
Theoretical Computer Science 239 (2000) 309–338
www.elsevier.com/locate/tcs

A formula for incorporating weights into scoring rules(

Ronald Fagin ∗;1, Edward L. Wimmers
IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120-6099, USA

Abstract

A “scoring rule” is an assignment of a value to every tuple (of varying sizes). This paper is
concerned with the issue of how to modify a scoring rule to apply to the case where weights
are assigned to the importance of each argument. We give an explicit formula for incorporating
weights that can be applied no matter what the underlying scoring rule is. The formula is
surprisingly simple, in that it involves far fewer terms than one might have guessed. It has three
further desirable properties. The �rst desirable property is that when all of the weights are equal,
then the result is obtained by simply using the underlying scoring rule. Intuitively, this says that
when all of the weights are equal, then this is the same as considering the unweighted case. The
second desirable property is that if a particular argument has zero weight, then that argument
can be dropped without a�ecting the value of the result. The third desirable property is that the
value of the result is a continuous function of the weights. We show that if these three desirable
properties hold, then under one additional assumption (a type of local linearity), our formula
gives the unique possible answer. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

A scoring rule is an assignment of a value to every tuple (of varying sizes). If the
entries of each tuple are numbers, then one example of a scoring rule is to take the
average of the entries. Information retrieval provides us with examples of scoring rules
where the entries of the tuples are not necessarily numbers. In information retrieval,
the entries in each tuple might be search terms, and the scoring rule might assign a
relevance score telling how well these search terms match a given document.
A common example of a scoring rule arises in a situation where an object is somehow

assigned several scores. These di�erent scores may be ratings on di�erent attributes, or

(An extended abstract of this paper appears in Proc. 1997 International Conference on Database Theory,
pp. 247–261, under the title “Incorporating User Preferences in Multimedia Queries”.

∗ Corresponding author.
E-mail addresses: fagin@almaden.ibm.com (R. Fagin), wimmers@almaden.ibm.com (E.L. Wimmers)
1 Part of this research was done while the author was a Research Fellow at the IBM Haifa Research

Laboratory.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(99)00224 -8

310 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

they may be ratings by di�erent scorers on the same attribute. There is often a scoring
rule for combining these scores into an overall score. An example where there are
ratings by di�erent scorers on the same attribute arises in competitive diving, where
there are multiple judges who each assign a single score to each dive. 2 An overall
score is then assigned to the dive, by eliminating the top and bottom scores, summing
the remaining scores, and multiplying by the “degree of di�culty” of the dive. 3

An important case where there are multiple attributes and a single score per attribute
takes place in fuzzy logic. In particular, a score must be assigned to a conjunction
A1 ∧A2 that is a function of the scores of A1 and A2. In his original paper [35], Zadeh
de�ned the score of A1 ∧ A2 to be the min of the scores of A1 and A2. Similarly,
he de�ned the score of the disjunction A1∨A2 to be the max of the scores of A1 and
A2. Zadeh’s choices were later justi�ed by a famous result of Bellman and Giertz [5],
which was extended and simpli�ed by Yager [32], Voxman and Goetschel [30], Dubois
and Prade [12], and Wimmers [31]. They showed that min and max are the unique
choices that should be assigned to the conjunction and disjunction, respectively, that
ful�ll certain natural conditions. There is a large literature on other possible choices
for scoring rules in fuzzy logic: see, for example, the discussion in Zimmermann’s
textbook [37].
Another important case where there are multiple attributes and a single score per

attribute arises in queries in multimedia database systems, which we now discuss. A
database system faces the task of responding to queries. In a traditional database system,
all queries deal with Boolean values, since a property is either true or false. As queries
over multimedia data become more prevalent, it is important to permit various shades
of gray. For example, in searching for a red picture, the user is unlikely to want a
Boolean value that says whether the picture is red or not. More likely, the user would
prefer a score giving the redness of a particular picture.
In general, a user might want to query not only over a single multimedia property,

but might wish to take into account several properties. For example, the user might
be interested in a movie clip that has a predominantly red scene with a loud noise
in the sound track. In this case, there is likely to be a score giving the redness of
the scene and a di�erent score giving the loudness of the sound. These two scores
must be combined into a single score. Such an approach is taken by the Garlic system,
which is being developed at the IBM Almaden Research Center, and which provides
access to a variety of data sources, including multimedia. See [6, 10] for a discussion
of the Garlic system, and [14] and [7] (along with Section 11 of this paper) for a
discussion of algorithms with a low middleware cost for computing distributed scores
(where di�erent “black boxes” produce the various scores that must be combined).

2 We shall consider various Olympic sports, such as diving, as examples in this paper.
3 The rules of scoring in (artistic) gymnastics are similar, in that the top and bottom scores are eliminated,

and the remaining scores are averaged. Interestingly, there are di�erences in the weighted case between
considering the sum of scores (as in diving) and the average of scores (as in gymnastics): see Section 6.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 311

However, there is an additional problem that must be addressed. It is unlikely that
the user equally values the attributes being queried. For example, the user might like
to inform the multimedia system to give extra weight to the picture and less weight to
the sound. In the user interface, sliders are often used to convey this information to the
system. Sliders are bars on the screen that indicate the importance of each attribute.
The user moves his mouse to slide an indicator along the bar in order to increase or
decrease the weighting of a given attribute.
The contribution of this paper is to give an explicit formula for incorporating weights

that can be applied no matter what the underlying scoring rule is. The formula we give
is surprisingly simple, in that it involves far fewer terms than we might have guessed.
It has three further desirable properties. The �rst desirable property is that when all of
the weights are equal, then the result obtained is simply the underlying scoring rule.
Intuitively, this says that when all of the weights are equal, then this is the same as
considering the unweighted case. In the case of a multimedia database system where
the weights are determined by sliders, another way to describe this desirable property
is to say that if the user does not see any sliders, then this is the same as if the
sliders exist and are all set to a default value where the weights are equal. The second
desirable property is that if a particular argument has zero weight, then that argument
can be dropped without a�ecting the value of the result. The third desirable property is
that the value of the result is a continuous function of the weights. It turns out that if
these desirable properties hold, then under one additional assumption (a type of local
linearity), our formula gives the unique possible answer. We note that our formula was
developed in the context of the Garlic system.
In Section 2 we discuss min with two arguments as an example. In Section 3 we

give some basic de�nitions. In Section 4 we discuss desiderata in the weighted case.
Section 5 contains our main result, which is an explicit formula for the scores in
the weighted case. In Section 6, we consider a number of examples of incorporating
weights into scoring rules. In particular, we discuss the e�ects of
• weighting the importance of the conjuncts in fuzzy logic (that is, considering “wei-
ghted min”);

• weighting search terms in information retrieval (this example is from [15]);
• weighting the cost of pages in page replacement algorithms, such as considering
“weighted LRU” (this example is joint with Alain Azagury);

• weighting the importance of judges in competitions such as diving; and
• weighting the importance of criteria in multicriterion decision-making (where it turns
out to be convenient to take the range of a scoring rule to be a vector space).

In Section 7, we take a geometric viewpoint of our formula. This viewpoint explains
why our formula has so few terms, and shows the uniqueness of our formula under
certain assumptions. In Section 8 we show that a certain strong form of linearity cannot
hold except in very special cases. In Section 9 we show that our system of incorporating
weights preserves many of the properties (such as monotonicity) of the scoring rules.
In Section 10 we discuss some other methods of incorporating weights that have been
considered in the literature, including the Choquet integral. In Section 11 we reconsider

312 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

the example of queries in a multimedia database system, and discuss how the results
from [14] on minimizing the middleware cost carry over in the weighted case. In
Section 12 we give our conclusions.

2. Min with two arguments

Assume that there are two scores, namely x1 and x2. In the case of queries in a
multimedia database system, these scores are numbers (typically between 0 and 1,
where 1 represents a perfect match) that represent how well an object rates on a
particular attribute. For example, x1 might be a score indicating how red a picture is,
and x2 might be a score indicating how loud a sound is. How should these scores be
combined to re
ect an “overall score” that re
ects both the redness and the loudness?
Should we take the average of the scores? Or what should we do? Not surprisingly,
there are many possible answers, depending on the issues at hand. Garlic allows an
arbitrary scoring rule to be “plugged in”.
Our paper deals with the following issue. Assume that some scoring rule, such as

the average or the min, is given for combining scores. How do we modify this scoring
rule if we decide now that we do not want to assign equal weight to the scores? In the
multimedia database example, assume that the user cares twice as much about the color
of the picture as he does about the loudness of the sound. How should we combine
the color score and the loudness score to obtain an overall score? If the scoring rule is
simply to take the average, then the answer is fairly clear. We would assign a weight
�1 = 2

3 to the color, and a weight �2 =
1
3 to the loudness. (The weights must sum to

one, and the weight for color, namely �1, should be twice the weight �2 for loudness.)
We then take the weighted sum �1x1 + �2x2. But what if we are using a di�erent
underlying scoring rule than the average for combining scores?
For the rest of this section, we assume that as in standard fuzzy logic, the scoring

rule is to take the min. Assume again that we wish to weight the scores, where �1 is
the weight for color, and �2 is the weight for loudness. Then we cannot simply take the
result to be �1x1 +�2x2. For example, if we are indi�erent to color versus loudness, so
that we weight them equally with �1 = �2 = 1

2 , then we would get the wrong answer by
using �1x1 + �2x2, since this does not give us the min of x1 and x2. (We are assuming
here that we use the underlying, or “unweighted”, scoring rule for combining scores
when the �i’s are equal. Later, we shall make such assumptions explicit.) What should
the answer be, as a function of x1; x2, and �1? (Here we do not need to include �2 as
a parameter, since �2 = 1− �1.)
Assume without loss of generality that x16x2. If �1 = 1

2 , then the answer should
be x1, since as we noted, when the weights are equal, we should use the unweighted
rule for combining, which in this case is the min. If �1 = 0, then the answer should
be x2. This is under the assumption that when an argument has 0 weight, then it can
be “dropped”; this is another assumption that will be made explicit later. Similarly, if
�1 = 1, so that �2 = 0, then the answer should be x1.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 313

What about values of �1 other than 0, 1, or 12? Since the value is x1 when �1 =
1
2 , it is

reasonable to argue that the value should be x1 whenever �1¿ 1
2 ; after all, if the value of

x2 becomes irrelevant (as long as it is bigger than x1) for �1 = 1
2 , then surely it should

be irrelevant for any larger value of �1, where we are weighting the �rst value (the
x1 value) even more highly. Another argument that the value should be x1 whenever
�1¿ 1

2 is that the value is x1 for both �1 =
1
2 and �1 = 1, and so it should be the same

for intermediate values. Later, we shall give a local linearity argument that says that
the value should be x1 whenever �1¿ 1

2 . Furthermore, this local linearity argument says
that the value when �1¡ 1

2 should be the linearly interpolated value between the value
x2 when �1 = 0, and the value x1 when �1 = 1

2 : this value is 2(x1 − x2)�1 + x2.
What would we do when there are three arguments x1; x2, and x3, and three weights

�1; �2, and �3? Here the answer is not at all clear a priori. Our results enable us to
answer this question. Our methods in this paper work for arbitrary scoring rules, not
just average and min.

3. De�nitions

We assume that we are given a �nite index set I. In the case where scores are
assigned to di�erent attributes, such as in the multimedia database example, we think
of I as the set of all attributes. In the multimedia database example, these attributes
would include color and loudness. In the case where scores are assigned by di�erent
scorers (or judges) on the same attribute, such as in scoring in competitive diving, we
think of I as the set of scorers. We typically use I to denote some non-empty subset
of I. Let D be the set of possible entries of the tuples in the domain of a scoring
rule. It is common in fuzzy logic to take D to be the closed interval [0; 1]. We shall
take a tuple X (over I) to be a function with domain I and range D. We shall usually
write xi for X (i). If I = {1; : : : ; m}, then we may write (x1; : : : ; xm) for X . If I ′ ⊆ I ,
then by X �I ′, we mean the tuple that is the restriction of X to the domain I ′.
A scoring rule is a function whose domain is the set of all tuples over nonempty

subsets of I. Henceforth we shall usually refer to a scoring rule as simply a rule, or an
unweighted rule (to contrast it with a “weighted rule”, which we shall de�ne shortly).
Let S be a set, that we shall take to be the range of the rule. It is common in

fuzzy logic to take S (like D) to be the closed interval [0; 1]. The only requirement
we impose on S is that it be a convex set, so that if �1; : : : ; �m are nonnegative real
numbers 4 that sum to 1, and s1; : : : ; sm are members of S, then

∑m
i=1 �isi is also a

member of S. Later, we shall consider certain situations where it is convenient to take
S to be a vector space. When D= S, as is common in fuzzy logic, the rule combines a
collection of scores to obtain an overall score. In this case, it would certainly be natural
to assume that f(xi)= xi. There are other situations where we do not have f(xi)= xi.
For example, in the case of information retrieval, where the entries of the tuples are

4 In some situations, we might want to restrict our attention to rational weights; in this case, we would
assume also that the �i’s are rational.

314 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

search terms and the range is a set of numerical scores, such an assumption would not
make sense. In any case, we do not assume that f(xi)= xi, even when D= S.
A weighting (over I) is a function � with domain a nonempty index set I ⊆I

and range the closed interval [0; 1], whose values �(i) sum to 1. Addition and scalar
multiplication are de�ned in the usual way: (� · �)(i)= � · �(i) for real numbers �,
and (�+�′)(i)=�(i)+�′(i). We shall write �i for �(i). If I = {1; : : : ; m}, then we
may write (�1; : : : ; �m) for �.
A weighted rule is a function whose domain is the set of all pairs (�;X), where

� is a weighting and X a tuple over the same nonempty subset of I. For simplicity
in notation, we shall usually write f�(X) for the result of evaluating the weighted
rule with argument (�;X). It is convenient then to consider f� as a function whose
domain is the set of all tuples X over I , where I is that subset of I such that � is
over I .
If � is over I , we de�ne the support of � to be the subset of I consisting of all

i∈ I such that �i¿0.

4. Desiderata

Assume that we are given an unweighted rule. Thus, we are given a rule for
assigning values to tuples. We wish to de�ne a weighted rule from the unweighted
rule. Thus, intuitively, we want to determine how to modify the rule when we weight
the importance of the arguments. In this section, we consider some desirable properties
for the relationship between the weighted and unweighted rule. Later (Theorem 5.1),
we shall show that under the additional natural assumption of a type of local linearity
(that we also de�ne in this section), there is a unique choice of the weighted rule that
satis�es these properties.
Our �rst desirable property says intuitively that when all of the weights are equal,

then the weighted rule gives the same answer as the unweighted rule. This corresponds
to the intuition that the unweighted rule tells how to assign values to tuples in the case
where no argument has higher weight than any other argument. Formally, denote the
evenly balanced weighting over I by EI ; thus, (EI)i=1=card(I) for each i∈ I , where
card(I) denotes the cardinality of I . We say that the weighted rule is based on the
unweighted rule f if whenever I is a nonempty subset of I, and X is a tuple over I ,
then fEI (X)=f(X). Thus, our �rst desirable property is:
• The weighted rule is based on the unweighted rule. This says that f(1=m;:::;1=m)(x1; : : : ;
xm)=f(x1; : : : ; xm).
Our second desirable property says intuitively that if a particular argument has zero

weight, then that argument can be dropped without a�ecting the value of the result.
Formally, a weighted rule is compatible if whenever � and X are over the same index
set I , and J is the support of �, then f�(X)=f��J (X �J). Thus, our second desirable
property is
• The weighted rule is compatible. This says that f(�1 ; :::; �m−1 ;0)(x1; : : : ; xm)=f(�1 ; :::; �m−1)

(x1; : : : ; xm−1).

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 315

Our third desirable property is that the value of the result is a continuous function
of the weights. That is, if � and X are over the same index set, and if X is held
�xed, then f�(X) is a continuous function of �. Thus, our third desirable property is:
• f(�1 ; :::; �m)(x1; : : : ; xm) is a continuous function of �1; : : : ; �m.
These three desirable properties are really essential — any method of going from an

unweighted to a weighted rule that does not satisfy these three properties is seriously

awed. The weighted case must bear some relation to the unweighted case, and our
notion of “based on” is the only natural choice. The notion of “compatibility” is also the
only natural choice for handling zero weights. And surely we would expect continuity,
since a small change in the weights should lead to at most a small change in the value
of the result.
These three properties are not su�cient to determine a unique weighted rule from

an unweighted rule; another property is needed. Perhaps the most natural additional
property would be linearity: this would say that

f�·�+(1−�)·�′(X)= � · f�(X) + (1− �) · f�′(X); (1)

whenever �∈ [0; 1] and �;�′; X are over the same index set. Unfortunately, as we
shall discuss in Section 8, linearity is incompatible with the other desirable properties,
except in the case where the unweighted rule is essentially simply the average.
Since we are not able to have (total) linearity, we shall settle for a weaker variation,

which we call “local linearity”. Local linearity turns out to imply continuity. Together
with the other desirable properties, local linearity does uniquely determine a weighted
rule. Furthermore, this new property leads to a simple formula for the weighted rule.
To de�ne this property, we need some more de�nitions.
Two weightings are called comonotonic if they agree on the order of importance

of the arguments. 5 Formally, assume that �;�′ are weightings over I . Then �;�′

are comonotonic if there do not exist i; j∈ I with �i¡�j and �′j¡�′i both holding. For
example, (:2; :7; :1) and (:3; :5; :2) are comonotonic because in both cases, the second
entry is biggest, the �rst entry is next-biggest, and the third entry is smallest. It is clear
that comonotonicity is re
exive and symmetric. Comonotonicity is not transitive, since
for example (0; 1) and (1; 0) are not comonotonic, while (0:5; 0:5) is comonotonic to
both (0; 1) and (1; 0).
We now de�ne local linearity, and argue that it is fairly natural. Intuitively, local

linearity says that the scoring rule acts like a balance. If two weightings are comono-
tonic, then local linearity demands that the weighting that is the midpoint of two
comonotonic weightings should produce a value that is the midpoint of the two values
produced by the given weightings. In fact, local linearity extends beyond the midpoint
to any weighting that is a convex combination of two comonotonic weightings: if a

5 In earlier versions of this paper, we referred to comonotonicity as order-equivalence. We changed the
name to coincide with Schmeidler’s [27] term he uses in the context of Choquet integrals (see Section 10.2).

316 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

weighting is a convex combination of two weightings that are comonotonic, then local
linearity demands that the associated value should be the same convex combination
of the values associated with the given weightings. Formally, we say that a weighted
rule is locally linear if Eq. (1) holds whenever (a) �∈ [0; 1], (b) �;�′; X are over the
same index set I , and (c) � and �′ are comonotonic.
The next proposition says that local linearity implies continuity, as a function of the

weights. (To de�ne continuity, we need to de�ne the distance between two weightings
� and �′. We simply take the distance to be the Euclidean distance.)

Proposition 4.1. Assume that the weighted rule is locally linear. Then f�(X) is a
continuous function of �; for each �xed X .

Proof. The proof is given in Section 7.

Since we allow the possibility that the unweighted rule not be a continuous function
of X , this can certainly happen also in the weighted case. As we shall see in Section 9,
under our method of obtaining the weighted rule from the unweighted rule, the weighted
rule is continuous as a function of X if this is true of the unweighted rule.
Our main theorem (Theorem 5.1) gives an explicit, simple formula for obtaining a

weighted rule from an unweighted rule. The weighted rule is based on the unweighted
rule, compatible, and locally linear. Furthermore, the theorem says that our formula
gives the unique such weighted rule.
A weighted rule is totally linear if Eq. (1) holds even when � and �′ are not

necessarily comonotonic. As we mentioned above, we shall see from Theorem 8.1 that
extending linearity to hold for all weightings and not merely the comonotonic ones
severely restricts the possible choices for the unweighted case. That is, total linearity
of the weighted rule can be obtained only for certain very restricted choices of the
unweighted rule, which essentially correspond to taking the average. Although we ar-
gued above that local linearity is a reasonable assumption, we might argue that total
linearity is perhaps too strong. When the order of importance of two components
changes, a dramatic shift might occur, and there is no reason to assume that the value
associated with the midpoint has any relation to the value associated with the endpoint
weightings. It might even occur that the midpoint of two weightings is not comono-
tonic to either weighting. For example, (0:3; 0:4; 0:3) is the midpoint of (0:1; 0:4; 0:5)
and (0:5; 0:4; 0:1) but is not comonotonic to either one.
It is helpful to have a notation for selecting the most important (�.e. the largest)

component of a weighting, down to the least important (i.e. the smallest) component of
a weighting. A bijection � that provides such a service is said to “order” the weighting.
If � orders a given weighting, then �(1) represents the most important component and
�(m) represents the least important component (where m is the number of components).
This is formalized in the next de�nition.
Assume that m= card(I). A bijection � from {1; : : : ; m} onto I is said to order a

weighting � over I if ��(1)¿��(2)¿ · · ·¿��(m). It is easy to see that every weighting
is ordered by some bijection �.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 317

5. Main theorem

Our original goal in doing the research for this paper was to obtain a procedure
that, given an unweighted rule, would give a corresponding weighted rule, where three
essential properties hold:
1. The weighted rule is based on the unweighted rule.
2. The weighted rule is compatible.
3. The value f�(X) of the result is a continuous function of �.
As we shall discuss, we obtain a procedure where not only do (1) and (2) above hold,
but where (3) is replaced by the stronger (3′) below ((3′) is stronger than (3) by
Proposition 4.1):
3:′ The weighted rule is locally linear.
Not only do we obtain a procedure, but we in fact obtain a closed-form formula for
the weighted rule, that we give in the following theorem. As we shall explain, this
formula is surprisingly simple, in that it involves far fewer terms than we might have
guessed. In fact, the simplicity of the formula is an argument in favor of local linearity.
Furthermore, the theorem says that this weighted rule is the unique one that satis�es
(1), (2), and (3′).

Theorem 5.1. For every unweighted rule f there exists a unique weighted rule that
is based on f; compatible; and locally linear. If I = {1; : : : ; m} ; and X and � are
over I with �1¿�2¿ · · ·¿�m; then

f�(X) = (�1 − �2) · f(x1) + 2 · (�2 − �3) · f(x1; x2) + 3 · (�3 − �4) · f(x1; x2; x3)
+ · · ·+ m · �m · f(x1; : : : ; xm): (2)

We note for later use that if we no longer assume that I = {1; : : : ; m} and that
�1¿�2¿ · · ·¿�m, but simply that m= card(I) and that � is ordered by �, then (2)
becomes

f�(X)=
(
m−1∑
i=1

i · (��(i) − ��(i+1)) · f(X �{�(1); : : : ; �(i)})
)
+ m · ��(m) · f(X): (3)

We shall often refer to the formula in (2) as “the weighting formula”. If we were to
adopt the natural convention that �m+1 =0, then the last term m · �m · f(x1; : : : ; xm) in
the weighting formula could be written as m · (�m− �m+1) ·f(x1; : : : ; xm), which makes
it have the same form as the other terms.
The proof of Theorem 5.1 is given at the end of this section.
The simplicity of the weighting formula is rather surprising, since it is not clear

a priori that f�(X) should depend only on f(x1); f(x1; x2); : : : ; f(x1; : : : ; xm), and not
on other values of f. For example, when m=3; f is min, and �1¿�2¿�3, then the
formula for f�(X) is a convex combination of the three terms x1;min(x1; x2), and
min(x1; x2; x3) only, and not of any of the terms x2; x3;min(x1; x3), or min(x2; x3). In
general, f�(X) depends on the values of f(X �Z) for only m of the 2m−1 possible

318 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

choices of Z . Thus, the formula is not only simple, but it is surprisingly simple. In
Section 7, we show how a geometric view of our formula explains why there are only
m terms.
As we shall show when we prove Theorem 5.1, the weighting formula is well

de�ned, even when some of the �i’s are equal. For example, if �2 = �3, then should
the second term of the weighting formula involve f(x1; x2) or f(x1; x3)? The point is
that it does not matter, since in either case the result is multiplied by (�2− �3), which
is 0.
Note that if f(X) is rational for each X , and if each �i is rational, then f�(X) is

also rational (cf. footnote 4 of Section 3).
The following corollary is useful.

Corollary 5.2. Let �i be the coe�cient of f(x1; : : : ; xi) in the weighting formula; for
16i6m; so that f�(X)=

∑m
i=1 �i · f(x1; : : : ; xi). Then �i¿0 for each i; and

∑m
i=1 �i

=1.

Proof. The fact that �i¿0 for each i follows immediately from the assumption in
Theorem 5.1 that �1¿�2¿ · · ·¿�m¿0. We now show that

∑m
i=1 �i=1. We have∑m

i=1 �i=
∑m−1

i=1 i · (�i − �i+1) + m · �m=
∑m

i=1 i · �i −
∑m−1

i=1 i · �i+1 =
∑m

i=1 i · �i −∑m
i=2(i − 1) · �i= �1 +

∑m
i=2 �i=

∑m
i=1 �i=1.

Note from Corollary 5.2 that f�(X) is a convex combination of members of the
range S (since f(X) is in S for each X). This is why we took the range S to be
convex: the weighted rule has the same range S as the unweighted rule.
We close this section with a proof of Theorem 5.1.

Proof of Theorem 5.1. We begin by showing that the weighting formula is well
de�ned, even when some of the �i’s are equal. Since we shall need to use di�er-
ent permutations of the index set I , we shall need to make use of (3). Thus, assume
that � is ordered by both � and �′; we must show that(

m−1∑
i=1

i · (��(i) − ��(i+1)) · f(X �{�(1); : : : ; �(i)})
)
+ m · ��(m) · f(X) (4)

equals(
m−1∑
i=1

i · (��′(i) − ��′(i+1)) · f(X �{�′(1); : : : ; �′(i)})
)
+ m · ��′(m) · f(X): (5)

Let J be the subset of {1; : : : ; m− 1} consisting of all i such that ��(i) is strictly
greater than ��(i+1) (possibly J is empty). De�ne J+ to be J ∪ {m}. Write the members
of J+ as i1; : : : ; is, where i1¡ · · ·¡is=m. Thus, there are exactly s distinct values of
the �i’s, namely ��(i1); : : : ; ��(is), with ��(i1)¿ · · ·¿��(is). Among the �i’s, there are
exactly i1 with the highest value, exactly i2− i1 with the next highest value, and so on.
Since the previous sentence is independent of the permutation (� or �′), it follows that

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 319

the values i1; : : : ; is are independent of the permutation, and so J+ is the same whether
it is de�ned using � (as we did) or using �′. Hence, J = J+ ∩ {1; : : : ; m− 1} is also
independent of the permutation. Therefore, J is equal to the subset of {1; : : : ; m− 1}
consisting of all i such that ��′(i) is strictly greater than ��′(i+1).
Now ��(1); ��(2); : : : ; ��(i1) are precisely those �i’s with the highest value; ��(i1+1); : : : ;

��(i2) are precisely those �i’s with the second highest value; and so on. Identically,
we have that ��′(1); ��′(2); : : : ; ��′(i1) are precisely those �i’s with the highest value;
��′(i1+1); : : : ; ��′(i2) are precisely those �i’s with the second highest value; and so on. So
{�(1); : : : ; �(ij)} and {�′(1); : : : ; �′(ij)} each contain exactly those �i’s that have one
of the j highest distinct values. Therefore,

{�(1); : : : ; �(i)}= {�′(1); : : : ; �′(i)} for every i in J . (6)

We now show that

��(i) = ��′(i) for every i. (7)

If 16i6i1, then ��(i) and ��′(i) are both equal to the highest distinct value of the �i’s,
and hence are equal. If i1 + 16i6i2, then ��(i) and ��′(i) are both equal to the second
highest distinct value of the �i’s, and hence are equal. Continuing this argument, we
see that ��(i) = ��′(i) for every i, as desired.
Since ��(i) = ��(i+1) for all i with 16i6m − 1 and i =∈ J , it follows that we can

change the indices of summation in (4) to i∈ J ; that is, (4) equals(∑
i∈J
i · (��(i) − ��(i+1)) · f(X �{�(1); : : : ; �(i)})

)
+ m · ��(m) · f(X): (8)

Identically, (5) equals(∑
i∈J
i · (��′(i) − ��′(i+1)) · f(X �{�′(1); : : : ; �′(i)})

)
+ m · ��′(m) · f(X): (9)

But it follows from (6) and (7) that (8) and (9) are equal. This concludes the proof
that f� is well de�ned.
If �=EI , then �1 = · · · = �m=1=m. Hence, f�(X)=

∑m−1
i=1 i ·(1=m−1=m)·f(x1; : : : ;

xi) + m · (1=m) · f(x1; : : : ; xm)=f(x1; : : : ; xm). Thus, the weighted rule is based on f.
The fact that the weighted rule is locally linear follows easily from the fact that

the weighting formula is explicitly a linear function of the �i’s (within each simplex
consisting of a set of �’s that are comonotonic).
We now show that the weighted rule is compatible. Assume as before that �1¿�2

¿ · · ·¿�m. Let k be maximal such that �k¿0. Thus, {1; : : : ; k} is the support of �.
We must show that f�(X) as given by (2) is equal to the result of replacing m by k
in the formula given in (2). But it is simple to verify that both are equal to the sum
of the �rst k summands in the weighting formula (2).
Finally, uniqueness is shown in Section 7.

320 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

6. Examples

To illustrate the simplicity and usefulness of the weighting formula, it is helpful
to see some examples. In particular, in this section we illustrate its wide range of
applicability by including examples from various domains.

Example 1. There is one unweighted scoring rule where we know what the corre-
sponding weighted scoring rule “should be”. Namely, if the unweighted scoring rule is
to take the average (x1 + · · ·+ xm)=m, then we expect the weighted scoring rule to be
the weighted average �1x1 + · · ·+ �mxm. This is fairly straightforward to verify; let us
do so for the case m=3. In this case, the weighting formula is

(�1 − �2)x1 + 2(�2 − �3)x1 + x22
+ 3�3

x1 + x2 + x3
3

= �1x1 + �2x2 + �3x3;

as desired.

Example 2. We now show that the weighting formula gives the “right” values, as dis-
cussed in Section 2, in the case of min with two arguments. This follows from the fact
that the weighted rule described in Section 2 satis�es the conditions of Theorem 5.1,
and so coincides with the weighting formula by uniqueness. Again, it is instructive
to give a direct derivation of this equality. Assume as in Section 2 that x16x2. If
�1¿1=2, then the weighting formula is

(�1 − �2)x1 + 2�2x1 = (�1 + �2)x1
= x1;

as in Section 2. If �161=2 (so that �2¿�1), then the weighting formula is

(�2 − �1)x2 + 2�1x1 = (1− 2�1)x2 + 2�1x1
= 2(x1 − x2)�1 + x2; (10)

as in Section 2. (The �rst equality in (10) holds since �1 + �2 = 1.)

Example 3. What does the weighting formula give us in the case of min with three
arguments? Assume �1¿�2¿�3. The formula is

(�1 − �2)x1 + 2(�2 − �3)min(x1; x2) + 3�3 min(x1; x2; x3):
Note how simple this formula is. There is probably no way we would have guessed
this formula a priori.

Example 4. We now consider the case of information retrieval, which we mentioned in
the introduction. Here the user issues a query against a given repository by presenting
a set of search terms to an information retrieval system, and the system assigns a
relevance score to each document, based on the search terms. The system then presents
the user with a list of documents, ranked by their relevance scores.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 321

To apply our methodology, let us hold �xed some document d, and let X be a tuple
whose entries consist of search terms (we are assuming in this example that the order
of the search terms does not a�ect the relevance score). We de�ne f(X) to be the
relevance score of document d using the search terms in X . Our methodology then gives
us a way to assign a relevance score when a weight is assigned to each search term.
We study this example in detail in [15].

Example 5. Our next example is concerned with obtaining versions of page replace-
ment algorithms, where the pages have possibly di�erent weights. 6 A computer system
typically has a storage hierarchy. When a page of data is needed, it is brought into the
top level of the storage hierarchy (we shall refer to this top level as the cache). Typi-
cally, to make room for this page, another page is removed from the cache according
to some page replacement algorithm. For example, the LRU (“least recently used”)
page replacement algorithm [21] removes the page that has been least recently used.
There are some situations where certain pages are more expensive to retrieve than

others. For example, if a page is retrieved from a remote site, we might consider the
time to retrieve the page to be its cost. It would be desirable to use a page replacement
algorithm that takes this cost into consideration. Thus, if there is a choice between
removing a more expensive page and a less expensive page from the cache, the page
replacement algorithm should somehow favor keeping the more expensive page in the
cache, and thereby tend to remove the less expensive page.
Assume that each page in the cache has a weight: pages with a higher cost should

have a bigger weight. For example, we could assign weights that are proportional to
the costs. Our methodology enables us to obtain a weighted version of page replace-
ment algorithms (such as “weighted LRU”). The details, which are somewhat messy,
are omitted. 7

Example 6. It is instructive to reconsider the case of the scoring rule used in judging
diving that we mentioned in the introduction, where the overall score is obtained by
eliminating the top and bottom scores, summing the remaining scores and multiplying
by the degree of di�culty of the dive. Let X be a tuple (of scores). De�ne g(X) to
be the result of summing all of the entries of X except the biggest and smallest. Thus,
if the index set I of X has at least two members, then

g(X)=
(∑
i∈I
xi

)
−max

i∈I
xi −min

i∈I
xi: (11)

If f is a tuple over the set I of all judges, then the unweighted rule is as follows:

f(X)=d · g(X); (12)

where d is the degree of di�culty of the dive.

6 This example is joint with Alain Azagury.
7 We note that there are several papers on weighted versions of page replacement algorithms

[9, 20, 25, 29, 33, 34].

322 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

Let us say that the set I of judges is of size seven (this is the standard number
of judges in international competition). In order to apply the weighting formula when
we assign weights to the scores of the seven judges, we need not only the de�nition
of f(X) when X is a tuple over the set I of all judges, as given by (12), but also
the de�nition of f(X) when X is over a proper subset of I. How should f(X) be
de�ned in this case? There are (at least) two possibilities.
Possibility 1. We strictly mimic (12). In particular, when the index set of X has

either one or two members (so that there are either one or two judges), then f(X) is
identically zero: this is because when we eliminate the top and bottom scores, then no
scores are left.
Possibility 2. What is probably more reasonable is to take

f(X)=d · g(X); (13)

when the index set I of X has at least three members, and otherwise to take

f(X)=d ·∑
i∈I
xi: (14)

Thus, in this case, if there are only one or two judges, then no scores are eliminated,
and so the overall score is simply the sum of the scores times the degree of di�culty
of the dive. 8

In retrospect, it is not surprising that we must consider the situation when there
are less than seven judges to determine what to do in the weighted case, since, for
example, if we assign weights of zero to, say, three judges, then by compatibility, we
are reduced to considering the scoring rule when there are four judges. However, it
is somewhat intriguing from an epistemological point of view that even if we know
that there are always exactly seven judges, we are forced to consider “possible worlds”
where there are fewer judges. Such reasoning, where we are forced to consider worlds
that are commonly known to be impossible, is called counterfactual [19].
Let us now look closer at the situation where we weight the importance of the various

judges’ scores: for example, some senior judge’s score might be more important than
the scores of any of the other judges. Assume for de�niteness that �1¿�2¿ · · ·¿�m, so
that in particular the weight �1 assigned to the score of judge 1 is strictly larger than any
of the other weights. What does the weighting formula then say in the weighted case?
Under possibility 2 above, we see that the score of judge 1 is then never completely
ignored, even if his score is the highest or the lowest. Instead, some multiple of judge
1’s score is always averaged in, because the multiplicative factor (�1 − �2) is strictly
positive. Under possibility 1 above, however, it is straightforward to verify that in the
weighted case, just as in the unweighted case, judge 1’s score is ignored if it is the
highest or the lowest.

8 Note that, as is traditional in judging diving, we do not normalize by dividing by the number of judges.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 323

Example 7. Let us now consider a simpli�cation of the scoring rule for diving, where
we simply take as the overall score the sum of the scores of the judges (thus, no
scores are eliminated, and the degree of di�culty is not considered). Similarly, we can
consider a simpli�cation of the scoring rule for gymnastics (cf. footnote 3 of Section 1)
where we simply take as the overall score the average of the scores of the judges (thus,
no scores are eliminated). At �rst glance, these two simpli�cations (taking the sum
versus taking the average) seem to be essentially identical. After all, the results (as to
who �nished �rst, who �nished second, and so on) are unchanged when we simply
multiply every score by the same positive constant (namely, the number of judges).
But interestingly enough, in the weighted case it makes a di�erence as to whether the
score is taken to be the sum or the average, as we now show.
Take the simple case where there are two contestants (A and B) and two judges (1

and 2). Assume that judge i gives A the score ai, and gives B the score bi, for i=1; 2.
In the unweighted case, contestant A wins if a1 + a2¿b1 + b2, ties if a1 + a2 = b1 + b2,
and loses if a1 + a2¡b1 + b2. This is true whether the score is taken to be the sum or
the average. So in the unweighted case, the winner is the same, whether the score is
taken to be the sum or the average.
Assume that the weight for judge i is �i, for i=1; 2 (so of course �1 + �2 = 1).

Now consider the weighted case where �1¿ 1
2 , so that the �rst judge has more weight

than the second judge. Assume that a1¿b1, so that the �rst judge gives a higher score
to contestant A than to contestant B. Assume also that a2¡b2, so that the second
judge gives a higher score to contestant B than to contestant A. When the scoring
rule is the sum, then by the weighting formula, the overall score for contestant A is
(�1 − �2)a1 + 2�2(a1 + a2), which equals a1 + 2�2a2 (since �1 + �2 = 1). Similarly, the
overall score for contestant B is b1 + 2�2b2. So contestant A wins precisely if

a1 + 2�2a2¿b1 + 2�2b2: (15)

On the other hand, when the scoring rule is the average, then contestant A wins pre-
cisely if

�1a1 + �2a2¿�1b1 + �2b2: (16)

It is straightforward to assign the parameters so that (15) fails but (16) holds. 9 This
means that contestant A loses when the unweighted score is taken to be the sum, but
wins when the unweighted score is taken to be the average. Perhaps there is some
interesting theory underlying this example.

Example 8. We now consider scoring in �gure skating (which, as we shall see, can be
viewed as a special case of voting schemes, or of multicriterion decision-making). In
�gure skating, it turns out that the numerical values of the scores given by the judges
are unimportant: all that matters is the rank order of the contestants for each judge.
So in the case of �gure skating, the domain D (the entries of the tuples) is the set

9 For example, take �1; a1; a2; b1; b2, respectively, to be :93; :1; 0; 0; 1.

324 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

of all permutations 10 of the contestants, one permutation for each judge. There is a
complicated rule that determines the overall order of �nish of the contestants. 11 Let us
assume that there are n contestants. For the sake of this example, let us take the range
S of the scoring rule to be the Euclidean space <n, where < is the set of real numbers.
Let X be a tuple of permutations of the contestants (one permutation for each judge),
and let I be the set of judges. If the rules of �gure skating say that in this situation the
jth contestant �nishes in ijth place, for 16j6n, then we take f(X)= (i1; : : : ; in). We
can think of the jth entry of the vector f(X) as giving the score of contestant j, where
the contestant that �nishes in �rst place gets a score of 1, the contestant that �nishes
in second place gets a score of 2, and so on. In the weighted case, where we assign
weights to the judges, f�(X) as de�ned in (2) then gives us a vector of scores for the
contestants, where again the jth entry of the vector f�(X) is the score of contestant j.
The contestant with the lowest score wins, the contestant with the second-lowest score
is in second place, etc.
In this example, the range is taken to be a vector space, rather than, as in the previous

examples, simply a set of real numbers. We note that we did not really need to take
the range to be a vector space. Instead, we could have taken a separate unweighted
rule fj for each contestant j, such that fj is the projection onto the jth component of
the rule f that we described above.
Scoring in �gure skating �ts the paradigm of multicriterion decision-making, which

has a large literature in economics (see, for example [3]). Here, there are a set of
alternatives, and a set of relevant criteria. For each criterion, there is a permutation of
the set of alternatives, which tells the best alternative under that criterion, the second-
best, and so on. There is then an aggregation method that decides on an overall
ranking of the alternatives, based on the criteria. A voting scheme [2, 16], such as that
for judging �gure skating, �ts this paradigm, where we think of the contestants as the
alternatives, the judges (or voters) as the criteria, and the rule that tells the order of
�nish of the contestants as the aggregation method. The method we have described
in this example for applying our methodology can be easily adapted to this general
framework of multicriterion decision-making. We are thereby able to take an arbitrary
aggregation method and modify it to allow us to assign a weight to each criterion.
In a traditional voting scheme, the voters are treated homogeneously, in a symmetric

manner (at least in the unweighted case). This would not necessarily be the case
in multicriterion decision-making, where di�erent criteria might be treated di�erently,
even in the unweighted case. There is already another natural way (other than our
method) to �nd a weighted version of a voting scheme (at least in the case where the
weights are rational). We simply allow multiple copies of voters, where the number
of multiple copies is proportional to the weight, and treat these multiple copies as
independent voters. It is an interesting question, which will require future research, to

10 For simplicity, we are ignoring ties throughout this example.
11 See [4] for a discussion of the rules of �gure skating.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 325

understand the di�erences between the results of our approach and of this “multiple
copy” approach.

7. Viewing the weighting formula geometrically

In this section, we take a geometric viewpoint. Thereby, we see why the weighting
formula is unique, and why it has only a linear number of terms. Furthermore, we
use our geometric machinery to prove Proposition 4.1, which says that local linearity
implies continuity, as a function of the weights.
For simplicity in notation, let us assume throughout this section that X is �xed.

Assume that we are given a weighted rule (a function of (�;X)), where again we
denote the value at (�;X) by f�(X). As in the proof of Proposition 4.1, de�ne a
function h with domain the set of weightings, such that h(�)=f�(X).
Local linearity of the weighted rule says that if � and �′ are comonotonic and

�∈ [0; 1], then

h(� ·�+ (1− �) ·�′)= � · h(�) + (1− �) · h(�′): (17)

The next simple lemma says that (17) generalizes to convex combinations of an arbi-
trary number of weightings, not just two.

Lemma 7.1. Assume that h satis�es (17) whenever � and �′ are comonotonic and
�∈ [0; 1]. Assume that �1; : : : ; �m are weightings, each pair of which is comonotonic.
Assume that �1; : : : ; �m are nonnegative, and

∑m
i=1 �i=1. Then

h
(

m∑
i=1
�i ·�i

)
=

m∑
i=1
�i · h(�i): (18)

Proof. For simplicity, we prove this result only when m=3; the general result can be
proved similarly, by induction.
The result is clearly true if �1 = 1, so assume that �1 6= 1. Then

h(�1 ·�1 + �2 ·�2 + �3 ·�3)
= h(�1 ·�1 + (1− �1)(�2

1−�1 ·�2 + �3
1−�1 ·�3))

= �1 · h(�1) + (1− �1)h(�2
1−�1 ·�2 + �3

1−�1 ·�3) by (17)

= �1 · h(�1) + (1− �1)(�2
1−�1 · h(�2) + �3

1−�1 · h(�3)) by (17)

= �1 · h(�1) + �2 · h(�2) + �3 · h(�3):

This was to be shown.

Let U be the simplex de�ned by �1+ · · ·+�m=1 and �1¿�2¿ · · ·¿�m¿0. (A simi-
lar argument applies when instead of assuming that �1¿�2¿ · · ·¿�m¿0,

326 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

we assume more generally that ��(1)¿��(2)¿ · · ·¿��(m)¿0. We are assuming that
�1¿�2¿ · · ·¿�m¿0 simply for ease in notation.) We now show that the extreme
points 12 of U are precisely the points e1; : : : ; em, de�ned as follows:

e1 = (1; 0; 0; 0; : : : ; 0);

e2 =
(
1
2 ;
1
2 ; 0; 0; : : : ; 0

)
;

e3 =
(
1
3 ;
1
3 ;
1
3 ; 0; : : : ; 0

)
;

: : :

em=
(
1
m ;

1
m ;

1
m ; : : : ;

1
m

)
:

First, every point (�1; : : : ; �m) in U is a convex combination of e1; : : : ; em, because of
the following equality, which is straightforward to verify:

(�1; : : : ; �m) = (�1 − �2) · e1 + 2 · (�2 − �3) · e2 + 3 · (�3 − �4) · e3
+ · · ·+ m · �m · em: (19)

Thus, no point other than e1; : : : ; em can be an extreme point of U . Now the points
e1; : : : ; em are linearly independent, since the matrix whose ith row is ei is a triangular
matrix with only positive elements on the diagonal, and so the determinant is positive. It
is not hard to show that since every point in U is a convex combination of e1; : : : ; em,
and since the points e1; : : : ; em are linearly independent, it follows that the extreme
points of U are precisely e1; : : : ; em.
Let f be an unweighted rule, and assume we are given a weighted rule that is based

on f, compatible, and locally linear. Again, we denote the value at (�;X) by f�(X),
and write f�(X) as h(�). By Eq. (19) and Lemma 7.1, we have

h(�1; : : : ; �m) = (�1 − �2) · h(e1) + 2 · (�2 − �3) · h(e2) + 3 · (�3 − �4) · h(e3)
+ · · ·+ m · �m · h(em): (20)

But what is h(ei) in this equation? Let I = {1; : : : ; i}. Note that the restriction of ei to
{1; : : : ; i} is the evenly balanced weighting EI , where (EI)j =1=i for each j∈ I . Then

h(ei) =fei(X)

=fEi(x1; : : : ; xi) by compatibility

=f(x1; : : : ; xi) since the weighted rule is based on f:

When we substitute this value for h(ei) into (20), we �nd that h(�), that is, f�(X),
equals the weighting formula in (2). This proves the uniqueness part of Theorem 5.1,
as promised.
This analysis shows a reason why there are only m terms in the weighting formula:

it is because the simplex U has only m extreme points. The key to the uniqueness
proof is that the formula is determined uniquely by its values at the m extreme points.

12 An extreme point of a simplex is a point in the simplex that is not a convex combination of other
points in the simplex.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 327

We now prove Proposition 4.1, which says that local linearity implies continuity, as
a function of the weights. Assume that the weighted rule is locally linear. As before,
if we denote f�(X) by h(�), then we see by Eq. (19) and Lemma 7.1 that (20)
holds. This shows that h is a linear (and hence continuous) function in the simplex
de�ned by �1 + · · ·+ �m=1 and �1¿�2¿ · · ·¿�m¿0 (and similarly in each simplex
de�ned by �1 + · · ·+ �m=1 and ��(1)¿��(2)¿ · · ·¿��(m)¿0). Since h is continuous
in each such simplex, and since there are a �nite number of such simplexes, each
of which is a closed set, it follows that h is continuous everywhere. Proposition 4.1
follows.
We note that historically, we derived the weighting formula by a di�erent geometric

view than that which we just presented. We now discuss this other view, and how
it enabled us to determine a formula for f� by induction on the number of nonzero
entries of �. To start o� the induction, note that if � has only one nonzero entry, so
that �i=1 for some i, then f� is uniquely determined, since then f�(X)=fE{i}(xi)
by compatibility, and in turn fE{i}(xi)=f(xi) since the weighted rule is based on the
unweighted rule. Assume now that � has m nonzero entries. By compatibility, we can
assume that � is over an index set I of size m. Let V be the (m − 1)-dimensional
hyperplane in m-dimensional Euclidean space (indexed by I), where V is de�ned by∑

i∈I �
′
i =1. Let R be the (bounded) subregion of V where �′i¿0 for each i∈ I . For

each i∈ I , let Bi be the (m − 2)-dimensional hyperplane that is the intersection of V
with the (m− 1)-dimensional hyperplane de�ned by �′i =0. Then the boundary B of R
is the union of the Bi’s. Each �′ in B has at least one 0 entry. Therefore, by induction
hypothesis (and by compatibility), we can assume that we already have determined a
formula for f�′ for each �′ in B. Now � is a linear combination of EI and of some �′

in B; say �= �·EI+(1−�)·�′, where �∈ [0; 1]. (In fact, �=m·��(m) when � is ordered
by �.) Assume that X is over I . We know that fEI (X)=f(X), since the weighted
rule is based on f, and by induction hypothesis we know a formula for f�′ . By local
linearity, we know that we can then take f�(X) to be � ·f(X)+(1−�) ·f�′(X). This
turns out to give us the weighting formula.
We remark that unlike the geometric viewpoint given at the start of this section,

under this latter geometric viewpoint it is not at all clear that the weighting formula
should have a linear number of terms. Indeed, we were surprised when our computa-
tions yielded only a linear number of terms.

8. Totally linear rules

When is the weighted rule not only locally linear, but even totally linear?
Theorem 8.1 below tells us that this happens only for very special unweighted rules
f, namely, those where f(x1; : : : ; xm)= (f(x1) + · · ·+ f(xm))=m.

Theorem 8.1. Assume I = {1; : : : ; m}. The following are equivalent:
1. The weighted rule given by the weighting formula is totally linear.

328 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

2. f(x1; : : : ; xm)= (f(x1) + · · ·+ f(xm))=m for each m.
3. f(�1 ;:::;�m)(x1; : : : ; xm)= �1 · f(x1) + · · ·+ �m · f(xm); for each m.

Proof. (1⇒ 2). For each i in I , let �i be the weighting over I that is entirely con-
centrated on component i. Thus, (�i)(i)= 1 and (�i)(j)= 0 if j 6= i. Therefore,
EI =(�1 + · · ·+�m)=m. Then

f(X) =fEI (X) since the weighted rule is based on f

=
(

m∑
i=1
f�i(X)

)/
m since the weighted rule is totally linear

=
(

m∑
i=1
f(xi)

)/
m since the weighted rule is compatible and based on f:

(2⇒ 3). Here the proof is as in Example 1.
(3⇒ 1). It is easy to see from a straightforward calculation that part (3) implies that

the weighted rule is totally linear.

Under the natural assumption (discussed near the beginning of Section 3) that
f(xi)= xi, part (2) says that f(x1; : : : ; xm)= (x1 + · · ·+ xm)=m, so that the unweighted
rule is precisely the average. Part (3) then says that f(�1 ;:::;�m)(x1; : : : ; xm)= �1 ·x1+ · · ·+
�m · xm, the weighted average.

9. Inherited properties

In this section, we restrict our attention (except at the end of the section) to situations
where the domain D (which represents the values of the arguments of the scoring
rule) and the range S (the values the scoring rule takes) are each sets of numbers. For
example, these might correspond to situations where we are combining a collection of
scores to obtain an overall score. So far we have not considered any other restrictions
on a scoring rule. In practice, a scoring rule usually enjoys many properties such as
continuity, monotonicity, etc., in its argument X . As we discuss in this section, these
properties are inherited by the weighted rule.
We say that an unweighted rule is continuous if for each choice of index set I , it

is continuous when restricted to tuples X over I . Similarly, a weighted rule is contin-
uous if each f� is continuous in the argument X . Note that this is in contrast to the
discussion in Section 4, where we were concerned with continuity in the weighting �.
In the case where the scoring rule is combining individual scores to obtain an overall
score, we would expect the scoring rule to be continuous: slight changes in individual
scores should lead to only slight changes in the overall score.
If X and X ′ are each tuples over the same index set I , let us write X¿X ′ if xi¿x′i

for each i∈ I , and X¿X ′ if xi¿x′i for each i∈ I . We say that an unweighted rule is
monotonic if for each choice of index set I , it is monotonic when restricted to tuples
over I . That is, an unweighted rule f is monotonic if f(X)¿f(X ′) whenever X¿X ′.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 329

An unweighted rule is strictly monotonic if f(X)¿f(X ′) whenever X¿X ′. Similarly,
a weighted rule is monotonic (resp. strictly monotonic) if each f� is monotonic (resp.
strictly monotonic). In the case where the scoring rule is combining individual scores
to obtain an overall score, we would certainly expect the scoring rule to be monotonic:
intuitively, if the individual scores according to X are each at least as big as the
corresponding scores according to X ′, then the overall score of X should be at least
as big as the overall score of X ′. Similarly, we expect a scoring rule to be strictly
monotonic; if it is monotonic but not strictly monotonic, then there is a portion of the
domain where the scoring rule is insensitive. In fact, in Section 10 we shall mention
an example of a weighted rule that is monotonic but not strictly monotonic, that arises
under a certain method for obtaining the weighted rule; such a rule might be considered
undesirable.
We now de�ne a notion of an unweighted rule being strict. This notion will be

important in Section 11. For this notion, we assume that, as is common in fuzzy
logic, the domain D and the range S are both the closed interval [0; 1]. Intuitively, an
unweighted rule is strict if it takes on the value 1 precisely when it is over a tuple of
all 1’s. Formally, we say that an unweighted rule f is strict if whenever X is over
I , then f(X)= 1 i� xi=1 for every i∈ I . Strictness is certainly a property we would
expect of any scoring rule that is used to evaluate the conjunction. We now de�ne
strictness in the weighted case. Assume that � is over I . We say that � has full
support if the support of � is I , that is, if �i is nonzero for every i∈ I . We say that a
weighted rule is strict if whenever � and X are over I , and � has full support, then
f�(X)= 1 i� xi=1 for every i∈ I .
An unweighted rule f is called translation-preserving if f(X ′)=f(X) + a, pro-

vided X and X ′ are over the same index set I , and x′i = xi + a for every i∈ I . Sim-
ilarly, a weighted rule is translation-preserving if each f� is translation-preserving in
this sense. The idea behind a translation-preserving scoring rule is that if all the in-
put scores are increased by the same amount, then the output score is increased by
that same amount. Unlike the situation with continuity and monotonicity, we do not
usually expect a scoring rule to be translation-preserving, even in the case where the
scoring rule is combining scores to obtain an overall score. Of course, the min function
is translation-preserving. In fact, as we shall discuss later (Proposition 10.1), min is
the unique monotonic, translation-preserving binary function (up to boundary condi-
tions).
An unweighted rule f satis�es betweenness if min X6f(X)6max X for every X .

This says that the resulting score lies between the smallest and largest of its arguments.
This is certainly a natural property that we might expect of a scoring rule that combines
scores to obtain an overall score. An unweighted rule f is idempotent if f(x; : : : ; x)= x
for every x in the domain D. This says that if all of the “input scores” are equal, then
the resulting output score has this same value. It is clear that if a scoring rule satis�es
betweenness, then it is also idempotent. As before, we say that a weighted rule satis�es
betweenness (resp. is idempotent) if each f� satis�es betweenness (resp. is idempotent)
in this sense.

330 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

The next theorem says that the properties we have discussed in this section are
inherited by the weighted rule.

Theorem 9.1. If an unweighted rule is continuous (resp. is monotonic, is strictly
monotonic, is strict, is translation-preserving, satis�es betweenness, is idempotent);
then the corresponding weighted rule given by the weighting formula is continuous
(resp. is monotonic, is strictly monotonic, is strict, is translation-preserving, satis�es
betweenness, is idempotent) as well.

Proof. All of the results follow from Corollary 5.2. The only result that does not
follow easily is for strictness, which we now consider.
Assume that f is strict, and that (�1; : : : ; �m) has full support (which means that

each �i is nonzero). By Corollary 5.2, we know that f�(X) is a convex combination∑m
i=1 �i · f(x1; : : : ; xi) of the terms f(x1; : : : ; xi), for 16i6m. From Theorem 5.1, we

see that �m=m · �m, and so �m¿0.
Assume that f�(X)= 1. Since by assumption 06f(x1; : : : ; xi)61 for each i, it fol-

lows that for each i where �i¿0, necessarily f(x1; : : : ; xi)= 1 (otherwise the convex
combination could not take on the maximal value of 1). In particular, f(x1; : : : ; xm)= 1.
Since by assumption f is strict, it follows that xi=1, for 16i6m. This was to be
shown.

In the remainder of this section, we no longer assume that the domain D and the
range S are each sets of numbers. We would like to show that some sort of symmetry
is inherited by the weighted rule from the unweighted rule. Normally, a function is
called symmetric if it is unchanged by any permutation of its arguments. In our set-
ting, this translates to saying that we can take any permutation of the indices without
changing the result. We now formally de�ne the notion of symmetry. In this de�nition,
◦ represents functional composition, and �(I) represents the image of the set I under
the function � when I is a subset of the domain of �.
An unweighted rule f is called symmetric if f(X ��(I))=f((X ◦ �)�I) for each

permutation � of I, each nonempty I ⊆I, and each X over �(I). A weighted rule is
called symmetric if f�(X)=f�◦�(X ◦ �) for each permutation � of I, each � over
�(I), and each X over �(I). (Note that f� and X are over �(I), and that f�◦� and
X ◦� are over I .) Being symmetric means intuitively that we do not distinguish among
the arguments.

Theorem 9.2. If an unweighted rule is symmetric, then the corresponding weighted
rule given by the weighting formula is symmetric as well.

Proof. Since we shall need to use di�erent permutations of the index set I , we shall
again need to make use of (3).
Assume that f is a symmetric, unweighted rule. Assume that the weighted rule is

based on f, compatible, and locally linear, that � is a permutation of I, and that �

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 331

and X are over �(I). Let �′=� ◦ � and let X ′=X ◦ �. Note that �′ and X ′ are over
I . It su�ces to show that f�(X)=f�′(X ′).
Let m= card(I). Let � be a bijection from {1; : : : ; m} onto �(I) such that � is

ordered by �. Let �′= �−1 ◦ � (here �−1 represents the inverse function, which is
de�ned since � is injective). Note that �′ is a bijection from {1; : : : ; m} onto I .
Assume that i6m. Then �′�′(i) =�

′(�′(i))=� ◦ �(�−1 ◦ �(i))=�(�(�−1(�(i))))
=�(�(i))= ��(i). Hence, �′�′(i) = ��(i) for i6m. Since � is ordered by �, it follows that
�′ is ordered by �′. Now, f(X �{�(1); : : : ; �(i)})=f(X ��({�′(1); : : : ; �′(i)}))=f(X ◦
��{�′(1); : : : ; �′(i)})=f(X ′�{�′(1); : : : ; �′(i)}). Here the second equality holds since
f is symmetric. Thus, f(X �{�(1); : : : ; �(i)})=f(X ′�{�′(1); : : : ; �′(i)}) for i6m.
From (3), it follows that

f�(X) =
m−1∑
i=1

i · (��(i) − ��(i+1)) · f(X �{�(1); : : : ; �(i)}) + m · ��(m) · f(X)

=
m−1∑
i=1

i · (�′�′(i) − �′�′(i+1)) · f(X ′�{�′(1); : : : ; �′(i)}) + m · �′�′(m) · f(X ′)

=f�′(X ′)

which is the desired result.

It is quite common for naturally occurring scoring rules to be symmetric. For exam-
ple, average, max, and min are symmetric scoring rules. Of course, some circumstances
might provide a reason to treat the arguments di�erently and occasion the use of a non-
symmetric scoring rule. One such scenario could arise if, say, we are considering scores
assigned to di�erent attributes, and all of the scores about one particular attribute are
guaranteed to be in the interval [0; 12], but for the other attributes the scores can range
throughout the interval [0; 1]. Assume that in this situation we are “designing” a scoring
rule. Consider the case where the tuple X has two entries x1 and x2, and where x1 is
guaranteed to be in the interval [0; 12]. Instead of, say, taking f(X) in this case to be
the average (x1 + x2)=2, it would probably be more reasonable to “normalize” and take
it to be (2x1 + x2)=2 instead. This leads to an unweighted rule that is not symmetric.

10. Related work

There is much work in the economics literature about indi�erence curves. This in-
cludes work on computing optimal indi�erence curves (which depend on user-supplied
weightings). That work is only tangentially related to ours, since the focus there is
on computing optimality. See [18] for a more complete discussion. In Example 8 of
Section 6, we discussed voting schemes as an example where there is a “competing”
approach to ours for incorporating weights. As we noted, future research is required to
understand the issues involved. In Section 10.1, we discuss other methods for obtaining

332 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

a weighted rule from an unweighted rule. In Section 10.2, we consider the Choquet
integral, which is also intended to deal with weightings.

10.1. Other approaches

We now discuss three methods from the literature for obtaining a weighted rule from
an unweighted rule, and compare them with our approach. Each of these methods deals
only with one or a few particular unweighted rules, rather than, as in our approach,
with arbitrary unweighted rules.

Method 1. The �rst method is inspired by a paper by Dubois and Prade [13]. It deals
with the case where the min function is used in the unweighted case (in fact, the title of
Dubois and Prade’s paper is “Weighted Minimum and Maximum Operations in Fuzzy
Set Theory”). Their underlying scenario and goals are actually quite di�erent from
ours (for example, instead of dealing with probabilities �i, they deal with possibility
distributions [36]). Nonetheless, it is instructive to compare the explicit formula that
they obtain for the “weighted min”, and see how it fares under our criteria.
Let X be a tuple over I with range [0; 1], let f(X)= mini∈I {xi} and let

f�(X)= min
i∈I

{max {1− (�i=M); xi}} ; (21)

where M = maxi∈I {�i}. It is easy to check that the weighted rule is compatible, and
based on f. Note that the weighted rule is not locally linear.

An attractive feature of this weighted rule is that it is simple, continuous (both in
� and X), monotonic, strict, symmetric, and idempotent, and it satis�es betweenness.
However, it is not strictly monotonic. For example, let �1 = 2

3 and �2 =
1
3 . The reader

can easily verify that f�(:7; :3) and f�(:8; :4) are each equal to :5. In fact, it is easy to
verify that if x26:56x1, then f�(X)= :5. We consider this undesirable, since it says
intuitively that f� is insensitive to its arguments in this region.
The fact that the weighted rule (21) is compatible and based on f depends on the

assumption that we are considering min only over tuples with range [0; 1]. If we were
to allow tuples with a di�erent range, and in particular the range (−∞;+∞), then it
is not clear how to modify the weighted rule (21). In contrast, our weighting formula
for min is the same in all cases.
Also, this weighted rule is not translation-preserving, since f�(:8; :4) 6=f�(:7; :3)+ :1.

We consider this undesirable because, as the following proposition shows, the key
feature of min (the underlying scoring rule) is that it is monotonic and translation-
preserving. Thus, up to boundary conditions, it is uniquely determined by being mono-
tonic and translation-preserving.

Proposition 10.1. min is the unique monotonic; translation-preserving binary function
f on [0; 1] for which f(0; 1)=0=f(1; 0).

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 333

Proof. It is easy to check that min has all the desired properties. So assume that f has
the properties with the goal of proving that f(x1; x2)= min(x1; x2) for all x1; x2 ∈ [0; 1].
By monotonicity it follows that f(0; t)= 0=f(t; 0) for all t ∈ [0; 1]. The rest of proof
breaks into two cases depending on whether x1 or x2 is larger.
1. If x16x2, then f(x1; x2)=f(0 + x1; (x2 − x1) + x1)=f(0; x2 − x1) + x1 = 0 + x1 =
min(x1; x2).

2. If x1¿x2, then f(x1; x2)=f((x1 − x2) + x2; 0 + x2)=f(x1 − x2; 0) + x2 = 0 + x2 =
min(x1; x2).

In either case, f(x1; x2)= min(x1; x2).

Similar characterizations of min appear in the literature [1, 24]. The formula in (21)
is computationally a little simpler than the weighting formula. Therefore, there might
be situations, where, say, computational simplicity is more important than strict mono-
tonicity and translation invariance, when (21) would be preferable to use rather than
the weighting formula.

Method 2. Sung [28] recently wrote a follow-on to our paper, in which he considers
other possible desiderata. In doing so, he develops techniques for obtaining a weighted
rule from an unweighted rule that applies in certain special cases. In particular, he
gives another method of obtaining a “weighted min”, which we now describe.
Let X be a tuple over I with range [0; 1], let f(X)= mini∈I {xi} and let

f�(X)= 1− 1
M
max
i∈I

{�i − �ixi} ; (22)

where M = maxi∈I{�i}. It is straightforward to check that like (21), this weighted rule
is compatible and based on f, but not locally linear. As with (21), an attractive feature
of this weighted rule is that it is simple, continuous (both in � and X), monotonic,
strict, symmetric, and idempotent, and it satis�es betweenness. Unlike (21), this formula
has the additional desirable feature that it is strictly monotonic. However, like (21),
it is not translation-preserving. As before, we consider this undesirable because, as
Proposition 10.1 shows, the key feature of min (the underlying scoring rule) is that it
is monotonic and translation-preserving.
Finally, as with (21), it is not clear how to modify the weighted rule (22) for min

over tuples with a di�erent range than [0; 1], and in particular with range
(−∞;+∞).

Method 3. The third method is from a paper by Salton et al. on information retrieval
[26], and deals with the case where a version of the Euclidean distance is used in the
unweighted case.
Let X be a tuple over I , let

f(X)=

√∑
i∈I x

2
i

card(I)
(23)

334 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

and let

f�(X)=

√∑
i∈I �

2
i x
2
i∑

i∈I �
2
i
; (24)

when � is over I . It is easy to check that the weighted rule is compatible and is based
on f. Note that the weighted rule is not locally linear. Unlike other scoring rules we
have discussed, these take us out of the rationals.
The weighted rule given by the formula (24) is quite reasonable: it gives a natural

generalization of the unweighted formula (23); it is continuous (both in � and X),
strictly monotonic, strict, symmetric, and idempotent, and it satis�es betweenness. It is
not translation-preserving, but we would not expect it to be, since the unweighted rule
is not translation-preserving.
As was the case with Methods 1 and 2 in this section, the formula for f� in (24) is

computationally easier than the weighting formula in this case, since only one square
root is involved in (24), whereas m square roots are involved in the weighting formula.
One possible objection to (24) is that it is not clear why �2i , rather than �i, is being

used in the formula; either seems like a reasonable alternative. In fact, the QBIC 13

system [23] also uses a variation of Euclidean distance, and in the weighted case uses
�i rather than �2i . Because of the speci�c form of the unweighted rule (23), there is
a natural extension to the weighted rule, as given by (24). There are other examples
where there is a natural way (other than ours) to modify an unweighted rule to obtain
a weighted rule. For example, if f(X) is the geometric mean (x1 · · · xm)1=m, then a
natural generalization in the weighted case would be x�11 · · · x�mm . On the other hand,
there are often situations where there is no natural generalization in the weighted case;
min is a good example.
The point of this example is that for certain special unweighted rules, there may

be a natural way to obtain a weighted rule that is not the weighted rule given by the
weighting formula that our methodology gives us. In fact, the extension (24) is more
in the spirit of the unweighted case (23) than our extension, the weighting formula
(2). But our methodology has the advantage that it always gives us a (simple) way
to obtain a weighted rule from an unweighted rule, no matter what the unweighted
rule is.

10.2. Choquet integral

The Choquet integral [8, 27] of a function generates a weighted version of the func-
tion. A nice overview appears in [17].
Let g be a function with �nite domain X and range [0; 1]. Let � be a set function

(that is, a function with domain the power set of X) and range [0; 1]. It is common to
make various assumptions about �, such as that �(∅)= 0, that �(X)= 1, and that � is
monotone (i.e., �(A)6�(B) if A⊆B). We think of � as a generalized measure.

13 QBIC, which stands for Query By Image Content, is a trademark of IBM Corporation.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 335

Assume that X consists of the m elements x1; : : : ; xm, and that the indices are selected
so that g(x1)¿ · · ·¿g(xm). The Choquet integral of g with respect to � is de�ned to be

(g(x1)− g(x2)) · �({x1}) + (g(x2)− g(x3)) · �({x1; x2})
+ · · ·+ (g(xm−1)− g(xm)) · �({x1; : : : ; xm−1}) + (g(xm)) · �({x1; : : : ; xm}): (25)

Note that if � is additive, so that �({x1; : : : ; xk})= �(x1)+ · · ·+�(xk), then the Choquet
integral (25) reduces to �(x1) · g(x1)+ · · ·+�(xm) · g(xm), which is a weighted average
of g(x1); : : : ; g(xm). Thus, the intuition behind the Choquet integral is that it is some
sort of weighted average of g(x1); : : : ; g(xm), even in the case when � is not necessarily
additive.
We now show a sense in which our weighting formula in (2) is a Choquet integral. 14

Let us de�ne a set function � by taking �({xi1 ; : : : ; xis}) to be s ·f(xi1 ; : : : ; xis) for each
subset {xi1 ; : : : ; xis} of X of size s. If � is a weighting, then de�ne g (over X) by taking
g(xi)= �i. It is straightforward to see that the Choquet integral of g with respect to �
gives our weighting formula in (2).
Because of the intuition of a Choquet integral of g with respect to � as being some

sort of weighted average of g(x1); : : : ; g(xm), we might have expected our weighting
formula to be a Choquet integral of some variation of f with respect to some variation
of �. Instead, somewhat mysteriously, our weighting formula turns out to a Choquet
integral of a variation of � with respect to a variation of f. It is also interesting to
note that in order to de�ne a Choquet integral that gives our weighting formula, it is
necessary to de�ne �({xi1 ; : : : ; xis}) to be s · f(xi1 ; : : : ; xis) rather than the more natural
choice of simply f(xi1 ; : : : ; xis).
Schmeidler [27] refers to two functions g and g′ on the same domain as being

comonotonic if there do not exist x; y with g(x)¡g(y) and g′(x)¿g′(y). Since in our
case we have g(xi)= �i, it is clear that Schmeidler’s notion of comonotonicity gives
exactly our notion of comonotonicity (this is why we use the term). Dellacherie [11]
shows that the Choquet integral is additive for comonotonic functions. It follows eas-
ily that the Choquet integral of � (with respect to an arbitrary �) is locally linear.
Marinacci (personal communication, 1998) proves the converse, namely, that each lo-
cally linear function of � is a Choquet integral of �. Marinacci uses this to give
an alternative proof of the uniqueness part of Theorem 5.1. It might be interesting to
explore other consequences of viewing our weighting formula as a Choquet integral.

11. Low middleware cost in a multimedia database system

In this section we focus on the case, mentioned in the introduction, of queries in a
multimedia database system. Garlic [6, 10] is a multimedia database system being devel-
oped at the IBM Almaden Research Center. It is designed to be capable of integrating
data that resides in di�erent database systems as well as a variety of nondatabase data

14 This was pointed out to us by David Schmeidler.

336 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

servers. A single Garlic query can access data in a number of di�erent subsystems.
An example of a nontraditional subsystem that Garlic accesses is QBIC [23] (“Query
By Image Content”). QBIC can search for images by various visual characteristics
such as color and texture. In [14], the �rst author developed an e�cient algorithm for
evaluating conjunctions in such a system, when the conjuncts are independent. In this
section, we show that this algorithm can be carried over to the weighted case.
Let us begin with an example, where we deal �rst with the unweighted case. Consider

again the fuzzy conjunction (Color= ‘red’)∧ (Sound = ‘loud’). We denote this query
by Q. Assume that two di�erent subsystems deal with color and sound (for example,
QBIC might deal with color). Garlic is a middleware system that has to piece together
information from both subsystems in order to answer the query Q. Let I be the index
set {Color,Sound}, and let o be an object. Assume that the redness score of object o,
as determined by the subsystem dealing with color, is x1, and the loudness score of
object o, as determined by the subsystem dealing with sound, is x2. Let X be a tuple
over I whose Color value is x1 and whose Sound value is x2. Then, in the setup of
this paper, we would take the overall score of object o under query Q to be f(X),
where f is the scoring rule.
Let us say that we are interested in �nding the top 10 answers to query Q (that

is, the 10 objects with the highest overall scores, along with their scores). One way
to do this would be to evaluate the query on every single object in the database, and
take the 10 objects with the highest overall scores (ties would be broken arbitrarily).
The problem with this naive algorithm is that there is a very high middleware cost: 15

every single object in the database must be accessed. The �rst author [14] gives an
algorithm that is much more e�cient, provided that the conjuncts are independent. He
shows that if the scoring rule (in this case, f) is monotonic, then the middleware cost
is of the order of the square root of the number of objects in the database. (More
precisely, it is shown that if there are m conjuncts, and N objects in the database, then
the middleware cost for �nding the top k objects in the database is O(N (m−1)=mk1=m),
with arbitrarily high probability. For details about the probabilistic assumptions, see
[14].) Furthermore, it is shown that if the scoring rule is strict, then this is optimal.
What about the weighted case, where, say, we care twice as much about the color as

about the sound? It follows from Theorem 9.1 that if the unweighted rule is monotonic
and strict, then so is the weighted rule. Now the upper bound in [14] depends only on
the scoring rule being monotonic, and the matching lower bound depends only on the
scoring rule being strict. Therefore, we have the following theorem.

Theorem 11.1. Assume that the unweighted rule is monotonic and strict. Then for
the corresponding weighted rule given by the weighting formula; there is an algorithm
A for �nding the top k answers to the query determined by f�. If the support of

15 The cost model, including the de�nition of “middleware cost”, is de�ned formally in [14]. Intuitively,
the middleware cost corresponds to the number of elements accessed in the database.

R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338 337

� consists of m independent attributes; then the middleware cost for algorithm A is
O(N (m−1)=mk1=m) with arbitrarily high probability; and this is optimal.

12. Summary

There are numerous situations where there is a rule for assigning values to tuples.
It is often the case that we do not wish to give equal weight to all of the components.
This paper presents, by means of a surprisingly simple formula, a general method that
extends any rule to a weighted version of the rule. Our method is the unique one that
satis�es certain natural properties.

Acknowledgements

We thank Joe Halpern for many useful discussions and for the suggestion that we
extend our results to include the non-symmetric case. We also thank Shmuel Gal,
Gil Kalai, Laura Haas, Ariel Landau, Yo�elle Maarek, Massimo Marinacci, Nimrod
Megiddo, David Schmeidler, Madhu Sudan, and Avi Wigderson for helpful comments.
We are also grateful to Moshe Vardi for making us aware of Sung’s paper [28].

References

[1] C. Alsina, E. Trillas, Additive homogeneity of logical connectives for membership functions, in:
J.C. Bezdek (Ed.), Analysis of Fuzzy Information, vol. 1, Mathematics and Logic, CRC Press, Boca
Raton, 1987.

[2] K.J. Arrow, Social Choice and Individual Values, 2nd Edition, Yale University Press, New Haven,
1963.

[3] K.J. Arrow, H. Raynaud, Social Choice and Multicriterion Decision-Making, MIT Press, Cambridge,
1986.

[4] G.W. Bassett, Jr., J. Persky, Rating skating, J. Amer. Statist. Assoc. 89 (427) (1994) 1075–1079.
[5] R. Bellman, M. Giertz, On the analytic formalism of the theory of fuzzy sets, Inform. Sci. 5 (1973)

149–156.
[6] M.J. Carey, L.M. Haas, P.M. Schwarz, M. Arya, W.F. Cody, R. Fagin, M. Flickner, A.W. Luniewski,

W. Niblack, D. Petkovic, J. Thomas, J.H. Williams, E.L. Wimmers, Towards heterogeneous multimedia
information systems: the Garlic approach, RIDE-DOM ’95, 5th Internat. Workshop on Research Issues
in Data Engineering: Distributed Object Management, 1995, pp. 124–131.

[7] S. Chaudhuri, L. Gravano, Optimizing queries over multimedia repositories, Proc. ACM SIGMOD Conf.,
1996, pp. 91–102.

[8] G. Choquet, Theory of capacities, Ann. Inst. Fourier 5 (1955) 131–295.
[9] M. Chrobak, H. Karlo�, T. Payne, S. Vishwanathan, New results on server problems, Proc. ACM-SIAM

Symp. On Discrete Algorithms, 1990, pp. 290–300.
[10] W.F. Cody, L.M. Haas, W. Niblack, M. Arya, M.J. Carey, R. Fagin, M. Flickner, D.S. Lee, D. Petkovic,

P.M. Schwarz, J. Thomas, M. Tork Roth, J.H. Williams, E.L. Wimmers, Querying multimedia data from
multiple repositories by content: the Garlic Project, IFIP 2.6 3rd Working Conf. on Visual Database
Systems (VDB-3), 1995.

[11] C. Dellacherie, Quelques commentaires sur les prolongements de capacit�es, S�eminaire Probabilit�es V,
Strasbourg, Lecture Notes in Mathematics, Vol. 191, Springer, Berlin.

338 R. Fagin, E.L. Wimmers / Theoretical Computer Science 239 (2000) 309–338

[12] D. Dubois, H. Prade, Criteria aggregation and ranking of alternatives in the framework of fuzzy set
theory, in: H.-J. Zimmermann, L.A. Zadeh, B. Gaines (Eds.), Fuzzy Sets and Decision Analysis, TIMS
Studies in Management Sciences, Vol. 20, 1984, pp. 209–240.

[13] D. Dubois, H. Prade, Weighted minimum and maximum operations in fuzzy set theory, Inform. Sci.
39 (1986) 205–210.

[14] R. Fagin, Combining fuzzy information from multiple systems, J. Comput. and System Sci. 58 (1999)
83–99.

[15] R. Fagin, Y.S. Maarek, Allowing users to weight search terms in information retrieval, IBM Research
Report RJ 10108, March 1998.

[16] A. Gibbard, Manipulation of voting schemes: a general result, Econometrica 41 (4) (1973) 587–601.
[17] M. Grabisch, The application of fuzzy integrals in multicriteria decision making, European J. Oper. Res.

89 (1996) 445–456.
[18] R.L. Keeney, H. Rai�a, Decisions with Multiple Objectives: Preferences and Value Tradeo�s, Wiley,

New York, 1976.
[19] D.K. Lewis, Counterfactuals, Harvard University Press, Cambridge, MA, 1973.
[20] M.S. Manasse, L.A. McGeoch, D.D. Sleator, Competitive algorithms for on-line problems, Proc. ACM

Symp. on Theory of Computing, 1988, pp. 322–333.
[21] R.L. Mattson, J. Gecsei, D.R. Slutz, I.L. Traiger, Evaluation techniques for storage hierarchies, IBM

Systems J. 9 (2) (1970) 78–117.
[22] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, The QBIC project:

querying images by content using color, texture and shape, Proc. SPIE, San Jose, CA, 1993, pp. 173–
187.

[23] W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, The QBIC
project: querying images by content using color, texture and shape, SPIE Conf. on Storage and
Retrieval for Image and Video Databases vol. 1908, 1993, pp. 173–187. QBIC Web server is
http://wwwqbic.almaden.ibm.com/

[24] M. Pirlot, A characterization of ‘min’ as a procedure for exploiting valued preference relations and
related results, J. Multi-Criteria Decision Anal. 4 (1995) 37–56.

[25] P. Raghavan, M. Snir, Memory versus randomization in online algorithms, IBM J. Res. Dev. 38 (1994)
683–707.

[26] G. Salton, E.A. Fox, H. Wu, Extended information retrieval, Commun. ACM 26 (12) (1983) 1022–1036.
[27] D. Schmeidler, Integral representation without additivity, Proc. Amer. Math. Soc. 97 (2) (1986)

255–261.
[28] S.Y. Sung, A linear transform scheme for combining weights into scores, Technical Report TR98-327,

Rice University, 1998.
[29] A. Tomkins, Practical and theoretical issues in prefetching and caching, Ph.D. Dissertation, Carnegie

Mellon University, 1997.
[30] W. Voxman, R. Goetschel, A note on the characterization of the max and min operators, Inform. Sci.

30 (1983) 5–10.
[31] E.L. Wimmers, Minimal Bellman-Giertz Theorems, to appear.
[32] R.R. Yager, Some procedures for selecting fuzzy set-theoretic operations, Internat. J. Gen. Systems

8 (1982) 115–124.
[33] N.E. Young, On-line caching as cache size varies, Proc. ACM-SIAM Symp. on Discrete Algorithms,

1991, pp. 241–250.
[34] N.E. Young, On-line �le caching, Proc. ACM-SIAM Symp. on Discrete Algorithms, 1998, pp. 82–86.
[35] L.A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965) 338–353.
[36] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets and Systems 1 (1978) 3–28.
[37] H.-J. Zimmermann, Fuzzy Set Theory, 3rd ed., Kluwer Academic Publishers, Boston, 1996.

