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Abstract: In Kripke semantics for modal logic, “pos- 
sible  world^" and the possibility relation are both 
primitive notions. This has both technical and con- 
ceptual shortcomings. From a technical point of 
view, the mathematics associated with Kripke. se- 
mantics is often quite complicated. From a concep- 
tual point of view, it is not clear how to use Kripke 
structures to model know!edge and belief, where one 
wants a clearer understanding of the notions that 
are primitive in Kripke semantics. We introduce 
modal structures as models for modal logic. We use 
the idea of possible worlds, but by directly describing 
the “internal semantics” of each possible world. It 
is much easier to study the standard logical questions, 
such as completeness, decidability, and compactness, 
ushg modal structures. Furthermore, modal struc- 
tures offer a much more intuitive approach to mod- 
elling knowledge and belief. 

1. Introduction 

Modal bgic can be described briefly as the logic 
of necessity and possibility, of “must be” and “may 
be”. (One should not take “necessity” and “possi- 
bility” literally. “Necessarily” can mean “according 
to the laws of physics” or “according to my beliefs”, 
or even “after the program terminates”.) Modal 
logic was discussed by several authors in ancient 
times, notably Aristotle in De Inrerpretatioone and Prior 
Amlystia, and by medieval logicians, but like most 
work before the modern period. it was non-symbolic, 
and not particularly systematic in approach. The 
first symbolic and systematic approach to the subject 
appears to be the work of Lewis beginning in 1912 
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and culminating in the book Symbolic Logic with 
Langford in 1932. Since then modal logic has been 
extensively studied by logicians and philosophers 
([Chl is a good textbook). More recently, modal 
logic has been applied in several areas of computer 
science, such as artificial intelligence [MH]. program 
verification and synthesis [MW.Pn,Pral]. hardware 
specification [Bo.RS], protocol specification and ver- 
ification [CES.SM], database theory [ CCF,Li], and 
distributed computing [HMl]. 

Lewis’ semantics for modal logic was of an al- 
gebraic cast. Algebraic semantics, however, though 
technically adequate (cf. [Gu,Mc,McT,Ts]), is nev- 
ertheless not very intuitive. In 194.6 Carnap 
[Cal,Ca2] suggested using the more intuitive ap- 
proach of possible wort% to assign semantics to mo- 
dalities. According to this approach, one starts with 
a set of possible worlds. Then statements of the 
form u p  (i.e., p 3 wessuri/y true) are interpreted in 
the following way: u p  is true if p is true in every 
“possible world”. (The idea that necessity is truth 
in all possible worlds is often credited to Leibniz 
[Bat], though this is historically debatable.) Possible- 
worlds semantics was further developed indepen- 
dently by several researchers [Bay, Hil, Hi2, Ka, 
Krl, Me, Mol, Pril, reaching its current form with 
Kripke [Kr21. The basic idea of the development is 
to consider, instead of a set of worlds that are 
possible outright. a set of worlds that are, or are 
not. possible with respect to each other. Kripke structures 
capture this intuitive idea. A Kripke structure can 
be viewed as a labeled directed graph: the nodes are 
the possible worlds labeled by truth assignments, 
and a world Y is possible with respect to a world u 
if there is an edge from I( to v. 

Kripke structures were immensely successful 
mathematical. tools and served as the basis for ex- 
tremely fertile research. Nevertheless, they do suffer 
from both technical and conceptual shortcomings. 
From a technical point of view, the mathematics 
associated with them is often quite complicated. For 
example, completeness proofs are either non-elegant 
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[Kr2] (Kripke himself described his completeness 
proof as “rather messy”), or non-constructive 
[Ma,Lem2]. (Only in 1975 did Fine come with an 
elegant and constructive proof [Fi], but his proof is 
far from straightforward.) Also. the standard tech- 
nique for proving decidability is to show that the 
logic has thefinitemdelpropzny, which is not straight- 
forward at all. Furthermore, in order to model dif- 
ferent modal logics, certain graph-theoretic contraints 
on the possibility relation between possible worlds 
have to be imposed; these constraints are very often 
far from intuitive, and sometimes they are not even 
first-order definable [Go]. 

From a conceptual point of view, it is not clear 
that Kripke structures are as intuitive as they are 
supposed to be. The basic problem is that in Kripke 
semantics the notion of a possible world is a pimitin? 
notion. (Indeed possible worlds are called reference 
pints in [Mo2] and indices in [Sc].) This works well 
in applications where it is intuitively clear what a 
possible world is. For example, m d m i c  bgic a 
possible world is just a program state [Prall, i.e.. an 
assignment of values to the variables and to the 
location counter, and in temporal bgic a possible 
world is just a point in time [Bu]. But in applications 
where it is not clear what a possible world is, e.g., 
in eNtemic logic, the logic of knowledge and belief, 
how can we construct a Kripke structure without 
understandir.g its basic constituents? Indeed, in dy- 
r:amic and temporal logic one constructs first the 
structures, and then proceeds to find the axioms 
[Bu,KP], while in epistemic logic one first selects 
axioms and then tailors the structures to the axioms 
[HM2.Re]. 

Furthermore, if we want to upp& modal logic it 
is often necessary to construct models for particular 
situations. But if we have no means of explicitly 
describing the possible worlds, how can we construct 
Kripke structures to model particular situations? 
Indeed, as pointed out in [FHV], there are simple 
scenarios in distributed environments that cannot 
be easily modelled by Kripke structures. 

We believe that our approach, which is to describe 
explicitly the “internal” semantics of a possible 
world, is a much more intuitive approach to mod- 
elling. We introduce ~aklstructures as models for 
modal logic. We use the idea of possible worlds, 
but in Carnap’s style rather than Kripke’s style. 
Thus, we define a modal structure to be essentially 
a set of modal structures. This is of course a circular 
definition, and to make it meaningful, we define 
work& inductively, by constructing worlds of greater 
and greater depth. A world of depth 0 is a description 
of reality. i.e., a truth assignment; a world of depth 
1 is essentially a set of worlds of depth 0; a world 

of depth 2 is essentially a set of worlds of depth 1; 
etc. Modal structures are worlds of depth O, and 
their recursive structure enables us to assign meaning 
to iterated modalities. 

Having introduced modal structures, we investi- 
gate their relationship to Kripke structures. It turns 
out that modal structures model individual nodes in 
Kripke structures, while Kripke structures model 
collections of modal structures. Thus, modal struc- 
tures can be seen as duals to Kripke structures. 
Nevertheless, it is much easier to study the standard 
logical questions, such as completeness, decidability, 
and compactness, using modal structures. The crucial 
point is that satisfaction of a formula in a modal 
structure depends only on a certain finite part of 
that structure. Furthermore, the “size” of that part 
depends on the “size” of the formula. Thus, the 
proofs of decidability and compactness are almost 
straightforward, and the completeness proof is both 
elegant and constructive. We urge the reader to 
compare our proofs to previous proofs (e.g., [Fr. 
Kr2, Lem2, Ma, Mc]) in order to appreciate their 
elegance. 

Beyond the technical usefulness of modal struc- 
tures, we claim that they are more intuitive and 
more appropriate to conceptual modelling. For ex- 
ample, the simple scenarios in distributed environ- 
ments mentioned above can be modelled by modal 
structures in a straightforward way [FHV]. We also 
demonstrate the intuitiveness of modal structures by 
modelling belief and by modelling joint knowledge, 
then using our techniques to prove decidability and 
completeness in these cases (and compactness in the 
case of belief; compactness fails for joint knowledge). 

The double perspective that we have now on 
modal logic, namely. Kripke structures and modal 
structures, turns out to be very useful in proving 
optimal upper bounds for the complexity of the 
decision problem. By their graph-theoretic nature, 
Kripke structures are amenable to automata-theoretic 
techniques [ES,Str,VW]. By combining our results 
for modal structures with a new automata-theoretic 
technique for Kripke structures, we prove that sev- 
eral of the logics that we study are complete in 
SPACE. 
2. Modal structures 

h i c  definifions. We now define structures that 
capture the essence of the “possible worlds” a p  
proach. (For the sake of simplicity, we restrict 
ourselves here to mml  modal logics [Ch]. Never- 
theless, this is not an inherent limitation of our 
approach.) In anticipation of subsequent develop- 
ments where modalities correspond to “attitudes” of 
agents or players, we allow multiple modalities 

306 



0 1 ,  ..., 0,. A good way to interpret the statement 
Dip is “after program i terminates, p must be true”. 
That is, one can view the structures we define here 
as models for the modal logic of atomic programs. 

We assume a fixed finite set of primitive prop- 
ositions, and a fixed finite index set 9 such that 
for each i E 8 ,  there is a modality Qi. Intuitively, 
a modal structure has various “levels”, where the 
0th level is a truth assignment to the primitive 
propositions, and where the kth level contains a set 
of “possible k-ary worlds” for each modality. For- 
mally. we define a Oth-order arsignmen.rs f o ,  to be a 
truth assignment to the primitive propositions. We 
call <h> a I-ury world (since its “length” is 1). 
Assume inductively that k-ary worlds 00, . . . f k - l >  
have been defined. Let w k  be the set of all k-ary 
worlds. A kth-order assignment i s  a function fk: 
9 - ~ 2 ~ k .  Intuitively, fk associates with each modality 
a set of “possible k-ary worlds”. There is a semantic 
restriction on fk, which we shall discuss shortly. We 
call 00. ..&> a (k+l)-ary wrU. An illfinite se- 
quence <fo,f&, ... > is called a modal structure if 
the pefoc GO, ...&I > is a k-ary world for each k. 

The semantic restriction on worlds c f o ,  ...& > 
that we mentioned earlier, is: <go. ...&-2 > E fk-l(i) 
iff there is a (k- 1)st-order assignment gk-1 such 
that <go. ...&-2,g&-l> E fk(& if k >1. This restric- 
tion says that the set of (k - 1)-ary worlds associated 
with modality i arc prefixes of the set of k-ary 
worlds associated with modality i. It is straightfor- 
ward to verify that this “compatibility” between 
f k - 1  and f k  also holds between f i  and fk if 0 < j <  k. 
Thus, the set of k-ary worlds associated with modality 
i (namely, fk0) determines the set of j-ary worlds 
associated with modality i (namely, &(q) if 0 < j < k. 
Later on, when we use modal structures to model 
propositional attitudes (such as knowledge and be- 
lief), we have to impose further semantic restrictions. 

The following lemma is obvious, but crucial. 

Lemma 2.1. l ‘ h e  are only a finite number of k e y  
wrki?s, for each k. 

Because of our semantic restriction, it may not 
be obvious to the reader that each world GO. ...&I > 
is the prefix of a modal structure <fo. . . .$k-ffk ,... >. 
We now show that this is the case. We note that 
later, when we introduce logics where the modal 
structures have further semantic restrictions, it is 
even less clear whether each world is the prefix of 
a modal structure. 
Theorem 2.2. Eoch world b the prefw of u modal 
structure. 

Proof. Let 00, ..&-I > be a world. Define 
fi(i> = <go, .*.,gj-1> : < gQ, --..gj-1 > is a j-ary 

world and <gQ..,.&-2 > E f k - l ( i ) ]  for each j 2 k and 
each modality i. Thus, 4(i) contains every possible 
j-ary world that has a member of f k - ] ( i )  as a prefix. 
It can be verified that 00. ...$k-lSkr-.. > is a modal 
structure. 

Sjmtaratximntia. The set of fonnulas is the 
smallest set that contains the primitive propositions, 
is closed under Boolean connectives and contains 
oitp if it contains tp. The depth of a formula tp is 
the depth of nesting of the 0 ; s  in p. 

We are almost ready to define what it means for 
an modal structure to surkfy a formula. We begin 
by defining what it means for an (r+l)-ary world 
d o .  ... ft> to satisfy formula tp, written 
00. ...A > ktp, if r 2 depth(tp). 
1. 00, ... A> b p ,  where p is a primitive proposi- 

tion, if p is true under the truth assignment fo. 
2. 
3. G o , . . . & >  kw 1\12 if d o  .... &> Ctp1 and 

4. ( f o . . . f r >  kOitp if <go..-.&-1> ktp for each 

d o .  .‘.A> t=;-1 if G o .  ... A> Ftp. 

d o .  *.& > l=tp2. 

<go. ... & - 1 >  E fr(i). 

Lemma 2.3. Amme that depth(p) = k and r 2 k. Then 
<fo....Jr> ktp i f f  <fo....fk> l=V. 

We say that the modal structure f = c fo,fi, ... > 
satisfies tp, written f k rp, if G o ,  .a&> ktp, where 
k = depth(1). This is a reasonable definition. since 
if w = < fo, ...,fr > is an arbitrary prefix of f such 
that r l  k, then it then follows from Lemma 2.3 
that f + 1 iff w p (9. 

Relathaship lo Kripke stmfum. A Kripke structure 
M is a triple (S, r,BP), where S is a set of s m s .  
a($) is a truth assignment to the primitive proposi- 
tions for each state s E S, and B(I] is a binary 
relation on S for each modality ni. Intuitively, 
(s.t) E @(”) iff starting in world s, the world t is 
possible, according to modality Oi. In terms of our 
interpretation where modalities correspond to pro- 
grams, (s , t )  E Bp(i) iff starting in state s and running 
program i, it is possible to terminate in state t We 
now define what it means for a formula 9, to be 
sattkfed at a state s of M, written M,s + (9. 

1. M,s k p ,  where p is a primitive proposition, if 
p is true under the truth assignment ~ ( s ) .  

2. M,s I= -‘p if M,s F cp. 
3. M,s k 11 Atp2 if M,s I= ‘PI and M , s  I= tpz. 

4. M.s k Oitp if M , t  k tp for all 1 such that 

( S , t )  E fw. 
The following theorem provides an exact corre- 

spondence between modal structures and states in 
Kripke structures. 
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Theorem 2.4. To ewry Kripke structure M and state s 
in M, there corresponds a modal structure fMJ such that 
M.s k cp iff f,, k cp, for e w y  formurcl ‘p. Converse, 
there is a K r i M  structure M such that for every modal 
structure f there is a state sf in M such that f + cp iff 
M, sf P cp, for ewy  formula cp. 

Proof. Suppose M = (S, n,#!) is a Kripke structure. 
For every state s in M we construct a modal struc- 
ture fMJ = < s0,sl. ... >. SO is just the truth assignment 
n(s). Suppose we have constructed so.sl. .... sk for 
each state s in M. Then S / C + I ( ~  = 
{<to. ... ,rk >: (s, t )  ~#!(i)]. We leave it to the reader 
to check that M,s cp iff fM$ cp. 

For the converse, let M = (S, T,  a), where S con- 
sists of all the modal structures, n(f) = fo, and 
(f, g )  E B(i) iff ~o,.., .gk > E f k + l ( i )  for every k 2 0. 
As before, M, f b cp iff f b cp. H 
Theorem 2.4 shows that modal structures and Kripke 
structures have the same theory (an analogous result 
for Kripke structures and modal algebras was show-i 
in [Bi,JT,Leml]), but its implication are deeper. It 
shows that modal structures model particular possible 
worlds, while Kripke structures model collections of 
possible worlds. 

We note that Kripke structures are “flabby” in 
the sense that two nonisomorphic Kripke structures 
can be semantically equivalent. However, this is 
not the case for modal structures. 

Dtxidu6i/i@. We say that cp is satisfwbk if it is 
satisfied in some modal structure, and valid if it is 
satisfied in every modal structure. The validityproblem 
asks which formulas are valid. 

Lemma 2.5. A f o m h  cp of depth k is satisfmbk 
frespctiwrY, valid) iff some (respctiwb, every) (k + 1)-ary 
wr&i satisfees cp. 

Proof. Assume that depth(cp) = k. We now show 
that is valid iff cp holds in every (k + 1)-ary world 
00, ..& >. The “satisfiability” part of the lemma 
then follows easily from the fact that cp is satisfiable 
iff -cp is not valid. 

If cp holds in every every (k+ 1)-ary world, then 
‘p is valid, since by definition <fOfl. ... > k’p iff 
00, ...$i > k’p. Conversely, if w is a (k + 1)-ary 
world and w F cp, then by Theorem 2.2, there is a 
modal structure f with w as a prefix. By definition, 
f F p, and so cp is not valid. rn 

We now prove decidability. 

Theorem 2.6. The valkf i~  problem for modal structures 
is decidable. 

Proof. Let cp be a formula of depth k whose validity 
is to be decided. By Lemma 2.5, ‘p is valid iff ‘p 

holds in every (k + lbary world. Since by Lemma 

2.1 there are only a finite number of (k+ I)-ary 
worlds to check, this gives US a decision procedure. 
I 

The extreme simplicity of the above proof of 
decidability of the validity problem is one of the 
nice features of modal structures. This simplicity is 
not present in Kripke’s approach, where the standard 
technique for proving decidability is to show that 
the logic has the finite model propty .  

C m p c t m ~ .  Just as modal structures give an 
extremely simple, elegant proof of decidability of 
the validity problem, they do the same for compact- 
ness. Our proof of compactness makes use of the 
following lemma, which is an easy consequence of 
KCinig’s Infinity Lemma. 

Lemma 2.7. Let T be a rooted tree with finite fanout at 
each node. If S is a set of nodes of T such that every 
infinite path in T (beginning at the roor) contains a member 
of S, then there is a finite subset of S with the same promy.  

We are now ready to prove the Compactness 
Theorem. 

Theorem 2.8. Let 2 be a set of fomla r .  If ewryfinite 
subset of Z b satisfmbk, then 2 is satisfwbk. 

Proof. Let T be a tree, where the kth level of the 
tree contains all k-ary worlds, and where the parent 
of the (k + 1)-ary world <fo. ...& > is its k-ary pre- 
fix GO, ...&I >. Let S be the set of counterexamples 
to 2, ie., S = (w:  w F u for some u E Z). Let p be 
an infinite path in T. In the obvious way, p corre- 
sponds to a modal structure f = < fo.fi,  ... >. Assume 
that Z is not satisfiable. Then f F a for some u E 8. 
If depth(cp) = k, then by definition the prefix 
w = < fo. ..., fk > does not satisfy u. Hence, the path 
p contains w E S. The assumptions of Lemma 2.7 
are satisfied (the tree has finite fanout at each node 
by Lemma 2.1). Hence, there is a finite subset S’ 
of S such that every path in the tree contains a 
member of S‘. This gives us a finite subset of I: 
that is not satisfiable. I 
Note that as in the case of decidability of the 
validity problem, the proof of compactness depends 
critically on being able to deal with (finite-depth) 
worlds, instead of (infinite-depth) modal structures. 
We remark that although the proof used our assump- 
tion that there are only a finite number of propo- 
sitional variables, it is possible to modify the proof 
to allow an infinite number of propositional variables. 
(Also, it is easy to see that both the decision problem 
for validity and completeness are unaffected by there 
being an infinite number of propositional variables.) 

Cmfletenss. We now present a set of axioms 
and inference rules which we show give a complete 
axiomatization for the semantics of modal structures. 
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In later sections, we discuss how to modify the 
axioms to give a complete axiomatization for “spe- 
cialized” modal structures which model belief and/or 
knowledge. There are two axioms (Al) and (A2), 
and two inference rules (Rl) and (R2). 
(Al) All substitution instances of propositional 

tautologies 

(R1) From p1 and p1 3 ‘p2 infer p2 (mdwponenr) 
(R2) From infer UiCp (seneralizntion) 

(A21 Oi(cl* 1 2 )  * (Dip1 * nip21  

If there is only one modality, then this system 
is known as the modal logic K, which is complete 
for Kripke structures [Ch]. We now prove com- 
pleteness directly for modal structures. 

Before giving the proof, we must introduce some 
more concepts. Define a new modality Oi by letting 
Oip be -U,-p. If we interpret cl,p as meaning 
“after program i terminates, p must be true”, then 
Ojp means “it is possible for program i to terminate 
withp true”. For each k-ary world w =  < fo, ..., fk-l >, 
we now define a formula uW of depth k-  1 which 
characterizes w. Assume that the propositional vari- 
ables are m. ..., pr. If w = <fo >, then Iet ow be the 
propositional formula PI’ A ... hp:, where fi’ is pj if 
the truth assignment fo makes fi  true, and -pj oth- 
erwise, for 1 6 j I r. Assume inductively that u,,, has 
been defined for each k-ary world w. Recall that 
wk is the set of all k-ary worlds. If 9 is a set of 
k-ary worlds, then define O i ! 9  to be the formula 

In terms of the modal logic of atomic programs, 
Oi!9 means “after program i terminates, the possible 
k-ary worlds are precisely those in 9“. If w is the 
(k+ 1)-ary world w =  <fo, ....fk >. define ow to be 
the formula o u o >  A &Ji!jk(lJ. (Such formulas 
are essentially the IW&I forms in [Fil, though we 
came up with them while still ignorant of [Fi].) Our 
interest in these formulas stems from the fact that 
ow uniquely describes w in the following sense. 
Lemma 2.9. Let v and w be k-my wr&. l3.m v l= ow 
if and only if V=W. 

We now prove completeness. 

Tkorem 2.10. The system (AI, A2, R l ,  R2) is a sound 
and complete axiomatitation for modal shuctures. 

Sketch of Proof. As usual. soundness is straight- 
forward. To show completeness, we show by induc- 
tion on the depth of formulas y that if y is valid, 
then l-y (i.e., y is provable). The base case (when 
y is propositional) follows immediately from Axiom 
(Al). The inductive step (when depth(y) = k )  is 
shown by demonstrating the following two claims. 

Claim 1. bV{aw: wis a (k+ 1)-ary world). 
Claim 2. Let w = < fo, ...rfk > be a (k + 1)-ary world 
and y a formula of depth k. Then w k y iff F(uW + 7). 

We now show that completeness follows imme- 
diately from these two claims. For, assume that y 
is a valid formula of depth k. By Claim 2. we know 
that l - ( u w i j y )  for every (k+ 1)-ary world w. By 
Claim 1, we know that FVtu,: w is a 
(k + 1)-ary world). By propositional reasoning (using 
Axiom (All), it then follows that by, as desired. 

We now need only prove Claims 1 and 2. Claim 
2 is proven by a simple induction on the formulas 
7. To prove Claim 1. we first prove the following. 
Claim 3. Fv{Oi!9:  P i s  a set of k-ary worlds). 
To prove Claim 3, we replace Oiow by a new prim- 
itive proposition qw We then see that 
V{Di!P: 9 i s  a set of k-ary worlds] translates into 

which is a propositional tautology. Hence, Claim 3 
follows by Axiom (Al). 

We close by proving Claim 1. By Axiom (Al), 

(1) f - v i u ~ ~ , :  fo is a truth assignment]. 

By (1) and by Claim 3 (once for each modality mi), 
we obtain f-p, where q is the formula 

(v{uQo,: fo is a truth assignment)) A 

/1\VfDi!9: P i s  a set of k-ary worlds). 

It is straightforward to verify that if we put rp in 
disjunctive normal form, we obtain 

v{uw: w is a (k + 1)-ary world). rn 
Our proof of completeness shows that there are 

quite uniform proofs of valid formulas in our formal 
system. Thus, if y is valid and if depth(y) = k, then 
the formal proof begins by showing that 
VIo,: w is a (k + 1)-ary world). Then, for each 
(k + 1)-ary world w, the formal proof shows that 
ow+y. The formal proof then invokes Axiom (Al) 
to prove y. Again; as in the cases of decidability 
and compactness, the ability to consider (finite- 
depth) worlds is critical in our proof of completeness. 

Cmp?..‘&. By Theorem 2.6 the validity problem 
for modal structures is decidable. Since the number 
of worlds grows exponentially at each level, the 
complexity of the procedure described in the proof 
of that theorem is nonelementary. We prove here 
that the validity problem for modal structures is 

! 
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PSPACE-complete. The proof uses the fact that by 
Theorem 2.4, a formula is satisfied in a modal struc- 
ture if and only if it is satisfied in a Kripke structure. 

Kripke has observed that Kripke structures can 
be unraveled into trees [Kr2]. This suggests the 
following procedure to determine satisfiability: for 
a given formula p, construct a tree automaton A, 
[Rab.TW] such that A.+, accepts precisely the tree 
models of p. Thus p is satisfiable if and only if A, 
accepts some tree, and the satisfiability problem is 
reduced to the emptiness problem. This technique 
was used in [FS,Str,VW] to prove upper bounds for 
modal logics of programs. Unfortunately, the size 
of A, is exponential in the size of p, since its state 
set consists of all sets of subformulas of p. Since 
the emptiness problem for tree automata requires 
polynomial time (it is PTIME-hard), it seems that 
this technique cannot give us subexponential upper 
bounds. 

There is a fundamental difference, hcwever, be- 
tween the logic studied here and the logics in 
[ES,SU,VW]. For those logics, the tree models can 
be infinite. Here the situation is different. By 
Lemma 2.5, if a formula p of depth k is satisfiable 
then it is satisfiable in a (k + 1)-ary world. This 
was indeed the basis for the decidability result of 
Theorem 2.6. Translated into the framework of 
Kripke structures. this means that if p is satisfiable 
then it is satisfiable in a tree model of depth k. 
Thus, even though A, can be exknentially big, we 
are interested only in very shallow trees, with depth 
logarithmic in the size of A,. It turns out that to 
decide whether a tree automaton accepts a shallow 
tree is easier than to decide whether the automaton 
accepts some tree: the former problem is in 
ALOGTIME (alternating logarithmic time), while 
the latter is PTIME-hard. This enables us to improve 
the upper bound from EXPTIME to PSPACE. 

Theorem 2.11. The validity problem for mdal structures 
b PSPACE-compkte. 

Ladner proved, by analyzing Kripke’s tableau- 
based decision procedure, a PSPACE upper bound 
for the validity problem for Kripke structures with 
a single modality [La]. Thus Theorem 2.11 extends 
his result to the case of multiple modalities. Fur- 
thermore, we believe that our technique is not only 
more elegant than tableau-based decision procedures, 
but it also has wider applicability. For example, 
using this technique we can extend all the other 
PSPACE upper bounds in [La] from the single mo- 
dality case to multiple modalities (note that the 
transition from a single modality to multiple modal- 
ities may in general increase the complexity of the 
validity problem [HM2]). Moreover, we can also 
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show that the validity problem for the propositional 
dynamic logic (PDL) of straight-line programs is 
PSPACE-complete (the validity problem for PDL of 
regular programs is known to be EXPTIME-complete 
[FL,Pra2]). 

3. Modelling belief 

Bdicf Stnmcrs. Modal structures can be used for 
modelling many modal logics. As an illustration, we 
show in this section how to specialize a modal 
structure so that it models belief. and demonstrate 
the effect this has on our previous theorems and 
proofs. The nature of belief and its properties has 
been a matter of great dispute among philosophers 
(see [Len]). In this section, we concentrate on one 
natural notion of belief, and note that it is also 
possible to use modal structures to model various 
other notions of belief. 

We assume that 9 is a finite set of “players”. 
For pedagogical reasons, we write the modality mi 
as Bi. where the formula Bip means “player i believes 
p”. We consider the idealized situation where the 
players are perfect reasoners with perfect introspec- 
tion, who have consistent world views that may or 
may not be completely correct. Thus, it is possible 
for a player to believe something that is not true. 
This distinguishes belief from knowledge, where 
whatever a player knows is necessarily true. (One 
can argue that in the real world, there is rarely, if 
ever, knowledge, but only belief.) By “perfect in- 
trospection”, we mean that if a player believes some- 
thing, then he believes that he believes it, and if he 
does not believe something, then he believes that he 
does not believe it. Further, each player believes 
that each of the other players is also a perfect 
reasoner. 

Belief wrUs and belief structures are defined just 
as we defined worldr and modal structures before, 
except that there are two additional semantical re- 
strictions on belief worlds GO, ..& >: 
1. fk ( i )  is nonempty. for each k 2 1 and each player 

i. This restriction says that player i believes 
that some k-ary belief world is possible, for each 
k. This corresponds to our intuitive notion 
above which said that each player has a con- 
sistent world view. 

gk-l(r3 = fk-l(~). This corresponds to our intu- 
itive notion above, which said that each player 
is introspective. Thus. player i will not consider 
a belief world w possible unless his beliefs as 
encoded in w are his actual beliefs. In other 
words. let S be the set of ( k -  2)-ary belief 
worlds that player i believes possible, that is. 
S=f i - l ( i ) .  Then player i will not consider a 

2. If (go. ..-&-l > E fk(r). and k > 1, then 
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( k -  I)-ary belief world w possible unless w 
“says” that S is the set of possible (k- 2)-ary 
belief worlds for player i. That is, if 
QO, ...gk -1 > E fk(9, then gk-l(r] = S. 

The proofs of decidability and compactness of 
the previous section go through exactly as before. 
The only non-trivial part is to replace Theorem 2.2 
by the following theorem. 

Theorem 3.1. Each belief wild is iheprefi of a belief 
slrucnuf?. 

Proof. Let w = < fo, ..., fk-1 > be a belief world. If 
k = 1, then define fk(i) = I <go > : go is a truth as- 
signment} for each player i. If k > 1. then define 
f k ( i )  <go, e.eigk-1 > :gk-l(t] = f & - l ( o  and 
<go, ...,gk-2 > Egk- l ( i ) )  for each player i. Intuitively, 
f i ( i )  contains every (k - 1)-ary belief world consis- 
tent with player i’s beliefs. Similarly, define fk+l. fk+2. 
etc. We can then verify that <fo ,... Jk-IJk ,... > is 
a belief structure, with w as a prefix. 

In addition to the axioms and inference rules of 
the previous section (where we replace Or by BJ,  
we need three new axioms to reflect the new se- 
mantic constraints on a belief structure. 
(B1) -B,(false) (“Player i does not believe a con- 

tradiction”). 
(B2) B,cp +-B,B,p (“Introspection of positive be- 

lief‘’). 
(B3) -B,cp + B,-Biv ’ (“Introspection of negative 

belief”). 

Theorem 3.2. The system (AI, A2, BI, R2, B3, RI, 
R2) is a sound and complete ariomatkntion for belief 
smtctures. 

Proof. The proof of completeness is just as before, 
except that it is necessary to slightly extend the 
proof of Claim 1, as follows. We must show that 
if w is a world that is not a belief world, then 
b-o,,,. This last step is precisely where we make 
use of the new axioms (BI). (B2), and (B3). I 

Levesque axiomatized belief for one player [Lev]. 
Our axiomatization shows that one of Levesque’s 
axioms is redundant. 

Modal structures are used in [FHV] to model 
knowledge. In the full paper, we show how to 
model knowledge and belief simultaneously by modal 
structures. As in the case of belief, our previous 
theorems and proofs go through with natural mod- 
ifications. 

Relationship to Kripke Structures. TO model belief 
by Kripke structures, we have to restrict the class 
of binary relations that are assigned to the modalities. 
A relation R is euclidean if (,v,z) E R whenever 
(x,A E R and (x,z)  E R. R is serial (with respect to 

,. 
I .  

the set S )  if for each s E: S there is t such that 
( s , t )  E: R. A Kripke structure (S,o.B) is a K r i M  
belief structure if S(13 is euclidean and serial (with 
respect to S) for each player i [Sta]. 

The relationship between belief structures and 
Kripke belief structures is analogous to the relation- 
ship between modal structures and Kripke structures. 

Theorem 3.3. To every Kri& belief structure M and 
stale s in M, there correspondr a belief structure fM$ such 
that M, s I= cp iff fMJ != cp, for every fomur0 p. Con- 
tersely, there is a Kripke belief structure M such that for 
every bekf structure f lhere is a state sf in M such that 
f I= I iff M. sf k cp. for ewy f o m h  cp. 

The reader should note the intuitiveness in the 
definition of belief structures compared to the 
nonintuitiveness in the definition of Kripke belief 
structures. Because of this nonintuitiveness, it is 
not clear how to model particular states of belief 
by Kripke belief structures (cf. [FHV]). In the full 
paper we shall demonstrate how to do such modelling 
with belief structures. We also note that modelling 
knowledge and belief by modal structures brings up 
new concepts, such as “finite amount of information” 
[FHV]. All of these issues are further evidence for 
the advantage of modal structures over Kripke struc- 
tures in conceptual modelling. 

Cornphi&. In trying to apply our automata- 
theoretic technique to the decision problem for belief 
structures, we encounter a difficulty: because of the 
restriction on the binary relations in Kripke belief 
structures, the tree models for belief formulas may 
not be shallow. To get around that difficulty we 
first reduce the decision problem for belief structures 
to the decision problem for a certain fragment of 
propositional dynamic logic. This class does have 
shallow tree models, so our technique is applicable. 
It turns out that for belief the difference between 
a single modality and multiple modalities is crucial. 

Theorem 3.4. 
1. The deckion problem for belief structures with a single 

player is NP-complete. 
2. I?le decision problem for belief structures with at l e a  

IWO p h p s  b PSPACE-compkte. 
Similar results were shown for knowledge in 

[HM2] by different techniques. In the full paper 
we show that these bounds also hold for the com- 
bined knowledge-belief structures. 

4. Modelling Knowledge and Joint Knowledge 

In this section we consider a more idealized sit- 
uation in which knowledge is possible. (As mentioned 
before, the difference between belief and knowledge 
is that whatever is known must be true.) We now 
write the modality mi as &, where the formula Kicp 
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means “player i knows cp”. Again we consider the 
players to be perfect reasoners with perfect intro- 
spection. 

We are mostly interested here in pint  knowledge, 
the knowledge shared by a set of players. When we 
say that cp is joint knowledge of players 1 and 2, 
we mean more than just that both 1 and 2 know 
cp; we require also that 1 knows that 2 knows cp, 2 
knows that 1 knows cp, 1 knows that 2 knows that 
1 knows cp, and so on. For example, if 1 and 2 are 
both present when a certain event happens and see 
each other there, then the event become joint knowl- 
edge. The notions of joint knowledge has applications 
in game theory (cf. [Ha]). econometrics (cf. [Rad]), 
artificial intelligence (cf. [MSHI]), and distributed 
computing (cf. [HMl]). 

To be able to reason about joint knowledge, 
Fagin et al. [FHV] extend the logic by modalities 
C y  for every set 9 of players, where intuitively CH 
means “cp is joint knowledge of the players in 8”. 
We do not exclude the case where 9 is the empty 
set of players; in this case, CBcp turns out to be 
equivalent to cp. Joint knowledge between the set 
of all players is known as common knowledge [FHV, 
HMl, HM2, Leh]. To assign semantics to the new 
modalities, we first define EN as a shorthand for 
A&+x i E 9‘) i.e., “everybody in 9 knows cp”. We 
then take C- to stand for the infinite conjunction 

Taken this way, the depth of formulas in the 
extended logic is not finite anymore. To be able to 
define satisfaction for such formulas, Fagin et al. 
[FHV] define knowledge structures of transfinite 
“length”. (In their terminology, modal structures as 
defined in Section 1 are o-worlds, and to extend 
them they define h ( i )  to be a set of A-worlds. for 
each ordinal A.) 

Since now we have formulas and worlds of in- 
finite depth, it may seem that our approach would 
not be applicable to the logic of joint knowledge. 
(Indeed. it is not hard to verify that compactness 
fails here.) There is, however, a way around that 
difficulty. Rather than take C- as a shorthand for 
the infinite conjunction EN A E y E ~  A ..., we take 
C y  to be a modality it its own right. This enables 
us to view the formulas as having only finite depth, 
Thus, rather than use kth order assignments, which 
are functions f k :  B -t 2wk, we use augmenred kth or- 
der assignments, which are functions f k :  29 + 2wk. 
That is, we assign a set of possible worlds to every 
set of players. Augmented w o r h  and augmented s m c -  
tures are define.! analogous to work& and structures 
with augmented assignments rather than the standard 
assignments. 

a 

I 

E e  A E g E e  A .... 

To make these worlds and structures models for 
joint knowledge, we have to impose several semantic 
restrictions. Before listing the restrictions we need 
some definitions. Let w1 = < fo, ..., f k - 1  > and 
y = <go, ...,&-I > be two k-ary augmented worlds, 
and let 9 be a set of players. We say that w and 
w are equivalent with respect to 9, denoted wssy ,  if 
either k = 1. or k > 1 and for every set P of players 

is, wq and IQ are equivalent with respect to B if, 
as far as the players in 9 are concerned. these 
worlds are identical. Let w =  < fo, ..., fr-1> and 
y = <go. ..., gk-1 > be augmented worlds, and let 9 
be a set of players. We say that ~1 9-appars in mq 
if either k I r and Q = < fo. ...,f‘-1 > or there are 
a player i E 9 and an augmented world q E &-1({i)) 
such that y %appears in y. Intuitively, w 9 - a p  
pears in w1 if in wl some player in 9 thinks it 
possible that some player in 9 thinks it possible ... 
that rn is possibly the actual world. 

A (k+l)-ary augmented world GO, ...& > must 
satisfy the following restrictions in order to be a 
pint  knowledge worki: 

1. fk(0) is nonempty. In fact, along with con- 
dition (3) below, this condition guarantees 
that f k ( 0 )  is the singleton set I<fo, . . . fk- l  >I 
which contains only the “real?’ world. 
If 9 and 9 are sets of players such that 9~9, 
then f i ( q G f k ( 9 )  for k r  1. This captures 
the intuition that the less players there are, 
the easier it is for them to share knowledge. 

3 .  If <go ,... ~fk(9), and k >  1. then 
cga ...,gk-l > B ~  00 ,... fk-1  >. That is, the 
players know exactly what they know. This 
restriction is analogous to restriction (2) for 
belief worlds. 

Lemma 4.1. If d o ,  ...& > is a pint knowledge wrki 
and k 1 1, then <fo, ...&-I > E f k ( 9 )  for each set 9 of 
P k W S .  

Proof. As we noted, conditions (1) and (3) guarantee 
that f k ( 0 )  = {GO, ...&-I >]. Condition (2) guaran- 
tees that f k ( 0 ) G f k ( f l  for k 2 1. The lemma follows 
immediately. 

Lemma 4.1 says that the “real” world is always one 
of the possibilities, for every set 9 of players. This 
ensures that what is known must be true. 

Joint knowledge smctwm are defined from joint 
knowledge worlds in the now standard way, but in 
addition they have to satisfy the following restriction: 

such that 1 G 9  we have that fk-~(S?) =gk-l(9). That 

2. 

4. If Q o f l f i ,  ... > is a joint knowledge structure 
and <go. ...,gk-l > E fk(* for some set 9 of 
players, then there exists an r such that 
<go, . . . , g k - ~  > Sappears in < fo. ..&I >. 
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This restriction ensures that the semantics of 
Cpp is indeed that everybody in 9 knows 
that everybody in B knows ... that p. 

In the full paper we show that the notion of 
joint knowledge captured by joint knowledge struc- 
tures is equivalent to that captured in the ‘‘long” 
knowledge structures in [FHV] and in the Kripke 
structures in IEIM21. 

Restriction (4) is different from the other restric- 
tions, because it is a restriction on structures and 
not on worlds. As a result of this restriction, the 
proof of Theorem 2.8 breaks down, and the logic 
indeed is not compact. Furthermore, because of this 
restriction the analogue to Theorem 2.2 and Theorem 
3.1 also fails. It may seem that our methodology 
fails completely for joint knowledge. Fortunately, 
we can prove a somewhat weaker version of Theorem 
2.2 and Theorem 3.1. Let I be a set of k-ary joint 
knowledge worlds, and let 8 be a set of players. 
The @‘-graph of 5%‘ has the worlds in Fg as nodes, and 
it has an edge between two worlds w1 and ~ 1 :  if 
wlsf<1ilx? for some player i E 9. We say that 0 is 
%connected if the 9-graph of Cg is connected. Let 
w =  < fo, ..., fk> be a joint knowledge world. We 
say that w is m w e d  if &(a is %connected for 
every set 9 of players. 

Theorem 4.2. A piru knowledge wrki b the prefix of 
0 pint knowledge structure if and only if it is connected. 

By Theorem 4.2, it suffices to consider only con- 
nected joint knowledge worlds. Decidability of the 
validity problem for joint knowledge structures easily 
follows. Our technique to prove completeness ex- 
tends also (using Theorem 4.2) to joint knowledge 
structures to yield a complete axiomatization. It is 
convenient to have in our logic only modalities of 
the form Cp (where Ki is considered simply an 
abbreviation for Ci,l). In addition to the axioms 
and inference rules of Section 2 (where we replace 
Oi by Cp), we need the following new axioms: 

(J2) C m  + Cscp if 9~9. 
(J3) Cgcp 3 C&H (‘‘positive introspection”). 
(J4) -Cw + CpCsrp (“negative introspection”). 
(JS) CAT 3. E e )  + (p + Cprp) (“induction ax- 

iom”). 
Theorem 4.3. The system (AI, A2, JI, J2, J3, 34, J5, 
RI, R 4  ir a sound and complete axiomrimion for p i n s  
knowledge structures. 

The above axiomatization for joint knowledge 
generalizes known axiomatizations for common 
knowledge [HM2,L,ehj. Unlike the previous logics, 
with joint knowledge, however, we no longer have 
shallow tree models. By reducing the decision prob- 

(J l )  Cg+prrp. 

lem to that of propositional dynamic logic, we can 
prove an exponential time upper bound, which 
matches Halpern and Moses’ exponential time lower 
bound [HM2]. 
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