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1. Introduction 

A recent and exciting paradigm in the area of distributed systems, first put forward by Halpern 
and Moses [HMl], is that the right way to understand distributed protocols is by considering how 
communication changes the state of knowledge of distribuwd processes. To quote from [HMl], “Many 
tasks in a distributed system directly involve the achievement of specific states of knowledge, and 
others crucially depend on a variety of constraints on the state of knowledge of the parties involved”. 
This paradigm has inspired computer scientists (6. [CM, FHVl, Leh, Pa, PR]) to study an area that 
has so far been in the realm of economics [Au], philosophy [Hi], and artificial intelligence [MH] - the 
logic of knowledge. 

In order to formalize reasoning about knowledge, we need semantic models for knowledge. The 
most common approach to modelling knowledge, due to Hintikka [Hi], is based on the possible wrl& 
semantics. In this approach, the information that a “player” (or “agent” or “process”) bas about the 
world may be incomplete; rather than knowing precisely what the actual state of the world is, the 
player may only know that the actual state of the world belongs to a given set of possible states (the 
so-called possible worlds). A player then knows a fact cp to be true if Q, is true in all the states that 
the player thinks are possible. Possible world semantics has been formalized using either Kripke 
structures [Kr] or modal structures [FV]. When used to model knowledge, modal structures are called 
knowledge srmchtres [FHVl]. 

We can use these semantic models for knowledge to interpret formulas in the logic of knowledge. 
These formulas are propositional modal formulas, where for every player i we have a modality Kb 
Intuitively, the formula &cp says “player i knows cp”. In order to understand the nature of knowledge 
better, it is helpful to characterize knowledge by axiomatizing valid formulas (the formulas that are 
satisfied by all knowledge structures). It turns out that the well-known modal logic S5 (which is 
described in the body of the paper) is a sound and complete axiomatization for knowledge structures, 
which may suggest that S5 is an appropriate formalism for reasoning about knowledge in distributed 
systems. 

Knowledge structures can be viewed as abstract models for knowledge. Namely, they model all 
possible states of knowledge with no concern as to how knowledge is acquired in the first place. To 
reason formally about knowledge in distributed systems, we need, however, to know which states of 
knowledge are attainable in such systems. In particular, since players in distributed systems commu- 
nicate with each other exclusively by exchanging messages, we need to know what states of knowledge 
are attainable via such communication, 

To this end we start with a concrete model of knowledge. The basic element in this model is a 
run. A run is a description of a distributed system over time; it consists of a description of the “real 
world” or “nature”, which we assume does not change as a result of communication in the system, 
the players’ initial information about nature, and the messages sent and received by the players. Two 
runs are equivulenr with respect to a player i, or “i-equivalent”, if they are indiscernible as far as 
player i is concerned. A player i is said to “know” cp in a run S if cp is true in all runs that are 
i-equivalent to S. (This concrete model of knowledge is suggested in [CM, DFIL, HF, HMl, PR, RP], 
and is also implicit in [Dw].) It is not hard to verify that under this interpretation of “know”, the 
axiom system S5 that we have discussed is sound. That is, the axioms and rules of inference of S5 
all hold under this interpretation. 

We now consider the abstract counterpart of the above concrete model, i.e., the knowledge 
structures that correspond to the run-based model. It turns out that we do not get all knowledge 
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structures. In other words, there are knowledge structures that describe knowledge states that are 
unattainable via message exchange. In particular, S5 is not complete for reasoning about knowledge 
in distributed systems! For example, if the only primitive proposition is p and if the only players are 
1 and 2, then the formula 

(1)  Ki((ph-Kiph-K2p)V(-ph-K1-pAK2~p)) 

is not satisfiable in distributed systems, even though it is SS-consistent. To get a complete axiomatization 
it is necessary to augment S5 with an additional axiom. (We shall see that if there is another primitive 
proposition besides p or if there is another player besides players 1 and 2, then (1) is satisfiable in 
distributed systems .) 

To better understand this phenomenon, it is useful to consider the logic of knowledge and implicit 
knowledge. Implicit knowledge, introduced by Halpern and Moses [HMl]. is the knowledge that can 
be obtained by pooling together the knowledge of a group. Put differently, the implicit knowledge of 
a group G is what someone could infer given complete knowledge of what each member of G knows. 
For example, if Alice knows '91 and Bob knows 9 2 ,  then together they have implicit knowledge 
of 9 2 ,  even though neither of them might individually know cp2. The basic feature of message-based 
knowledge is consemution of implicit knowledge of nature: that is, communication among the players 
cannot increase the implicit knowledge of the group as a whole about nature. This conservation 
principle is dynamic, in that it deals with changes in knowledge. Surprisingly, this dynamic principle 
has consequences on stutic implicit knowledge. Even more surprisingly, this principle not only affects 
what (static) implicit knowledge the players can have as a group but also what (static) knowledge 
individual players can have. 

The main point that we are trying to get across in this paper is that knowledge in a distributed 
systems depends in a crucial way on the way in which processes communicate with each other. Here 
we investigate one particular model of communication, but this model is not more basic than other 
prevalent models. For example, in our model communication is unreliable. As we shall point out in 
the paper, if we assume that communication is reliable, than the effect on the attainable knowledge 
states is drastic. We believe that the issue of how communication affects knowledge deserves a great 
deal of further study. 

The outline of this paper is as foIlows. In Section 2, we give the syntax and semantics of runs. 
In Section 3, we state and prove the conservation principle for implicit knowledge. In Section 4 we 
describe a property of implicit knowledge that follows from the conservation principle, and we give 
an axiom that captures this property. In Section 5, we discuss a concrete example which shows that 
S5 is not a complete axiomatization for communication-based knowledge. Specifically, we show that 
the formula (1) above is not satisfiable under communication. In Section 6, we give two sound and 
complete axiomatizations for knowledge under message exchange; one axiomatization involves implicit 
knowledge, and the other does not. In Section 7 we show that if we assume that communication is 
reliable, then the set of attainable knowledge states is restricted drastically. In Section 8, we discuss 
the effect of changing the class of messages. Sections 9-11 study the model theory of our framework. 
Section 9 reviews the definitions of knowledge worlds from [FHVl], and Section 10 characterizes 
those knowledge worlds that can arise under message exchange, which are called message-based 
knowledge wrICLF. In Section 11, we show that implicit knowledge behaves badly in general but nicely 
in message-based knowledge worlds. We conclude with some remarks in Section 12. 
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2. Runs 

We assume that there is a fixed finite set of primitive propositions, and a fixed finite set 9’ of 
players. The class of formufus is the smallest set that contains the primitive propositions, is closed 
under the Boolean connectives - and A, and contains Kip  if it contains ‘p, for each player i. The 
class of extended fonnulas is defined similarly, except that also Ip, is an extended formula if ‘p is. Thus, 
extended formulas allow also the modal operator I (‘‘It is implicit knowledge that”). 

We are about to give the syntax and semantics of runs. Throughout this paper, we assume that 
communication is synchmmus and proceeds in “rounds”. We assume that messages may be lost, that 
is, never received. (As we shall show later, if messages are guaranteed to be delivered, then the 
situation changes radically.) We also assume that if a message is ever received, then it is received in 
the round it was sent. 

We assume that some fixed truth assignment to the primitive propositions is “the actual truth 
assignment”, or “nature”. An alternative viewpoint (which is useful, for example, in statistics [Sa]) 
is that instead of primitive propositions and truth assignments, there is a fixed finite set of primitive 
srares, and that “nature” is one of these primitive states. To make it easier to pass back and forth 
between these two viewpoints, we shall usually refer to a truth assignment as a primitive state. Let 
W be the set of primitive states. 

We begin with an intuitive description of the “initial information” of each player, and how 
communication takes place. At the beginning (or “in the 0th round”), each player i is “told” a set 
T(i) of primitive states, one of which is nature. We view T(i) as player i’s initial information about 
nature. In particular, if T(i) = (r), where t is nature, then player i knows completely about nature, 
and if T(i) is the set of all primitive states, then player i knows nothing about nature. One intuitive 
way to think about what we have just said is that before there is any communication between the 
players, each player “studies nature”, and player i “learns” T(i) (that is, player i gains the information 
that nature is a member of the set T(i ) ) .  No player has any information about any other player’s 
initial information about nature. After players obtain this initial information about nature, all infor- 
mation is gained by messages that are sent between the players. Intuitively, no one ever “studies 
nature” again (we also assume that nature never changes). We make this assumption, since we are 
interested in characterizing the knowledge of each player when new information is gained only by 
message exchange. We leave as a problem how to characterize the knowledge of each player when 
it is possible for a player to gain directly more information about nature at any time. 

In each round, each player may send any number of messages to the other players. For example, 
in round 3, player 1 may send three messages to player 2, no messages to player 3, and one message 
to player 4. 

We now discuss the class yl;c of messages. As we shall see later, in order to get our completeness 
results, the class must be sufficiently rich; for example, the class of formulas (or even the class 
of extended formulas) is not sufficiently rich to serve as the class of messages. It is technically 
convenient to distinguish two types of messages: messages about the past, and messages about the future. 
“Messages about the past” talk about previous rounds; for example, on round 7, one message about 
the past is “I sent message cp to player j in round 5”. “Messages about the future” make certain 
promises about future messages; for example, on round 7, one message about the future is “If $ holds 
in round 31, then in round 31 the only messages I will send to player j are in the set a’’. We shall 
assume that every message is honesr [HFI. In the case of messages about the past, honesty means that 
the message is true (our semantics is such that this will automaticalIy guarantee that the sender of 
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the message knew that the message was true when he sent it). In the case of messages about the 
future, honesty means that every promise is fulfilled. It is convenient to consider messages about the 
future to be honest at the time they are sent; however, the promises made must be kept. Thus, at 
a later date, messages about the future may be rendered dishonest. Shortly, we shall discuss other 
reasons why we distinguish between messages about the past and messages about the future. The 
class d Z  of messages consists of the following (where rp is a message and @ is a finite set of messages): 
1. Messages about the past: 

a. 
b. 
c. 
d. 
e. 
f. 
g. 

“I knew 8 just after round r”, where 8 is an extended formula. 
“I sent message cp to player j in round r”. 
“I sent precisely the set @ of messages to player j in round r”. 
“I received message rp from player j in round r”. 
“I received precisely the set @ of messages from player j in round r”. 
“Every message that I sent in round r to player j I still know to be true”. 
Each finite Boolean combination of messages about the past. 

2. Messages about the future: 
“If J/ holds in round r, then in round r the only messages I will send to player j are in the set 
@”, where I) is a message about the past. 

Note that, for example, the message “I sent message rp to player j in round r” is a message about 
the past, even if rp is a message about the future. Note also that messages about the future simply 
restrict the class of future messages. In particular, sending no more messages at all automatically 
makes a message about the future honest. 

In our examples, we often find it convenient to allow extended formulas as messages. If 8 is an 
extended formula, and if the message 8 is sent in round r +  1, then this message 8 can be viewed as 
a shorthand for the message “I knew 8 just after round r”. 

Why are we so restrictive as to which messages about the future that we allow? First, it is shown 
in [HF] that serious problems arise if too general messages about the future are allowed. In particular, 
with more general messages about the future it is hard to make sense out of “honesty”, and there 
does not seem to be a reasonable and natural semantics. Second, the messages we have defined are 
all we need in order for our results (in particular, our complete axiomatizations) to go through. Third, 
we shall show later (in Section 8) that in a certain sense, our results still hold if more messages are 
allowed; however, adding more messages can considerably complicate the semantics. Finally, with the 
class of messages we have defined, runs have the following nice property: if S is a k-round run, and 
if in the (k+ 1)st round no messages are sent (and, of course, none are received), then the result is 
a (k+ 1)-round run. In particular, every run is the prefix of an arbitrarily long run. If we were to 
allow messages about the future to be closed under Boolean combinations, then we would lose this 
property. For example, if a player were to send both a message about the future and its negation, 
then clearly there is no way to fulfill both of these “promises”. 

Why did we not define a “message about the past” by player i in round r to be simply an arbitrary 
disjunction of histories of player i up to round r (where a “history of player i up to round r” is a 
complete description of the set T of primitive states that he learned from nature in round 0, along 
with a complete description of the messages sent and received by player i in each round s where 
1 I s< r)? The reason is that the above messages would have to be infinite disjunctions, since there 
are an infinite number of messages (specifically, messages about the future) that player i could 
potentially send in, say, round 1. 
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We need a few more definitions before we can give the formal definition of the syntax and 
semantics of runs. If a message cp about the past is a Boolean combination of messages 91, ..., qr, 
each of one of the types (a) - (f), then we say that each cp,,, (1 S m S t) is a direct submessage of cp. 
If “1 sent message + to player j in round r” is a direct submessage of cp, then let us say that Q, dimtry 
inwlves r, and similarly for the other messages of types (a) - (f). For example, the message 

where + is the message “I sent message 6 to player j in round 3”, directly involves rounds 2 and 5 
but does not directly involve round 3. Intuitively, cp directly involves r if round r is mentioned “at 
the top level’’ of cp. It is also convenient to say that the message about the future “If J, holds in 
round r, then in round r the only messages I will send to player j are in the set a”, direct& inwlves 
round r. 

We now begin the formal definition of the syntax and semantics of runs. A k-round run is a tuple 
(y,T,sent,received), where (a) 7 E: W (thus, 7 is a primitive state); (b) T is a function T: @ +  2*; 
and (c) sent is a function sent: 9 x 9 x (1, ..., k ]  -. 2& (and similarly for received). Intuitively, y is 
“nature”; T(i) gives player i’s “initial information about nature”, as discussed earlier; sent(i, j ,  r)  is the 
set of messages sent by player i to player j in round r, and received(i,j,r) is the set of messages 
received by player i from player j in round r. We assume that y E: T(i) for each player i (that is, 
nature is one of the possibilities that player i learns is possible in the 0th round). We also assume 
that sent(i,j, 0) = 0 = received(i, j, 0) for each i, j (that is, no messages are sent or received in the 0th 
round). Intuitively, in the 0th round, players learn their initial information about nature, and in 
rounds 1,2, ..., players communicate with each other. We also make the following assumptions: 
1. received(i, j, k + l)Ssent(j, i ,  k + 1) (“Each message is received in the round in which it was sent”). 
2. If p is a message about the past that directly involves round r and cp E: sent(i, j , k ) ,  then r < k 

(“‘Messages about the past’ are really about the past”). 
3. If p is a message about the future that directly involves round r, and if cp E sent(i,j,k), then r > k  

(“‘Messages about the future’ are really about the future”). 
Finally, we wish to say that every message is honest. It is convenient for us to refer to an honest 
message sent by player i as i-honest. When we say that a message is honest, we mean that if it was 
sent by player i, then it is i-honest. To formally define what an i-honest message is, we assume 
inductively that we have completely defined k-round runs (in particular, we have defined honesty for 
k-round runs, and insisted that every message be honest in a k-round run). We then define what it 
means for a k-round run S to satisfy an extended formula cp (written S I= cp). We then define what 
it means for a message cp to be i-honest in a (k+ 1)-round run S (written S kip), and we then insist 
that every message in a (k+ 1)-round run be honest. The base case (k=O) has been taken care of, 
since no messages are sent in the 0th round. 

Let us say that the k-round runs S = (7, T, sent, received) and S’ = (y’, p, sent’, received’) are i-equiv- 
alenr (written S y S‘) if the following conditions hold: 

“I knew 0 just after round 2” V “I sent message I) to player j in round 5”, 

1. T(i) = p(i) (“player i receives the same information in the 0th round of both runs”). 
2. sent(i,j,r) = sent’(i, j ,  r)  for each player j and each round r with 1 < t < k (“player i sends the 

3. received(i,j, r) = received’(i, j ,  r) for each player j and each round r with 1 5 r 5 k (“player i receives 

Thus, player i cannot distinguish between two i-equivalent k-round runs. We may say that in run S, 
player i thinks run S’ is possible if S -i S’. 

same messages to each player in the same rounds of both runs”). 

the same messages from each player in the same rounds of both runs”). 



KNOWLEDGE IN DISTRIBUTED ENVIRONMENTS 193 

We now define what it means for a k-round run S to satisfy an extended formula cp (written S l= p). 
1. S kp, where p is a primitive proposition, if S= (y, T,sent, received) and p is true under the truth 

assignment y. 

2. S t -cp if S I# p. 

3. SCcplhq2if Sl=g.q a n d S C m .  
4. S l= Kip if S’ 
5. S C Icp if S’ 

cp whenever S’ -i S. 
cp for each S’ such that S’ -i S for every i E 8’. 

Intuitively, part (4) of the definition says that player i knows cp in a k-round run if p is satisfied by 
every k-round run that player i thinks is possible. Part (5 )  of the definition says that cp is implicit 
knowledge in a k-round run if cp is satisfied by every k-round run that everyone thinks is possible (d. 
[HMZ]). It is useful to note for later use that the following formulas are valid (satisfied by every 
run): Kip+ Icp (“Anything known by player i is implicit knowledge”), and Kip1 A K ’ ( p 1 3  92)  9 Kim 
(“What player i knows is closed under modus ponens”). 

If 0 < k’ s k, then the k’-round prefix of a k-round run (y, T, sent, received) is defied in the obvious 
way: the k’-round prefix is ( y ,  T,sent’,received’), where sent’(i,j.r) = sent(i,j,r) for each i , j  and each 
r < k’, and similarly for received‘. 

Finally, we define what it means for a message cp E sent(i,j,s), where 1 S s S k + 1, to be i-honest 
in a (k + 1)-round run S= (7, T,sent, received) (written S kip). 

I.  S l=i “I knew 8 just after round r” if S’ I=Ki8, where S’ is the r-round prefix of S. 
2. S bj ‘‘I sent message cp to player j in round r” if cp E sent(i,j,r). 
3. S ki “I sent precisely the set @ of messages to player j in round r” if @ = sent(i,j, r). 
4. S Ci “I received message cp from player j in round r” if p E received& j ,  r). 
5. S ki “I received precisely the set @ of messages from player j in round f’  if Q, = received(i,j, r). 
6. S ti “Every message that I sent in round r to player j I still know to be true” if S kip whenever 

cp E sent(i,j,r). 
7. S ki-ip if S Pip. 
8. S kip1 hcp2 if S kip1 and S him. 
9. S I=i “If I) holds in round r, then in round r, the only messages I will send to player j are in the 

set a”, if either (a) r > k +  1, (b) S’ EiI), where S’ is the r-round prefix of S, or (c) sent(i,j,r)EQ,. 

The reader should note that in part (9), we are defining what it means for a message cp about the 
future, which m y  have been sert) in an early round of S, to be honest in S. Intuitively, clause (a) of part 
(9) has the effect that a message about the future directly involving, say, round 17, is always 
considered honest before round 17. 

The following lemma, whose straightforward proof is omitted, will be used later. 

Lemma 2.1. Assume that S -i S’. Then S kip iff S’ kip,  for every message cp. 

3. Conservation of implicit knowledge 

In this section, we give a fundamental principle of communication-based knowledge, which says 
that no amount of communication in a closed system can change the implicit knowledge about nature 
in the system. This principle is quite robust, and holds independent of our assumptions that commu- 
nication is synchronous, that communication is unreliable, that if a message is received, then it is 
received in the round it was sent, etc. 

If cp is a formula, S is a k-round run, and r S k, then we say that cp is implicit knowledge afer c 
roundF o f S  if S’ IT, where S’ is the r-round prefix of S. 
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The conservation principle for implicit knowledge: Let cp be a propositional formula, and let S be a k-round 
run. Assume that 0 5 r 5 k and 0 5 s 5 k. Then cp is implicit knowledge afrer r roundr of S if and only if cp 
is implicit knowledge afier s rounds of S. 

Thus, implicit knowledge about nature never changes after the 0th round. The conservation principle 
is false if cp is not required to be a propositional formula, that is, if cp is not a formula about nature. 
For example, if cp is Klp, where p is a primitive proposition, and if player 1 learns nothing from 
nature (in round 0) but learns that p is true in round 1 because of a message from player 2, then cp 
is implicit knowledge after round 1 (it is even known by player 1 after round l) ,  but it is not implicit 
knowledge after round 0 (it is even false after round 0). 

We now prove the conservation principle. It suffices to show that cp is implicit knowledge after t 
rounds of S if and only if tp is implicit knowledge after the 0th round of S. If cp is implicit knowledge 
after the 0th round of S, then it is easy to see that cp is implicit knowledge after r rounds of S (this 
is because nature never changes, and information about nature is never lost). Assume now that cp is 
not implicit knowledge after the 0th round of S. We shall show that e, is not implicit knowledge 
after r rounds of S. Let S be ( y ,  T, sent,received). Since p is not implicit knowledge after the 0th 
round of S, it follows from our definition of satisfaction that there is some primitive state p such 
that (a) p does not satisfy cp, and (b) p E T(i) for every player i. Let S’ be (p, T, sent, received). Thus, 
S’ is just like S,  except that the primitive state in S‘ is p instead of y. It is straightforward to see 
that S’ is a k-round run. The only nontrivial issue is to show that every message in S‘ is honest. 
But this follows from Lemma 2.1, since every message in S is honest, and S‘ is i-equivalent to S for 
every player i. Now S’ does not satisfy p, since p does not satisfy cp. Therefore, since S’ is i-equivalent 
t o  S for every player i, it follows that cp is not implicit knowledge after r rounds of S. This was to 
be shown. 

4. A new axiom 

In this section, we present an interesting new axiom, which we shall show is sound. Like the 
conservation principle, this axiom is quite robust under a number of changes in our assumptions. 

Define a primitive state formula to be a formula that completely describes a primitive state. For 
example, if there are exactly two primitive propositions, namely p and q, then up to equivalence, 
there are exactly four primitive state formulas, namely p h q ,  p A-q, -p Aq, and -p A -4. The new 
axiom is: 
I-a +. (K1 -a v ... v K, -a), 

where a is a primitive state formula, and where 1, ..., n are all the players. Note that Kj-a appears 
within this new axiom for every player j .  This axiom says that if it is implicit knowledge that a 
primitive state is impossible, then the stronger fact is true that some player knows that the primitive 
state is impossible. In other words, if by putting all of their information together the players could 
rule out the primitive state a, then some player, by himself, could have ruled out a. This is quite 
surprising, since we might imagine that it could happen that the reason it is implicit knowledge that 
a primitive state is impossible is because of some complicated combination of “high depth knowledge” 
of the various players (we shall define the depth of formulas shortly). 

To prove the soundness of this axiom, let us consider the contrapositive. The contrapositive says 
that if all of the players individually think that the primitive state a is possible, then -a is not implicit 
knowledge. We now show that this is true about an arbitrary k-round run S. Assume that in S, all 
of the players think that the primitive state a is possible, So, all of the players think that a is possible 
after the 0th round of S. We now show that -a is not implicit knowledge after the 0th round. Let 
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S' be the O-round prefix of S. Let S" be a 0-round run in which a is the primitive state, and which 
is i-equivalent to S' for every player i. Thus, each player learns the same information from nature 
in (the 0th round of) S" as in S'. Since all of the players think that a is possible after the 0th round 
of S, it is easy to see that S" is indeed a run. Since S" a, and since S" -i S' for every player i, 
it follows that -a is not implicit knowledge after the 0th round of S, which was to be shown. Hence, 
by the conservation principle for implicit knowledge, it follows that -a is not implicit knowledge after 
the kth round. Hence, -a is not implicit knowledge in S, which was to be shown. 

Example 4.1. We now show that the formula that results by allowing a in our new axiom be a 
primitive proposition p, rather than a primitive state formula, is not sound if there are at  least two 
primitive propositions. Assume that there are two primitive propositions p and q, and two players, 
Alice and Bob. Consider the O-round run where both p and q are false, and where, in the 0th round, 
Alice learns that p and q are either both true or both false and Bob learns that 4 is false (but he 
learns nothing about p ) .  Then -p is implicit knowledge, since Alice and Bob could combine their 
information and learn that p is false. However, neither Alice nor Bob know that p is false. Thus, 
the new axiom does not hold if we were to let a be p .  

We just showed that one generalization of our new axiom is not sound. We now give a sound 
generalization. Let us say that player i is indifferent to the primitive proposition p if for each truth 
assignment t that player i thinks is possible, he also thinks that the truth assignment f' is possible, 
where r' is the same as t except that p is true in t if and only if p is false in t'. Let a be a pmkl 
sure formula, that is, a formula which describes a truth assignment to a subset X of the primitive 
propositions (if X were the set of all primitive propositions, then we would have a primitive state 
formula). If every player is indifferent to every primitive proposition that is not in X, it is not hard 
to show that 1-a + (K1-a V ... V h;,-a), is still sound, even though a is only a partial state formula, 
and not a (full) primitive state formula. This may be important in practice, where there may be 
infinitely many primitive propositions, but where, except for those in a small set X, every player may 
be indifferent to all of them. 

To help understand the new axiom, we now give a general principle of implicit knowledge which 
has the new axiom as a corollary. We begin with some definitions. If X is a set of extended formulas, 
and u is a single extended formula, then we say that Z implies u, written 2 k u ,  if every run that 
satisfies every member of Z also satisfies u. Thus, Z k u  if there is no "counterexample" run that 
satisfies every member of Z but does not satisfy u. We may write Z V u  if it is not the case that 
Z I= u. If X is a singleton (T), then we may write T P u for (T) k u. 

The depth of a formula 9, denoted depth(cp), is defined as follows: 
1. depth(p)=O if p is a primitive proposition 
2. depth(-cp) = depth(cp) 
3. depth(cpi = max(depth(cpi), depth(cp2)) 
4. depth(Kjcp) = 1 + depth(ip) 

Note that we are only defining the depth for formulas, not for extended formulas. 

As before, let the players be 1, ..., n. Let us say that an extended formula cp follows fmm the deprh 
k knowledge of the players in run S if there are formulas (PI, ..., cpn, each of depth at most k, such that 
S I= Kjcpi for each player i ,  and (cpl, ..., cpn) 

The next theorem helps give us some insight about implicit knowledge in runs. We shall show that 
cp. 

our new axiom follows easily from it. 
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Theorem 4.2. Let cp be a depth k formula that is implicit knowledge in mn S, that is, S f= Ip. Then cp follows 
from the depth k knowledge of the plaprs in run S. 

This theorem follows easily from a result in Section 11. It is surprising for the same reasons we gave 
earlier that our new axiom is surprising: we might imagine that it could happen that the reason that 
cp is implicit knowledge is because of some complicated combination of high depth knowledge of the 
various players. 

We now show that our new axiom follows directly from a special case of this theorem. We need 
the following simple lemma. 

Lemma 4.3. Let X be a set of propsitional fonnub, and let a be a primitive state formula. If Z P -4 then 
u +-a f o r m m e o E 2 .  

Proof. 
by a makes u true for every a E H. It again follows easily that X l# -a. The lemma follows. U 

We now show that the'new axiom follows from Theorem 4.2 and Lemma 4.3. Assume that I-a 
holds in run S. We must show that S p Ki-a for some player i. Since -a is a propositional formula, 
it follows from Theorem 4.2 that -a follows from the depth 0 knowledge of the players in run S. 
That is, there are propositional formulas (PI, ..., cp,, such that S I=K,qi for each player i, and 
(PI, ..., cp,,] l= cp. By Lemma 4.3, cpi &-a. This was to be shown. 

5. An S5-consistent formula that is not satisfiable under communication 

Assume that u y -a for each u E Z. It follows easily that the truth assignment represented 

-a for some player i. Hence, S 

Assume that there is only one primitive proposition p, and only two players, Alice and Bob. Let 
cp be the formula 

(2) KAlue(bA NKAl&p A NKBobp)v(mpA NKAliwNpA KB&NP)) 

This is formula (1) from the introduction, where we have replaced players 1 and 2 by Alice and 
Bob. It is easy to verify that cp is SS-consistent (in the sense that there is a model of S5 which 
satisfies this formula). In this section, we show that no run satisfies cp. Thus, -9 is valid in our 
system. In particular, this shows that S5 is not a complete axiomatization for knowledge under 
message exchange. In the next section, we give two sound and complete axiomatizations (one using 
implicit knowledge and one not using implicit knowledge). 

Let cp1 be the formula p A - K ~ / i ~ ~ p  A - K ~ ~ b p ,  which says that p is true, and that neither Alice nor 
Bob knows that p is true. Let cp2 be the formula - p A  -KA/iw~pAKBOb-~, which says that p is false, 
that Alice does not know that p is false, and that Bob knows that p is false. Then the formula cp 
that we wish to show is not satisfied by any run is KAIife('p1Vm). 

It is instructive to give two proofs that cp is not satisfiable. The first proof, which is somewhat 
informal, proceeds as follows. 

Let S be a k-round run that satisfies cp. Since everything Alice knows is true, it follows that S 
satisfies cp1Vcp2. Therefore, Alice does not know whether p is true or false in S. Also, Alice can 
reason to herself as follows: 

I know that either cp1 or cp;! hoia3. Assume chat cp1 hol&. Then p wuld be true, and Bob wuki not 
know that p is me ,  @st as I do not know that p is tme. In patticular, since we muki both think that 
it is possible that p is false, we wuld not have implicit knowledge that p is tme. This follows immediate& 
from the axiom Ip => (KAlkepVKBobp) of Section 4, where the primitive state formula u is -p. In the 
next round, Bob could correctly send me a message sqyirg that he does not know that p is false. This 
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wuld  tell me that q~ is false, since ~JQ implies that Bob knows that p is false. Since I already know 
that either cp1 or rp2 hokis, I could then deduce that (PI holh. But cp1 implies that p is tme, and m I 
would deduce that p is true. In particutar, ajler the next round, Bob and I wuld have implicit knowledge 
that p is true. TIris viohtes the consemion principle for implicit knowledge, since I already observed 
that p W(IS not implicit knowledge. This contradiction shows that 91 is impossible. Therefore, cp2 bl&, 
and m p is false. I have just pmven that p is false. and m I know that p is false in run S. But this 
contradicts the fact that I do not know whether p is true or false in run SI 

The second proof shows directly, without appealing to the notion of implicit knowledge, that QJ is 
unsatisfiable. Let S be a k-round run that satisfies cp. Now cp implies -KAIice-cpl, since if Alice knows 
that cp1 is false, then she knows that cp2 is true, although it is clear that the formula K,4fiecp2 is 
inconsistent. We have shown that Alice thinks that cp1 is possible. This means that there is some 
k-round run S1 that is Alice-equivalent to S and that satisfies cp1. In particular, p is true in S1. Let 
S2 be just like S1, except that p is false in S2. As in the proof of the conservation principle for 
implicit knowledge, it is easy to see that S2 is a k-round run, which is both Alice-equivalent and 
Bob-equivalent to S1. Now S1 (PI, and so S1 b p .  Hence, S1 /= w K ~ ~ 6 - p .  Therefore, since S1 and 
S2 are Bob-equivalent, it follows that S2 b -KBob-p. Now S2 is Alice-equivalent to S, since S2 is 
Alice-equivalent to S1, which is Alice-equivalent to S. So, since S I= cp, it follows that S2 b cp1Vcp2. 

Clearly S2 I# cpl, since S2 I= -p. Hence, S2 I=-. In particular, S2 I= &obNp. But we showed that 
S2 I= ~ K ~ 0 b - p .  This is a contradiction. 

We have just given two proofs that there is no run that satisfies cp when (a) there is exactly one 
primitive proposition p and (b) Alice and Bob are the only players. However, if either (a) or (b) is 
false, then there is a run that satisfies cp. We now exhibit a run that satisfies p if (b) is false, and 
leave as an amusing exercise for the reader to find a run that satisfies cp if (a) is false. 

Example 5.1. Assume that there are three players (Alice, Bob, and Charlie), and one primitive 
proposition p. We now exhibit a 1-round run that satisfies cp. In fact, it is convenient to exhibit two 
such runs, S1 and S2. In S1, the primitive proposition p is true; in the 0th round of run S1, neither 
Alice nor Bob learn that p is true, but Charlie learns that p is true. In round 1 of S1, Alice receives 
a message from Charlie saying: “In the next round, I will not send any messages to Bob” (it is easy 
to see that this can be viewed as one of our messages about the future). In round 2 of S1, Alice 
receives a message from Bob saying: “I do not know that p is true”, and a message from Charlie 
saying: “If p is false, then Bob knows that p is false”. In S2, the primitive proposition p is false; in 
the 0th round of run S2, Alice does not learn that p is false, but both Bob and Charlie learn that p 
is false. In round 1 of S2, Charlie receives a message from Bob saying: “I know that p is false”. In 
round 1 of S1, Alice receives a message from Charlie saying: “In the next round, I will not send any 
messages to Bob”. In round 2 of S1, Alice receives a message from Bob saying: “1 do not know that 
p is true”, and a message from Charlie saying: “If p is false, then Bob knows that p is false”. Nq 
other messages are sent in either run. Note that the two runs are Alice-equivalent. In both runs, 
Alice still does not know whether p is true or false after the second round. This is because the two 
runs are Alice-equivalent, and in one run p is true, while in the other, p is false. 

We now show that cp is satisfied by, say, run S1. In S1 (that is, at the end of round 2 of Sl), 
Alice knows that Bob does not know that p is true. This is because (a) Bob told her in round 2 that 
he (Bob) does not know that p is true, and (b) she knows that he did not learn that p is true in 
round 2, since she knows that no one sent him any messages in round 2 (Charlie promised Alice that 
he would not send Bob any messages, and she also knows that she certainly didn’t send any messages). 
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Now Alice knows that there are two possibilities: (i) p is true, and (ii) p is false. In case (i), Alice 
knows (as we just saw) that Bob does not know that p is true, and she of course knows that she 
does not know that p is true; hence, Alice knows that if case (i) holds, then formula ‘pi holds. Alice 
also knows that if case (ii) holds, then Bob knows that p is false (since Charlie told her this, and 
since once Bob knows that p is false, Bob always knows that p is false.) In case (ii), she of course 
also knows that she does not know that p is false. Hence, Alice knows that if case (ii) holds, then 
formula p2 holds. So Alice knows that either p1 or p2 holds. Hence, run S1 satisfies KAliee(plVpd; 
that is, run S1 satisfies p. 

6. Complete axiomatizations and decision problems 

In this section we give a sound and complete axiomatization for the extended formulas that are 
valid in runs, that is, which are satisfied by every run. We also give a sound and complete 
axiomatization where only formulas, rather than extended formulas, are allowed in the axioms. 

We begin by presenting the classical axiom system S5 (or actually, its generaliytion to multiple 
players). Following Halpern and Moses [HM2], we refer to the system as S5n when there are n 
players 1, ..., n. The axioms are: 

All substitution instances of propositional tautologies. 
Kicp+cp (“Whatever player i knows is true”). 
Kicp+KiKip (“Player i knows what he knows”). 
--Kip.JKj*Kip 
Kip1 AKj(p1*9~) 3Kjq2 

There are two rules of inference: modus ponens (“from pi and pi =+ (p2 infer p2”) and knowledge 
generalization (“from p infer Kip”). 

We now give Halpern and Moses’ system SSI,,, which they show is a sound and complete 
axiomatization for knowledge and implicit knowledge in Kripke structures [HM2]. S51, contains all 
of the axioms and rules of SS,, along with some axioms for implicit knowledge. The first implicit 
knowledge axiom is: 

Kip + Ip (“Whatever each individual player knows is implicit knowledge”). 
The remaining axioms of SSI,, say that implicit knowledge behaves like individual knowledge. 

b + P  . Ip =+ IIp . -rp+r-rq 

b 1  /I I(cpl+ ‘92) + IP2 

(“Player i knows what he does not know”). 
(“What player i knows is closed under modus ponens”). 

Let MLn (where ML stands for “Message Logic”) be SSJ,,, along with our new axiom from Section 
4: . I-u+ (K1-u V ... V Kn-a), 
where a is a primitive state formula. Note that K-a appears within this new axiom for every player 

i. 
We are now ready to state our completeness theorem for extended formulas. Of course, since we 

are interested in communication, we only consider the case where there are at least two players. (We 
note that for the case of exactly one player, we would just add another axiom which says Itp+Klp, 
which the one player is player 1.) 

Theorem 6.1. ML, is a sound and complete axiomatization for valid exfended formulas in tuns with n 1 2 plaprs. 
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Theorem 6.1 is hard to prove. Details will appear in a later version [FHV2] of this paper. 

It is natural to ask for a sound and complete axiomatization when only formulas, rather than 
extended formulas, are allowed in the axioms (that is, where the axioms do not mention implicit 
knowledge). We now give such an axiom system, which we call ML,- (where the superscripted 
minus sign refers to the fact that implicit knowledge is not part of the language). The system consists 
of S5,. along with a new axiom, which we shall give shortly. 

Define a pure knowledge formula to be Boolean combination of formulas of the form Kip, where cp 

is arbitrary. For example, K p V ( K 1 - K p  A wK2-p) is a pure knowledge formula, butph-Kip is not. 
Assume that there are n players 1, ..., n. Our new axiom is: 

( 3 )  K ~ ( Q I + ~ u ) + K ~ ( Q I +  (Kl-aV ... VK,,-a)), 

for all players i ,  all pure knowledge formulas cp, and all primitive state formulas a. 

Note that Kj-a appears within this new axiom for every player j .  A loose translation of this 
axiom is "If player i knows that some 'pure knowledge' QI is incompatible with some primitive state 
a, then player i knows the stronger fact that the pure knowledge cp forces some player to know that 
the primitive state a is impossible". We now show that this somewhat unintuitive axiom (3) is sound. 
If not, then let S be a run that does not satisfy (3). So S k K~(QI+ -a) and S Kj(q+J,), where 
J, is the formula Kl-aV ... VK,-a. Since S F Kj(p+J,) ,  there is a run S' such that S-jS' where 
S' k QI and S' /= -J,. Since I-a+ J, is valid (this is our new Message Logic axiom), it follows that 
S' l# I-a. Therefore, there is a run S" such that S" -j S' for every player j, where S" k a. Since 
S" -j S' for every player j ,  it is straightforward to show that every pure knowledge formula satisfied 
by S' is satisfied by S". Therefore, S" /= p. By transitivity of -i, we know that S" - j  S. Therefore, 
since S t= Ki (QI+ -a), it follows that S" a. 
This is a contradiction. Hence, (3) is sound. 

cp + -a. But we already showed that S" I= cp and S" 

The formula 

(4) KA[jce((NKBobp -KB&-P) * P )  KAlice((-KBobP A "KB&-P) * (KAlj,&vKB&P)). 
is an instance of the new axiom (3). It is straightforward to verify that (4) implies that formula (2) 
in Section 5 is unsatisfiable. 

As before, if we allow a in the new axiom (3) to be a primitive proposition, rather than a primitive 
state formula, then the axiom does not remain sound, even if a is the only primitive proposition that 
appears in cp. 

Theorem 6.2. ML,- is a sound and complete axiomrimtion for valid formulas in runs. 

Theorem 6.2, like Theorem 6.1, is hard to  prove. Details will appear in a later version [FHVZ] of 
this paper. 

It is interesting to consider what would happen if we were to  allow only messages about the past 
(that is, if in our definition of the class of messages, we were to eliminate clause 2, which defines 
messages about the future). 

Theorem 6.3. If only messages about the p t  are allowed, and if there are exact& tw players, then our 
axiomathations are still complete (rhat is, Theorem 6.1 and Theorem 6.2 still hold). However, our ariomatizations 
are not complete if there are at least three players. 

Proof. The first part of the theorem holds, since our completeness proof in the case of two players 
does not require messages about the future. We now give an example that shows that if we were to 
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restrict messages to be about the past, then our axiomatizations are not complete for at least three 
players. Assume that there are three players, say, Alice, Bob, and Charlie. Let p be a primitive 
proposition. If every message is about the past, then it is impossible to amve at a situation where 
Alice knows that Bob knows p and that Charlie does not know p: this is because Alice never knows 
whether Bob has just told Charlie that p is true. It is instructive to see how, by allowing messages 
about the future, it is possible for Alice to know that Bob knows p and that Charlie does not know 
p (for pedagogical reasons, we shall use slightly more general “messages about the future” than we 
have already defined, although of course this is not essential). Bob sends a message to Alice, telling 
her that he knows p and that he has never sent a message to Charlie and never will; Charlie sends 
a message to Alice telling her that he does not kn0w.p; and Alice does not send any messages to 
Charlie. 

We close this section by giving the complexity of the decision problems for ML,, and ML,,-. It is 
known [HM2] that the decision problem for S5, (with n 2 2 )  is PSPACE-complete. The next theorem 
says that ML, and ML,’ are no harder (and no easier) than S5,. Of course, in ML, and MLn-9 we 
are interested only in the case when n 1 2 ,  that is, when there are at least two players. 

Theorem 6.4. The deciswn problems for ML, and ML,- are PSPACE-wmplete (when n 1 2). 

7.  What if communication is reliable? 

In this section, we briefly consider the situation where communication is reliable, that is, where 
messages can never be never lost. In this case, the set of states of knowledge that can arise is greatly 
restricted, as we shall show. Nevertheless, the conservation principle and our axioms are still sound, 
as the reader can verify. 

Let us say that two runs are equivalent if they satisfy the same extended formulas. 

Theorem 7.1. Assume that there are on& tw plawrs, and that wmmunication is relkble. Then evev run is 
equivalent to a I-round run where both plaprs send em& one message. 

Proof. Assume that the two players are players 1 and 2. Let S = (y ,  T, sent, received) be a run (where 
communication is reliable). Of course, received is now redundant, since received(& j ,  r) =i sent(j, i, r )  for 
every i ,  j , r .  If V is a set of primitive states, then let us say that V is possible initial information about 
nature for p h p r  I if there is some primitive state y’ such that S’ = (y‘, p, sent, received) is a run, where 
p(1)  = Y and p(2) = T(2). Intuitively, “V is possible initial information about nature for player 1” 
if as far as player 2 is concerned, all of player 1’s messages would have been legal if Y would have 
been player 1’s initial information about nature. Similarly, we define what if means for a set V of 
primitive states to be possible initial information about nature for p h p r  2. 

IF Y is a set of primitive states, then let r y  be the formula 

(5) (A{Kl-u: u p Y)) A (A{-q-u: E: Y)). 
Intuitively, ~y says that player 1 thinks that precisely the primitive states in V are possible. Let ‘pi 
be the formula 

(6) v{ry: V is possible initial information about nature for player 1) 

Intuitively, ‘pi gives precisely the information that player 2 has about player 1 in S. Similarly, define 
m. Let S#= (y, T, sent’, received’) be a 1-round run (with y and T the same as in S), where the only 
message that player 1 sends is “I knew just after round 0”, and similarly for player 2. It is not 
hard to see that S’ is a 1-round run that fulfills the conditions of the theorem. 
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Corollary 7.2. Assume that there are onh two phprs, and that communication is reliable. Let the set of 
primitive states be fLwd Then there are on@ a finite number of distinct equivalence classes of tuns (where tnv 
runs are in the same equivalence class if thty satisfv the same extended formulas). 

Proof. Since there are only a finite number of distinct 1-round runs of the type S’ as defined in 
the proof of Theorem 7.1, the result follows immediately. 

Theorem 7.1 and Corollary 7.2 contrast with the situation in which communication is unreliable. 
For, let Sk be a k-round run in which Alice tells Bob in the first round that Alice knows that the 
primitive proposition p is true, where Bob acknowledges to Alice in the second round that he received 
this message from Alice, where Alice acknowledges to Bob in the third round that she received Bob’s 
acknowledgment, and so on through the kth round. It is easy to see that Sk is not equivalent to any 
(k- 1)-round run, and that no two of the runs sk are equivalent. 

We note that it follows from Corollary 7.2 that our axiomatizations in Section 6 are not complete 
(although, as we have noted, they are sound). In particular, it can be shown that if there are exactly. 
two players and if a is a primitive state formula, then the formula (KlK2aAK2Kla) e K i K 2 K l a  is valid. 

The reader should note that the results of this section apply only to the case of exactly two 
players. The case of three or more players is currently under investigation. 

8. Changing the class of messages 

In Theorem 6.3 and Section 7, we considered some effects of changing the class of messages. In 
this section, we briefly discuss the effect more generally. Most importantly, it turns out that our class 
of messages is rich enough that increasing the class in a reasonable way does not cause the set of 
axioms to change. We now discuss what we mean by this claim. 

If all of the assumptions we have made hold, except that the class of messages is changed to A, 
then let R(&‘) be the set of all runs (involving these messages), and let A(&) be the resulting 
complete axiomatization for the valid extended formulas. Let & be the class of messages we have 
allowed in this paper, and assume that J 4 C . k .  Assume further that our axioms remain sound when 
d is the class of messages (that is, assume that A(&)GA(&). It turns out that the completeness 
proof then shows that A(&) =A(&), that is, our axiomatization is still complete. 

It is instructive to give a false “proof” of this fact. It is easy to convince oneself that if &1E&2, 

then A(&2)EA(&1). After all, if we have more possible runs, then there should be fewer valid 
formulas. Therefore, in our case, A(&)EA(&). Since by assumption A(&)SA(&), it follows that 
A(&) =A(&’), as desired. 

It is indeed true that if the class of models increases, then the set of axioms can only decrease 
(or stay the same). However, in our case, a “model” is not a run, but rather, a pair (&a), where 
S is a run and W is a set of runs. Namely, &? is the set of runs that are conceivable; for us, a is 
R ( . k ) ,  where d is the class of messages. So the set of models is not necessarily comparable, even 
if E V K 2 .  

Example 8.1. Let p and 4 be primitive propositions. Let .A41 contain exactly one message, namely, 
“I know p”, and let &2 contain exactly two messages, namely, ‘‘I know p” and “I know q”. Let u 

be the formula -K1K24, and let 7 be the formula “ ( ( K ~ K ~ P ) A K ~ ( ~ A ” K ~ K ~ ~ ) ) .  It is easy to see that 
u is in A(&1) (since there are no messages involving 4),  but not in A(&). We now sketch a proof 
that 7 is in A ( d 2 )  but not in A(dZ1).  We first show that 7 is in A(&& If not, then let S be a run 
in R ( 4 )  that satisfies (KlKg)AK1(qA-K3K2q). Since S satisfies KlK2p, there has been at least 
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one round of message exchange in S. Since player 1 knows q, for all player 1 knows, the following 
occurred: player 2 learned that q was true in the 0th round, and told player 3 in the next round 
that he (player 2) knows q. In this case, player 3 would know that player 2 knows q. Since as far 
as player 1 is concerned, this gives a possible run, it follows that player 1 does not know that player 
3 does not know that player 2 knows q. This is a contradiction. We now show that T is not in 
A(uK1). For, let S be a run where player 1 learns in round 0 that q is true, and where player 2 tells 
player 1 that player 2 knows that p is true. Then S satisfies -7, since player 1 knows that player 3 
cannot know that player 2 knows q (since there are no messages involving 9) .  Thus, A(uK1) and 
A(uK2) are incomparable, even though cA41 C 4 .  4 

9. Knowledge structures and knowledge worlds 

In this section we briefly review the definition of knowledge worldr from [FHVl]. We first discuss 
them informally. 

Example 9.1. Assume there are two players, Alice and Bob, and that there is only one primitive 
proposition p. There are various “levels” of knowledge. At the “0th level” (“nature”), assume that 
p is true. The 1st level tells each player’s knowledge about nature. For example, Alice’s knowledge 
at the 1st level could be “I (Alice) don’t know whether p is true or false”, and Bob’s could be “I 
(Bob) know that p is true”. The 2nd level tells each player’s knowledge about the other player’s 
knowledge about nature. For example, Alice’s knowledge at the 2nd level could be “I know that Bob 
knows whether p is true or false”, and Bob’s could be “I don’t know whether Alice knows p”. Thus, 
Alice knows that either p is true and Bob knows it. or else p is false and Bob knows it. At the 3rd 
level, Alice’s knowledge could be ‘‘I know that Bob does not know whether I know about p”. This 
can continue for arbitrarily many levels. N 

We now give the formal definition of a (knowledge) world. We assume a fixed finite set of 
primitive propositions, and a fixed finite set 9 of players. A Orh-order knowledge assignment, fo, is a 
truth assignment to the primitive propositions. We call G o >  a l-ury world (since its “length” is 1). 
Assume inductively that k-ary worlds d o ,  ...&-I > have been defined. Let wk  be the set of all k-ary 
worlds. A kth-order knowledge assignment is a function fk: B+2wk. Intuitively, fk associates with each 
player a set of “possible k-ary worlds”. There are certain semantic restrictions on fk, which we shall 
list shortly. These restrictions enforce the properties of knowledge mentioned above. We call 
G o ,  ...fk > a (k+ 1)-ary world. (Although we shall deal only with worlds, we note for completeness 
that an infinite sequence Qoflf2, ... > is called a knowledge structure if each prefix G o ,  ...&I > is a 
k-ary world for each k.) 

Before we list the restrictions on fk, let us reconsider Example 9.1. In that example, fo is the truth 
assignment that makes p true. Also, fi(A1ice) = (p,jj) (where by p (respectively, p’) we mean the 
1-ary world G o > ,  where fo is the truth assignment that makes p true (respectively, false)), and 
fl(Bob) = Cp). Saying fl(Alice) = Cp,p) means that Alice does not know whether p is true or fake. 
We can write the 2-ary world <foJ1> as <p, (Alice-(p,jj),Bob-(pp))>. Let us denote this 2-ary 
world by wl. Let ~2 be the 2-ary world <~ , (Al i ce -Cp,~~ ,Bob~(p) )> ,  and let y be 
<p, (Alice-(p),Bob-Cp)) >. In Example 9.1, f2(Alice) = (wl ,y) ,  since Alice thinks both wl (where 
p is true and Bob knows it) and % (where p is false and Bob knows it) are possible worlds. Similarly, 
h(Bob) = ( w l , y ) ,  since Bob thinks both wl (where p is true and Alice does not know it) and ~3 
(where p is true and Alice knows it) are possible worlds. 

A (k+l)-ary world Go, ...fk > must satisfy the following restrictions for each player ic 
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G o .  ...&I > E fk ( i ) ,  if k 1 1  (“The real k-ary world is one of the possibilities, for each player”). 
In our example, we see that indeed p E fl(A1ice) and p E fl(Bob). Furthermore, wl E: f2(Alice) 
and wl f f2(Bob), where we recall that wl is the “real” 2-ary world a o f 1 > .  

If <go, ...&-I > E fk( i ) ,  and k >  1, then gk-l(i) = f i - i ( i )  (“Player i knows exactly what he 
knows”). Let us consider our example. Alice thinks there are two possible 2-ary worlds, 
namely wl and ~ 2 ,  since fz(A1ice) = (y , y). If we write y as <go,gl>, then indeed gl(A1ice) 
= (p$) = fi (Alice), as required. Intuitively, although Alice has doubts about Bob’s knowledge, 
she has no doubts about her own knowledge. Thus, in all 2-ary worlds she considers possible, 
her knowledge is identical, namely, she does not know whether p is true or false. 

<go, 4 3 - 2  > E fk-1 ( i )  iff there is a (k - 1)st-order knowledge assignment gk-1 such that 
<go, ...,gkk-2,&l > E fk (i), if k > 1 (“i’s higher-order knowledge is an extension of i’s lower-order 
knowledge’*). In our example, since Alice thinks either p or jj is possible, there is some 2-ary 
world she thinks possible (namely, q )  in which p is true, and there is some 2-ary world she 
thinks possible (namely, y) in which p is false. Conversely, because she thinks wl and y 
are both possible, it follows that she thinks either p or jj is possible. 

We now define what it means for an (r+l)-ary world Go,...,&> to satisfy formula cp, written 
Go, ...& > kcp, if r 1 depth(cp), where depth(cp) is defined as in Section 4. 
1. G o ,  ...& > /=p, where p is a primitive proposition, if p is true undeF the truth assignment lo. 
2. Go ,... f r>  I=--cp if Go ,... f r >  Vcp. 
3. Go,...&> kcpiAcp2 if G o  ,..., f r>  I=p1 and Go ,... &> I=R. 
4. Go,...&> kZ+p if <go ,... ,gf-l > l=p for each <go ,... ,gf-l > E L(i). 

Let us again consider Example 9.1. Let wl and y be, as before, the two 2-ary worlds that Alice 
considers possible. Then w1 k K h b p ,  since according to w1, the only 1-ary world Bob considers 
possible is Cp >. Similarly, y k &&”P. Hence, both w1 and y satisfy (KhbpVKbb-p). Since both 
of the 2-ary worlds that Alice considers possible satisfy (&,bpv&bwp), it follows that in our 

G O f i  f 2  > k~Alice(KBobPV&ob”P). 
The following crucial lemma shows a certain robustness in the definition of the satisfaction of a 

formula in a world. 

Lemma 9.2. Assume that depth(cp) = k and r 2 k. Then <To, ...& > kcp i f f  <fog ...A > b.cp- 
10. Message-based knowledge worlds 

In this section we define a restricted class of knowledge worlds, which we call “message-based 
knowledge worlds’*. The reason for the name is that these turn out to be precisely the worlds that 
arise under message exchange. 

First, l-ary (respectively, 2-ary) message-based knowledge worlds are exactly the same as l-ary 
(respectively, 2-ary) knowledge worlds, as defined in Section 9. Then (k+ 1)-ary message-based 
knowledge worlds (for k 2 2) are (k + 1)-ary knowledge worlds 4 0 ,  ...& > that satisfy the following 
additional restrictions for each player i: (a) fk(i) is a set of k-ary message-based knowledge worlds, 
and (b) whenever <go&, ...,&-I > € f k ( i ) ,  and whenever go’ E g103 for every player j ,  then 
<g{,gl, ...,&-I > Efk(i). What condition (b) says is that whenever player i thinks that a world 
w- <go,gl, ...,gk-l > is possible, then he also thinks that every world <gi,gl, ...&-I > is also possible, 
for every truth assignment gd consistent with everyone’s knowledge about nature in w, that is, 
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consistent with g l .  Intuitively, a good way to think of this is that instead of players “imagining” 
possible worlds that look like <go&, ...&-I >, every player imagines “worlds” < g l ,  ...&-I >, where 
automatically for every truth assignment go consistent with g l ,  the player thinks that the world 
<go&, ...,gk-l > is possible. 

The next theorem shows that message-based knowledge worlds correspond to the knowledge gained 
in runs. 

Theorem 10.1. For each k-round nm S and each nonnegative integer r, there is an r-aty message-based 
knowledge wrld w= < fo, f 1 ,  ...,&I > such that S and w satisfy precisely the same formulas of depth r -  1 or 
less. Gmersely, for each r-ary message&ased knowledge world w, there is a k-round run S uor some k) such 
that S and w satisfy precise& the same formulas of depth r - 1 or less. 

The difficult step of the proof consists of taking an arbitrary message-based knowledge world and 
producing a run, including a complete description of what messages each player sends in each round 
and which messages are lost, such that the world and the run satisfy the same formulas (of appropriate 
depth). 

11. Implicit knowledge in message-based knowledge worlds 

Implicit knowledge of a group of players is the knowledge that can be obtained by pooling together 
the group’s knowledge. Let G o ,  ...& > be a (k+ 1)-ary world. For each player i ,  the set f k ( i )  consists 
of all the k-ary worlds that player i thinks are possible. Thus, implicitly the players think that 
precisely the k-ary worlds in n fk(i) are the possible ones. If cp is a formula of depth r, where r S k, 
then we say that q o ,  ...A > G5isfies Icp if cp is satisfied by all the k-ary worlds in nfi (i). 

I € +  

Consider now an extension Go,  ...fk,fk+l > of G o ,  ...fk >. In view of Lemma 9.2, we might be 
tempted to believe that Go, ...A, fk+l  > satisfies Icp if and only if G o ,  ...& > satisfies Icp. Unfortunately, 
this is not the case; instead, implication holds in only one direction. Thus, if d o ,  ...fk > satisfies 19, 
then also G o ,  . . . fk , fk+l  > satisfies Icp. But it is possible that Go,...&> does not satisfy Icp, while 
G o ,  ...JkIfjc+l > satisfies Zcp. This can happen because a k-ary world w can be a member of nfk(i), 
even though no extension of it is a member of fl&+i(i).  (Note, however, that if a world is in f i ( i ) ,  
then some extension of it is in &+l(i),  by rest;f&on (K3) on knowledge worlds.) 

Put differently, the extended formula Icp, where cp is a formula of depth k, is not a formula of 
depth k +  1, but rather it is a formula of arbitrary depth. To understand this, recall our example of 
implicit knowledge from the introduction. If Alice knows + and Bob knows rC, + cp, then together they 
have implicit knowledge of p, though neither of them might individually know cp. Now even though 
the formula Q, is of depth k, the formula t) can be of arbitrary depth, so the implicit knowledge of 
cp is essentially knowledge of arbitrary depth. Unfortunately, the framework of knowledge structures 
and knowledge worlds requires that formulas be assigned a well-defined depth, so this framework 
cannot handle implicit knowledge (in particular Lemma 9.2 would fail for extended formulas if we 
were to define depth(1p) = 1 + depth(cp)). 

Surprisingly, in the context of message-based knowledge, implicit knowledge is quite “well behaved”. 
The basis for this is the following property of message-based knowledge worlds. 

Lemma 11.1. In u message-based knowledge world, if k > 1, then <go, ...a4 > E f l f k - l ( i )  if and only f 

1E.9 

tC.9 there is gk-1 such thar <go, ...,gk-2&4 > E n fk( i ) .  
t E 9  

Note the strong similarity between Lemma 11.1 and restriction (K3) on knowledge worlds. As we 
noted earlier, Theorem 4.2 follows from Lemma 11.1. 
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As we said before, Lemma 11.1 does not hold for arbitrary knowledge worlds. For message-based 
communication, it follows from Lemma 11.1 that if cp is a formula of depth k, then we can define 
1cp to be of depth k +  1. We can then define the semantics of extended formulas in message-based 
knowledge structures in a straightforward way, and extend Theorem 10.1 to deal with extended 
formulas. Details will be given in a later version of this paper. 

12. Concluding remarks 

The main point of the paper is that we cannot reason about knowledge without taking into account 
how the knowledge is acquired in the first place. We have focused here on distributed systems where 
knowledge is acquired via unreliable message exchange. Certain knowledge states were shown to be 
unattainable in this model. We have characterized the attainable knowledge states and axiomatized 
the formulas that are valid in in such states. It turns out that the basic feature of message-based 
knowledge is conservation of implicit knowledge. Thus our results. as well as recent results in [DM, 
DM, PR, RP], indicate that implicit knowledge is a fundamental concept to the understanding and 
analysis of distributed systems. 

In this paper we have focused on a particular model of communication. Our main assumptions 
are as follows. 

1. Nature never changes. 
2. Communication is synchronous, and proceeds in rounds. 
3. Communication is unreliable. 
4. IF a message is received at all, then it is received in the round it was sent. 
5. Messages are taken from a particular class of messages. 
6. Players “receive information about nature”, and then all information is obtained by communication, 

without any further input “From the outside”. 

Though these assumptions are quite natural, one may want to consider other models of commu- 
nication, where the above assumptions are changed. We believe that the issue of how communication 
afFects knowledge deserves a great deal of further study. Thus beyond its technical contributions, this 
paper opens up an interesting, and we hope fruitful, line of research. 
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