufficient condition for 
the duplicator to have a winning strategy. In Section 8, we give new inexpressibility 
results in the presence of certain built-in relations. We summarize in Section 9. 

Other related work. A related development (independent of this paper) is a recent 
result by Schwentick [19]. He gives another sufficient condition for the duplicator to 
have a winning strategy, and uses it to show that connectivity is not in monadic NP in 
the presence of an even larger class of built-in relations than Fagin et al. had shown. 
Most importantly, he resolved an open problem of de Rougemont [6], by showing that 
connectivity is not in monadic NP even in the presence of a built-in linear order. 

2. Definitions and conventions 

A language 2 (sometimes called a similarity type, a signature, or a vocabulary) 
is a finite set {PI,..., Pp} of relation symbols, each of which has an arity, along with 
a finite set {cl,. . . , cq} of constant symbols. An _Y’-structure (or structure over 9, or 
simply structure) is a set A (called the universe), along with a mapping associating a 
relation Ri over A with each Pi E 9, where Ri has the same arity as Pi, for 1 <i < p, 

and associating a member of A with each constant symbol ci E 9, for 1 <i <q. We 
may call Ri the interpretation of Pi (and similarly for the constant symbols). If the 
point a is the interpretation of the constant symbol ci, then we may say that a is 
Zabeled ci. The structure is called Jinite if A is. Unless otherwise stated, throughout the 
rest of this paper we make the assumption that all structures we consider are finite. All 
our nonexpressibility results hold for infinite structures too, but the proof in the infinite 
case is known to be trivial using the Compactness Theorem. We use the usual Tarskian 
truth semantics to define what it means for a structure to obey or satisfy a sentence. 

Our main application in this paper is to directed reachability. Therefore, we shall 
take some liberties with standard terminology, by (usually) taking a “graph” to mean a 
directed graph with two distinguished points, labeled s and t respectively. Thus, in this 
paper, a “graph” is a structure where the language consists of a single binary relation 
symbol and two constant symbols, s and t. We are also interested in “colored graphs”, 
which are structures where the language consists of a single binary relation symbol 
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and two constant symbols, as is the case for graphs, along with some finite number of 
unary relation symbols. If G is a colored graph, where the interpretations of the unary 
relation symbols in the language are Vi,. . . , uk, then by the color of a point a in the 
universe of G, we mean a description of which Ui’s the point a is a member of. Thus, 
there are 2k colors. 

If t = (Xi,..., Xk) is a tuple, define [t] to be the set {xi,. . . ,Xk} of points that appear 
in t. We define the hypergraph associated with structure A to be a hypergraph (V, F) 

whose universe V is the same as the universe of A and whose set F of (hyper)edges is 

{[t] : t is a tuple in some relation of A}. 

A (simple) path of length k between two points u,v of A consists of a set of edges 
&,...,&EFandasetofpointsxi , . . . ,xk_~ E V such that (i) the XI’S are distinct from 
each other and from u and u, (ii) u E Si, (iii) v E Sk, and (iv) Xi E Siflsi+i, for 1 < i < 
k. The distance between distinct points u and v is the smallest k such that there is a 
path of length k between them, and the distance between a point and itself is 0. If k 2 3, 
then a cycle of length k in a structure A is a path of length k from a vertex to itself. 
(Shortly, we shall mention why we do not consider cycles of length 1 or 2.) Except 
for the fact that we do not consider cycles of length 2, this definition corresponds to 
Berge’s notion [3] of a cycle in a hypergraph. (There are various other notions of a 
cycle in a hypergraph that are not equivalent to Berge’s; see [ 111.) We note that if A 

is a structure over a language with a single binary relation, then its hypergraph is an 
ordinary undirected graph, and the concept of distance and cycle are the familiar ones. 

We let (.xi,xz) represent the directed edge from xi to x2 in a directed graph, and 
(xi ,x2) the undirected edge between xi and x2 in an undirected graph. By the undirected 
version of a directed graph, we mean the undirected graph obtained by ignoring the 
directions on the edges; thus, (x*,x2) is an edge in the undirected version iff either 

(x1,x2) or (x2,x1) is an edge in the directed graph. The Gaifman graph [14] of a 
structure A is the undirected graph with the same universe as A, and with an edge 
(x1,x2) whenever x1 and ~2 are distinct and appear together in a tuple of some relation 
of A. In particular, the Gaifman graph of a directed graph without self-loops is simply 
the undirected version of the graph. Our definition of the distance between two points 
in a structure is equivalent to the distance between the two points in the Gaifman 
graph of the structure. However, the notions of a cycle in structure A and a cycle 
in the Gaifman graph of A are different in general. For example, if there is a tuple 
(x~,x~,xJ) in a ternary relation of a structure A with all entries distinct, then there is a 
cycle of length 3 in the Gaifman graph (with edges (x*,x2), (x2,x3), and (x3,x,)), but 
not necessarily a cycle in A. In general, a cycle in a structure gives rise to a cycle in 
the Gaifman graph, but not vice versa. Note that an assumption of our main theorem is 
that there are no small cycles in the structure. Thus, the fact that our notion of “cycle” 
is restrictive only increases the applicability of our theorem. This is also why we do 
not consider cycles of length less than 3: such very small cycles would have no effect 
on our theorems, and so we do not want to forbid them. 

Finally, we define the degree of a point in A to be the degree in the Gaifinan graph. 
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3. Ehrenfeucht-Frak& games 

Most tools of model theory do not “survive” when we restrict our attention to 

finite structures. Ehrenfeucht-FraYsse games [7, 131 are among the few that do. For 

an introduction to Ehrenfeucht-Frai’ssC games and some of their applications to finite- 

model theory, see [l, pp. 122-1261. 

We begin with an informal definition of an r-roundfirst-order Ehrenfeucht-FraiM 
game (where r is a positive integer), which we shall call an r-game for short. It is 

straightforward to give a formal definition, but we shall not do so. There are two 

players, called the spoiler and the duplicator, and two structures, A0 and A,. In the 

first round, the spoiler selects a point in one of the two structures, and the duplicator 

selects a point in the other structure. Let p1 be the point selected in &, and let q1 be 

the point selected in Al. Then the second round begins, and again, the spoiler selects 

a point in one of the two structures, and the duplicator selects a point in the other 

structure. Let pz be the point selected in Ao, and let q2 be the point selected in Al. 

This continues for r rounds. The duplicator wins if the substructure of & induced 

by PI,..., pr is isomorphic to the substructure of Al induced by 41,. . . , qr, under the 

function that maps pi onto qi for 1 <i <r. That is, the duplicator wins precisely if (a) 

pi = pj iff qi = qj, for each i and j; (b) (p. I,, . . . , pi,) is a tuple in a relation in A0 iff 

(qil Y.. + , qi,) is a tuple in the corresponding relation in Al, for each choice of il, . . . , id; 
and (c) pi is the interpretation in A0 of a constant symbol d iff qi is the interpretation 

in Al of the constant symbol d, for each i. Otherwise, the spoiler wins. We say that 

the spoiler or the duplicator has a winning strategy if he can guarantee that he will 

win, no matter how the other player plays. Since the game is finite, and there are no 

ties, the spoiler has a winning strategy iff the duplicator does not. If the duplicator has 

a winning strategy, then we write A0 y A,. In this case, intuitively, A0 and Al are 

indistinguishable by an r-game. 

The following important theorem (from [7,13]) shows why these games are of 

interest. If 9’ is a class of structures over a language 9, then let 7 be the complement 

of 9, that is, the class of structures over .5? not in 9’. 

Theorem 3.1. Y is jirst-order dejinable zJT there is r such that whenever A0 E Y and 
Al E 9, then the spoiler has a winning strategy in the r-game over Ao, Al. 

4. A winning condition for the duplicator 

According to Theorem 3.1, to show that a property of finite structures is not first- 

order definable, we have to construct for each r a structure A0 satisfying the property 

and a structure Al failing the property, such that the duplicator has a winning strategy 

in the r-game over Ao, AI. Finding such structures can be nontrivial. The pair Ao, Al 

are guaranteed to look different at a “global” level, since A0 satisfies the property and 

A1 does not. How can they look similar in the Ehrenfeucht-FraissC game? The main 
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observation (which has been made many times before) is that an Ehrenfeucht-Frakse 
game in some sense involves only “local” properties of the structures. 

Next, we describe a condition which, if satisfied by As,Ar, guarantees that the 
duplicator has a winning strategy in an r-game. At an intuitive level, the condition 
says that the two structures are approximately isomorphic at a “local” level. As we 
will see, this approximate isomorphism leaves plenty of room for the structures to differ 
at the global level, and therein lies the condition’s usefulness: a researcher using it to 
prove nonexpressibility results gets that much more “room” to construct the desired 
As,A,. For example, in our proof that directed reachability is not in monadic NP, a 
probabilistic method suITices to prove the existence of the two structures. (This use of 
the probabilistic method is derived from the techniques of [l].) 

Let d and q be integers, and let A be a structure. We define the notion of the 
(d, q)-color of each vertex in A. Intuitively speaking, the (d, q)-color describes a small 
neighborhood around the vertex. For simplicity, we begin first by considering the case 
where A is a colored graph (this is the case of interest in the proof that directed 
reachability is not in monadic NP). Define the (d,O)-color of a vertex u to be the 
color in the colored graph, along with a description of whether or not there is an 
edge (a “self-loop”) from the vertex u to itself, whether or not the vertex u is the 
distinguished point labeled S, and whether or not the vertex u is the distinguished point 
labeled t. Inductively, define the (d,q + 1)-c&r of the vertex u (where 420) to be 
(a) a description of its (d,q)-color, along with (b) a complete description, for each 
possible (d, q)-color z, as to whether there are 0, 1, . . . , d - 1, or at least d points w 
with (d,q)-color r such that (u, w) is an edge of the graph, but (w,u) is not an edge, 
(c) a complete description, for each possible (d,q)-color r, as to whether there are 
O,l,..., d - 1, or at least d points w with (d, q)-color r such that (w, u) is an edge but 
(u,w) is not an edge, and (d) a complete description, for each possible (d,q)-color z, 
as to whether there are 0,l , . . . ,d - 1, or at least d points w with (d, q)-color r such 
that (0, w) and (w, u) are each edges. Thus, the (d,q + 1)-color of a vertex u tells the 
(d,q)-color of u, and also tells how many vertices there are of each (d,q)-color with 
just an outedge from u, just an inedge into u, and both an outedge from and an inedge 
into v, where in all cases we do not count beyond d. 

Readers familiar with [l] will recall that a slightly different notion of (d,q)-color 
appears there. That notion involves additional information, since under that definition, 
the (d, q + 1 )-color of a vertex u also contains a complete description, for each possible 
(d,q)-color r, as to whether there are 0, 1,. . . , d - 1, or at least d points w with (d, q)- 
color z such that neither (u, w) nor (w,u) is an edge. Our notion seems more useful 
because it is completely local: only “nearby” points (points whose distance from u is 
at most q) affect the (d,q)-color of u. 

We now discuss how to define the (d,q)-color of each vertex u in a structure A 
over an arbitrary language 2. We begin with a preliminary notion. An m-type (among 
the m variables x1 , . . . ,x,) is a conjunction such that (a) for each i and i between 1 
and m, exactly one of xi = Xj or xi # Xj is a conjunct, and (b) for each arity e, each 
relation symbol P E 2’ of arity c!, and each choice of il,. . . , ie where 1 < ij <m for 
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each j, exactly one of PXi, . I .xi, or -Px,, . . .Xic is a conjunct. Intuitively, an m-type 

tells exactly how the variables xi,. . . , x, relate to each other in a quantifier-free way. 
We say that the variable x has a positive occurrence in the m-type F if Pxi, . . .XQ 
(as opposed to ‘Pxi, . . . xi,) is a conjunct of F for some relation symbol P E 9 and 
some variables x, I, p.. . ,xi, where x E {xi,, . . . , xi, }. We define an m-type of vertices (as 
opposed to variables) analogously. Specifically, if 01,. . . , v, are m vertices of A, then 
we define their m-type to be an m-type among m variables xi,. . . ,x, that holds in A 
when xi , . . . ,x, are interpreted by vi,. . . , v, respectively. In~itively, an m-type among 
the m vertices vi ,. . ., v, of A tells exactly how these vertices relate to each other in 
A. Similarly, we define what it means for a vertex v to have a positive occurrence in 
an m-type. 

We are now ready to define the (d,q)-color of each vertex u in a structure A 
over an arbitrary language 9. Let m be the largest arity among relation symbols 
of 9. The (d,O)-color of u is a complete description of which relations of A have 
the tuple (v, . . . , o) as a member (where, of course, the length of the tuple is the 
arity of the relation), and which constant symbols label v. Inductively, define the 
(d, q + 1 )-color of the vertex v (where q 20) to be a description of its (d, q)-color, 
along with a complete description, for each possible choice 71,. . . , z,_1 of (d,q)-colors 
and each possible m-type F among m vertices where v has a positive occurrence, as 
to whether there are 0,l , . . . ,d - 1, or at least d choices of (vi,. . . , v,_~) such that 
v, vi,. . . , v,_1 have the m-type F and vi has (d, q)-color ri for 1 < i < m - 1. Finally, the 
(d,q) color of a tuple (xi , . . . ,xk) is the tuple (~1,. . . , zk), where ri is the (d,q)-color 
of xi. 

The ~uItipl~city of the (d,q)-color of a vertex is the number of vertices in the 
structure with this (d,q)-color. Similarly, the multiplicity of the (d,q)-color of a tuple 
in a relation in a structure is the number of tuples in that relation with this (d, q)-color. 

The next theorem describes the desired sufficient condition. 

Theorem 4.1. Let r,f be positive integers. There is a positive integer k that depends 
only on r such that Ao-,A, whenever A0 and A1 are structures of the same similarity 
type that have the same set of vertices and that satisfy the following conditions. 
1. the degree of every vertex in A0 or Al is at most f; 
2. there is no cycle in either AQ or Ai of length less than k; 
3. each vertex has the same (rt k)-donor in A0 as in Al ; and 

4. if e is a tuple that is present in some relation in one structure but not in the 
corresponding relation in the other structure, then there are at least fk tuples in 
both of these relations that have the same (r, k)-color as e. 

Remark. In Section 8 we will give a version of this theorem in which small cycles 
are allowed, but there are some additional assumptions. 

We shall prove this theorem shortly. This theorem gives a sufficient condition for 
the duplicator to have a winning strategy. As we noted, Fagin et al. [12] make use 
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of another sufficient condition, due essentially to Hanf, for the duplicator to have a 

winning strategy. Hanf’s condition is incomparable with our condition. In particular, 

to apply Hanf’s condition, it is necessary that for each point u in either structure there 

is a point v in the other structure such that u and v have isomorphic neighborhoods. 

If, however, A0 and Ai are directed graphs that differ only in that there is an edge 

e of As that is not in Ai (which, as we shall see, is how we use Theorem 4.1 to 

prove that directed connectivity is not in monadic NP), then Hanf’s condition cannot 

be applied. This is because a neighborhood in & of an endpoint of e might not be 

isomorphic to a neighborhood of any point in Ai. Intuitively, instead of requiring 

isomorphic neighborhoods (which Hanf’s condition demands), our condition requires 

only “approximately isomorphic neighborhoods” (by dealing only with (Y, k)-colors, 

rather than isomorphism types), but at the expense of adding other requirements (such 

as that there be no small cycles). 

Although our Theorem 4.1 does not subsume Hanf’s condition, nevertheless The- 

orem 4.1 is strong enough to replace Hanf’s condition in Fagin et al.‘s proof that 

connectivity is not in monadic NP (including the case of the built-in relations that they 

consider). This helps show the “versatility” of Theorem 4.1. In Section 6, we shall 

give our proof, using Theorem 4.1, that connectivity is not in monadic NP. 

We conclude this section by giving a proof of Theorem 4.1. For ease in descrip- 

tion, we prove this theorem under the assumption that AO and Ai are colored graphs, 

rather than structures of arbitrary similarity type. (As we noted before, this is the 

case of interest in the proof that directed reachability is not in monadic NP.) It is 

fairly straightforward to modify our proof to deal with the general case, by replacing 

“distance in graph” with “distance in hypergraph,” and other such changes. 

Assuming the hypothesis of the theorem, we will describe how the duplicator matches 

the spoiler’s moves, such that the substructures of As,Ai picked at the end of r rounds 

are isomorphic. Before the formal proof, we give some intuition as to how we make 

use of (r,k)-colors, and why we do not allow small cycles. 

Assume that j < Y < k, that the spoiler and duplicator are playing an r-game on the 

colored graphs As and Ai, and that through the first j rounds, the points pl, . . . , pj 

picked in A0 have the same (r-j, k)-colors as the corresponding points 41,. . . , qj picked 

in Ai. Assume that the spoiler then picks, say, pj+i in A0 different from ~1,. . ., pj, 

where pj+l is adjacent to pi in Ac for some i < j (perhaps, say, (pi, pj+i) is an edge 

but (pi+,, pi) is not). Since pi and qi have the same (r-j, k)-color, it follows that there 

is a point qj+l in Ai different from 41,. . ., qj that is adjacent to qi in Ai (where, as 

before, (qi,qj+i) is an edge but (qj+l,q;) is not). If we assume that there are no cycles 

of length less than k in either Aa or Ai, then pj+i is not adjacent to any pm # pi, 

and qj+i is not adjacent to any q,,, # qt. This enables us to maintain an isomorphism 

between the subgraph of As induced by the pi’s and the subgraph of Ai induced by 

the qi’s. If small cycles were possible, then it could happen that qj+i would be adjacent 

to q,,, # qi without pj+i being adjacent to pm, and this would violate isomorphism, 

and so the spoiler would win. This is why we do not allow small cycles. The full 

winning strategy for the duplicator is more complicated than this sketch (for example, 
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we did not discuss what happens when the spoiler selects a point not adjacent to any 

point that has been selected so far); we now fill in the details. 

Define d(u, II) to be the distance between u and u, where as before, we ignore the 

directions of the edges. For ease in notation, we are a little sloppy by using d(., .) for 

both A0 and Al, even though distances may be different in them. It should always be 

clear in context which graph the distance is being measured in. We use the shorthand 

u -+ v to denote the induced directed subgraph whose undirected version is a shortest 

path between u and u (this path will be unique wherever we use this notation). We 

will use the word “path” to refer either to an undirected path, or to the directed graph 

u -vu) u, whose undirected version is a path. Define d,(u, v) to be min{m,d(u,u)} (i.e. 

“if the distance is at least m, then we do not care about the exact distance, but only 

that it is at least m”). Let Ball(v, q) be the set of vertices of distance at most q from u. 

We say that a directed graph (possibly colored) is a tree if it is a tree when we ignore 

the directions on the edges. Thus, it must be connected and have no (undirected) 

cycles. 

As a part of our proof of Theorem 4.1, we state and prove three facts and a lemma. 

The following definition will be useful. Let X be a set of vertices in graph G. Define 

W(X,K) to consist of X, along with all vertices that appear in a path of length at most 

K between some pair of points in X. Let sg,(X, K) denote the subgraph of G induced 

by the set W(X,K) of vertices. Note that even though we ignore edge directions when 

we consider the paths, sg,(X,K) itself is a directed graph (the directions of the edges 

are determined by G). If A is a colored graph, then sgA(X,K) is the colored subgraph 

of A that is defined similarly. 

The first fact says that in graphs with no small cycles, small neighborhoods around 

a point look like trees. 

Fact 1. Assume that a graph G has no cycles of length less than k (where ka4), 

and {uI,u~,..., u,} is a set of vertices. Assume that there is some e with 1 Q e <m 

such that d(ui,ue) < k/6 for each i with 1 <i<m. Then sg&{ul,. . . ,u,} , k/3) is a 

tree. 

Proof. Let Y be the set consisting of {ur,u2,. . . ,um}, along with, for every i with 

1~ i <m, all vertices on a shortest (undirected) path between ud and ui. Let T be the 

subgraph of G induced by the set Y of vertices. We now show that T is a tree. It is 

clearly connected. Assume that T contains a cycle; let C be a cycle of minimum size 

in T. Since T is an induced subgraph of G, we know by assumption that the cycle 

C has length at least k. Therefore, there are vertices x, y on the cycle with a path PI 

between them of length Lk/2j. S ince d(ul,x) <k/6 and d(ue, y) <k/6, there is a path 

P2 between x and y of length at most k/3. Now k/3 < Lk/2], since k 24. Therefore, 

the paths PI and P2 are distinct. So there are two distinct paths between x and y, one 

path of length at most k/3, and the other of length [k/2]. It follows that there is a 

cycle of length at most (k/3) + Lk/2j < k. This is a contradiction. Therefore, T is 

indeed a tree. 
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We now show that sg,({ui, . . . , u,} , k/3) is a tree. It is clearly connected, since 
d(ue,ui)< k/6 for each i. Since T is a tree, we need only show that for each i, j, each 
path of length at most k/3 between Ui and uj is a path in T. If not, then there is 
a path in G of length at most k/3 between ui and uj that is not a path in T. Since 
d(ud, ui) Q k/6 and d(ud, uj) < k/6, there is a path in T between ui and uj of length at 
most k/3. So there are two distinct paths in G between ui and uj (one path not in 
T, and one path in T), each of length at most k/3. It follows that there is a cycle of 
length at most 2k/3 < k in G. This is a contradiction. 0 

The next observation will be used in showing that the duplicator can always match 
the spoiler’s actions. To motivate it, we remind the reader that the (d,q)-color of a 
vertex u is a partial description of the colored Ball(u, q). For instance, if u, v are vertices 
of the same (d,q)-color and there is vertex at distance x from u whose (d,q -x)-color 
is z, then there is a vertex of the same (d,q - x)-color at distance x from v. Now we 
generalize this. 

Fact 2. Assume that colored graphs A0 and Al have no cycles of length less than 
k, and m,r are integers such that m < r. Let (~1, ~2,. . ., pm} and (41,. . . ,q,,,} be 
subsets of vertices of A0 and Al, respectively, such that for some /, where 1 <e <m, 

{Pl,P2,..., Pm} C BaWPt, k/6) and (41,. . . , q,,,} C Ball(qc, k/6). Assume also that 

sg,,((pl,...,p,},k/3) and sgA,((ql,...,qm},k/3) are isomorphic as colored trees, 
under the isomorphism mapping pi to qi for each i, where each vertex is colored 
with its (r, y)-color. Let v be a vertex in Ao, and let x = d(v, pd). Assume that 
x<k/6 and x< y. Then there is a point u in Al such that sgAo({plr.. ., p,,,,v} , k/3) 

andsgA,({ql,...,qm,u),k/3) are isomorphic as colored trees, under the isomorphism 

mapping pi to qi for each i and mapping v to u, where each vertex is colored with 

its (r, y - x)-color. 

Proof. The fact that all the graphs of the form sg,,(X, k/3) mentioned above are 
necessarily trees follows from Fact 1. If v E sgAO({pl,. . . , pm}, k/3), then the cor- 
responding vertex in sg,, ((41, . . . , qm} , k/3) satisfies all the conditions required for u 
(and in fact has the same (r, y)-color as a, and not just the same (r, y - x)-color). 

So assume u rt sgAo({P1,...,Pm},k/3), and let i be such that pi is the vertex in 

%&J{Pl?. . .Y pm}, k/3) closest to v. Since sg&({pl,. . . , pm, v} , k/3) is a tree, it follows 
that for all t dm, the path v 4 pt must pass through pi. So sg&({ ~1,. . . , pm, v} , k/3) 

is the union of sgAO( { p1, . . . , pm}, k/3) and the path pi -vv, v. We have to show that an 
isomorphic path can be added to sg,, ( {ql,. . . , qm} , k/3). 

Let v 1,. . . ,vj+l be the sequence of vertices on the path pi -+ v, where vi = pi, 
Vj+i = v and j<x. Let r be the (r, y - 1)-color of 2)~. Let V be the set of vertices v in 
AO with (r, y - 1)-color z that relate to vi in the same way as v2 relates to vi; that is, 

(vi,4 (resp., (r, vi)) is a directed edge of A,I iff (vt,v2) (resp., (v2,vi)) is a directed 
edge of Ao. Similarly, let U be the set of vertices in A1 with (r, y - 1)-color r that 
relate to ui in the same way as v2 relates to vi. Since qi and pi have the same (r, y) 
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color, it follows that either U and V have the same cardinality, or both cardinalities 

are at least Y. Since V contains a vertex not in {pi,. . . , pm}, and since m < r, it 

follows that U contains a vertex not in (41,. . . , qm}. Let u2 be such a vertex. We can 

now argue similarly about the neighbors of v2 and u2 (but where we do not need to 

depend on the fact that m < r) to find a vertex ~3, and keep doing this until we have 

found a path outside of { 41,. . . , q,,,} isomorphic to pi -vut v, when vertices are colored 

with their (r, y - j)-color. Define u to be the final vertex on the path. 0 

Finally, since Ball(v, a) has at most fa+’ vertices in the graphs of Theorem 4.1, we 

have the following facts about vertex colors of high multiplicity. 

Fact 3. Let f be the maximum degree of the vertices in a graph. 
1. Let z be a vertex color of multiplicity more than i . fa+‘. Given any i points 

~1,. . . , pi, there is a vertex of color z outside UeGi Ball(pe, a). 
2. Let u,v be vertices such that d(u,v) = x. If the multiplicity of the (d,q)-color of 

v is m, then the multiplicity of the (d, q - x)-color of u is at least m/f”. 

Proof. The first part is obvious. We now prove the second part. Note first that the 

number of vertices of distance exactly x from a given vertex is at most f”. Denote by 

r the (d, q)-color of v and by z’ the (d, q - x)-color of u. Then each of the m vertices 

having color r must have a vertex of color Z’ at a distance x from it. This yields m 

vertices of color 6, but where we have counted each vertex w of color 2’ at most f” 

times (once for each vertex of (d,q)-color r of distance exactly x from w). So there 

are at least m/fx vertices of (d,q - x)-color r’. 0 

Now we are ready to describe the duplicator’s strategy and prove Theorem 4.1. If 

the maximal degree f is 1, then the result follows easily. So assume that f 22. Let 

k = 32’. The strategy maintains the following invariant. 

Invariant after round i. Sequences PI, ~2,. . . , pi and 41, q2,. . . , qi of vertices have been 

picked in A0 and Al respectively. 

l Zsomorphism invariant: sg,,( { p1, . . . , pi} , 3rei) is isomorphic to sg,, ((41,. . . , qi}, 
3r-i) under the isomorphism mapping pj to qj for each j<i, when the vertices are 

colored with their (r, 32’-i)-color. 

l Multiplicity invariant: If j <i is such that pj # qj, then the multiplicity of their 

common (r, 32r-i )-color is at least f 3’+‘-3’-3’-‘-“‘-3’-‘. 

Then the following generalization of Fact 2 shows that the isomorphism invariant is 

easy to maintain if the next vertex picked by the spoiler is in UjQi Ball(pj, 3’-‘-‘). 

Lemma 4.2. For each vertex v E IJfGi Ball(pc,3’-‘-I), there is a vertex u E UeCi 
Ball(qe, 3’-‘-I) such that the isomorphism invariant is maintained for ~1,. . . , pi, v 

and 41 , . . . ,qi, u, where i + 1 plays the role of i. 
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Proof. Let e be such that u E Ball(pe, 3’-‘-‘). Let {pt,, . . . , pe,} be the subset of 

pi’s lying in Ball(pe, 3r-i). Then qe, , . . . , qe, must lie in Ball(qd,3’-‘). Furthermore, 

%Ao(~Pel~.~~~ PC,}, 3r-i) and sg,, ({qt,, . . . , qe,,,} , 3rPi) must be isomorphic colored 

trees, under the isomorphism mapping pi, to qe, for each i<m, when the vertices 

are colored with their (r, 32r-i )-color. Now Fact 2 can be applied to yield a vertex u E 

Ball(qe, 3’-i-1 ) with the same (Y, 32r-i - 3’-‘-‘)-color as v, and such that the isomor- 

phism invariant is maintained for the trees formed by pe,, . . , pe,,,,, v and qe,, . . . ,qd,, u 

using the (r, 32r-i - 3’-‘-‘)-color. Since 32r-i -3r-i-1 a32r-i-1 for i < r, we conclude 

that the trees are isomorphic for the (r,32’-i-1)-color too. 

To finish the claim about the isomorphism invariant, it suffices to show that the 

distance of u (resp., v) to a vertex pr outside Ball(qe,3’-‘) (resp., vertex qt outside 

Ball(pe,3’-‘)) is more than 3reiw1, so that those vertices do not interfere with the 

isomorphism invariant. But this follows from the triangle inequality, since d(v, pr) 3 

d(pt,pt) - d(u,pe) > 3’-’ - 3r-i-1 = 2 . 3r-i-1. The same argument works for v 

and qt. 0 

We now describe the duplicator’s strategy. Suppose the spoiler picks a vertex pi+1 

in A0 in round i + 1 (a symmetric strategy is used if the spoiler chooses a vertex in 

Al). Let u be the same vertex in Al. The conditions of Theorem 4.1 imply that u 

and pi+1 have the same (r,32r)-color. So they also have the same (r,32’-i-1)-color, 

say r. 

If letting qi+i be u does not lead to a violation of the isomorphism invariant when 

i + 1 plays the role of i, just do that. Otherwise there is a j<i such that either 

d3,-‘-1(~,qj) # ds,-,-1(pi+i,pj), or d3r-<-l(u,qj) = dsr-<-1(pi+i,pj) < 3’-i-1 and 

the colored path u -+ qj is not isomorphic to the colored path pi+1 -+ pj under the 

isomorphism mapping u to pi+1 and qj to pi, when the vertices are colored with 

their (r,32r-i-‘)- 1 I co or. n each case we show how to find a vertex maintaining the 

invariant. 

CUSS 1: d3r-,-l(U,qj) # d3~-~-l(pi+i,pj) and pi+1 @ UeGi Ball(pe,3’-‘-‘). Since 

pi+1 # lJdGi Ball(pc, 3+-l ), it follows that d3’-g-1 (pi+i, pi) = 3’-i-1. Since also 

ds’.-z-l(~,qj) # d3’-‘-1(pi+i, pj), it follows that u E Ball(qj,3’-‘-‘). We need a vertex 

of color r not in lJeGi Ball(qc,3’-‘-I). Such a vertex exists (by part 1 of Fact 3), 

if the multiplicity of r is at least i . f 3r-‘-‘. We will show that the multiplicity of 
z is at least f3’+‘-3’-“~-3’-‘-’ pi . f3~‘-‘-I, so the multiplicity invariant will also be 

maintained. We show this high multiplicity by analyzing the two possible cases: either 

pj’qj or Pjfqje If pj = qj, then there is an edge on the path u -vv, qj in Al that is 

not in Ao. By assumption, the multiplicity of the (r,32r)-color of the missing edge is 

at least f32r. Since u is within a distance 3’-i-1 of this edge, part 2 of Fact 3 implies 

that the multiplicity of r is at least f32r-3’-‘-‘, which is at least f3r’+‘-3’-‘-‘, which in 
turn is at least f3’+‘-3’-“~-3”-‘-‘, as desired. Now assume that pj # qj. The existing 

multiplicity invariant implies that the multiplicity of the (r, 32r-i)-color of pj and qj is 

at least f3r+’ -3r-3’-‘-‘~~-3’-‘. Since u is within distance 3’-i-1 of qj, it follows from 
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part 2 of Fact 3 that the multiplicity of the (I; 32r-i - 3’-‘-‘)-color of 24 is at least 

f 
3’+‘-3’-3’-‘-..._3’-‘-3’-‘-‘, as desired. 

Case 2: dsr-z-l(U,qj) # dsr-,-l(Pi+r,pj) and pi+1 E UdGiBall(p~,3’-‘-‘). Then by 

using Lemma 4.2 we can find a point qi+r in l_leGi Ball(qd, 3’-i-1 ) while maintaining 

the isomorphism invariant. It remains to be shown that the multiplicity invariant is 

also maintained. Once again, there are two subcases: either pj = qj or pj # qj. The 

analysis is similar to that in Case 1. 

Case 3: d3r-,-l(U,qj) = d3r-‘-I(pi+l,pj) < 3’-i-1 and the colored path u -+ qj is 

not isomorphic to the colored path pi+1 -+ pj under the isomorphism mapping u to 

pi+1 and qj to pj, when the vertices are colored with their (~,3~‘-‘-‘)-color. Then we 

can use Lemma 4.2 to find a qi+r such that the isomotphism invariant is maintained. 

We only have to argue about the multiplicity invariant being maintained, since the pro- 

cedure yields a qi+t different from pi+r. Again we have to consider the cases pj = qj 

or pj # qj, and argue as in Case 1. This concludes the proof of Theorem 4.1. 

5. Monadic NP and Ajtai-Fagin games 

First-order logic allows for quantification only over members of the universe, and not 

over sets of members of the universe, or more generally, over relations; for details, see 

Enderton [8] or Shoenfield [20]. When we pass from first-order logic to second-order 

logic, we allow quantification over relations. In particular, a Ci sentence is a sentence 

of the form %Ar...&&$, where I+$ is first-order and where the Ai’s are relation symbols. 

We now give three examples of ,Xt sentences. In each of these examples, E represents 

the edge relation of the graph. 

Example 5.1. We first construct a C! sentence that says that a graph has a Hamiltonian 

path (that is, the graph has a path that passes through all of the points). Let < be 

a new binary relation symbol, and let $1 say “ < is a linear order”. Thus, $1 is a 

conjunction of the following two sentences, the first of which says that < is transitive, 

and the second of which says that < satisfies trichotomy. In the second sentence, for 

convenience, we use @ to represent “exclusive or”. 

VxVyVz((x < y) A (y < z) =+ (x < z)). 

VxV’y((x < Y) @ (x = Y) @ (Y < x)X 

Let $2 say “If y is the immediate successor 

y”. Thus, $2 is 

VXVY(((X < Y) A Vzz-(@ < z) A (z < Y))) 

of x, then there is an edge from x to 

* Exy). 

The Xl sentence 3 < ($1 A +2) then says “The graph has a Hamiltonian path”. 

Example 5.2. We now construct a Xt sentence that says that a graph is 3-colorable. 

In this sentence, the three colors are represented by the unary relation symbols Al, AZ, 
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and As. Let tit say “Each point has exactly one color”. Thus, 11/ is 

Vx((4t.X A 742X A 743x) v (741x A AZX A 743x) v (74,x A 742x A Asx)). 

Let $2 say “No two vertices with the same color are connected by an edge”. Thus, 

*2 is 

‘dxvy ((Alx A Aly + +xy) A @2x A&y + %xy) A @3x A x43y + +xy)). 

The Xt sentence Ebi1SI23A3($~ A $2) then says “The graph is 3-colorable”. 

Example 5.3. Our final example, which is very relevant for this paper, deals with 
the class of graphs where there is no path from s to t. Let $1 say “The set A con- 
tains S, and its complement contains t”, that is, As A -At. Let 142 say “There is no 

edge from A to its complement”, that is, VxVy((Ax A dy) =s %xy). It is clear 
that the .Xt sentence %($I A II/ 2) characterizes those graphs with no path from s 
to t. 

A Cl sentence 3At...ZL4&, where I,$ is first-order, is said to be monadic if each 
of the Ai’s is unary, that is, the existential second-order quantifiers quantify only 
over sets. A class Y of graphs is said to be (monadic) Xi if it is the class of 
all finite graphs that obey some fixed (monadic) Ci sentence. One reason that Xi 
classes are of great interest is Fagin’s result [9] that the collection of Xi classes 
coincides with the complexity class NP. For this reason, we follow [12] and refer 
to the collection of monadic Xi classes as monadic NP. The Et sentences con- 
structed in Examples 5.2 and 5.3 are monadic, and so 3-colorability and nonreach- 
ability are in monadic NP. Note that 3-colorability is an NP-complete property [15]. 
Thus, monadic NP includes NP-complete properties. The YZt sentence constructed in 
Example 5.1 is not monadic (since < is a binary relation symbol). Indeed, Turan 
[21] has shown that Hamiltonicity is not in monadic NP; in fact, he showed the 
stronger result that Hamiltonicity cannot be defined by a monadic second-order sen- 
tence (where we allow arbitrary quantification, both universal and existential, over 
sets). 

We now discuss a game that corresponds to monadic NP. This game, which is 
called the Ajtai-Fagin (c,r)-game, involves c colors and r rounds. It was introduced 
in [l] to prove that directed reachability is not in monadic NP. Let Y be a class 
of graphs. For example, Y could be the class of graphs that are (s,t)-connected. 
Let D be a set of c distinct colors. For simplicity, we can assume throughout this 
paper that c = 2k for some k, so that coloring a point x corresponds to deciding 
which of k unary relations x is a member of. The duplicator selects a member Gs 
of Y. The spoiler then colors each of the points of Go, using the colors in D, to 
obtain the colored graph Aa. The duplicator then selects a member Gr of 9, the 
complement of Y. Then the duplicator colors each of the points of Gt, using the 
colors in D, to obtain the colored graph Al. Note that there is an asymmetry in the 
two graphs in the rules of the game, in that the spoiler must color the points of 
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Go, not Gi. The game then concludes with an r-game. The duplicator now wins if 

he wins the final r-game. Ajtai and Fagin prove the following result, which is not 

hard. 

Theorem 5.4. Y is in monadic NP ifs there are c,r such that the spoiler has a winning 

strategy in the Ajtai-Fagin (c,r)-game over 9’. 

6. Connectivity 

In this section, we show how Theorem 4.1 can be used to prove that connectivity 

is not in monadic NP. This was first proved by Fagin [lo], and then given a much 

simpler proof by Fagin et al. [12]. 

Theorem 6.1. Connectivity is not in monadic NP. 

Proof. We follow the outline of Fagin et al.‘s proof, but we use Theorem 4.1 instead 

of Hanf’s condition. 

Let c (the number of colors) and r (the number of rounds) be given. Let Y be the 

class of connected graphs. By Theorem 5.4, we need only show that the duplicator has a 

winning strategy in the Ajtai-Fagin (c,r)-game over 9. As his first move in the Ajtai- 

Fagin (c,r)-game over 9, the duplicator selects the graph GO to be a directed cycle 

of length n, for a sufficiently large n (we shall discuss how large later). The spoiler 

then colors GO with the c colors, to obtain the colored graph Ao. Let aa, ~11,. . . , ct,_ 1 

denote the points in order around the cycle, so that there is an edge (cli,cli+i) for 

0 < i < n (we think of the subscripts as being reduced modulo n to belong to the 

interval [O,n - 11). Let f = 2 (the degree of each point on a cycle), and let k be 

as in Theorem 4.1. Since the number of (r, k)-colors is independent of the number n 
of points, it is easy to see that by picking n sufficiently large, there is a point clp of 

A0 such that the multiplicity of the (r, k)-color z of the edge (u~,u.~+~) is at least 

fkY and there is a point clq of A0 that is of distance at least k from up such that 

the edge (aq,clq+i) has this same (r, k)-color z. The duplicator then selects Gi to 

be the graph obtained from GO by deleting the edges (CC,, ap+i) and (cqr,aq+i), and 

adding the edges (ap,a4+i) and (clq,clp+i). It is easy to see that Gi is the disjoint 

union of two cycles, and in particular, is not connected. The duplicator then colors 

Gi, vertex by vertex, just as Go was colored, to obtain the colored graph Al. It is 

easy to see that each vertex v has the same (r, k)-color in A0 as in Al, since the 

colored Ball(v, k) in A0 and Al are isomorphic. The edges that are present in & but 

not Al are (ap,ap+i ) and (qr,aq+i), which each have (r, k)-color r. The edges that 

are present in Al but not A0 are (ap,clq+i) and (clq,ccp+i), which it is easy to see each 

have (r, k)-color z. It then follows immediately from Theorem 4.1 and our choice of 

k that A0 N,. Al. Thus, the duplicator has a winning strategy in the remaining r-game. 

So the duplicator has a winning strategy in the Ajtai-Fagin (c,r)-game over Y, as 

desired. 0 



S. Arora, R FaginITheoretical Computer Science I74 (1997) 97-121 113 

7. Directed reachability 

Our main application of Theorem 4.1 is to give a simpler proof of Ajtai and Fagin’s 
result that directed reachability is not in monadic NP. We begin with a sketch of their 
proof. 

7.1. A sketch of Ajtai and Fagin’s proof 

Ajtai and Fagin’s proof makes use of the characterization of monadic NP from 
Theorem 5.4. Let 9’ be the class of (s, t)-connected graphs. Let vi,. . . , u, be IZ points, 
which are used as the set of vertices of the graph GO. The vertex vi is labeled S, and 
the vertex v, is labeled t. Then GO, the member of 9’ selected by the duplicator in 
the (c,r)-game over 9, has “forward edges” (ui,ui+i) for 1 < i < n; these form a path 
from s to t. In addition, GO has certain “backedges” (Vi, uj) where j < i. The choice 
of these backedges are made by probabilistic means; it turns out that for the proof to 
work, there cannot be too few or too many backedges. We refer to such a graph GO 
as an (s, t)-path with backedges. If e is one of the forward edges of GO, then denote 
by GO - e the graph that results by deleting the edge e. It is clear that (a) there is a 
path from s to t in GO, but (b) for each forward edge e, there is no path from s to t 

in Go - e. Thus, GO E Y, but GO - e E 7 for each forward edge e. They now show 
that for a certain choice of GO and for each coloring of GO by the spoiler, there is a 
forward edge e such that the duplicator can select Gi E 7 to be GO - e, color Gi 
with exactly the same coloring, vertex by vertex, as GO is colored, and then have a 
winning strategy in the remaining r-game. By Theorem 5.4, this is sufficient to show 
that directed reachability is not in monadic NP. 

The graph GO selected by the duplicator is guaranteed to exist by the next theorem, 
which the reader should be able to prove using standard arguments from the theory of 
random graphs. 

Theorem 7.1. Assume that c, d, q, and m are positive integers, and E > 0. If n is 
&liciently large, then there is a graph GO with n vertices that is an (s, t)-path with 

backedges such that 
1. for every vertex v of GO, the number of vertices whose distance in GO from v is 

at most m is less than n”; 
2. the number of vertices that are on some cycle of size less than m in GO is less 

than n”; and 
3. however the spoiler colors GO with the c colors, the probability is at least 1 - E 

(where the probability is taken over the choices of the deleted forward edge e) 
that each vertex has the same (d,q)-color in Go as in Go - e. 

In part (3) of Theorem 7.1, the probability is given by taking all possible choices 
of the forward edge to be equally likely. 

Of course, Ajtai and Fagin use their notion of (d,q)-color, which implies the result 
for our notion. Also, instead of nE in clauses (1) and (2), they have nl/ioo and n3/4, 
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respectively. This was just for convenience, and it is easy to see that their proof can 

give the result involving n”. 

Theorem 7.1 tells us that given the parameters mentioned in the first sentence of 

the theorem, Go can be selected so that (1) every neighborhood of radius m is small, 

(2) there are few points on short cycles (cycles of size less than m), and (3) after the 

spoiler has colored Go, then for almost all choices of the forward edge e, each vertex 

has the same (d,q)-color in Go as in Go - e. Theorem 7.1 is proven by selecting each 

backedge to appear with a certain probability, so that there are not too many and not 

too few backedges. The proof then proceeds by probabilistic arguments, which are not 

very difficult. The idea behind Theorem 7.1 is fairly intuitive. Since there are not too 

many backedges, it follows that neighborhoods are small, and the number of points 

on short cycles is small. This gives us (1) and (2) above. Certain forward edges are 

“special”, in that, for example, they are near some point whose (d,q)-color is unusual, 

or they are near some point on a short cycle. Since neighborhoods are small, and the 

number of points on short cycles is small, it follows that nearly all forward edges are 

nonspecial. Then (3) above follows from the fact that there are enough backedges so 

that the absence of a nonspecial forward edge e is compensated for by the presence of 

many backedges. For example, if e = (x, JJ), then there are enough backedges from x 

to vertices with the same (d, q - 1 )-color as y that the edge e can be deleted without 

affecting the (d,q)-color of x. Here we take advantage of the fact that the (d,q)-color 

“counts only as high as d”. 

We now describe how Ajtai and Fagin use Theorem 7.1 to prove that directed 

reachability is not in monadic NP. Let c (the number of colors) and Y (the number of 

rounds) be given. They want to show that the duplicator has a winning strategy in the 

Ajtai-Fagin (c,r)-game over 9, the class of directed graphs that are (s,t)-connected. 

They select d, q, m, and n to be sufficiently large with respect to c and r, and take 

E > 0 sufficiently small. As his first move in the Ajtai-Fagin (c,r)-game over Y, 

the duplicator selects the graph Go guaranteed by Theorem 7.1, and the spoiler then 

colors Go with the c colors. Denote the resulting colored graph by Ao. Let e be one of 

the forward edges guaranteed by part (3) of Theorem 7.1 so that each vertex has the 

same (d,q)-color in Go as in Go - e. The duplicator now selects Go - e as a member 

of 7, and colors Go - e, vertex by vertex, with the same coloring as Go. Denote 

the resulting colored graph by Al. Ajtai and Fagin then give a complicated proof 

using elaborate combinatorial constructs to show that under a suitable choice of the 

parameters d, q, m, and E, the duplicator has a winning strategy in the r-game played 

on A0 and Al. It then follows from Theorem 5.4 that directed reachability is not in 

monadic NP. 

7.2. Our simplified proof 

Our proof that directed reachability is not in monadic NP proceeds as follows. We 

make use of a slightly modified version of Theorem 7.1 (namely, Theorem 7.2 below), 

which is more useful for our purposes. The beginning of our proof is then similar 
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to that of Ajtai and Fagin. However, we do not conclude the proof with their very 

complicated proof that the duplicator has a winning strategy on the r-game played over 

A0 and Al. Instead, we conclude the proof by using Theorem 4.1. The net result is 

an understandable and much simpler proof that directed reachability is not in monadic 

NP. 

We now give the slight modification of Theorem 7.1 that we use in our proof. The 

graph Go guaranteed from Theorem 7.1 may have short cycles (cycles of size less 

than m), but there are few points on short cycles. It is convenient for us to completely 

eliminate the short cycles. Given GO as in Theorem 7.1, define GA by deleting some 

backedge on each short cycle. We thereby obtain the following theorem (where GO in 

the statement of the theorem below is Gh). 

Theorem 7.2. Assume that c, d, q, and m are positive integers , and E > 0. If n is 

su$ficiently large, then there is a graph Go with n vertices that is an (s, t)-path with 
backedges such that 
1. for every vertex v of GO, the number of vertices whose distance in GO from v is 

at most m is less than n”; 
2. there is no cycle of length less than m in GO; and 
3. however the spoiler colors GO with the c colors, the probability is at least 1 - E 

(where the probability is taken over the choices of the deleted forward edge e) 

that each vertex has the same (d,q)-color in Go as in Go - e. 

Proof. By increasing m if necessary, we can assume without loss of generality that 

m 2q + 1. We can also assume without loss of generality that E < i, Take Go as 

in Theorem 7.1, and obtain GI, by deleting some backedge on each short cycle (cy- 

cle of length less than m). Let E’ = 2s. We shall let GA play the role of Go in 

the statement of the theorem we are now proving, and E’ play the role of E. As we 

mentioned earlier, no point whose distance from a vertex is more than q affects the 

(d,q)-color of the vertex. It follows easily that if neither endpoint of a forward edge e 

is within distance q of an endpoint of a deleted backedge, then the (d,q)-color of 

every point in GA is the same as the (d, q)-color of the corresponding point in GA - e. 

So the theorem is proven if we show that the probability that some endpoint of a 

randomly selected forward edge e is within distance q of an endpoint of a deleted 

backedge is less than E, when n is sufficiently large. Now the endpoints of deleted 

backedges each lie on short cycles. But the number of vertices that are within dis- 

tance m 2q + 1 of the short cycles is less than (n’)(n’) = n2’, where the first factor 

of n” is an upper bound on the number of vertices w on short cycles, and the sec- 

ond factor of n” is an upper bound on the number of vertices within distance m of 

such a vertex w. The number of forward edges in Gh is n - 1, since the number 

of vertices is n. So the probability that some endpoint of a randomly selected for- 

ward edge e is within distance q of an endpoint of a deleted backedge is at most 

n2’/(n - l), which (since E < $) is less than E if n is sufficiently large. This was to be 

shown. 0 
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We can now give our simpler proof of the following theorem of Ajtai and Fagin 

VI. 

Theorem 7.3. Directed reachability is not in monadic NP. 

Proof. Let c (the number of colors) and Y (the number of rounds) be given. Let Y 

be the class of directed graphs that are (s,t)-connected. By Theorem 5.4, we need 

only show that the duplicator has a winning strategy in the Ajtai-Fagin (c,r)-game 

over Y. Let k be as in Theorem 4.1, and let E be l/(21?). Define f, d, q and m to 

be Ln’J, 7, k, and k, respectively. Let n be sufficiently large (we shall discuss how 

large later). As his first move in the Ajtai-Fagin (c,r)-game over 9, the duplicator 

selects the graph Go guaranteed by Theorem 7.2, and the spoiler then colors Go with 

the c colors. Denote the resulting colored graph by Ao. Let C be the total number of 

possible (d,q)-colors. Since C depends only on d and q, and since d and q depend 

only on r (since k depends only on r), it follows that C depends only on r. Let us 

call a forward edge e of A0 good if each vertex in A0 has the same (d,q)-color in A0 

as in A0 - e. Since there are n - 1 forward edges e, it follows from Theorem 7.2 that 

at least (1 - .s)(n - 1) edges e are good. Since there are only C possible (d, q)-colors, 

there is some set S of at least (1 - .s)(n - 1)/C good edges that all have the same 

color. This number (1 - s)(n - 1 )/C is greater than n1/2 + 13 f k + 1 if n is sufficiently 

large (the last inequality holds since f = [n&J <n ‘/cZk)). Select e to be a member of 

S. The duplicator now selects Go - e as a member of 7, and colors GO - e, vertex 

by vertex, with the same coloring as GO. Denote the resulting colored graph A0 - e 

by AI. The conditions of Theorem 4.1 are now satisfied, as we now show. The first 

three conditions of Theorem 4.1 follow immediately from the corresponding conditions 

of Theorem 7.2, by our choice of parameters. The fourth condition of Theorem 4.1 

follows from our choice of e, and the fact that e is the only edge that is present in one 

graph and not in the other. Therefore, it follows from Theorem 4.1 and our choice of 

k that A0 wr Al. Thus, the duplicator has a winning strategy in the remaining r-game. 

So the duplicator has a winning strategy in the Ajtai-Fagin (c,r)-game over 9, as 

desired. Cl 

8. Allowing built-in relations 

Ajtai and Fagin [l] proved that directed reachability is not in monadic NP, even 

in the presence of built-in relations from a large class, which includes the successor 

relation. Our techniques allow us to extend their results to a larger class of built-in 

relations. The significance of allowing built-in relations is discussed in the introduction. 

We now explain the definition. 

For the purpose of considering built-in relations, it is convenient to restrict our at- 

tention to universes that are an initial prefix of the set of natural numbers. Thus, if 

the cardinal@ of the universe is n, then we assume that the universe is (0,. . . , n - 1). 
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A particular collection of built-in relations is specified by an auxiliary language 2’ 
of relation symbols, along with, for each positive integer n, an interpretation of 9’ 
on the universe (0,. . . , n - 1). Intuitively, each universe has associated with it a set 
of auxiliary relations. We denote the corresponding Y’-structure by r(n). Intuitively, 
T(n) is the structure composed of the built-in relations. 

We now explain Ajtai and Fagin’s result, which says that directed connectivity is not 
in monadic NP, even in the presence of certain families of built-in relations. Intuitively, 
they allow binary built-in relations with no short cycles and where every vertex has 
small degree. 

Theorem 8.1 (Ajtai and Fagin [l]). Assume that the built-in relations are all binary, 
and that r(n) + 00 and o(n) -+ 0 as n -+ 00. Assume also that T(n) contains no 

cycle of length less than t(n), and the degree of each point in T(n) is at most na(“). 
Then directed reachability is not in monadic NP, even in the presence of the built-in 
relations. 

What does this result say? Let G be a graph (which we recall is defined to be a 
structure over the language S? consisting of a single binary relation symbol and two 
constant symbols, s and t), with universe (0,. . . ,n - 1). By the expansion of G, we 
mean the structure G over the expanded language dip U Z’, where the interpretation 
in G of 9 is as in G, and the interpretation in G of 9’ is as in r(n). Theorem 8.1 
says that as long as the built-in relations are restricted as described above, then there 
is no monadic Et sentence cp over the expanded language such that a graph G is 
(s, t)-connected iff 6 satisfies cp. 

We strengthen Theorem 8.1 by removing the restriction that the built-in relations 
be binary. Furthermore, we replace the assumption that r(n) contains no short cycle 
(cycle of length less than r(n)) by an assumption that not very many points (at most 
nacn) points) lie on short cycles. 

Theorem 8.2. Assume that t(n) -P 00 and a(n) + 0 as n -+ 00. Assume also 
that the number of points in r(n) that lie on cycles of length less than r(n) is 
at most n”(“), and the degree of each point in T(n) is at most ncr(“). Then di- 

rected reachability is not in monadic NP, even in the presence of the built-in 

relations. 

We now explain how to prove Theorem 8.2. Ajtai and Fagin give a version of 
Theorem 7.1 that applies to the case of built-in relations (under their assumptions on 
built-in relations). It is fairly straightforward to modify their proof to obtain the same 
theorem (Theorem 8.3 below), under our assumptions on built-in relations. When we 
talk about the (d,q)-color of a point in co, we take into consideration not only Go, 
but also the built-in relations. By 6 - e, we mean G, where G is GO - e. Thus, G - e 
is the result of deleting the edge e from the graph, but leaving the built-in relations 
the same. 



118 S. Arora, R. FaginITheoretical Computer Science 174 (1997) 97-121 

Theorem 8.3. Assume that c, d, q, and m are positive integers, and E > 0. If n is 
su$iciently large, then there is a graph Go with universe (0,. . . ,n - 1) that is an 
(s, t)-path with backedgeszuch that 

1. for every vertex v of Go, the number of vertices whose distance in G from v is 
at most m is less than nE; 

2. the number of vertices that are on some cycle of size less than m in g is less 
than n”; and 

3. however the spoiler colors ?$ with the c colors, the probability is at least I - E 

(where the probability is taken over the choi%s of the-deleted forward edge e) 

that each vertex has the same (d,q)-color in Go as in Go - e. 

Just as in the case we considered earlier where there are no built-in relations, we 

prove Theorem 8.2 by giving a sufficient condition for the duplicator to have a winning 

strategy. Since we are now allowing small cycles, we must weaken the assumptions 

in Theorem 4.1. Let us define a point to be k-isolated if it is not within distance k 

of a cycle of length less than k. Intuitively, a point is k-isolated if it is not near any 

small cycle. A tuple in one of the relations in a structure is said to be k-isolated if 

each vertex in the tuple is k-isolated. 

Theorem 8.4. Let r, f be positive integers. There is a positive integer k that depends 
only on r such that A0 wT AI whenever A0 and AI are structures of the same similarity 
type that have the same set of vertices and that satisfy the following conditions: 
1. the degree of every vertex in A0 or Al is at most f; 
2. each vertex has the same (r,k)-color in A0 as in A,; and 

3. tf e is a tupte that is present in some relation in one structure but not in the 
corresponding relation in the other structure, then e is k-isolated, and there are 

at least fk tuples in both of these relations that are k-isolated and have the same 
(r,k)-color as e. 

Proof. The proof is similar to that of Theorem 4.1, and the value of k is again 32’. 

We continue to assume for simplicity that A0 and Al are colored graphs, rather than 

structures of arbitrary similarity type. 

For an integer d, let us say that a vertex i is e-safe if in both graphs, all the tuples 

within a distance 8 of this vertex are also present in the other graph. We observe that 

if the (r,L)-color of a vertex is different in the two graphs, then it is not e-safe. This in 

turn implies that there are “many” vertices in both graphs that have these two colors. 

As before, the duplicator maintains an isomorphism invariant and a multiplicity in- 

variant. The isomorphism invariant is the same as in the proof of Theorem 4.1. The 

multiplicity invariant, which we call the strong multiplicity invariant, is given below. 

The duplicator’s strategy is to keep picking the same vertex in A0 (resp., Al) as the 

spoiler does in Al (resp., Ao) until the isomorphism invariant is threatened. Whenever 

the isomorphism invariant is threatened, the strong multiplicity invariant comes to the 

rescue, just as in the proof of Theorem 4.1. 
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a Strong multiplicity invariant: If j di is SUCK that pj # qj, then both pj and qj are 

ki-isolated, and there are at least fk vertices that are ki-isolated in both structures 

and that have the same (r,32r-i )-color as pj and qj, where ko = 3’+‘, and ki = 

ki-1 - 3’-‘. (It is straightforward to verify that ki > 3’ for i <r.) 

Assuming that the invariants have been maintained for i < r rounds, we show 

how to maintain them for the next round. As in the proof of Theorem 4.1, we need to 

analyze many cases, and we give details only in the cases that require a new argument. 

Suppose the spoiler picks a vertex pi+] in A0 in round i + 1 whose distance is more 

than 3’-i-1 from every previously chosen vertex in Ao. If picking the corresponding 

vertex in Al does not violate the isomorphism invariant, the duplicator picks it; this 

clearly maintains the strong multiplicity invariant. Assume therefore that the isomor- 

phism invariant is violated. Since by assumption each vertex has the same (r, k)-color 

in both graphs, it follows that the corresponding vertex is close to (that is, within dis- 

tance 3’-i-1 of) some other vertex qj already picked. We now show how to find qi+i. 

There are two cases, depending on whether or not pj = qj. If pj = qj, then since pi+i 

is within distance 3+-’ of pj in Al but not in Ao, it follows that pi+1 is not 3r-i-1- 

safe. Let e be the edge that makes pi+1 unsafe. According to the third hypothesis of 

the theorem, e is k-isolated, so pi+1 is (k- 3’-‘-‘)-isolated, and hence ki-isolated. Also 

according to the third hypothesis of the theorem, there are fk edges of the same (r, k) 

color as e in Al that are k-isolated. Arguing as in part 2 of Fact 3 in the proof of The- 

orem 4.1, we see that since vertex pi+1 has distance at most 3+-l from e, there are at 

least f&/f 3’-‘-’ 2 f 32'/2 > f k ‘+I vertices in A0 with the same (r, k - 3’-‘-‘) color (and 

hence the same (r,32r-i-1 )-color) as pi+1 that are (k - 3’-‘-‘)-isolated (and hence 

ki+i-isolated). Since 1 UjGi Ball(qj, 3’-i-1 )I <if 3r-‘-’ < f 32’/2, at least one of these 

vertices is not within a distance 3’-i-1 of any of q1 , . . . , qi. The duplicator picks that 

vertex as qi+i. It follows immediately from what we have shown that this maintains the 

strong multiplicity invariant (the isomorphism invariant is trivially maintained). Now 

assume pj # qj. By the strong multiplicity invariant, qj is kj-isolated, and so pi+1 is 

(kj - 3’-‘- ’ )-isolated, and hence ki+l- isolated. Also by the strong multiplicity invariant, 

there are at least fki vertices in Al with the same (r,32r-j)-color as qj that are all 

kj-isolated. Arguing as in part 2 of Fact 3 in the proof of Theorem 4.1, we see that 

there are at least fkj/f3”-‘-’ 2 fki+l vertices in Al with the same (r, 32r-j - 3r-i-1 )- 

color (and hence the same (r,32r-i-1 )-color) as pi+1 that are (kj - 3’-‘-‘)-isolated, 

and therefore ki+l -isolated. Since ( Ujsi Ball(qj, 3’-‘-‘)I <if 3’-‘-’ < r3’ < f k+l, one 

of these vertices is not within a distance 3r-i-1 of any of 41,. . .,qi. The duplicator 

picks that vertex as qi+i, thus maintaining the strong multiplicity invariant. 

Now suppose that the spoiler has picked a vertex in Ball(pj, 3’-‘-‘ ) for some j < i. 

Assume first that pj = qj. If pj,qj are kj-safe, then the duplicator trivially maintains 

the isomorphism invariant by picking for qi+i the vertex in Ai that corresponds to 

pi+l; this is because kj > 3’, SO Ball(pj, 3’) and Ball(qj, 3”) look exactly the same. 

On the other hand, if pj,qj are not kj-safe, then their neighborhoods are tree-like, and 

techniques similar to those in the proof of Theorem 4.1 let us maintain the invariants. 
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This leaves the case that pj # qi. By the strong multiplicity invariant, pj and qj are kj- 

isolated, and hence their immediate neighborhoods are tree-like. Then the duplicator can 
follow the strategy in the proof of Theorem 4.1 to pick a vertex qi+l in Ball(qj, 3’-i-1 ) 
of the same (d,3*‘-’ - 3’-‘-‘)-color (and hence the same (d,3*‘-‘-‘)-color) as pi+l. 
Now we show that this maintains the strong multiplicity invariant (the isomorphism 
invariant is clearly maintained). Note that (i) pi+1 and qi+l are (kj - 3’-‘-‘)-isolated 
(and hence ki+t-isolated), since pi and qj are kj-isolated, and (ii) by part 2 of Fact 

3, the multiplicity of pi+1 (resp., qi+t ) is at least l/f3r’-i-’ times the multiplicity 
of pi (resp., qj). Clearly, (i) and (ii) imply that the strong multiplicity invariant is 
maintained. 0 

We can think of Theorem 8.4 as a modification of Theorem 4.1 where we allow 
small cycles, as long as they are not near edges that appear in one structure but not 
the other. 

The proof of Theorem 8.2 now follows essentially the same outline as the proof 
of Theorem 7.3, except that we use Theorems 8.3 and 8.4 instead of Theorems 7.2 
and 4.1. Furthermore, instead of using Theorem 5.4, we use the natural variation of 
Theorem 5.4, that holds in the case of built-in relations. The only essential change in 
the proof is that we take advantage of the fact that almost all forward edges of Go 
in Theorem 8.3 are m-isolated (this follows immediately from parts (1) and (2) of 
Theorem 8.3). Thus in addition to all the other properties, 1 -E fraction of the forward 
edges are also m-isolated. We then modify the proof of Theorem 7.3 by taking the 
forward edge e to be m-isolated, in addition to the other properties demanded of it. 
The straightforward details are left to the reader. 

9. Summary 

We present a strong new condition that guarantees that the duplicator has a winning 
strategy in an Ehrenfeucht-FraissC game. This gives a greatly simplified proof that 
directed reachability is not in monadic NP. Although our condition was designed for 
the directed reachability question, its versatility is shown by the fact that it can also be 
used for proving that connectivity is not in monadic NP (in a proof very different from 
that used for directed reachability). Furthermore, a slight variation of our condition 
(where we allow small cycles, as long as they are not near any edges that appear 
in one structure but not the other) leads to new, strengthened results on descriptive 
complexity in the presence of built-in relations. 
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