
Static Index Pruning for Information Retrieval Systems

David Carmel∗, Doron Cohen∗, Ronald Fagin§, Eitan Farchi∗,
Michael Herscovici∗, Yoëlle S. Maarek∗, Aya Soffer∗

(∗)IBM Research Lab in Haifa, MATAM, Haifa 31905, ISRAEL
(§)IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120

ABSTRACT
We introduce static index pruningmethods that significantly
reduce the index size in information retrieval systems. We
investigate uniform and term-based methods that each re-
move selected entries from the index and yet have only a
minor effect on retrieval results. In uniform pruning, there
is a fixed cutoff threshold, and all index entries whose con-
tribution to relevance scores is bounded above by a given
threshold are removed from the index. In term-based prun-
ing, the cutoff threshold is determined for each term, and
thus may vary from term to term. We give experimental ev-
idence that for each level of compression, term-based prun-
ing outperforms uniform pruning, under various measures of
precision. We present theoretical and experimental evidence
that under our term-based pruning scheme, it is possible to
prune the index greatly and still get retrieval results that
are almost as good as those based on the full index.
Topic areas: indexing, compression

1. INTRODUCTION
Fast and precise text search engines are widely used in

Web and desktop applications. Efficient query evaluation
is attained in these search engines by use of an inverted
file, which provides an association between terms1 and doc-
uments in the collection. Indexing a large collection of doc-
uments might result in huge index files that are hard to
maintain. Therefore, it is important to utilize efficient com-
pression methods for index files.
While many index compression schemes have been sug-

gested in the past, two recent trends lead us to believe that
the issue of index size needs to be revisited. The first trend
is the emergence of hand-held devices such as Palm that
now possess enough storage capacity to allow moderate-size
document collections to be stored on the device. Equipping
these devices with advanced index-based search capabilities
is desirable, for quick reference and browsing purposes, but

1We use “term” to refer to an arbitrary indexing unit in-
cluding a single word, a phrase, or a more complex form.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
SIGIR’01, September 9-12, 2001, New Orleans, Louisiana, USA..
Copyright 2001 ACM 1-58113-331-6/01/0009 ...$5.00.

storage on hand-held devices is still sufficiently limited that
indices need to be very compact. The second trend is the ex-
plosion of textual information on the Web; thus, Web search
engines must index collections of unprecedented size.
There has been a large amount of work in the field of in-

dex compression. There are two complementary approaches:
lossless compression and lossy compression. Lossless ap-
proaches do not lose any information; instead, they use more
efficient data structures. Thus, under lossless approaches,
posting lists have a very compact representation [16]. On
the other hand, under lossy approaches, certain information
is discarded. The two approaches are complementary. That
is, after selected document postings have been pruned using
lossy methods, the index can be further compressed in a loss-
less manner. Thereby, a smaller index size can be attained
than is possible by either one of the methods separately.
Examples of the lossy approach include stopword omission

and Latent Semantic Indexing (LSI) [3]. While the primary
goal of both stopword omission and LSI is to reduce the noise
in the system by pruning terms that deteriorate precision,
their practical effect of reducing index size is very relevant
to this work. Both stopword omission and LSI operate at
the granularity of terms. That is, they enable pruning only
of an entire term and its postings list from the index.
In this paper we propose lossy methods that prune the

index at the posting level. That is, in our approach, a term
can be retained in the index, but some document postings
may be eliminated from this term’s posting list. The idea is
to remove those postings whose potential contribution to the
relevance score of a document is so small that their removal
will have little effect on the accuracy of the system. The
selection of which document postings to prune is guided by
certain user-specified parameters.
In addition to reducing disk space, our pruning methods

decrease both the time required to search the resulting in-
dex, and the amount of memory consumed for searching, in
a manner similar to that of dynamic pruning techniques that
have been described in the literature. These techniques dy-
namically decide, during query evaluation, whether certain
terms or document postings are worth adding to the accu-
mulated document scores, and whether the ranking process
should continue or stop [1, 6, 9, 14]. The typical approach
of these algorithms is to order query terms by decreasing
weight, and to process terms from most to least significant
until some stopping condition is met. Among the stopping
conditions are a threshold on the number of document accu-
mulators used, and a threshold on term frequencies. While
these schemes select terms, and hence whole posting lists,

for processing or rejection, Persin et al. [10, 11] propose a
method that prunes entries within these lists. In this ap-
proach, the processing of a particular query term is termi-
nated when a stopping condition is met. For an overview
of these and other query evaluation methods, see [13].
By contrast, our pruning methods are static. We remove

entries from the index in advance, therefore reducing the
index size. Similarly to lossy versus lossless compression,
the two different techniques of static versus dynamic pruning
can complement each other, since searching in the pruned
index can be further accelerated by dynamic pruning for a
specific query.
Our goal is to perform index pruning in such a way that a

human “cannot distinguish the difference” between the re-
sults of a search engine whose index is pruned and one whose
index is not pruned. Therefore, as in any lossy compression
technique, we wish to remove the least important entries
from the index, so that the visible effects of the compres-
sion (in terms of the results obtained) are very small. Thus,
the question we need to address is how to identify the least
important entries in the index. We begin with the usual
assumption that for each query, there is a scoring function
that assigns a score to each document, so that the docu-
ments with the highest scores are the most relevant. The
scoring function is often based on a 2-dimensional scoring
table A, indexed by terms and documents. Table entries are
set according to the scoring model of the search engine; thus,
A(t, d) is the score of document d for term t. We assume
that A(t, d) = 0 if t is not in d, and A(t, d) > 0 otherwise.
There are no other constraints on table entries.
The first static pruning algorithm that we consider re-

moves from the index all posting entries whose correspond-
ing table values are bounded above by some fixed cutoff
threshold. We refer to this type of pruning as uniform prun-
ing, since the threshold is uniformly chosen, with the same
cutoff value being used for every term. Uniform pruning
has an obvious drawback. Low-scoring terms may have all
of their entries in the index pruned away. Therefore, given a
query consisting only of low-scoring terms, the pruned index
may fail to provide any good results for this query.
This insight leads us to suggest a second, and more so-

phisticated, pruning algorithm, in which the cutoff threshold
may depend on the term. We refer to this type of pruning
as term-based pruning. Term-based pruning guarantees that
each term will have some representatives left in the index.
Therefore, queries with low-scoring terms will fare better
than under uniform pruning. How do we determine the cut-
off thresholds?
We are guided by the intuition that all we care about are

the top k documents (say, for k = 10 or k = 50), since
this is all the user sees. Thus, we care only about whether
the pruned index returns the same top k documents; we do
not care about the score it might assign to the remaining
documents. Our term-based pruning algorithm attempts to
minimize the effect of pruning on the top k results for each
query (k is one of the parameters of the algorithm). We now
discuss the ideas that go into term-based pruning.
We define an ε-variation of a scoring function S to be a

scoring function S′ that differs from S by at most a mul-
tiplicative factor of ε. The intuition is that scoring func-
tions are inherently fuzzy, and so S′ is essentially as good as
S. We present an idealized term-based pruning algorithm,
which selects a cutoff threshold for each term, such that the

scoring function from the pruned index has the same top
k answers, in the same order, as some ε-variation of the
original scoring function. This corresponds to our intuitive
notion of saying that a human “cannot distinguish the dif-
ference”. Thus, as we will show, the idealized term-based
pruning algorithm has a mathematical guarantee that the
top k answers are good, in a certain precise sense.
Because of its mathematical guarantees, we would like to

use this idealized term-based pruning algorithm to set the
cutoff thresholds. Unfortunately, as we shall discuss, there
are practical reasons why it does not do sufficient pruning.
Therefore, we instead define another term-based pruning al-
gorithm, whose cutoff thresholds for each term are based on
those of the idealized term-based pruning algorithm. We
show by simulations that we are able to achieve 35% prun-
ing with only a slight decrease in average precision (7%),
and with hardly any effect on the precision of the top 10
results. For 50% pruning, we are still able to maintain the
same precision at the top 10 results.
In Section 2 we define precisely the model used by our al-

gorithms and the notion of query result indistinguishability.
In Section 3, we give (two variations of) the idealized term-
based pruning algorithm. We give a formal proof that for all
queries with a moderate number of search terms, the scor-
ing function obtained from the pruned index using the ide-
alized term-based algorithm is indistinguishable from that
obtained from the original index. In Section 4 we tell how we
modify the idealized term-based pruning algorithm in prac-
tice, and we show experimentally, using TREC data, that
our (modified) term-based pruning algorithms attain a very
high degree of pruning. While uniform pruning adversely af-
fects the average precision, term-based pruning results in a
pruned index that is almost as good as the original index in
terms of recall-precision evaluation and in terms of similar-
ity between the top k search results. Thereby, under term-
based pruning, we obtain a greatly compressed index that
gives answers that are essentially as good as those derived
from the full index. In Section 5, we give our conclusions.

2. DEFINITIONS AND NOTATION
A scoring function S is a function mapping each document

to a nonnegative real number. Often, S is derived from a
scoring table A, as defined in the introduction, and a query,
as we now explain.
A typical scoring model used by many IR systems is the

tf × idf formula [12]. The score of term t for document d
depends on the term frequency tf of t in d, the length |d|
of document d, and the inverse number idf of documents
containing t in the collection. For example, our system uses
the following scoring model based on the model used by the
SMART system [2]

A(t, d) =

log(1+tf)
log(1+avgtf) log

N
Nt

|d| (1)

where avgtf is the average term frequency in d, N is the
number of documents in the collection, Nt is the number of
documents containing t, and

|d| = [0.8 ∗ pivot + 0.2 ∗ (# unique terms in d)]0.5

is an approximation to the length of document d. The pivot
is set to the average number of unique terms in a document
occurring in the collection.

Note that since (a) search indices are typically very large
and contain many entries, and (b) the size of the index
should be as small as possible, IR systems usually store the
raw term frequencies (which are integers) rather than the
actual scores (which are floating point numbers). The table
entries are computed dynamically according to the scoring
model of the system during query evaluation time. Further-
more, only nonzero entries are kept in the index. In par-
ticular, the index is stored using an inverted file structure
that consists of terms, where each term is associated with
a posting list that records the documents that contain the
term and the number of occurrences of the term in the doc-
ument (and perhaps more information, such as the offsets
of the term in the document).
We identify a query q with a nonempty set of distinct

terms t1, . . . , tr, where each term ti is associated with a pos-
itive weight αi. For example, in the experiments done for
this work, query terms are extracted from TREC topics,
and the term weights are determined by the following equa-
tion (also based on the scoring model used by the SMART
system [2]):

αi =
log(1 + tfi)

log(1 + avgtf)
(2)

Here tfi is the term frequency of term ti in the topic and
avgtf is the average term frequency in the topic.
The score of document d for query q is

Sq(d) =
r∑

i=1

αiA(ti, d). (3)

We say that Sq is the scoring function for q that is based on
A.
Assume that 0 < ε < 1. Let us say that a scoring function

S′ is an ε-variation of the scoring function S if

(1− ε)S(d) ≤ S′(d) ≤ (1 + ε)S(d) (4)

for each document d. We think of ε as representing the
fuzziness inherent in the scores. Under this interpretation,
if S′ is an ε-variation of S, then intuitively, the score of
document d could just as well be S′(d) as S(d).
Let A be a scoring table. Our goal is to find a new scoring

table A∗ that is like A, except that some of the entries are
set to 0. Using the uniform pruning approach, we find a
uniform cutoff threshold τ for the entire table such that
A∗(t, d) = A(t, d) if A(t, d) > τ , and A∗(t, d) = 0 otherwise.
Using the term-based pruning approach, for each term t,
we find a cutoff threshold τt such that A∗(t, d) = A(t, d)
if A(t, d) > τt, and A∗(t, d) = 0 otherwise. Thus, A∗ is
the result of “cutting the tail” of A (since we are removing
the smallest entries from the table, in the uniform case, and
from each row, in the term-based case).
In term-based pruning, we wish to cut the tail in a princi-

pled manner. Intuitively, our principle is that for each query
q (or at least for each query q without too many terms), the
resulting scoring function based on A∗ should still be ac-
ceptable. We now explain what we mean by “acceptable”.
In information retrieval, we are most interested in the “top

answers” to a query. We consider two notions of the “top
answers” to a query q, as follows.

• Top k answers, where k is a positive integer: these
are the k documents with the highest scores under the
query q (ties are broken arbitrarily).

• δ-top answers, where 0 < δ ≤ 1: these are the docu-
ments whose score under the query q is at least δ times
the highest score of all the documents under q. For ex-
ample, for δ = 0.7, each document with a score that is
at least 70% of the top score is a δ-top answer.

The top k answers definition is more intuitive, since search
results are usually presented k (e.g., 10) at a time, and users
often want to see only the top k, and no more. However, if
the quality of the top results is of significance, then showing
an arbitrary and preset number of results may fail to convey
such qualitative information to the user. Perhaps only the
first three results are good; or, on the other hand, perhaps
there are a few more results that are just as good as the tenth
result. Using the δ-top definition, all the results that are
presented to the user can be considered significant. While
for one query there may be only three documents with scores
that are significantly higher than others, for another query
there may be twenty such documents.
We define S∗

q to be the scoring function for query q based
on the scoring table A∗, where A∗ is the result of cutting
the tail of our original scoring table A. We consider S∗

q to
be acceptable if it gives the same top answers (in the same
order) as some ε-variation of Sq. The intuition is that what
the user really cares about is the top answers. Since there
is an inherent fuzziness in the scoring functions, giving the
same top answers as an ε-variation S′ of Sq is good enough.
The reason we need both S∗

q and S′ is that S∗
q itself is not

necessarily an ε-variation of Sq, since the result of cutting
the tail might result in S∗

q (d) being equal to 0 for some
document d, whereas Sq(d) is nonzero. This keeps S∗

q from
being an ε-variation of Sq.
Let us say that the scoring function S∗

q is (k, ε)-good for
Sq if there is an ε-variation S′ of Sq such that the top k
answers for S∗

q are the same as the top k answers for S′, in
the same order. Similarly, S∗

q is (δ, ε)-good for Sq if there is
an ε-variation S′ of Sq such that the δ-top answers for S∗

q

are the same as the δ-top answers for S′, in the same order.
We will give theorems that say that our idealized term-based
pruning algorithms attain this type of goodness.

3. IDEALIZED TERM-BASED PRUNING
In this section we give two variations of our idealized term-

based pruning algorithm. The first corresponds to the “top
k answers” definition, while the second corresponds to the
“δ-top answers” definition. For both of these algorithms, we
provide mathematical guarantees of goodness.

3.1 Idealized Top k Answers Pruning Algo-
rithm

Given the parameters ε and k, we shall give a method for
doing the pruning (that is, for obtaining table A∗ from table
A) that guarantees that for all queries q with r terms, such
that r < 1/ε, the scoring function S∗

q based on A∗ is (k, εr)-
good for Sq. Note that r is limited by the inequality r < 1/ε,
since the notion “(k, εr)-good” is meaningful only for εr < 1.
If we wish to guarantee that for all queries q with at most
� terms, the scoring function S∗

q based on A∗ is (k, ε)-good,
then we simply modify our construction by using ε/� instead
of ε. Although the method guarantees good results only for
short queries (those with r not too large), the pruned in-
dex can apparently be successfully used for longer queries
as well. Thus, in Section 4, we show experimentally that a

practical variation of our idealized term-based pruning al-
gorithms gives good results even for longer queries.
We now give our construction, which tells how we prune

the scoring table A to obtain A∗, given our parameters ε and
k. For each term t, let zt be the score of the kth highest (“kth
best”) document for term t according to A. Let τt = ztε.
We take τt to be the cutoff threshold for term t. Thus, let
A∗(t, d) = A(t, d) if A(t, d) > τt, and A∗(t, d) = 0 otherwise.
In other words, the rule for cutting the tail is to set to 0
those scores that are at most τt.
Recall that as we explained in Section 2, the scoring ta-

ble A is not stored as such in typical IR systems. Instead,
we use an inverted file, where each term is stored with an
associated posting list. Figure 1 describes how to prune a
given inverted file using the top k pruning algorithm. The
algorithm takes as input an inverted file I, along with the
parameters k and ε, and creates a pruned inverted file. Note
that the entries of the scoring table A are computed on a
term-by-term basis, in order to find the cutoff value for each
particular posting list.2 The time complexity of the pruning

top k prune(I, k, ε)

for each term t in I
retrieve the posting list Pt from I
if |Pt| > k

for each entry d ∈ Pt

compute A(t, d) (e.g. by Equation 1)
let zt be the kth best entry in row t of A
τt ← ε · zt

for each entry d ∈ Pt

if A(t, d) ≤ τt

remove entry d from Pt

Save (t, Pt) in the pruned inverted file

Figure 1: Idealized top k pruning algorithm

algorithm is linearly proportional to the index size. For each
term t, the algorithm first computes a threshold by finding
the kth best entry in the posting list of t (this can be done
in O(N) time, where N is the number of documents). It
then scans the posting list to prune all the entries smaller
than the threshold. Thus, if there are M terms in the index,
the time complexity of the algorithm is O(M · N).
Before we state and prove our theorem, we need to define

carefully what we mean by “the top k answers”. This is
a little delicate since there may be ties. Given a scoring
function S, a set X is said to be the top k answers if X
is of size k, and if for every x ∈ X and every y 	∈ X we
have S(x) ≥ S(y). Because of ties, there may be more than
one set X that can serve as the top k answers for a given
query. In the definition of (k, ε)-good (and of (δ, ε)-good),
we assume that ties are broken in the same way in S∗

q as in
S′.
Assume that the scoring table A and the parameters ε and

k are given. Let A∗ be the pruned scoring table obtained
by our construction described earlier. We then have the
following theorem.

2The scoring table derived from the pruned posting lists
is actually slightly different from the pruned scoring table
defined earlier where certain entries are set to zero and other
entries are unchanged. This is because the idf values in the
tf × idf formula we use change slightly after pruning the
posting lists. For simplicity, we ignore this issue here.

Theorem 3.1. : Let q be a query with r terms, where
r < 1/ε. Let Sq be the scoring function for query q based on
the scoring table A, and let S∗

q be the scoring function for
query q based on the pruned table A∗. Then S∗

q is (k, εr)-
good for Sq.

Proof: Let X be the top k answers for S∗
q . Thus, X is a

set of size k, and for every x ∈ X and every y 	∈ X we have
S∗

q (x) ≥ S∗
q (y). Define S′ by taking S′(x) = S∗

q (x) if x ∈ X,
and S′(y) = (1 − εr)Sq(y) if y 	∈ X. We now show that S′

is an εr-variation of Sq. In fact, we show something a little
stronger, since instead of just the inequalities (1−εr)Sq(d) ≤
S′(d) ≤ (1+ εr)Sq(d), we prove the stronger statement (1−
εr)Sq(d) ≤ S′(d) ≤ Sq(d). The second inequality S′(d) ≤
Sq(d) follows easily from the construction. We now prove
the first inequality. It is immediate if d 	∈ X. Assume now
that x ∈ X; we must show that

(1− εr)Sq(x) ≤ S′(x). (5)

Assume that the terms of the query q are t1, . . . , tr, with
weights α1, . . . , αr respectively. Let zi be the score of the
kth highest answer for term ti according to A, for 1 ≤ i ≤ r.
Find j (with 1 ≤ j ≤ r) such that αjzj is as big as possible.
Let W be the top k answers according to A for term tj . It
follows from our construction that for each w ∈ W , we have
A∗(tj , w) = A(tj , w) ≥ zj , and so S∗

q (w) ≥ αjzj . Therefore,
there are at least k documents w (namely, the members of
W) such that S∗

q (w) ≥ αjzj . Since x is one of the top k
answers for S∗

q , it follows that

S∗
q (x) ≥ αjzj . (6)

Since Sq(x) ≥ S∗
q (x), it follows from (6) that Sq(x) ≥ αjzj .

Therefore,

S′(x) = S∗
q (x)

≥ Sq(x)−
r∑

i=1

αiziε

(since the sum is the maximal loss from pruning)

≥ Sq(x)− rαjzjε (since αjzj ≥ αizi for all i) (7)

≥ Sq(x)− rSq(x)ε (since Sq(x) ≥ αjzj)

= (1− εr)Sq(x).

This proves (5).
Assume that x ∈ X and y 	∈ X. We shall show that

S′(x) ≥ S′(y). (8)

There are two cases, depending on whether αjzj ≥ Sq(y)
or Sq(y) > αjzj .
Case 1: αjzj ≥ Sq(y). By (6) it follows that S∗

q (x) ≥
Sq(y). Hence, S′(x) = S∗

q (x) ≥ Sq(y) ≥ S′(y). This
proves (8), as desired.
Case 2: Sq(y) > αjzj. Within (7) we showed S∗

q (x) ≥
(1−εr)Sq(x). Since Sq(y) > αjzj , the same argument (with
x replaced by y) shows that S∗

q (y) ≥ (1 − εr)Sq(y). Hence,
S′(x) = S∗

q (x) ≥ S∗
q (y) ≥ (1 − εr)Sq(y) = S′(y). This

proves (8), as desired.
Thus, X is also the top k answers for S′. Since S′ is

an εr-variation of Sq and since S′ and S∗
q agree on X, it

follows easily that S∗
q is (k, εr)-good for Sq , which proves

the theorem.

An examination of the proof shows that Theorem 3.1 can
be strengthened in two ways. First, in addition to S∗

q having

the same top k answers, in the same order, as an εr-variation
S′ of Sq, also these top k answers have the same score under
S∗

q as S′. Therefore, if the user were to see not only the top
k, but also the scores of the top k, then what the user would
see using S∗

q would be identical to what he would see using
S′.
Second, nowhere in the proof of Theorem 3.1 did we make

use of the fact that certain entries of A are set to 0 (that is,
we never made use of the fact that some entries are set to 0,
only that the entries that are set to 0 are sufficiently small).
Therefore, if our algorithm were modified by not setting to
0 some entry that the algorithm says to set to 0, then the
results of Theorem 3.1 would still hold.

3.2 Idealized δ-Top Answers Pruning Algo-
rithm

Given the parameters ε and δ, we shall give a method
for doing the pruning (that is, for obtaining table A∗ from
table A) that guarantees that for all queries q with r terms
such that r < 1/ε, the scoring function S∗

q based on A∗ is
(δ, εr)-good for the scoring function Sq based on A.
We now give our construction, which describes how we

prune the scoring table A to obtain A∗, given our parameters
ε and δ. For each term t, let zt = δmaxd A(t, d) be the δ-top
score for term t according to A. We take τt = εzt to be the
cutoff threshold for term t. Thus, let A∗(t, d) = A(t, d) if
A(t, d) > τt, and A∗(t, d) = 0 otherwise. Similarly to the
top k algorithm, the time complexity of the δ-top algorithm
is O(M · N).
Assume that the scoring table A and the parameters ε and

δ are given. Let A∗ be the pruned scoring table obtained
by our construction described earlier. We then have the
following theorem, whose proof is very similar to that of
Theorem 3.1.

Theorem 3.2. : Let q be a query with r terms, where
r < 1/ε. Let Sq be the scoring function for query q based on
the scoring table A, and let S∗

q be the scoring function for
query q that is based on the pruned table A∗. Then S∗

q is
(δ, εr)-good for Sq.

4. EXPERIMENTAL RESULTS
In this section we tell how we modified the idealized term-

based pruning algorithms based on practical considerations.
We report results from some experiments we conducted to
evaluate how the pruning algorithms behave, both for short
queries (where our theory applies) and for long queries. For
our experiments we use Juru, a Java version of the Guru [8]
search engine, developed at the IBM Research Lab in Haifa.
Juru does not apply any compression methods on its in-
verted files, except stopword omission, and uses the tf × idf
formula described in Equation 1. We use the TREC col-
lection [15] for our experiments. We used the Los-Angeles
Times (LAT) data given in TREC, which contains about
132,000 documents (476MB), and evaluated our methods
on the ad hoc tasks for TREC-7, with topics 401-450. We
experimented both with short queries and long queries. We
used the topic title for short query construction, and the title
concatenated with the topic description for long query con-
struction. The weights of the query terms were determined
by Equation 2.

4.1 Performance Measurement
In order to measure the accuracy of the pruning algo-

rithms, we compare the results obtained from the pruned
index against the results obtained from the original index.
We use the standard average precision, and precision at k
(P@k) measures [15].
In addition, we want a method to compare the top results

in one list (obtained from the pruned index) against the top
results in another list (obtained from the original index).
In this way we can provide numbers saying how well the
pruned index approximates the original index in terms of the
top results. A simple measure is the symmetric difference
between the top k lists, which evaluates how similar the lists
are, ignoring the order of results. If y is the size of the union
of the two top k lists, and x is the size of the symmetric
difference, then we take the symmetric difference score to
be 1− x

y
. This score lies between 0 and 1. The highest score

of 1 occurs precisely when the top k of both lists are the
same (although the order of results may be different), and
the lowest score of 0 occurs precisely when the top k of the
two lists are disjoint.
In order to take the document order into consideration

there is a need for a new similarity measure. Recently, Fa-
gin et al. [4], inspired by the question of measuring the
goodness of our pruning approach, developed various cor-
relation methods for comparing the top k in two lists, based
on methods for comparing two permutations [7]. For our ex-
periments, we used one of their variations of Kendall’s tau
method. The original Kendall’s tau method for comparing
two permutations assigns a penalty S(i, j) = 1 for each pair
{i, j} of distinct items for which i appears before j in one
permutation and j appears before i in the other permuta-
tion. The sum of the penalties over all pairs {i, j} reflects
an overall penalty score that lies between 0 (when permuta-
tions are identical) and n(n − 1)/2 (when one permutation
is the inverse of the other).
The modified version of Kendall’s tau handles the case

where we care about comparing the top k in one list against
the top k in another list, rather than comparing permuta-
tions. The penalties assigned for each pair {i, j} of distinct
items needs to be redefined, since i and j might not appear
in the top k of one or both lists. For each i, j, each of which
appear in the top k of at least one of the lists, the new
penalty S(i, j) is defined as follows:

• Case 1: if i and j appear in the top k of both lists,
then S(i, j) is defined as before. Namely, if i and j
are in the same order, then S(i, j) = 0, and otherwise
S(i, j) = 1.

• Case 2: if i and j appear in the top k of one list (say
list 1), and exactly one of i or j (say i), appears in the
top k of the other list (list 2), and if i is ahead of j
in list 1, then S(i, j) = 0, and otherwise S(i, j) = 1.
Intuitively, we know that i is actually ahead of j in list
2, since i, but not j, appears in the top k of list 2.

• Case 3: if i, but not j, appears in the top k of one list,
and j, but not i, appears in the top k of the other list,
then S(i, j) = 1. Intuitively, we know that i is actually
ahead of j in the one list, and j is actually ahead of i
in the other list.

• Case 4: if i and j appear in the top k of one list, but
neither i nor j appear in the top k of the other list,

then S(i, j) = 1/2. Intuitively, we do not have enough
information to determine whether i and j are in the
same order in list 1 as in list 2, and so we assign a
neutral penalty score of 1/2.

The overall penalty score now lies between 0 (when the
top k of the lists are identical and in the same order) and
k(3k − 1)/2 if the top k of one list is disjoint from the top k
of the other list. We get a normalized overall penalty score
x′, which lies between 0 and 1, by setting x′ = 1− 2x

k(3k−1)
.

The highest score of 1 occurs precisely when the top k of
both lists are the same, in the same order, and the lowest
score of 0 occurs precisely when the top k of the two lists
are disjoint.

4.2 Results
The first experiment tested the impact of pruning on (a)

the search precision and (b) the similarity of the top results
obtained from the original index to the top results obtained
from the pruned index. First, we created a sequence of
pruned indices using the uniform pruning algorithm, where
we varied τ , the cutoff threshold, and thereby the number
of entries pruned from the resulting pruned index. Next,
we created a sequence of pruned indices by invoking the top
k pruning algorithm, where we fixed k to 10 and where we
used varying values of ε. We conducted a similar sequence
of experiments by invoking the δ-top algorithm, where we
fixed δ to 0.7 and used varying values of ε. For each index
we ran a set of 50 short queries and a set of 50 long queries,
constructed from the TREC topics, and measured the pre-
cision of the search results and the similarity of the top 10
results to the top 10 results of the original index. The av-
erage number of terms in the short queries (after stemming
and stopword elimination) is 2.42. The average number of
terms in the long queries is 9.06.
We now explain why we were required to modify the ide-

alized term-based pruning algorithms. The initial results
using the idealized term-based algorithms were discourag-
ing. Setting the cutoff threshold to the kth highest value of
each term times small ε values did not prune a significant
number of entries in the index. Careful examination of the
values of table A revealed that the problem was the small
range of values in the table derived from our scoring func-
tion. In particular, the value of the smallest entry in each
row was almost always larger than the cutoff threshold. We
thus decided to shift the nonzero values in the table A so
that the lower limit of the range of values is close to 0. Shift-
ing is done by subtracting the smallest positive table entry
from all positive table entries. We then applied the ideal-
ized term-based pruning algorithm, in order to determine
which documents should be removed from various posting
lists. This shift indeed resulted in significant pruning. The
net result was a pruned index with little deterioration in
precision and with hardly any change in the top k results.
While the theorems presented in Section 3 do not hold for
the shifted table, the experimental results show that the
modified term-based algorithm is able to prune a significant
portion of the index and still yield results that are essentially
as good as the original index. We have obtained preliminary
results that give some partial theoretical justification for the
modified algorithm, but further research is required to fully
understand the phenomenon.
The first results we present compare the uniform and

term-based pruning methods both in terms of precision and

in terms of the similarity between the top 10 lists for var-
ious levels of pruning. The level of pruning is determined
by τ in the uniform algorithm, and by ε in the term-based
approaches. We then analyze the term-based algorithms for
short and long queries as we vary ε. Finally, we examine the
effect of varying k and δ for fixed ε.

Figure 2: Precision of search results at varying levels
of pruning.

Figure 2 plots the average precision and the P@10, as a
function of the amount of pruning, for the indices obtained
by the uniform and the top k term-based algorithms. The
results show that the top k term-based algorithm is overall
better than the uniform algorithm. They also indicate that
while there is a significant deterioration in the average pre-
cision with the increase of pruning, there is only moderate
deterioration in the precision at the top 10 results.
Note that the pruning reported in our results is the per-

centage of entries in the index that are removed by our algo-
rithms. The effect of this pruning on the index size depends
on the particular data structures used to store the index. In
our system, the saving in space is linearly proportional to
the savings in terms of index entries. As mentioned above,
we did not employ any lossless compression methods, since
we wanted to study the effects of static pruning in isolation
of other factors. Clearly, the total size of the index can be
further compressed by applying lossless compression to the
pruned index. It may very well be the case that the overall
savings in the compressed space is less than that reported
here, since lossless compression of a smaller index might not
lead to as much compression as lossless compression of a
larger index. Investigating how static pruning and various
traditional compression methods interact is an interesting
topic for research and left for future work.
Figure 3 shows the similarity between the top 10 results

of the original index and the pruned index, at varying levels
of pruning, both for uniform pruning and top k term-based
pruning (with k = 10). We use the symmetric difference
and the top k-based version of Kendall’s tau to measure the
similarity between the two lists. The results are averaged
over the 50 long queries. This graph also shows the supe-
riority of the top k term-based algorithm over the uniform
algorithm. The relatively high similarity between the top
10 lists for moderate pruning levels supports the claim that
for moderate pruning levels, the top 10 results of the pruned
indices are very similar to the top 10 results of the original
index.

Figure 3: Top 10 similarity at varying levels of prun-
ing.

Figure 4: Average query processing time at varying
levels of pruning.

Figure 4 shows the average query processing time for long
and short queries, as a function of the amount of pruning.
The results clearly show that especially for long queries,
query time processing is significantly lower for smaller in-
dices. Note that we did not employ any dynamic pruning
methods in our experiments. These results thus show that
static pruning in itself yields shorter query processing time.
Query processing can be made even more efficient by em-
ploying additional dynamic pruning methods.

ε Prune(%) Avg precision P@10
LongQ ShortQ LongQ ShortQ

0 0 0.261 0.250 0.271 0.262
0.025 13.2 0.241 0.242 0.278 0.280
0.05 19.9 0.242 0.240 0.280 0.282
0.1 36.4 0.241 0.242 0.262 0.278
0.15 51.9 0.226 0.235 0.269 0.258
0.2 64.2 0.224 0.229 0.260 0.256
0.25 72.8 0.207 0.223 0.251 0.249

Table 1: Precision results of the top k term-based
algorithm for k = 10 and varying ε.

Table 1 summarizes the results obtained by the top k
term-based algorithm, for long and short queries, where k is
fixed to be 10 and where ε is varied. As the results show, the

algorithm can achieve high levels of pruning even for modest
values of ε. For example, there is a pruning level of 72.8%
even for ε = 0.25. Note that while the average precision
decreases with the pruning level, the precision at the top 10
results is hardly effected, and even improves for small lev-
els of pruning. Surprisingly, there is very little difference in
precision of the pruned indices for short queries versus long
queries.

ε Prune(%) Avg precision P@0.7-top
LongQ ShortQ LongQ ShortQ

0 0 0.261 0.250 0.330 0.320
0.05 19.4 0.239 0.240 0.329 0.310
0.1 35.6 0.236 0.236 0.314 0.311
0.15 51.4 0.220 0.223 0.323 0.294
0.2 64.4 0.228 0.231 0.331 0.304

Table 2: Precision results of the δ-top term-based
algorithm for δ = 0.7 and varying ε.

Table 2 summarizes the results obtained by the δ-top al-
gorithm, fixing δ to 0.7 and varying ε. The average precision
of the search results are consistent with the results obtained
from the top k algorithm. The fourth and the fifth columns
show the precision at the 0.7-top result lists obtained from
the pruned indices (all results higher than 0.7 times the top
result). Note that the precision at the 0.7-top results is much
higher than the precision at the top 10 results. The main
reason for this is that the documents in the δ-top list, by
definition, have a significantly higher score than the scores
of the rest of the documents. Thus the documents that are
tested for relevancy to the query are more likely relevant.

k Prune(%) Avg precision P@k
Orig Index Pruned Index

1 49.2 0.218 0.533 0.356
5 40.2 0.231 0.347 0.293
10 36.4 0.241 0.271 0.262
15 34.2 0.238 0.241 0.236

Table 3: Precision results of the top k algorithm for
ε = 0.1 and varying k.

Table 3 summarizes the results obtained by the top k al-
gorithm for long queries, where ε is fixed to 0.1 and k is
varied. For smaller values of k, the algorithm prunes much
more, as expected, since the cutoff threshold is higher. As
k increases, the precision of the top k results of both the
original and the pruned indices decreases. Examining the
difference between precision of the original and pruned in-
dices shows that the adverse effect of pruning on precision
becomes less significant with increase in k, since larger val-
ues of k result in less pruning.

δ Prune(%) Avg precision P@δ-top
Orig Index Pruned Index

0.99 48.9 0.217 0.516 0.456
0.9 44.9 0.230 0.468 0.410
0.8 40.4 0.234 0.430 0.370
0.7 35.6 0.236 0.330 0.314

Table 4: Precision results of the δ-top algorithm for
ε = 0.1 and varying δ.

Table 4 summarizes the results obtained by the δ-top algo-
rithm for long queries, where ε is fixed to 0.1 and δ is varied.

The size of the δ-top set is varied with δ. For δ = 0.99 the
average size of the 0.99-top set is 1, while for δ = 0.7 the
average set size is 16.9.

5. CONCLUDING REMARKS
In this work we present static pruning methods that re-

duce the index size of a search engine by removing the least
important posting entries from the index. We consider two
types of static pruning. Uniform pruning removes all post-
ing elements whose values are bounded above by some fixed
cutoff threshold. Term-based pruning proceeds similarly,
but assigns a possibly different cutoff threshold to each term
in the index. We present an idealized term-based pruning
algorithm, and prove that for short queries the scoring func-
tion based on the pruned index has the same top answers,
in the same order, as some ε-variation of the original scor-
ing function. Thus, the top answers returned by the pruned
index are guaranteed to be “good” in a certain precise sense.
Because of practical reasons, the idealized term-based prun-

ing algorithm does not prune much, at least in our exper-
iments. Therefore we modify the idealized term-based al-
gorithm into a practical term-based algorithm whose cutoff
thresholds are based on those of the idealized one. We show
by simulations that we can achieve high levels of pruning,
while still retrieving “good” results in terms of (a) precision
and (b) similarity to the top results of the original unpruned
index. Therefore, this work essentially shows how to obtain
a greatly compressed index that still gives answers that are
almost as good as those derived from the full index.
There are many interesting open questions. The first one

is whether our lossy methods are effective for small indices.
We intend to experiment with small indices using Pirate,
a compact search engine that we have developed for Palm.
(Pirate is available as a free download at [5].) The goal
is to attain an index that is very small, which is required
by this device because of its limited storage. We also in-
tend to index and prune the Web Track of TREC (∼10G)
in order to experiment with huge indices. There are the-
oretical reasons to believe that our term-based algorithms
will be even more effective in the case of huge indices, and
we wish to investigate this issue empirically. In addition to
these empirical studies, there are further theoretical issues
that we wish to explore. In particular, we would like to
find a theoretical justification for our practical modification
to idealized term-based pruning, to complement the strong
empirical evidence we have presented here. We do have some
initial weak theoretical results in this case that show some
form of “closeness” between the results obtained from the
pruned index and the original index. In those results, we
greatly liberalize the notion of ε-variation between the two
scoring functions. Another issue we plan to consider is the
effect of lossless compression after our lossy compression, as
compared to pure lossless compression.

Acknowledgments
We thank Oren Dinay for implementation of the algorithms
described in this work.

6. REFERENCES
[1] C. Buckley and A. F. Lewit. Optimization of inverted

vector searches. In Proceedings of the Eighth
International ACM-SIGIR Conference, pages 97–110,
Montreal, Canada, June 1985.

[2] C. Buckley, A. Singhal, M. Mitra, and G. Salton. New
retrieval approaches using SMART: TREC 4. In
Proceedings of the Fourth Text REtrieval Conference
(TREC-4), pages 25–48, Gaithersberg, Maryland,
November 1995.

[3] S. Deerwester, S. Dumais, G. Furnas, T. Landauer,
and R. Harshman. Indexing by latent semantic
analysis. Journal of the American Society of
Information Science, 41(6):391–407, 1990.

[4] R. Fagin, R. Kumar, and D. Sivakumar. Top k
orderings and near metrics. To appear, 2001.

[5] Pirate Search for Palm.
http://www.alphaworks.ibm.com/tech/piratesearch.

[6] D. Harman and G. Candela. Retrieving records from a
gigabyte of text on a minicomputer using statistical
ranking. Journal of the American Society of
Information Science, 41(8):581–589, 1990.

[7] M. Kendall and J. D. Gibbons. Rank correlation
methods. Edward Arnold, London, 5th edition, 1990.

[8] Y. Maarek and F. Smadja. Full text indexing based on
lexical relations: An application: Software libraries. In
Proceedings of the Twelfth International ACM SIGIR
Conference, pages 198–206, Cambridge, MA, June
1989.

[9] A. Moffat and J. Zobel. Fast ranking in limited space.
In Proceedings of the 10th IEEE International
Conference on Data Engineering,, pages 428–4376,
Houston, TX, February 1994.

[10] M. Persin. Document filtering for fast ranking. In
Proceedings of the Seventeenth International
ACM-SIGIR Conference, pages 339–348, Dublin,
Ireland, July 1994.

[11] M. Persin, J. Zobel, and R. Sacks-Davis. Filtered
document retrieval with frequency-sorted indexes.
Journal of the American Society of Information
Science, 47(10):749–764, October 1996.

[12] G. Salton and M. J. McGill. An Introduction to
Modern Information Retrieval. McGraw-Hill, New
York, 1993.

[13] H. Turtle and J. Flood. Query evaluation: Strategies
and optimizations. Information Processing and
Management, 31(6):831–850, 1995.

[14] A. N. Vo and A. Moffat. Compressed inverted files
with reduced decoding overheads. In Proceedings of
the 21st International ACM-SIGIR Conference, pages
290–297, Melbourne, Australia, August 1998.

[15] E. M. Voorhees and D. K. Harman. Overview of the
Seventh Text REtrieval Conference (TREC-7). In
Proceedings of the Seventh Text REtrieval Conference
(TREC-7). National Institute of Standards and
Technology, http://trec.nist.gov/pubs.html, 1999.

[16] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes. Morgan Kaufman, San Francisco, 1999.

