A COMPLETE AXIOMATIZATION FOR FUNCTIONAL AND MULTIVALUED

DEPENDENCIES IN DATABASE RELATIONS

Catriel Beeri, Ronald Fagin, and John H. Howard

Proc. 1977 ACM SIGMOD, D.C.P. Smith (ed.), Toronto, 47-61.



A COMPLETE AXIOMATIZATION FOR FUNCTIONAL AND MULTIVALUED
DEPENDENCIES IN DATABASE RELATIONS

Catriel Beeri

Department of Electrical Engineering and computer Science
Princeton University, Princeton, N.J. 08540

Ronald Fagin and John H. Howard

IBM Research Laboratory K53/282

San Jose,

ABSTRACT

We investigate the inference rules
that can be applied to functional and
multivalued dependencies that exist in a
database relation. Three types of rules
are discussed. First, we list the well
known rules for functional dependencies.
Thern we investigate the rules for multi-
valued dependencies. It is shown that
for —ach rule for functional dependencies
the same rule or a similar rule holds
for multivalued dependencies. There is,
however, one additional rule for multi-
valued dependencies that has no parallel
among the rules for functional dependen-
cles., F[inally, we present rules that
invclve functional and multivalued
dependencies together. The main result
of the paper is that the rules presented
are ~omplete for the family of function-
al and multivalued dependencies.

1. INTRODUCTION

In the relational model of data
bases, the data is organized into
relations. A relation can be viewed as
a table where each row of the table
describes an entity and each column
corresponds to an attribute of the
entity being described. The relations
in the data base are time varying;
entities are inserted, deleted and
modified. However, the structure of the
relations is invariant. This structure
is described by means of a relational
schema. Such a schema consists of a
description of the structure of each
one of the relations, e.g., its name, the
attributes that appear in it, integrity
constraints, etc.

It has been observed that the relati-
onships between the attributes in a
relation have an important role in deter-
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mining its properties. Punctional
dependencies are an important example of
such a relationship. Codd, in his first
papers on the relational model [Coddl,
Codd2), cbserved that relations in which
certain patterns of functional depend-
encies occur exhibit undesirable be-
havior. This observation led him to the
definition of second and third normal
forms for relational schemas. These
normal forms eliminate most of the
problems related to the existence of
functional dependencies in the relations.

Because of their importance for the
understanding of the properties of relat-
ional schemas, functional dependencies
have been extensively studied. Armstrong
[Arm] did an exhaustive study of their
properties and presented a set of infer-
ence rules (he called them axioms) for
the family of functional dependencies.

He proved that if F is a set of function-
al dependencies that is closed under his
rules, then there is a relation R such
that the set of functional dependencies
which hold for R is exactly F. As shown
by Fagin {Fagl], this result implies the
completeness of Armstrong's rules for
functional dependencies. Using
Armstrong's rules, Bernstein and Beeri
([Bernl, Bern2]) have recently presented
an efficient algorithm for synthesizing

a relational schema from a given set of
functional dependencies. Their work
clarifies the connection between the
user's view as expressed by a set of
functional dependencies and the relation-
al schema that embodies it.

It has been observed by workers in
the area of data base semantics (see e.g.
[S5]) that the concept of a functional
dependency is not general enough to cap-
ture the semantics of the user's view of
the data base. There are dependencies
that are naot functional.



Suppose, for example, that the children
of employees are listed in the relation
which contains the information about the
employees. Clearly, the set of children
names of an employee depends on the
identifier of the employee only:; however,
since there may be more than one child
name in the set this is not a functional
dependency. It has also been observed
that the existence of such 'general-
ized' dependencies in a relation may

lead to redundancy in the representation
of the data and, as a result, to unde-
sirable properties similiar to those that
were observed by Codd in relations that
are not in third normal form. However,
since third normal form is based on the
concept of functional dependency, these
properties exist even in third normal
form schemas.

Recently, Fagin [Fag2] and, in-
dependently, Zaniolo [Zan] have presented
a formal definition of a nonfunctional
dependency, which Fagin calls a “multi-
valued dependency." It turns out that
these dependencies are indeed a general-
ization of functional dependencies. Also,
“hey have the important property that the
2xistence of such dependencies in a
relation is equivalent to the fact that
the relation is the natural join of some
¢t its projections., It seems therefore
that the study of these dependencies may
tead to a better understanding of the
structure of relational schemas.

In [Fag2], Fagin demonstrated a
number of properties of these multi-
valued dependencies. 1In particular,
he showed that the existence of such
dependencies in a relation may indeed
result in undesirable redundancy.

This observation led him toc a defin-
ition of a new ('fourth') normal form

for relational schemas. To facilitate
further study of these dependencies and
their influence on the structure of
relations, we investigate in this paper
the inference rules that can be applied
to these dependencies. We present a

set of such rules and prove that this

set is complete. There are three types
of inference rules to be discussed. The
first type is inference rules for
functional dependencies. The second type
is inference rules for multivalued depend
encies, that is, rules that allow us to
infer from the existence of some multi-
valued dependencies in a relation the
existence of additional multivalued de-
pendencies in the relation. The third
type is "mixed" inference rules by which,
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given the existence of functional and
multivalued dependencies in a relation,
one can infer the existence in the relat-
ion of additional dependencies, the exist-
ence of which cannot ke inferred using
rules of the previous types.

The rules for functional dependencies
are well known and we present them without
proofs. Certain inference rules of the
second type were noted by Fagin [Fag2]
and Zaniolo {2an]. The existence of rules
of the third type was first observed by
Fagin, who noted a special case. Fagin's
work was mainly meant to be an introduct-
ion to the concept of a multivalued depen-
dency and some of the rules were present-
ed in restricted forms. Our purpose in
this paper is to state and prove the rules
in what we believe is their most general
form and to show that the rules that we
present are complete, that is, no add-
itional rules are needed.

There are quite practical reasons
for obtaining a complete axiomatization
(that is, a complete set of inference
rules). It is well known that consider-
ation of dependencies that exist among
attributes in the data base is a valuable
tool for the database designer. Assume
that a database designer has noted certain
functional and multivalued dependencies
that hold for a relation schema that is
being analyzed. He can use these depend-
encies as input to a 'box' which (using
the complete set of rules) can determine
for any other dependency whether it is a
logical consequence of the input depend-
encies. {(See [Beerl] or {[Bernl] for a
description of such a 'box' for function-
al dependencies and [Beer2] for a des-
cription of a 'box' for multivalued de-
pendencies.) If the set of rules is not
known to be complete then there may exist
dependencies that are logical consequenc-
es of the input dependencies but cannot
be so labeled by the ‘box'. Thus, the
completeness of the rules ensures the
schema designer that he has complete
knowledge about the input dependencies
and all their logical consequences. For
further discussion of this subject see
[Fag3].

It is interesting to note that the
rules for multivalued dependencies
presented here are very similar to the
rules for functional dependencies. Speci-
fically, we show that for each rule for
functional dependencies, either the same
rule or a very similar rule applies to
multivalued dependencies and, to obtain a
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complete set of rules for multivalued de-
pendencies, only one additional rule is
needed. This similarity has been
explored by Beeri [Beer2] to extend the
results of [Bernl, Bern2] to multivalued
dependencies.

In this paper we deal only with inf-
erence rules for dependencies in a fixed
given relation. The problems that arise
when the relation is not fixed are of a
different nature. For example, one may
want to know, given a set of dependencies
in a relation, which dependencies will be
valid in a projection of the relation or
in a join of the relation with some other
relation. These problems are outside the
scope of this paper. (The projection
problem was discussed bv Fagin [Fag2].)

The paper is organized as follows.
In Section 2 we introduce relations and
define the concept of a constraint on a
set of relations. We view both function-
al and multivalued dependencies as spec-
ial types of constraints. We also ex-
plain what is an inference rule and what
is a complete set of inference rules. In
Section 3 we define functional dependen-
cies and list their inference rules.
Multivalued dependencies are discussed
in Section 4. They are defined in
Section 4.1, their inference rules (of
the second type) are discussed and prov-
ed 1n Section 4.2 and the inference rules
of the third type are proved in Section
4.3. In Section 5 we prove that the
rules listed in Sections 3 and 4 are
comprlete for the family of functional and
multivalued dependencies.

2. RELATIONS AND CONSTRAINTS

The word relation is used in the
literature to denote a set of tuples and
also to denote a structural description
of sets of tuples. It is important to
distinguish between these two denotations.
In this paper we deal with sets of tuples
and the word relation is used only to
denote a set of tuples.

The functional and
dencies treated in this
types of constraints on relations. 1In
this section we explain what a constraint
is and discuss inference rules and com-
pleteness of sets of inference rules for
families of constraints.

multivalued depen-
paper are special

2.1 Relations and Relational Operations

Attributes are symbols taken from a
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finite set {Al,Az. ..}. Each attribute A

has associated with it a domain, denoted
by DOM(A), which is the set of possible
values for that attribute. For a set of
attributes X, an X-value is an assignment
of values to the atrributes of X from
their domains. We will use the letters
A, B, for single attributes and the
letters X, Y, ... for sets of attributes.
Following common practice in papers on
relational data bases, we will not dis-
tinguish between the attribute A and the
set {A)}. Also, if X and Y are sets of
attributes (not necessarily disjoint),
then we write XY for the union of X and Y
whenever that union appears in a dependen-
cy or in an expression denoting a pro-
jection of a relation.

..

A relation on the set of attributes
(Al, cee An} is a subset of the cross

psroduct DOM(A,) x ... X DOM{(A_). The ele-
ments of the relation are called tuples or
rows. Since a relation is a set, the order
of the rows is unimportant. Also, since
the attributes are distinct, the order of
the columns is unimportant. A relation

R on [Al, .ens An} will be denoted by
R(A,, ..., An). Similarly, if R is a re-
lation over the union of the sets X,Y¥,...,
then we use the notation R(X, ¥, ...).

The letters u, v, ... will be used to
denote single tuples.

There are two operations on relations
that are of interest to us - projection
and the natural join.

If u is a tuple in a relation R(X)
and A is an attribute in X, then u[A] is
the A-component of u. Similarly, if Y is
a subset of X, then u{Y] is the tuple (of
size IYl) containing the components of u
corresponding to the elements of Y. The
projection of R on Y, denoted by R[Y], is
defined by

R[Y] = {u[Y] | u € R}

That is, R[Y] is a relation on Y contain-
ing all tuples generated from the tuples
of R by omitting the components corres-—
ponding to attributes not in Y. Note that
R{Y] is a set, so each tuple occurs only
once even if it is generated by several
tuples of R. We will use the term pro-
jection also for single tuples; e.g.,

u[Y] is called the projection of u on Y.

Let R(X,Y) and S(Y¥,2) be relations
where X, ¥ and 2 are disjoint sets of



attributes (i.e., Y is the set of attri-
butes that are common to R and S). The
natural join of R and S is the relation
T(X,Y,Z) defined by

{x,y) € R and
(y,z) € s)

That is, the natural join is created by
gluing together tuples of R with tuples
of S that have the same values for all
attributes that are common to the two
relations.

T(X,Y,2) = ((x,y,2) |

2.2 constraints and Inference rules

It is convenient to discuss funct-
ional and multivalued dependencies and
their inference rules in the context of
constraints on relations. As we will see,
these dependencies are indeed special
types of constraints.

A constraint involving the set of
attributes (A .., A_} is a predicate on
the collection of all relations on this
set. A relation R{A .., A_) okeys the
constraint if the value of the predicate
for R is '"TRUE'. If R obeys the cons—
traint, then we also say that the con-
straint is valid in R. A constraint is
defined by giving a notation for ex-
pressing it and the condition under which
a relation obeys it.

As an example, suppose that em-
ployees in a company are to be described
by » relation EMP(EMP-NO, EMP-SAL, EMP-
AGE,...). A priori, any relation of this
form can exist in the data base. However,
if one specifies a constraint that EMP-AGE
should be between 18 and 65 then only
relations in which this constraint is
valid can exist in the data base. Sim-
ilarly, the specification that EMP-NO is
a key is actually a constraint on the
relations. A relation obeys this con-
straint only if no two different tuples
in it have the same value of the attri-
bute EMP-NO. Note that to specify that
EMP-NO ‘is a key is the same as to require
that all the other attributes of the re-
lation are functionally dependent on it.
Thus, functional dependencies are cons-
traints. The constraints which we con-
sider in this paper are functional de-
pendencies and multivalued dependencies.

It is often possible; given a set of
constraints, to prove that some other con-
straints are implied by the given set.
Given a set of constraints [~ = {¢c,, ...,
Cn), we say that the censtraint ¢ 1s im-
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plied by [if C is valid in every relat-
ion which obeys all the constraints in [.
In other words, C is implied by ["if there
exists no counterexample relation that
obeys all the constraints of fbut does
not obey C. An inference rule for a fam-
ily of constraints is a rule by which,
given some constraints from the family,
one can infer that some cother constraint
is implied by them.

For an example of an inference rule
let us look at the well known transitivi-
ty rule for functional dependencies.
(Functional dependencies are defined for-
mally in the next section.) the rule
states that if the functional dependen-
cies A—>B and B->C are valid in a relat-
ion then the functional dependency A-—>C
is also valid in it. Since the rule
enables us to infer the validity of A—C
in a relation from the validity of A—>B
and B—*C in the relation, it enables us
to infer that A—>C is implied by A—B and
B—=>C.

A set of inference rules is complete
for a family of constraints if for each
set rof constraints from the family, the
constraints that are implied by {"are ex-
actly those that can be derived from it
using these inference rules. That is,
the rules present us with an effective
way of finding all the constraints that
are implied by any given set of constra-
ints in the family. We note the follow-
ing important consequence of the defini-
tion of completeness: A set of rules is
complete for a family of constraints if
and only if, for each set I'of constraints
in the family and for each constraint C
that can not be inferred from Tby using
the rules in the set, there exists a re-
lation in which T'is valid but C is not
valid. This observation is the basis of
our completeness proof in Section 5.
(Actually, in addition to proving comp-
leteness in the sense defined here, we
also prove there completeness of our
rules for a slightly stronger concept of
completeness.)

The concept of completeness of a set
of rules is of prime importance in any
system where inference rules are used.

As we noted in the Introduction, only if
a complete set of rules is used, can the
database designer ke assured that he has
complete knowledge of all dependencies
that hold in a given database. 1Indeed,
the fact that Armstrong’s rules for func-
tional dependencies are complete is an
inherent and basic assumption in the work




on functional dependencies reported in
[Bernl, Bern2]. Similarly, a study of
multivalued dependencies and their influ-~
ence on the structure of relations must be
based on a complete set of rules for them.
This need for a complete set of rules was
the motivation for the work reported in
‘this paper.

3. FUNCTIONAL DEPENDENCIES AND THEIR
INFERENCE RULES

Functional dependencies form a fam-
ily of constraints that has been treated
extensively in the literature (see, e.g.,
[Arm, Bernl, Bern2] and the references
given there). Therefore we omit the
proofs in this Section.

A functional dependency (abbr. FD),
f, is a statement f: X—Y where X and Y
are sets of attributes. If R(X, Y, ...)
is a relation on a set of attributes that
contains X and Y, then R obeys the FD f if
every two tuples of R which have the same
projection on X also have the same projec-
tion on Y. Given f:X—»Y, we say that f is
a functional dépendency from X to Y, that
Y is functionally dependent on X or that
X functionally determines Y. From the
defirition it follows that for each pair
of sets X and Y there is at most one
functional dependency from X to Y. There-
fore, we usually omit the name of the FD
and write X—>Y.

Note that even though an FD X—=Y
involves only the attributes of the sets
X and Y, it can be interpreted as a con-
straint on relations whose attributes
include the attributes in X and Y and per-
haps more. Indeed, it follows from the
definition that the validity of the FD for
a particular relation depends only on the
values in the columns named by the attri-
butes from X and Y.

Using the definition it is easy to
prove the validity of the following in-
ference rules (or axioms) for FD's. Fagin
{Fagl] showed that it follows from Arm-
strong's result [Arm] that these rules are
complete for FD's. In the rules, X, Y, 2
and W are arbitrary sets of attributes.

FD1l (Reflexivity): If Y C X then X—=>V.
FD2 (Augmentation): If Z C W and X-—>Y
then XW—>YZ.
FD3 (Transitivity): If X—Y and v—>2
then X—=>2.
{(Strictly speaking, FDl is an axiom schema;
the "reflexive" FD's exist in every relat-
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ion no matter what other FD's exist in it.
However, this distinction is not signifi-
cant for the purpose of this paper and we
ignore it.)

Even though this set of rules is
complete, it is convenient to introduce
additional rules (which, of course, are
consequences of FDl - FD3).

FD4 (Pseudo-transitivity): If XY
and YW-Z then XW—>2Z.

FD5 (Union) : IF X->Y
and X-—-2 then X->YZ.

FD6 (Decomposition): If X->YZ
then X—Y and X->7Z.

The rules FDS5, FD6 state that for a given
set of attributes we can combine and de-
compose the sets that depend on it arbitr-
arily. In particular, it follows that the
FD X—->Al...An is equivalent to the set of
FD's X~>A_.,...; X—=A This property is
very useful for the ganipulation of FD's
and for proving their properties. (See,
for example, the extensive use of these
properties in [Bernl, Bern2}.)

Note: The set of rules FD1l, FD3,
FD5, is also complete for FD's.
For a set F of FD's the closure of
F, denoted by Ft¥, is the set of all FD's
derivable from F using the rules FDl - FD3.
Armstrong's result can be stated as
follows: For every set F of FD's, there
exists a relation such that the set of
FD's that are valid in it is exactly P+.

4. MULTIVALUED DEPENDENCIES AND THEIR
INFERENCE RULES

4.1 Multivalued Dependencies

The concept of functional dependency
is not general enough to capture the
various types of dependencies that exist
in relations. It is possible that in a
relation the values of the attributes in a
set Y depend only on the values of the
attributes in a set X, but there is more
than one Y-value for a given X-value.

Such a dependency is not functional. The
concept of multivalued dependency was in-
troduced by Fagin [Fag2] and Zaniolo [Zan]
to describe such dependencies. The reader
is referred to their papers for detailed
discussion and examples.

Let R{U) be a relation,
a subset of U.

and let Y be
For each subset X of U



(X and Y are not necessarily disjoint),
and for each X-value, x, we define

Y (%) = {y | For some tuple u € Rr,
u[X]) = x and u[Y] = y]

Y_ is a function that gives, for each X
and for each X-value, the set of Y-values
that appear with this X-value in tuples of
the relation. 1In terms of relational
operations, the value of Y (x) is computed
by first selecting from R e tuples (if
any) that have x asg their x-projection and
then projecting the resulting set of tupl-
es on Y. The set Y_(x) is nonempty if and
. .R
only if x appears in at least one tuple of
R. The definition can be generalized to
arguments that are sets of X-values in the
obvious way. In particular, it is possib-
le to consider composition, e.g.,
ZR(YR(x)).

A multivalued dependency (abbr. MVD),
g, on a set of attributes U is a state-
ment g:X—>—>Y, where X and Y are subsets
of U. Let Z be the complement of theunion
of X and Y in U. A relation R(U} obeys
the MVD g:X—>—>Y if for every Xz-value,
xz, that appears in R, we have Y_(xz) =
Y (x). In words, the MVD g is valid in R
i% *he set of Y-values that appears in R
with a given x appears with every comb-
ination of x and z in R. Thus, this set
is a function of x alone and does not de-
pend on the Z-values that appear with x.
Given g:X——>Y, we say that g is a multi-
valued dependency from X to Y (in the set
U). As we do for FD's, here also we
usuaily omit the name g of the MVD.

Remark: We allow X or Y to be the empty
set. If Y is the empty set, then we get
the MVD X—>—>@; we agree that this MVD

is valid in all relations. If X is the
empty set, we get J—>—>Y which is valid
in a relation if and only if the set of
Y-values in the relation is independent of
the values of all the other attributes in
the relation, Let R(Y,Z) be a relation
where Y and Z are disjoint. Intuitively,
the MVD @-—>->Y is wvalid in R if and only
if R is the Cartesian product of its pro-
jections R[Y) and R[Z]. This is in accor-
dance with an alternative characterization
of MVD's given by Fagin (see Proposition 2
below). For further discussion of these
special cases, see [Fagl}.

From the definitions it follows that
if X—=>Y is valid in a relation R then
X—>—>Y is also valid in R. Thus, each FD
is also an MUD. The converse is not true.
An MVD X——>Y 1is an FD only if for each x
the set Y_{(x) contains at most one element,
which 1is not always the case.
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There is a fundamental difference be-
tween the definitions of FD's and MvVD's.
An FD X—>Y is defined in terms of the sets
X and Y alone and can be interpreted as a
constraint involving any set of attributes
that contains X and Y. Indeed, to check
if an FD X-»Y is valid in a relation R{U)
we only have to check its validity in the
projection R[XY]; the validity does not
depend on the values of the other attri-
butes. On the other hand, the validity of
X—=—>Y in R(U) depends on the values of
all attributes in U and cannot be checked
in R[XY]. It is possible that X—»>——>Y is
not valid in R(U) but that X-—>-—>Y is
valid in the projection R{U'], where
U' < U, Thus, MVD'S are sensitive to "con-
text" while functional dependencies are
not. (See (Fag2] for further discussion
of this issue). We will see later that
this “"context dependence" gives rise to
an inference rule for MvVD's that has no
parallel among the rules for FD's. It
follows that the specification of U is an
intergral part of the MVD. It would be
more appropriate, perhaps, to use the
notation X—=—>Y(U) to stress the fact
that the MVD involves the set U. How-
ever, in this paper we assume that U is a
fixed given set of attributes. For this
reason, we omit the reference to U and
write simply X—=>—>Y.

In Fagin's paper [Fag2), he required
that the left and right sides of an MVD
be disjoint. That is, for X—=—>Y to be
defined, it is required that X and Y be
disjoint. The reason for this restrict-
ion is that transitivity does not always
hold if the restriction is lifted. We
follow Zaniolo [Zan] in that we do not
require this restriction. As we show in
the next subsection, the use of the more
general definition leads to a set of in-
ference rules that are simple to state,
easy to use and all but one of which
(complementation) are similar to corres-
ponding rules for FD's. This similarity
is explored in [Beer2] to extend the
results of [Bernl, Bern2] to multivalued
dependencies.

Fagin's results for the restricted
form of MVD's are related to our more
general form by the following proposition,
which is a direct consequence of the de-
finition.
proposition l: For all sets of attributes
X,Y and U such that X,Y ¢ U and for each
relation R(U), the MVD X-—»>—>Y (on the
set U) is valid in R if and only if
X—=>-——>Y-X is valid in R. (Y-X 1is the set




difference of ¥ and X.) d

In other words, the MVD X—=>—>Y is
equivalent to the restricted MVD X—>—>Y-X.

The following important proposition
gives an alternative characterization of
MVD's. :

Proposition 2: Let X, Y and Z be sets
such that their union is U and Y N 2 C X.
For each relation R(U), the MVD X——>Y

is valid in R if and only if R is the nat-
ural join of its projections R[XY] and
R[XZ].

Proof: Fagin (Fag2] has proved the propo-
sition for the case that X, Y and 2 form

a partition of U. It is straightforward
to verify that the claim follows from this
fact and Proposition 1. 3

The most interesting special case of
Proposition 2 is given by the following
corollary.

Corollary: Let X and Y be subsets of U
and let Z be the complement (in U) of the
union of X and Y. For each relation R(U),
the MVD X—=>—Y 1is wvalid in R if and only
1% R is the natural join of its project-
ions R[XY] and R[XZ].

Proposition 2 (especially in the form
given in the corollary) is probably the
most important single property of multi-
valued dependencies. First, as shown
in [Fag2] and in the next section, it
can be used to prove various other prop-
erties of MVD's. Even more important is
the relationship it establishes between
MVD's and decompositions of relations.
Essentially, the proposition means that an
MVD is an alternative way of specifying
that a relation can be expressed as the
natural join of some of its projections,
that 'is, that the relation can be de-
composed into relations on smaller sets of
attributes. Decomposition is a basic com-
ponent of the theory of relational data
bases. A well known example of its use is
Codd's normalization process. More gen-
erally, decomposition can be viewed as
part of the process of schema design. A
possible approach to the problem of de-
signing a relational schema is to con-
sider all attributes to be initially con-
tained in one big relation. The schema is
the result of decomposing this relation
into a set of relations on smaller sets of
attributes. A suitable decomposition is
determined by the relationships (e.g., de-
pendencies) that exist among the attri-
butes. (See [Fag3] for further discussion
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of decomposition.) Because of this close
connection between the concept of an MVD
and the concept of decomposition, we ex-
pect that MVD's will have an important
role in the theory of relational data
bases.

4.2 Inference Rules for MVD's
In this subsection we discuss "pure"
inference rules for MVD's, that is, rules

that deal with the implication of new MVD's
from given MVD's. We will discuss "mixed"
rules that involve both FD's and MVD's in
the next subsection. 1In the following we
assume that U is a given set of attributes
and that all other sets of attributes are
contained in it. All MVD's are to be in-
terpreted in the context of U.

In Proposition 2, the sets Y and 2
have symmetric roles. As a corollary we
obtain the following inference rule.

MVDO (Complementation): Let X, Y and
Z be sets such that their
union is U and Y N 2 < X.
Then X——>Y if and only if

X—=>—=>7.

The rule is called the complementation
rule since it is usually applied when Z is
the complement (in U) of either Vv or of .
the union of X and Y. It is the only rule
for MVD's in which the consequense of
applying the rule to some MVD depends (to
some extent) on the underlying set U. 1In
all the other rules only the sets that
appear in the given dependencies partici-
pate in forming the sides of the result
dependency. As an example of the use of
the rule, we note that Proposition 1 is a
consequence of the rule. Indeed, it -
follows by two applications of MVDO that
X=—=>Y 1ff X——=U-(Y-X) iff X—>-Y-X.

We now proceed to present the addit-
ional inference rules that together with
MVDO constitute a complete set of infer-~
ence rules for MVD's.

MVDl (Reflexivity): If Y C X

then X—->-—v,

MVD2 (Augmentation): If Z C W and
K> —>y
then XW—-->YZ.

MVD3 If X-—>—>Y and
Y =7,

then X—=>-—=>7-Y.

(Transitivity) :

The validity of the first two rules
follows directly from the definition and
we omit the proofs. The most interesting
case of MVD2 occurs when Z = g. Fagin
{Fag2] has proved transitivity, using



Proposition 2, for the special case where
X, Y and 2 are pairwise disjoint. (With-
out these restrictions, some of the MVD's
in the rule are undefined according to his
definition of MVD's.) Note that when Y
and Z are disjoint, MVD3 gives us classi-
cal transitivity: if X—->Y and y—>—z,
then X-—»>—>Z. We present here a direct
proof for the general case.

We look first at the simple situation
of FD's. If X—Y and Y—=Z then the proof
of X~»2 is almost immediate. It is true
for all sets X, Y and Z that Z_ (x) c
2 (¥_(x)). If X—=Y then Y_(x) contains a
sgng§e element; if also Y-5»2Z then Z_(Y
(x)) contains a single element and so 1is
equal to Z_(xX). The fact that Z_(x) con-
tains a single element means that X->2z.
For MVD's, however, the situation is more
complicated. Even if Z_(x) = Z_(Y (x)),
the condition for X—>—9§ may nog bg
satisfied.

By Proposition 1 we know that Y—>—32
is equivalent to Y——>Z-Y. Therefore,
without loss of generality, we assume that
Y and Z are disjoint. Let W be the com-
piement in U of the union of X and 2. Let
R(U} be a relation in which X-»>—-»Y and
Y—-—>Z are valid. To prove that X—>->72
we have to show that Z_(x) = Z_(xw) for
each XW-value, xw, tha§ appears in R.

First we show that, for each y in
Yn(x), we have Z_(x) = 2_(xy). cClearly,
Zg xy) C Z_(x). "If ther& exists some z
in the set difference ZR(x)—ZR(xy) then
a. the combination xz appears in some
tuples of R, and b) there is no tuple u’
inR such that u'(X] = x, u'[2] = z and
u'{Y]) = y hold for u'. It follows that
Y _(x2) does not contain y, although
Y (X) does contain y. Since Y and Z are
disjoint, this contradicts the given MVD
X—=—Y.,

Now, since Y—>—>Z, we have immediate-
ly that 2_(xy) = Z_(y) and, by the previous
paragraph, Z2_(x) =2 _ (y). This is true for
each y in Y _(x). Sifce we want to show
that Z_(xw) = Z_(x), we need only show that
ZR(xw) = z_(y) for scme y in Y_(x). But,
since 2 ang Y are disjoint, we know that
Y C XW. Therefore xw has a projection y'
on Y. This y' belongs to Y_(x) and, since
Y—=—2, it follows that Z_(xw) = ZR(y').
This concludes the proof.

The rule MVD3 cannot be generalized.
If Y and Z are not disjoint then it is not
always true that X——7. See {Fag2}] for
counterexamples. 1In particular, if Z is a
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subset of Y then Y—=—Z:; however, there
are many examples of MVD's X—->Y such
that there is no MVD from X to a subset
of v.

In the next section we prove that the
rules MVDO - MVD3 are complete for the
family of MVD's. However, a minimal com-
plete set of rules is not necessarily con-
venient to use. As we did for FD's, we
introduce here some additional rules that
we have found to be useful for the mani-
pulation of MVD's.

-

MVD4 (Pseudo-transitivity):

If X=>—>Y and YW—->7
then XW—=->Z-YW.

This rule is a consequence of MVD2 and

MVD3. Using augmentation on X—»>—Y we

obtain XW—>-—>YW, then XW-»>-»Z-YW is ob-
tained by transitivity.

MVD5 (Unicon): If X—>—>Yl and X—>—>Y2
then X->—>Y1Y2.
MVD6 (Decomposition): 1If X—»—»Yl and
X—>—>Y2
then X—>—>Yl n Y2,

X—>—>Y1—Y2 and
X—>—>Y2—Yl.

While MVDS5 is exactly parallel to FDS,
rule MVD6 is more restricted then FD6.

We cannot decompose a set that appears on
the right side of an MVD in an arbitrary
manner. The only decomposition allowed
is the result of Boolean operations on
several sets that depend on a common set.

The rules MVD5 and MVD6 are very use-
ful for the manipulation of MvD's. The
corresponding rules for FD's, namely FDS
and FD6, are heavily relied upon in ess-
entially all the papers that deal with
FD's (e.g., [Beerl, Bernl, Bern2]). The
rules MVD5 and MVD6, though somewhat re-
stricted, are equally useful. For ex-
ample, they are used in the completeness
proof of the next section. They are also
used in [Beer2], e.g., in the construct-
ion of an efficient algorithm to decide
if a given MVD can be derived from a
given set of MVD's.

We prove here only MyD5. It is an
easy exercise to prove MVD6 from MVDS and
MVDO. Starting with X-»->Y_, we augment
both sides by X to obtain X—>—9XY2.




gimilarly, augmenting X=>—=Y, by ¥,, we
obtain XY2—>—>Y1Y . If we were dealing
with FD's, we couid apply transitivity to
terminate the proof. However, XY, and

v.v. are not disjoint, and applying MVD3 we
getzonly X—>->Y.. Instead, we first apply
complementation” to obtain XY, —=-—=>U-X-Y,Y,.
Now the sides are disjoint and we apply
transitivity and then complementation once
more to obtain the desired result X->—>Y1YZ

Currently, we know of no way to derive
MVD5 or MVD6 from MVDl - MVD3, that is,
without using complementation. We con-
jecture that complementation must be used.
This is not just a theoretical problem. In
[Beer2] it is shown that for the synthesis
of relational schemas from MVD's, one needs
to consider a set of inference rules that
does not contain MVDO. It is therefore
interesting to know if in such a set MVD5
and MVD6 are independent of the other rules.

4.3 Mixed Inference Rules

In the previous subsection we dealt
with the following problem: Given a set
of MVD's, what are the additional MVD's
implied by the set? We now turn our att-
erition to the more general problem. Sup-
pcse we are given a set F of FD's, and a
set G of MVD's. We can apply rules FDl~
FD6 to I tc obtain additional FD's; we can
2150 apply MVDO - MVD6 to G to obtain
additional MVD's. Are there any addition-
al dependencies that are implied by F U G?
what are the inference rules that can be
used to derive them? One such rule has
already been mentioned implicitly, namely,
that each FD is also an MVD. Thus we can
apply MVDO - MVD6 to F i G, not only to G.
It also turns out that certain combinations
of FD's and MVD's imply additional FD's
that cannot be derived by the use of the
above rules. These observations lead us
to introduce here three additional rules.

FD-MVD1l: If X->Y then X->->V,

FD-MVD2: If X->->Z and Y->Z'
(z' ¢ 2),

where Y and Z are disjoint,
then X—>2"'.

FD-MVD1l follows from the definitions. Wwe
prove FD-MVD2. Let R(U) be a relation in
which X->->Z and Y->Z' are valid. Since Y
and Z are disjoint, it follows from the
definition of an MVD that Z_(x) = Z_(xy)
for each xy that appears in the relation.
Since z'C Z, it follows that also 2Z' (x) =
Z'R(xy). But from Y-—=>Z' it follows %hat
XY—=Z'., 3o Zé(x) which is equal to
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Z'R(xy) contains a single element and

X-=>z'.

Note that if we are given a set F of
FD's and a set G of MVD's, the use of the
rule FD-MVD2 can derive new FD's that
possibly cannot be derived from the set F
alone. Similarly, wusing rule FD-MVDl on
these new FD's, we can derive additional
MVD's that possibly cannot be derived
from G and F without using rule FD-MVD2.
As an example, suppose that we have the
attributes A, B, C, D, E and we are given
the dependencies D—C and A—>—>BC. Using
rule FD-MVD2 we can derive the dependency
A—=>C., We leave it to the reader to check
that this dependency cannot be derived
from the given two dependencies using all
rules except FD-MVD2.

The next rule we introduce is not in-
dependent; rather, it can be derived from
the rules for MVD's and the rules FD-MVD1,
FD-MVD2. We present it for the same rea-
son we introduced additional rules for
FD's and MVD's - to obtain a set of use-
ful and flexible rules. For more details
on the use of this rule see [Beer2].

FD-MVD3: If X->->Y and Xy->Z, then

X->Z-Y.

To prove this rule, we first augment
X->->Y by X to obtain X-»->XY. Applying
transitivity we obtain X—-Z-XY. Now,
XY—>Z 1is equivalent to XY->Z-XY so by
applying FD-MVD2 to X->->Z-XY and
X¥-»>Z-XY, we obtain X—=Z-XY. Clearly,
this implies X—=>Z-Y.

5. COMPLETENESS OF THE RULES

In this section we prove that the set
of rules introduced in Sections 3 and 4
is complete for the family of functional

and multivalued dependencies.

Let F and G be sets of FD's and MVD's
(on a set U), respectively. The closure
of FU G, denoted by (F,3)", is the set
of all FD's and MVD's that can be derived
from F U G by repeated applications of
the rules in the set (FDl, FD2, FD3, MVDO,
MVDl, MVD2, MVD3, FD-MVDl, FD-MVD2}. By
the results of the previous sections and
those of [Arm, Fagl], each of these rules
is a valid inference rule for the family
of dependencies. Therefore, each depen-
dency in (F,G)*t is implied by F U G, 1.v,
it is valid in each relation that obeys
all the dependencies in F and G. To
prove completeness of this set of rules,
it remains to show that the converse is



also true, that is, that each dependency
that is implied by F U G belongs to (F,G)*.

Recall that a dependency f is implied
by F U G if there is no counterexample re-
lation such that all dependencies in F U G
are valid in it but £ is not. To show co-
mpleteness of the rules, we have to show
that for each dependency not in (F,G)*
such a counterexample relation does exist.

In the following we assume that sets
F and G of FD's and MVD's, respectively,
are given. Before we present the complete-
ness theorem we need a few more concepts.

Let X be a subset of U. There are
several sets Y such that the MVD X—=->Y is
in (F,G)*, (e.g., X—=—U-X is always in
(F,G)*). Following Fagin, we use the
notation X—»—Y lei...[Y to denote the
collection of M%D's X—>—b§ y X=>—=>Y0, ...
X—-—>Y . From now on, when this no%ation
is useE, we assume that none of the sets
Yl,...,Yk is the empty set.

Let us denote by DEP(X) the family of
all sets Y for which X——Y. (DEP (X) 1is,
of course, a function of the given sets of
dependencies F and G.) We have seen that
DEP{X) is closed under Boolean operations
(MVDY, MVD6). Therefore, it contains a
unigi.e subfamily with the following pro-
perties:

-) The sets in the subfamily are
nonempty.

i)  Each pair of sets in the sub-
family is disjoint.

¢} Each set in DEP(X) 1is a union of
sets from the subfamily.

This subfamily consists of all nonempty
minimal sets in DEP(X), i.e., those sets
that do not contain any other nonempty set
of DEP(X). We call this subfamily the
dependency basis of X. If Yl""’Y are
the sets in the dependency basis of X, then
as Fagin noted [Fag2], the "generalized"
MVD X——Y ‘...!YL contains all the in-
formation dbout MvD's that have X as their
left side.

Let X* denote the set of all attribut-
es that are functionally dependent on X
(by functional dependencies in (F,G)7T).
Clearly X C X*. X* has the same role for
FD's as DEP(X) has for MVD's. For each
A € X* we have X-»A. Thus, each element
of X* appears as a singleton set in the
dependency bhasis of X. The dependency
basis contains other sets if and only if
X* is a proper subset of U. These remain-
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ing sets cover U-X*. We note that since
X-—=>X* and X*—=X, it follows that DEP(X) =
DEP(X*) and the dependency basis of X is
the same as the dependency basis of X*,

Theorem 1 (Completeness theorem for FD's
and MvD's): Let F and G be sets of FD's
and MVD's (on a set U), respectively.

For each functional or multivalued depen-
dency that does not belong to (F,g)t
there exists a relation R({U) such that
all the dependencies in (F,G)* are valid
in R but the given dependency is not
valid in R.

-

Proof: Let X be the left side of the
dependency that is not in (F,G)*. The
set X* is a proper subset of U since
otherwise every (functional or multival-
ued) dependency with left side X belongs
to (F,G)*. Let W,,...,W (m > 1) be the
sets in the depenéency basis of X that
cover U-X*, Thus, X*, W,,...,W_form a
partition of U. The MVD X—>~>X7¥|w,...|w
is in (F,¢)T and, furthermore, if an

MVD in (F,G)* has X as its left side then
its right side is a union of a subset of

X* and some of the sets W,,...,W .
1 m

m

The relation R({U) is constructed as
follows: We choose the set {0,1} as the
domain of each of the attributes in U.
The relation R has 2™ rows, one row for
each sequence of zeros and ones of
length m. In the row corresponding to a
sequence <a.,...,a > {(where 3, € (0,1},
each of the attributes in wi Is assigned
the value a, (i=l,...,m). Each attribute
in X* is assigned the value 1 in all the
rows of the relation. For example, if
m=3, then the row corresponding to the
sequence <0,1,1> has all 1's in the X*
columns, all 0's in the W, columns, all
1's in the W, columns and all 1's in the
w3 columns.

We now want to prove that R satisfies
the condition of the theorem. In what
follows, we use the inference rules
presented in the previous sections for
two different purposes. First, we some-
times show that if some given dependen-
cies are in (F,G)*T then (F,G)* also con-
tains some other dependency. That we can
use the rules for this purpose follows
directly from the definition of (F,G)T.
Second, we also show that if some depend-
encies are valid in R then there is an-
other dependency that is valid in R. We
can use the rules for this purpose since
we have proved that they are valid in-
ference rules for the family of depend-
encies, i.e., their application to de-
pendencies that are valid in a relation




always produces dependencies valid in
that relation. We will indicate our in-
tention each time we use the rules.

We now prove the -following three claims
about the relation R we have just cons-
tructed.

(1) If the right side of an FD is a non-
empty subset of W, then the FD is valid
in R if and only If its left side in-
tersects wi (for i=1,...,m).

(2) Each MVD that has Wi as its right
side is valid in R (for 1=1,...,m).

(3) If the right side of
empty proper subset of W, then the MVD is
valid in R if and only i its left side
intersects wi (for im=l,...,m).

an MVD is a non-

We first prove one direction of claim
1. For each fixed row of R, all the
attributes in W, have the same value.
follows that evéry attribute in W, is
functionally dependent in R on evéry
cther attribute in W, (and, by augmenta-
tion, on every set that contains such an
attribute). Thus we have proved that if
the left side of the FD intersects W,
then the FD is valid in R. From this
also follows the corresponding directi-
on of claim 3, since every FD is also an
MO,

It

We now prove claim 2 and the other
d.rections of c¢laims 1 and 3. The re~
lation R is the Cartesian product of its
pr jections R[W,] and R[U-W,]. It
follows immedia%ely that th& MVD =W,
is valid in R and, by augmentation, *
Y-—>=—-W. is valid in R, for every set Y.
This proves claim 2. Now let Yy and Z be
sets such that Y is disjoint from W, and
Z is a nonempty subset of W.. It
follows from the above factorization of
R that for each Y-value y, the set
ZR(y) contains two Z-values -~ a O-ass~
ignment and a l-assignment to the att-
ributes of Z. In particular, the FD
Y—-2Z is not valid in R; this concludes
the proof of claim 1. If Z is a proper
subset of W, let A be an attribute in
W.-Z. Then Z_(ya), where ya is a
Yﬁ—value, con%ains only a single Z-~value
since the attributes of Z must be assign-~
ed the same value as the attribute A.
Therefore Z_(y) # 2_(ya) and it follows
that the M Y—»—oZRis not valid in R.
This concludes the proof of claim 3.

We now show that R satisfies the con-
dition of the theorem., First, let f be
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an FD in (F,G)*. We show that f is valid
in R. By FD6 we can assume that f is of
the form Y-»B where B is a single attri-
bute. Now, if B igs in X* then f is clear-
ly valid in R since in R every attribute
of X* assumes a single value and is, there
fore, functionally dependent on any other
attribute. If B is not in X* then it
belongs to some W.. If Y is disjoint

from this W, then” from the MVD X—»>—W,

and the FD §—>B which are both in b
(F,G)* it would follow by rule FD-MVD2
that X->B is in (F,G)* . This is imposs-
ible since B is not in X*. Therefore Y
must intersect W, and Y-»B is valid in R
by claim 1.

Let now g:Y—>—>Z be an MVD in (F,G)™.
We show that g is valid in R. We note
that ¥Y—= Z N X* is valid in R. We will
show that, for each i, Y—»>—=>2 N W, is
also valid in R. First, suppose %hat,
for some i, the set Z N W, is either
empty or all of Wi' By claim 2 above,
Y—>—>Wi is valid In R; as we have noted in
Sectiofi 4, Y—»>—>f is always valid. Next,
suppose that, for some i, Z2'N W, is a
nonempty proper subset of W.. If Y does
not intersect W, we can use augmentation
on Y-»>—2Z to ob%ain that U-W,-—>»-—>Z is in
(F,e)*. Since X—»-—>U-W, is also in
(F,G)* it follows by transitivity (MvD3)
that X—=—->2-{(U-W.), that is X~>—=>Z N W,
is in (F,G)+. This is a contradiction to
the assumption that Wi is a member of the
dependency basis of X, Thus ¥ must inter-
sect W, and, by claim 3, Y—=—=2 N W, is
valid In R. We have now shown that, for
each i, Y=»>~>7 N W, is valid in R and so
is also Y—>—»2 N X¥. By taking the union
(MVD5) it follows that Y—>—>Z is valid in
R.

Finally, let us consider the depend-
ency {with left side X) which is known
not to be in (F,G)t. If it is an FD X—>Y
then ¥ is not a subset of X*, so Y inter-
sects W, for some i. By FD6 if XY is
valid in R so is X—=»Y N wW. and this con-
tradicts claim 1. (Recali that X* is dis-
joint from each of the Wi.) Therefore
X—=Y¥ is not valid in R. "If the dependen-
cy is an MVD X—=-—>Y then, for some i,

Y n Wi must be a nonempty proper subset

of L (else since X—Y N X* and X—~>Y N Wi
for each i are in (F,g)*t the MVD

X-»—>Y would be in (F,G)*). Now, for

this i, X—=»—¥Y N W, is not valid in R by
claim 3. Since X—~—=W, is valid in R, if
X—=>—>Y were also valid in R we could app-
ly MVD6 (intersection) to obtain a con~
%Fagfction. Thus X—>—=Y is not valid in



By the theorem, we know that any sin-
gle dependency not in (F,G)* is not impli-
ed by F U G. One might ask whether it is
possible that the set F U G implies a
statement like ‘f, or f., where f, and f
do not belong to (F,G)T. The meaning o%
such an implication is that either f. or f
must be valid in each relation in which
F U G is valid though none of them is
valid in all such relations. Our next
theorem states that this is not the
case. As we have noted at the end of
Section 2, this means that we are proving
completeness of the rules using a concept
of completeness that is stronger than the
one defined there. We note that Pagin
[Fagl] presents an example of a system in
which completeness holds but in which
"strong completeness" fails,

2

Theorem 2 (Strong completeness theorem):
Let F and G be sets of FD's and MVD's

(on a set U), respectively. There exists

a relation R(U) such that the set of depen-
dencies valid in R is exactly (F,g)t,

Proof: We want to show that there exists
a relation in which all dependencies in
(F,5 t are valid and in which no other
dependency is valid. We have seen in the
procf of Theorem 1 that for each depend-
encv f not in (F,G)%t there exists a re-
lation R_{(U) in which all dependencies

in f‘,G)ﬂt are valid, £ is not valid and
all attributes assume only values from
the set [0,1}. Let us now use for each
depridency £ a distinct set of values
[Of,lf). The required relation R(U) is
the .nion of these relations R_{U) over
all dependencies f not in (r,GJt. It is
easy to see that R satisfies the condi-
tion of the theorem, 3

Note that our approach to proving
strong completeness is somewhat different
from Armstrong's approach. Armstrong
proved strong completeness for FD's. For
that he showed how to directly construct
the counterexample relation in which the
dependencies in the closure of a given
set are valid and no other dependency is
valid. The resulting relation is quite
cumbersome. 1In our approach, one first
constructs a counterexample relation for
each dependency that is not in the closure

of the given set, as in the proof of Theorem

1; then these relations are glued together
as in the proof of Theorem 2. The ensuing
relation is more easily understood than
Armstrong's relation.

In the previous theorems we stated the
completeness of our rulesfor the family of
all dependencies. We now present complete-

ness results for the subfamily of ¥D's and
for the subfamily of MVD's. We first show
that the rules FDl - FD3 are complete for
FD's. This result means that every FD
that is derivable from a given set of FD's
by using all nine rules (FDl-FD3, MVDO-
MVD3, FD~MVD1l,FD-MVD2) presented in this
paper, can be derived from it using only
the three rules FD1-FD3. Similarly, we
show that the rules MVDO-MVD3 are comple-
te for MVD's. That is, every MVD der-
ivable from a given set of MVD's can be
derived from it using only these four
rules. "

The completeness result for FD's is
not new, of course. The proof presented
here is essentially the proof given in
[Fagl]. We include it here for several
reasons. Firstly, we want to present all
completeness results in one place.
Secondly, this is the first time that the
completeness issue is discussed in the
context of FD's and MVD's together. Until
now, every known inference rule for FD's
was either one of FD1-FD3 or could be
shown to be provable from them (e.g., FD4,
FD5 and FD6). Nowwe have two additional
rules, namely FD-MVD2 and FD-MVD3, which
are not logical consequences of FD1l-FD3.
We want to stress the fact that, when
only FD's are given, the rules FD1-FD3
are sufficient to derive all derivable
FD's. (The reader should note, however,
that this fact does follow from the defin-
ition of completeness and the proofs of
completeness of this set of rules in [Arm,
Fagl]. We want to stress a known result,
not to prove a new result.) Finally,
there is an interesting corollary that
follows from the proof.

Theorem 3 {Strong completeness theorem

for FD's): The rules FDl, FD2, FD3
are strongly complete for the family of
FD's.

Proof: We have to show that, for every
set of FD's, there exists a relation in
which all the FD's that are derivable
from the given set by using the rules
FD1-FD3 are valid and in which no other
FD is valid. what we will show is that,
given a set of FD's, if an FD cannot be
derived from it by using these three rules,
then it cannot be derived from it at all
(that is, by using all nine rules). The
desired result will then follow as a
corollary of Theorem 2. We use the same
technique that was used in the proof of
Theorem 1 but the proof here is much
simpler.

We first note that the rules FD5 and




and FD6 can be proved from FD1l-FD3.

This means that an application of

FD5 or FD6 is equivalent to a sequence of
applications of rules from the set {FD1,
FD2, FD3}. Therefore we can assume in the
following, without loss of generality,
thct all FD's have a single attribute on
their right side.

Let F be a given set of FD's on a set
of attributes U, and let f:X->A be an FD
that cannot be derived from F by using the
rules FD1-FD3. Let us denote by X the set
of attributes that are functionally depen-
dent on X by some FD derivable from F by
using the rules FD1-FD3. (We note that,
because of FDl, X contains X. It is also
clear that X is contained in X* - the set
of attributes that are functionally depen-
dent on X by some FD in F*. A priori, the
latter containment may be proper. However,
it follows from the theorem that X = X*.
We cannot, of course, use this equality
until the theorem has been proven.) Let
R(U) be a relation consisting of the
following two tuples. 1In the first tuple
of R all the attributes are assigned the
valse 1. In the second tuple of R all
attributes of X are assigned the value 1
an? all the attributes in U-X are assigned
the value 0. Note that U-X is not empty
since it contains the attribute A.

It is easy to see that a) every FD
whose right side is contained in X is
vai.d 1n R, and b) an FD whose right side
intersects U-X is valid in R if and only
if "ts left side also intersects U-X.
(C~mpare to claims 1 and 3 in the proof of
Theorem 1.) Let us now consider an arbi-
trary FD Y—»B in the given set F. We will
show that the FD is valid in R, If Y is
a subset of X then X—y can be derived
from F by the rules FD1-FD3; since the
FD Y—=B is in F, we obtain by FD3 (trans-"
itivity) that B is in X and Y—»B is valid
in R. 1If Y intersects U-X then, by the
two claims above, Y—B is valid in R. It
follows that all the FD's in F are valid
in R and therefore all FD's and MVD's in
Ft are valid in R.

Now let us consider the given FD
f:X->A. Since it cannot be derived from
F by using the rules FD1-FD3, A belongs to
U-X. 1t follows from (b) above that f is
not valid in R and therefore that f is not
in F¥., O

In many papers dealing with FD's (e.gqg.,
{Arm, Bernl, Bern2, Fagl]), the closure of
a set of FD's is defined to be the set of
all FD's derivable from it by using the
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rules FD1-FD3. This definition is more
restricted than our definition which
includes in the closure all FD's and MVD's
derivable from the set by using all nine
rules presented in this paper. However,
it follows from the theorem that, as far
as FD's are concerned, the two definitions
are equivalent. Clearly, in any work

that deals only with FD's and in which

the concept of MVD does not appear, no
ambiguity can arise if the more restricted
definition is used.

As a corollary to themoof of
Theorem 3 we can now obtain a* simple
characterization of the MVD's in the
closure of a set F of FD's. Namely, each
MVD in Ft is either one of the FD's in F*
or is the result of applying MVDO (com-
plementation) to such an FD. We note that
this corollary can also be obtained from
a result by Rissanen [Riss, The.l].

Corollary: Let F be a set of FD's on a
set of attributes U. Let g:X—>—>Y be an
MVD in F¥ and let g be the MVD

g:X—=>—->U-Y (which is also in F¥). Then
either g or g is the result of applying
rule FD-MVD1 to an FD in F*. (Recall
that rule FD-MVD1l essentially states that
every FD is also an MVD. Thus the
corollary means that either g or its

'complement' g is essentially an FD in F*.)

Proof: Let the set X be the left side of
the given MVD g. We consider the re-
lation R(U) constructed in the proof of
Theorem 3, in which all attributes of X*
(= X) are assigned the value 1 in both
tuples and the attributes of U-X* are
assigned the value 1 in the first tuple
and the value 0 in the second tuple. (For
this X it is possible that U-X* is empty,
since now no attribute A is given that is
known to be in U-X*.) We want to show
that either X—Y or X—»U-Y is an FD in F*.
Since g is in F*, we know that g is valid
in R. Now, if Y is a subset of X* then
X->Y is an FD in F*. If Y intersects
U-X* then it is obviocus that X—=—>Y is
valid in R only if ¥ contains all attri-
butes of U-X*. (Compare to claims 2 and
3 in the proof of Theorem l.,) But then
U-Y is a subset of X* and X—U-Y 1is an FD
in Ft, O

We now present the completeness re-
sult for MVD's.

Theorem 4 (Strong completeness theorem for
MVD's): The rules MVDO, MVDl, MVD2,
MVD3 are complete for the family of MVD's.

Proof: TLet G be a given set of MVD's.
We want to show that there exists a re-~



lation in which all MVD's derivable from G
by the use of the rules MVDO-MVD3 are valid
and in which no other MvD is valid. Let R
be the relation constructed in the proof
of Theorem 2 where G is the given set of
MVD's and F is the empty set of FD's. As
we showed in the proof of Theorem 2, all
MVD's derivable from the set F U G (which
is equal to G, since F is empty) by using
the rules FD1-FD3, MVDO-MVD3, FD-MVDl and
FD-MVD2 are valid in R and no other MVD's
are valid in R.

Now, the only way to derive new MVD's
in ¢* without using the rules MVDO-MVD3 is
by applying rule FD-MVDl to some FD's.
However, since F is the empty set, initia-
lly we have no FD's. The only way to
generate new FD's when no FD's are given
is to use rule FD1l which generates all the
"reflexive" FD's (of the form X->Y where ¥
is a subset of X). It is easy to see that
rule FD-MVD2 cannot be applied when only
reflexive FD's are given and that the
other FD-generating rules (FD2, FD3) can-
not generate nonreflexive FD's from re-
flexive FD's. Thus, the closure of G con-
tains only reflexive FD's and applying rule
FD-MVD1l we get only the reflexive MVD's.
however, these are also generated by rule
MVD1l. To conclude, all MVD's wvalid in R
are generated from G by the rules MvVDO-
*./D3 as was to be shown. d

Note that now we also have a charac-
tization of all FD's in the closure of a
viven set G of MVD's, namely, every FD

1 6T is a reflexive FD. It follows that
when one 1s interested in MVD's, no am-
biguity can arise if the closure of a
given set of the MVD's is defined to be
the set of MVD's derivable from it by using
the rules MVDO-MVD3.

6. CONCLUSION

In this paper we have investigated the
inference rules for functional and multi-
valued dependencies in a data base re-
lation. A set of rules was presented and
shown to be complete for the family of
functional and multivalued dependencies.
It was also shown that the subset of rules
that apply to multivalued dependencies is
a complete set of rules for these depend-
encies. Thus, the rules presented here
are sufficient for the analysis of the
properties of functional and multivalued
dependencies.

In addition, we have shown an analogy
between the well known rules for functional
dependencies and the rules for multivalued

dependencies. Specifically, it was shown
that for each rule for functional depend-
encies, the same rule or a similar rule is
valid for multivalued dependencies. There
is, however, an additional rule (comple-
mentation) for multivalued dependencies
that has no parallel among the rules for
functional dependencies. Of particular
importance are the rules for the manipu-
lation of right sides of dependencies -
the Union and the Decomposition rules.
These two rules were already known to be
very useful for the manipulation of func-
tional dependencies. While the Decomp-
osition rule for multivalued dependencies
is slightly less general, these rules are
still very useful for the manipulation of
these dependencies since they allow us to
perform Boolean operations on the right
sides of dependencies. It turns out that
actually, in many cases where these rules
are used to manipulate functional depend-
encies, Boolean operations are all that is
needed. Therefore, similar manipulations
can be applied to multivalued dependencies.
An example of the use of these rules is
our proof of Theorem 1. BAnother example
is given in [Beer2]}.

We conclude by mentioning some prob-
lems that merit further research. Now
that we understand the properties of de-
pendencies in a relation, we should try
to clarify the influence of such depend-
encies on the structure of relational
schemas. Some work in this direction has
already been done ({Bernl, Bern2, Beer2,
Fag2]). However, a general theory that
ties together dependencies, relations and
operations on relations is still lacking.
A specific problem in this direction is
to investigate what happens to dependencies
when relations are joined. We hope that
the results presented in this paper will
serve as a basis for attacking these
problems.
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