
SIAM J. DISCRETE MATH. c© 2016 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1978–1996

AN ALGORITHMIC VIEW OF VOTING∗
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Abstract. We offer a novel classification of voting methods popular in social choice theory. Our
classification is based on the more general problem of rank aggregation in which, beyond electing
a winner, we also seek to compute an aggregate ranking of all the candidates; moreover, our clas-
sification is offered from a computational perspective—based on whether or not the voting method
generalizes to an aggregation algorithm guaranteed to produce solutions that are near optimal in
minimizing the distance of the aggregate ranking to the voters’ rankings with respect to one of
three well-known distance measures: the Kendall tau, the Spearman footrule, and the Spearman rho
measures. We show that methods based on the average rank of the candidates (Borda counting),
on the median rank of the candidates, and on the number of pairwise-majority wins (Copeland) all
satisfy the near-optimality criterion with respect to each of these distance measures. On the other
hand, we show that natural extensions of each of plurality voting, single transferable voting, and
Simpson–Kramer minmax voting do not satisfy the near-optimality criterion with respect to these
distance measures.
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1. Introduction. One of the crowning achievements of microeconomic theory
during the past century is the formal treatment of issues pertaining to social welfare. A
prime specific example is the theory of social choice, which addresses—in an axiomatic
mathematical framework—the question of what constitutes a good method for ranking
the candidates in an election where voters present their individual rankings of a set
of candidates.

The earliest forms of elections, including, for example, the elections of leaders
of various tribes, were based largely on the plurality method, where the candidate
with the most (first-place) votes was declared the winner. According to the plurality
method (in the absence of ties for first place), it does not matter what the voters’
complete preference orders are. During the 1780s, two Frenchmen—Jean-Charles de
Borda and Nicolas de Condorcet—challenged the ancient wisdom of plurality elections,
and argued forcefully why it was important to consider the entire preference orders
even if the goal is only to choose the winner of the election.

Borda [4] proposed an extension of plurality where candidates are ordered by
their average ranks. Condorcet [5] pointed out a systematic weakness of the plurality
method as well as that of any scoring method such as Borda’s: they could elect a
candidate B as the winner even though there is another candidate A that a majority
prefers to B. He proposed the idea, now known as the Condorcet criterion, that
if there is a candidate A such that for each other candidate B, a majority of the
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voters prefer A to B, then candidate A shall be the winner. The Condorcet criterion,
however, is not a decisive voting method: it is possible that there is no candidate
satisfying the hypothesis of the criterion, for example, three candidates A,B, and
C such that a majority prefers A to B, a majority prefers B to C, and a majority
prefers C to A. The resulting tension was at the heart of much debate in social choice
theory during the latter half of the 20th century, when the subject received more
mathematical treatment.

In parallel, a number of elegant voting mechanisms such as Simpson–Kramer
min-max voting and single transferable voting (STV) have gained popularity for a
variety of reasons. These mechanisms are akin to plurality in that they consider only
“extreme” data (most first place votes, smallest largest margin of pairwise defeat,
eliminate candidate with fewest first place votes and iterate, etc.).

The present work offers a novel perspective from the viewpoint of polynomial-
time approximation algorithms. To enable this viewpoint, we study the more general
problem of rank aggregation, in which the task is not just to elect a winner but to
produce a complete aggregate ranking of the given input choices. Specifically, we study
natural optimization problems of the following form, as suggested by Kemeny [11]:
given a number of input rankings on a set of candidates, compute a ranking whose
total distance to the given rankings is minimized. The choice of distance functions
we consider include the Kendall tau distance (preferred by Kemeny), the Spearman
footrule distance, and the Spearman rho distance (definitions to be presented shortly).

The main results of this paper can be summarized as follows: for the rank ag-
gregation problem, sorting candidates by their average rank (the method of Borda),
sorting the candidates by their median ranks, and sorting candidates by the number of
pairwise-majority wins (proposed by Copeland), all yield constant-factor polynomial-
time approximation algorithms for the minimization problem with respect to all the
aforementioned distance measures. On the other hand, natural extensions of each of
plurality, Simpson–Kramer min-max, and STV to aggregation problems do not yield
approximation algorithms (polynomial time or not) for these minimization problems.
As a tool for one of our proofs, we prove a surprising identity about permutations
(Theorem 4.8), that is interesting in its own right.

In the rest of this introduction, we discuss the importance of the minimization
problem with respect to the Kendall tau distance; clarify the relationships among the
distance measures; and point out relevant prior results and how our contributions
relate to prior work.

1.1. Kendall tau minimization. While Borda and Condorcet had pioneered
the idea that voting schemes (whose goal is to elect a winner) should consider all
the information present in the voters’ preference orders, in the 20th century Arrow
[2] studied the question under the broader umbrella of aggregation (whose goal is to
aggregate the voters’ rankings into a complete ranking of the candidates). The basic
principle underlying Arrow’s work is in the spirit of Condorcet’s criterion, and requires
that the relative positions of two candidates in the aggregation should depend only
on their relative positions among the voters’ lists. Arrow established the deep result
[2] that rules out all reasonable methods for aggregation; this is essentially a very
powerful manifestation of the cycle dilemma that arises from Condorcet’s criterion.

In the wake of Arrow’s result, Kemeny [11] proposed an aggregation method where
the objective is to find a ranking that minimizes the total Kendall tau distance [12]
to the voters’ rankings. The Kendall tau distance between two rankings σ and π,
denoted K(σ, π), is defined as the number of “upsets” in π with respect to σ, that
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is, the number of pairs of candidates whose relative ordering is different between σ
and π. Kemeny’s proposal turned out to unify the Borda and Condorcet camps to
some degree: Young and Levenglick [17] established that Kemeny’s proposal is the
unique aggregation method that meets the Condorcet criterion and also satisfies two
of the three desirable social-choice properties (neutrality1 and consistency,2 excluding
anonymity3) that characterize Borda’s method.

From a computational viewpoint, it was shown [3] that computing solutions that
minimize the total Kendall tau distance is NP-hard,4 and hence likely to be com-
putationally intractable; in fact, it remains so even when there are just four voters
[8]. The latter paper introduced Kendall-tau optimality (and Condorcet-type crite-
ria) as a useful paradigm in rank aggregation problems that arise from web search
and information-retrieval applications. In these situations (quite unlike traditional
elections), the number of candidates is large, and the number of voters is relatively
modest.

1.2. Objective functions and approximation problems. Taking “total
Kendall tau distance” as a reasonable objective function, one may pose two types
of problems: finding efficient algorithms that achieve approximation factors as close
to 1 as possible, and establishing that well-known aggregation proposals (such as the
Borda method, Copeland method, etc.) achieve constant approximation factors (that
are independent of the number of candidates or voters). The former class of problems
is important from the viewpoint of applications of rank aggregation; the state of the
art is an algorithm of [1, 16, 13] that produces aggregations whose total Kendall tau
distance to the voters’ rankings is at most a factor (1+ε) worse than the total distance
achieved by an optimal aggregation for any constant ε > 0.

Our goal here is the latter, namely, to establish that the proposals of Borda and
Copeland, as well as a natural variant of Borda (using the median instead of the
mean), achieve constant approximation factors with respect to optimal solutions in
the Kemeny sense. We deal with n candidates and k voters and we are interested in
ranking the entire set of n candidates, rather than just electing one winner.

Spearman proposed [15] two distances other than the Kendall tau distance be-
tween two rankings. These distance measures make use of the L1 and L2 metrics:
the Spearman footrule distance and the Spearman rho distance between two rank-
ings σ and π is the sum, over all the candidates, of the “distance” in the position
of the candidate in both the rankings (distance is either the absolute distance or the
squared distance, respectively, in the two cases). It was observed in [8] that a rank-
ing that optimizes the Spearman footrule or the Spearman rho distance to the input
rankings can be computed efficiently using minimum cost perfect matching. Diaconis
and Graham [7] established that the Spearman footrule distance and the Kendall tau
distance are within a factor of 2 of each other. This automatically implies that the
footrule-optimal aggregation is a factor 2 approximation to the optimum using the
Kendall tau distance as proposed by Kemeny. The Spearman rho distance is closely
related to another quantity, the Spearman correlation coefficient, which is essentially

1All candidates are treated equally, i.e., if two candidates switch positions in every voter’s ranking,
then they must switch positions in the aggregate as well.

2If the voters are split into A and B, and both the aggregate of A and the aggregate of B prefer
some candidate a to another candidate b, then the aggregate of A ∪ B should also prefer a to b.

3All voters are treated equally, i.e., the aggregate will not change if any two voters traded their
rankings.

4Determining the Kemeny winner is complete for PNP
‖ , the class of sets solvable via parallel access

to NP [10].
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the Pearson correlation coefficient between the ranks of the candidates in the two
permutations.

1.3. Comparison with related work. A few years ago, it was established
that median ranking is a factor 6 approximation to the Kendall optimum [9]. It was
shown in [6] that the Borda count method leads to a factor 5 approximation to the
Kendall optimum as well (as noted in [6], we independently, around the same time,
showed that the Borda count method leads to a constant-factor approximation to the
Kendall optimum). It has been unknown whether either method yields a constant-
factor approximation to the Spearman rho optimum as well (note that unlike the
Spearman footrule distance, the Spearman rho distance is not bounded by a constant
multiple of the Kendall tau distance). We show that the Borda, Copeland, and me-
dian aggregation methods all yield constant-factor approximations with respect to all
three distance measures. Our methodology builds on [9] and extends it significantly
to unify all proofs into a single framework. We have not optimized the factors of
approximations, but have settled for clear proofs that establish constant-factor ap-
proximations. An approximation lower bound of 2 for the Borda and footrule methods
was established in [14].

Since the Spearman footrule distance and the Kendall tau distance are within
constant factors of each other, a constant factor approximation using the Spear-
man footrule distance automatically gives a constant factor approximation using the
Kendall tau distance, and vice versa. So we actually have six distinct positive re-
sults (Borda, Copeland, and median voting methods with distances measured by the
Spearman footrule or the Spearman rho distance). Of these six positive results, four
are new (specifically all but the two we mentioned earlier), and for the two that are
not new, we provide simplified proofs, in a uniform framework. We also obtain three
new negative results about approximations for other voting methods.

2. Preliminaries.

2.1. Distances between permutations. Let Sn be the set of permutations on
elements [n] = {1, . . . , n} and let V be any vector space. For a permutation σ ∈ Sn,
we use σ(i) to denote the rank of the element i. For example, in the permutation
σ of [3] = {1, 2, 3}, where 3 is first, 1 is second, and 2 is third, we have σ(1) = 2,
σ(2) = 3, and σ(3) = 1. It is convenient for us to represent a permutation by the
vector of the ranks of its elements. In our example we would represent σ by (2, 3, 1).
It is important not to misinterpret this representation (2, 3, 1) by thinking incorrectly
that it means that 2 is first, 3 is second, and 1 is third.

There are several ways to define the distance between two permutations. Given
σ1, σ2 ∈ Sn, the following are three popular notions of distances between them:

1. Spearman footrule distance: F (σ1, σ2) =
∑n

i=1 |σ1(i)− σ2(i)| .
2. Kendall tau distance: K(σ1, σ2) =

∑
i,j Aij , where Aij = 1 if σ1(i) < σ1(j)

and σ2(i) > σ2(j), and Aij = 0 otherwise. Intuitively, the Kendall tau distance is the
number of inversions.

3. Spearman rho distance:
∑n

i=1(σ1(i)− σ2(i))
2.

Let Lp(u, v) denote the distance between two n-element vectors u and v as mea-
sure by the Lp metric: Lp(u, v) = (

∑n
i=1 |u(i) − v(i)|p)1/p. The footrule distance

can be interpreted as the L1 distance and the Spearman rho distance can be inter-
preted as the L2

2 distance between vectors of the ranks of the elements. A function
d : V 2 → R is called a distance function if for every x, y ∈ V we have (i) d(x, y) ≥ 0,
(ii) d(x, y) = 0 if and only if x = y, and (iii) d(x, y) = d(y, x). The distance func-
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tion d satisfies the c-approximate triangle inequality if for all x, y, z ∈ V , we have
d(x, z) ≤ c · (d(x, y) + d(y, z)). Of course, the standard triangle inequality is the
same as the 1-approximate triangle inequality. It is easy to see that F (·, ·) and K(·, ·)
satisfy the triangle inequality. It is well known (and can easily be shown by the
arithmetic-geometric mean inequality) that L2

2(·, ·) satisfies the 2-approximate trian-
gle inequality.

The following relates the footrule and Kendall tau distances to within constant
factors of each other.

Lemma 2.1 (Diaconis–Graham inequality [7]). Assume σ1, σ2 ∈ Sn. Then
K(σ1, σ2) ≤ F (σ1, σ2) ≤ 2K(σ1, σ2).

2.2. Approximate aggregation. We now define the notion of (approximate)
aggregation.

Definition 2.2 (approximate aggregation). Let U and V be sets with U ⊆ V
and let d : V 2 → R be a distance function. A function h : Uk → V is a (U, V, d, b)-

aggregation function if for all u1, . . . , uk, u ∈ U we have
∑k

�=1 d(h(u1, . . . , uk), u�) ≤
b ·∑k

�=1 d(u, u�).

Thus, h(u1, . . . , uk) is a member of V such that the sum of its distances from the
u�’s is within a factor of b of being as small as that for each member of U . This defini-
tion is very general and we will use it for several choices of U and V . We shall usually,
but not always, have U = V . The familiar rank aggregation problem is to obtain an
(Sn, Sn, d, 1)-aggregation function, where d is a distance function on permutations.
An (Sn, Sn, d, c)-aggregation function for c > 1 is therefore a c-approximate rank ag-
gregation. We say that an aggregation function is a constant-factor approximation if
it is c-approximate for some constant c.

It is known that the footrule optimum (i.e., an (Sn, Sn, F, 1)-aggregation func-
tion) and the Spearman rho optimum can be obtained in polynomial time [8], whereas
the problem of finding the Kendall optimum (i.e., an (Sn, Sn,K, 1)-aggregation func-
tion) is NP-hard [3]. Using Lemma 2.1, however, one can obtain an (Sn, Sn,K, 2)-
aggregation function in polynomial time; by [13], one can obtain an (Sn, Sn,K, (1+ε))-
aggregation function in polynomial time, for every fixed ε > 0.

2.3. Induced permutations. We now define the notion of a permutation in-
duced by a vector of values.

Definition 2.3 (induced permutation). Given α̂ ∈ R
n, the induced permuta-

tion of α̂ is a permutation α ∈ Sn such that α̂(i) < α̂(j) =⇒ α(i) < α(j) for all i, j.
Note that ties may be broken arbitrarily.

We note that all of our results hold however the ties are broken (that is, whichever
choice of the induced permutation is made, when there is more than one option).

As an example, if α̂ = (2.5, 2.1, 7, 2.5), then, using our representation of permu-
tations based on ranks of the elements, the induced permutation of α̂ can be taken to
be either (2, 1, 4, 3) or (3, 1, 4, 2).

For clarity, we let ind : Rn → Sn denote the function mapping a vector to its
induced permutation. Thus, in Definition 2.3, we have α = ind(α̂). We now show a
simple yet crucial fact about induced permutations, namely, that α̂ is at least as close
(in Lp

p for each p ≥ 1) to ind(α̂) as it is to to any other permutation.

Lemma 2.4 (induced permutations are optimal). Assume that p ≥ 1 and α̂ ∈ R
n.

Let α = ind(α̂), and let τ be an arbitrary permutation. Then Lp
p(α, α̂) ≤ Lp

p(τ, α̂).
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Proof. Assume first that both α and τ are possible induced permutations of α̂.
It is straightforward to verify that Lp

p(α, α̂) = Lp
p(τ, α̂). So assume that τ is not an

induced permutation of α̂. Therefore, there is a pair (i, j) such that α̂(i) < α̂(j) but
τ(i) > τ(j). By Definition 2.3, it follows that α(i) < α(j).

We now show that Lp
p(α, α̂) ≤ Lp

p(τ, α̂). The proof is by an exchange argument.
We will show that executing a swap of i and j cannot increase the distance to α̂. Since
a sequence of such swaps leads from τ to α, this is sufficient to prove the result.

Let τ̃ be obtained by swapping i and j in τ . So τ̃(i) = τ(j) and τ̃(j) = τ(i),
while τ̃(�) = τ(�) if � �∈ {i, j}. We show that Lp

p(τ̃ , α̂) ≤ Lp
p(τ, α̂) or, equivalently,

Lp
p(τ̃ , α̂)− Lp

p(τ, α̂) ≤ 0.

Lp
p(τ̃ , α̂)− Lp

p(τ, α̂) = |τ̃ (i)− α̂(i)|p + |τ̃ (j)− α̂(j)|p − |τ(i)− α̂(i)|p − |τ(j) − α̂(j)|p
= |τ(j) − α̂(i)|p + |τ(i)− α̂(j)|p − |τ(i)− α̂(i)|p − |τ(j) − α̂(j)|p.

So we need only show that

(2.1) 0 ≥ |τ(j)− α̂(i)|p + |τ(i)− α̂(j)|p − |τ(i) − α̂(i)|p − |τ(j) − α̂(j)|p.
Let f(z) = |z − α̂(i)|p − |z − α̂(j)|p. We now show that f is nondecreasing. Since
α̂(i) < α̂(j), we consider separately the region z ≤ α̂(i), where f(z) = (α̂(i) − z)p −
(α̂(j)− z)p; the region α̂(i) ≤ z ≤ α̂(j), where f(z) = (z − α̂(i))p − (α̂(j) − z)p; and
the region z ≥ α̂(j), where f(z) = (z − α̂(i))p − (z − α̂(j))p. By taking derivatives, it
is straightforward to verify that f is nondecreasing in each of these regions, and so f
is nondecreasing. Therefore, since τ(i) > τ(j), we have

0 ≥ f(τ(j))− f(τ(i)) = |τ(j)− α̂(i)|p − |τ(j)− α̂(j)|p − |τ(i)− α̂(i)|p + |τ(i)− α̂(j)|p.
By rearranging terms, this shows that (2.1) holds, as desired.

3. Approximate rank aggregation via approximate aggregation. In this
section we show that if h is a constant-factor approximate aggregation function, then
ind◦h is also a constant-factor approximate (rank aggregation) function, and it satis-
fies a constant-factor approximate triangle inequality. (Recall that ind is the function
mapping vectors to their induced permutations, and ind ◦ h denotes an ordering in-
duced by the values of h.) As stated earlier, we represent a permutation σ ∈ Sn as
an n-element vector of ranks.

Theorem 3.1. Assume that the vector space V in R
n contains our representation

of members of Sn, and that U is either Sn or contains our representation of members
of Sn. Let h be a (U, V, d, b)-aggregation function, where d is either L1 or L2

2. If d
is L1, then ind ◦ h is an (Sn, Sn, L1, (2b + 1))-aggregation function. If d is L2

2, then
ind ◦ h is an (Sn, Sn, L

2
2, (6b+ 4))-aggregation function.

Proof. For input permutations σ1, . . . , σk ∈ Sn, let γ̂ = h(σ1, . . . , σk) and γ =
ind(γ̂). The main idea in the proof is to use γ̂ as an intermediate quantity and to use
the optimality of the induced permutation γ. Let c = 1 if d is L1, and let c = 2 if d is
L2
2. Thus, we have chosen c so that d satisfies the c-approximate triangle inequality.

Let π be an arbitrary member of Sn.

k∑
�=1

d(γ, σ�) ≤ c

(
k∑

�=1

d(γ, γ̂) +

k∑
�=1

d(γ̂, σ�)

)
∵ c-approximate triangle inequality of d

≤ c

(
k∑

�=1

d(π, γ̂) +

k∑
�=1

d(γ̂, σ�)

)
∵ Lemma 2.4 with α = γ and τ = π
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≤ c2
k∑

�=1

d(π, σ�) + (c2 + c)
k∑

�=1

d(γ̂, σ�) ∵ d(π, γ̂) ≤ c(d(π, σ�) + d(σ�, γ̂))

≤ ((b + 1)c2 + bc)

k∑
�=1

d(π, σ�). ∵ h is a (U, V, d, b)-aggregation function.

If we substitute c for its value (1 for L1 and 2 for L2
2) in (b+ 1)c2 + bc, we get 2b+ 1

for L1, and 6b+ 4 for L2
2. The result then follows.

The power of this theorem will become apparent in the next section, where we
see that five well-known rank-aggregation problems can each be viewed in the same
framework: aggregate a set of input permutations to get a vector in R

n, then move
that vector back to the set of permutations through the induced permutation.

4. Five applications. In this section we show five key applications of the generic
approximate aggregation. In particular, we focus on the median, Borda, and Copeland
voting methods (for both Spearman footrule and Spearman rho) and show that they
are approximate rank aggregation methods.

4.1. Median voting. Median voting is defined in the following manner. Given
σ1, . . . , σk, we define the median rank of an element to be the median of its rank in
the given k permutations. More formally, let hmed(σ1, . . . , σk) be the n-dimensional
vector whose ith coordinate is given by

hmed(σ1, . . . , σk)(i) = median{σ1(i), . . . , σk(i)}.
Median voting is then given by ordering the elements according to their median ranks,
that is, ordering them by their values in ind ◦ hmed(σ1, . . . , σk). In this and in all of
our voting schemes, ties are broken arbitrarily. In the case of the median with an
even number k of elements, either the element k

2 or k
2 + 1 in the ordering is selected.

In this subsection we show that median voting is a 3-approximation to the footrule
optimum.

We first claim (in Lemma 4.1) that the median is the best function to minimize
the L1 distance.

Lemma 4.1. The function hmed is an (Rn,Rn, L1, 1)-aggregation function. Thus,
given u1, . . . , uk ∈ R

n, if μ̂ = hmed(u1, . . . , uk), then for every u ∈ R
n, we have∑k

�=1L1(μ̂, u�) ≤
∑k

�=1L1(u, u�).

Proof. For a set X of numbers, it is easy to see that

median(X) = argmin
x̂

∑
x∈X

|x̂− x|,

i.e., the median is the L1 minimizer. Since μ̂(i) = median{u1(i), . . . , uk(i)}, we have

k∑
�=1

L1(μ̂, u�) =

k∑
�=1

n∑
i=1

|μ̂(i)− u�(i)| ≤
k∑

�=1

n∑
i=1

|u(i)− u�(i)| =
k∑

�=1

L1(u, u�)

for every u ∈ R
n.

Theorem 4.2. Median voting is a 3-approximation to the footrule optimum.

Proof. We apply Theorem 3.1 with h = hmed and d = L1. From Lemma 4.1, we
have b = 1.
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Theorem 4.2 says that ind ◦ hmed is an (Sn, Sn, F, 3)-aggregation function. Thus,

given σ1, . . . , σk ∈ Sn, let μ = ind(hmed(σ1, . . . , σk)). Then
∑k

�=1 F (μ, σ�) ≤
3
∑k

�=1 F (π, σ�) for each π ∈ Sn.
Applying Lemma 2.1, we conclude that median voting is an (Sn, Sn,K, 6)-aggrega-

tion function, that is, a 6-approximation to the Kendall optimum. We next show that
median voting is a constant-factor approximation to the Spearman rho optimum. We
begin with a lemma.

Lemma 4.3. The function hmed is an (Sn,R
n, L2

2, 2)-aggregation function.

Proof. We first claim the following. Assume that a ≤ x ≤ b. Then for each z, we
have

(4.1) (a− x)2 + (b− x)2 ≤ 2(a− z)2 + 2(b− z)2.

To prove this, let f be the function where f(z) = (a− z)2 + (b− z)2. By calculus we
can see that f attains its minimum value at z = a+b

2 . Now f is monotone decreasing

before z = a+b
2 and monotone increasing afterwards. So over the interval a ≤ x ≤ b,

the left-hand side of (4.1) attains its maximum value at the endpoints a and b, and
this maximum value is (a−b)2. From what we said earlier, the right-hand side of (4.1)
attains its minimum value at z = a+b

2 , and this value is (a− b)2. Since the maximum
value of the left-hand side of (4.1) equals the minimum value of the right-hand side
of (4.1), the inequality (4.1) holds.

Now, given σ1, . . . , σk, π ∈ Sn, let v̂ = hmed(σ1, . . . , σk). We must show that∑
� L

2
2(v̂, σ�) ≤ 2

∑
� L

2
2(π, σ�). Fix i and without loss of generality, assume that

σ1(i) ≤ σ2(i) ≤ · · · ≤ σk(i). Suppose k is odd. We then have v̂(i) = σ(k+1)/2(i), and
hence∑

�

(v̂(i)− σ�(i))
2

=

⎛
⎝(k−1)/2∑

q=1

(v̂(i)− σq(i))
2 + (v̂(i)− σk+1−q(i))

2

⎞
⎠+ (v̂(i)− σ(k+1)/2(i))

2

=

⎛
⎝(k−1)/2∑

q=1

(v̂(i)− σq(i))
2 + (v̂(i)− σk+1−q(i))

2

⎞
⎠

≤
⎛
⎝2

(k−1)/2∑
q=1

(π(i)− σq(i))
2 + (π(i)− σk+1−q(i))

2

⎞
⎠

≤
⎛
⎝2

(k−1)/2∑
q=1

(π(i)− σq(i))
2 + (π(i)− σk+1−q(i))

2

⎞
⎠+ 2(π(i)− σ(k+1)/2(i))

2

= 2
∑
�

(π(i)− σ�(i))
2,

where the first inequality follows from (4.1), with the roles of a, b, x, z played by
σq(i), σk+1−q(i), v̂(i), π(i), respectively. Summing over i establishes

∑
� L

2
2(v̂, σ�) ≤

2
∑

� L
2
2(π, σ�). The proof when k is even is analogous.

Theorem 4.4. Median voting is a 16-approximation to the Spearman rho opti-
mum.
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Proof. We apply Theorem 3.1 with h = hmed and d = L2
2. From Lemma 4.3, we

have b = 2.

4.2. Borda voting. Borda voting is defined as follows. Let σ1, . . . , σk be the
given permutations. For each element, we compute its Borda count as the mean of
its ranks in each of the given k permutations (equivalently, we could make use of the
sum, rather than the median, of its ranks). Borda voting is then given by ordering
the elements according to their Borda counts. Note that Borda voting is in the spirit
of median voting, except that the mean is used instead of the median. In this section
our main result is that Borda voting is a 5-approximation to the footrule optimum.

More formally, let havg be the n-dimensional vector whose ith coordinate is given
by

havg(σ1, . . . , σk)(i) =
1

k

k∑
�=1

σ�(i).

The permutation produced by Borda voting is then ind(havg(σ1, . . . , σk)).

Lemma 4.5. The function havg is an (Rn,Rn, L1, 2)-aggregation function.

Proof. Assume that u1, . . . , uk ∈ R
n. Let β̂ = havg(u1, . . . , uk) and μ̂ =

hmed(u1, . . . , uk). We will show

k∑
�=1

L1(β̂, u�) ≤ 2

k∑
�=1

L1(μ̂, u�);

the proof will then follow from Lemma 4.1. For every i ∈ [n],

∑
�

|β̂(i)− u�(i)| =
∑
�

∣∣∣∣∣
(
1

k

∑
�′
u�′(i)

)
− u�(i)

∣∣∣∣∣ ∵ definition of β̂

=
1

k

∑
�

∣∣∣∣∣
∑
�′

(u�′(i)− u�(i))

∣∣∣∣∣
≤ 1

k

∑
�,�′

|u�′(i)− u�(i)| ∵ triangle inequality

≤ 1

k

∑
�,�′

(|u�′(i)− μ̂(i)|+ |μ̂(i)− u�(i))|) ∵ triangle inequality

=
1

k

∑
�,�′

|u�′(i)− μ̂(i)|+ 1

k

∑
�,�′

|μ̂(i)− u�(i))|

=
∑
�′

|u�′(i)− μ̂(i)|+
∑
�

|μ̂(i)− u�(i))|

= 2
∑
�

|μ̂(i)− u�(i))| .

By summing the above inequality over i ∈ [n], the proof is complete.

Theorem 4.6. Borda voting is a 5-approximation to the footrule optimum.

Proof. We apply Theorem 3.1 with h = havg and d = L1. From Lemma 4.5, we
have b = 2.
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As before, applying Lemma 2.1, we conclude that Borda voting is an (Sn,Sn,K,10)-
aggregation function, that is, a 10-approximation to the Kendall optimum. For Spear-
man rho, it is well known that

∑k
i=1(ai − x)2 is minimized when x = 1

k

∑
i ai. (This

can also be seen easily by taking a derivative.) Notice that this immediately implies
that havg is an (Rn,Rn, L2

2, 1)-aggregation function. Hence, applying Theorem 3.1
(with d = L2

2 and b = 1), we have the following.

Theorem 4.7. Borda voting is a 10-approximation to the Spearman rho opti-
mum.

4.3. Copeland voting. Before we give our results on Copeland voting, we
present a new and surprising identity, that we make use of in our analysis of Copeland
voting.

Define

wπ,σ
i,j =

{ |π(i)− π(j)| if (π(i) < π(j) ∧ σ(i) > σ(j)) or (π(i) > π(j) ∧ σ(i) < σ(j),
0 otherwise.

Theorem 4.8. Assume that π and σ are each permutations on [n]. Then
L2
2(π, σ) =

∑
i,j w

π,σ
i,j , where w

π,σ
i,j is as defined above.

Proof. We begin by showing that we can assume without loss of generality
that σ is the identity permutation (denoted 1). As a first step, we show that L2

2

is right invariant, that is, that if π, σ, τ are all permutations on the same domain,
then L2

2(π, σ) = L2
2(π ◦ τ, σ ◦ τ). This is because L2

2(π, σ) =
∑

i(π(i) − σ(i))2 =∑
i(π(τ(i)) − σ(τ(i)))2 = L2

2(π ◦ τ, σ ◦ τ), where in the second equality we are doing
a simple reordering of the domain. By letting τ be σ−1, we obtain

(4.2) L2
2(π, σ) = L2

2(π ◦ σ−1, 1).

By assuming that the theorem is proven when the second permutation is the identity
permutation, we obtain

(4.3) L2
2(π ◦ σ−1, 1) =

∑
i,j

wπ◦σ−1,1
i,j =

∑
i,j

wπ◦σ−1,1
σ(i),σ(j) .

The second equality holds by doing a simple reordering of the domain, as before.
By letting the roles of π, σ, i, j in the definition of wπ,σ

i,j be played by π ◦ σ−1, 1,
σ(i), σ(j), respectively, we obtain after plugging these latter values into the definition
that

(4.4) wπ◦σ−1,1
σ(i),σ(j) = wπ,σ

i,j .

By combining the equalities (4.2), (4.3), and (4.4), we obtain L2
2(π, σ) =

∑
i,j w

π,σ
i,j ,

as desired.
Therefore, it suffices to show that for each permutation π, we have

(4.5) L2
2(π) =

∑
i,j

wπ
i,j ,

where wπ
i,j = wπ,1

i,j . Thus, wπ
i,j = |π(i) − π(j)| if (i < j) ∧ (π(i) > π(j)) or if

(i > j) ∧ (π(i) < π(j)), and wπ
i,j = 0 otherwise.
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We have the following series of equalities, where the explanations appear in the
paragraph following the equations.∑

i,j

wπ
i,j = 2

∑
1≤i<j≤n

max(π(i)− π(j), 0)(4.6)

=
∑

1≤i<j≤n

(|π(i)− π(j)| + π(i)− π(j))(4.7)

=
∑

1≤i<j≤n

|π(i)− π(j)|+
∑

1≤i<j≤n

π(i)−
∑

1≤i<j≤n

π(j)(4.8)

=
1

2

n∑
i=1

n∑
j=1

|π(i)− π(j)|+
n∑

i=1

(n− i)π(i)−
n∑

j=1

(j − 1)π(j)(4.9)

=
1

2

n∑
k=1

n∑
l=1

|k − l|+
n∑

i=1

(n− i)π(i)−
n∑

i=1

(i− 1)π(i)(4.10)

=
∑

1≤k<l≤n

|k − l|+
n∑

i=1

(n− 2i+ 1)π(i)(4.11)

=
∑

1≤k<l≤n

l−
∑

1≤k<l≤n

k +
n∑

i=1

(n− 2i+ 1)π(i)(4.12)

=

n∑
l=1

(l − 1)l −
n∑

k=1

(n− k)k +

n∑
i=1

(n− 2i+ 1)π(i)(4.13)

=

n∑
l=1

l2 −
n∑

l=1

l−
n∑

k=1

nk +

n∑
k=1

k2 +

n∑
i=1

(n− 2i+ 1)π(i)(4.14)

=

n∑
l=1

l2 −
n∑

i=1

i−
n∑

i=1

ni+

n∑
i=1

i2 +

n∑
i=1

(n− 2i+ 1)π(i)(4.15)

=

n∑
i=1

π(i)2 − (n+ 1)

n∑
i=1

π(i) +

n∑
i=1

i2 +

n∑
i=1

(n− 2i+ 1)π(i)(4.16)

=

n∑
i=1

(π(i)2 + i2 − 2iπ(i))(4.17)

=
n∑

i=1

(π(i)− i)2(4.18)

= L2
2(π).

Explanations: Equation (4.6) holds, since it follows easily from the definition of
wπ

i,j that for every i < j, we have wπ
i,j = wπ

j,i = max(π(i) − π(j), 0). Equation (4.7)
holds because of the identity 2max(x, 0) = |x| + x. Equation (4.8) is separating the
three parts of the summation. Equation (4.9) uses the fact that |π(i)−π(j)| = |π(j)−
π(i)| and therefore this term is counted once when the summation is over all i < j and
twice when the sum is over all i, j. Equation (4.10) uses the fact that summing over
all i = 1, . . . , n is equivalent to summing over all k = 1, . . . , n and setting i = π−1(k)
(and similarly for j). Equation (4.11) follows from the fact that each |k− l| is counted
once in summation over k < l and twice in summation over all k, l. Equation (4.12)
uses the fact that when k < l, we have |k−l| = l−k, and separates the summation into
two summations. Equation (4.13) holds, since there are l− 1 choices for k and n− k
choices for l with 1 ≤ k < l ≤ n. Equation (4.14) separates the summations. In (4.15)
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we rename the variable in three of the summations. Equation (4.16) uses the fact that
summing l2 over l = 1, . . . , n is equivalent to summing π(i)2 over i = 1, . . . , n (and
similarly, for summing i). In (4.17), we merge the summations into one and cancel
the (n+ 1)π(i) term.

In Appendix A, we give an alternative proof of (4.5) by induction.

Note that in Theorem 4.8, the term wπ,σ
i,j is counted twice in the sum: once as

wπ,σ
i,j and once as wπ,σ

j,i .
Before defining Copeland voting, we first need a few preliminaries. For the

Kendall tau distance, define the all-pairs function ψ : Rn → {0, 1}n2

as follows. Given
v ∈ R

n, let ψ(v) be the all-pairs vector indexed by i ∈ [n], j ∈ [n] with ψ(v)(i, j) = 1
if v(i) ≤ v(j) and 0 otherwise. Then we see that the Kendall tau distance between
permutations σ1, σ2 is simply half of the L1 distance between ψ(σ1) and ψ(σ2), that is,

(4.19) K(σ1, σ2) =
1

2
L1(ψ(σ1), ψ(σ2)).

Given an all-pairs vector v̂, we define the mapping φ : R
n2 → R

n as φ(v̂)(i) =∑
j v̂(j, i). Note that φ(ψ(σ)) = σ for all σ ∈ Sn.

Lemma 4.9. For û, v̂ ∈ R
n2

, we have L1(φ(û), φ(v̂)) ≤ L1(û, v̂).

Proof. L1(φ(û), φ(v̂)) =
∑

i |
∑

j û(j, i) −
∑

j v̂(j, i)| ≤
∑

i

∑
j |û(j, i) − v̂(j, i)| =

L1(û, v̂).

We now define the Copeland rank aggregation method as follows. Given permu-
tations σ1, . . . , σk, let κ̂ ∈ {0, 1}n2

be the median vector of ψ(σ1), . . . , ψ(σk), that is,
for each i, j,

κ̂(i, j) = median�{ψ(σ�)(i, j)},
that is, κ̂ = hmed(ψ(σ1), . . . , ψ(σk)). The final ranking κ is ind(φ(κ̂)). Let hcop =
φ ◦ hmed ◦ ψ, where we take ψ(u1, . . . , uk) to be (ψ(u1), . . . , ψ(uk)). The Copeland
voting function is then ind◦hcop. Intuitively, we say that i has a pairwise victory over
j if i is ranked higher (better) than j by more than half the voters; the final Copeland
ranking is on the basis of the number of pairwise victories.

Theorem 4.10. Copeland voting is a 4-approximation to the Kendall optimum.

Proof. Given σ1, . . . , σk ∈ Sn, let κ̂ and κ be as defined earlier. Assume that
π ∈ Sn. Then∑

�

K(σ�, κ) ≤
∑
�

F (σ�, κ) ∵ Lemma 2.1

≤
∑
�

(L1(σ�, φ(κ̂)) + L1(φ(κ̂), κ)) ∵ triangle inequality

≤ 2
∑
�

L1(σ�, φ(κ̂)) ∵ Lemma 2.4, κ = ind(φ(κ̂))

≤ 2
∑
�

L1(ψ(σ�), κ̂) ∵ Lemma 4.9, σ� = φ(ψ(σ�))

≤ 2
∑
�

L1(ψ(σ�), ψ(π)) ∵ Lemma 4.1

= 4
∑
�

K(σ�, π),

where the equality holds by (4.19).
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This immediately shows an 8-approximation to the footrule optimum. Finally,
we show that the Copeland method is a constant-factor approximation even to the
Spearman rho optimum. Unlike the cases of median and Borda voting, this turns out
to be not as easy.

Lemma 4.11. The function hcop is an (Sn,R
n, L2

2, 10)-aggregation function.

Proof. Assume that σ1, . . . , σk, π ∈ Sn. Define the weight wij� of a triple i, j, �,
as follows:

wij�

=

{ |π(i)− π(j)| if (π(i) < π(j) ∧ σ�(i) > σ�(j)) or (π(i) > π(j) ∧ σ�(i) < σ�(j),
0 otherwise.

This turns out to be a key intermediate quantity. Let u = hcop(σ1, . . . , σk). We now
show that

(4.20) kL2
2(π, u) ≤ 4

∑
i,j,�

wij�.

For every i, let ti = |π(i)− u(i)|. To show (4.20), we need only prove that

(4.21)
∑
i

kt2i /4 ≤
∑
i,j,�

wij�.

We now temporarily hold i fixed (our proof will show that kt2i /4 ≤∑j,� wij�). Recall
that

(4.22) u(i) =
∑
j

median{ψ(σ1)(j, i), . . . , ψ(σk)(j, i)}.

Assume that π(i) ≤ u(i) (the proof for the opposite case is similar).
Denote π(i) by s. Since ti = |π(i) − u(i)| and π(i) ≤ u(i), it follows that u(i) =

ti + s. Let Ji = {j | median{ψ(σ1)(j, i), . . . , ψ(σk)(j, i)} = 1}. Since each ψ(σ�)(j, i)
has value 0 or 1, also median{ψ(σ1)(j, i), . . . , ψ(σk)(j, i)} has value either 0 or 1.
By (4.22), it therefore follows that u(i) = |Ji|. Hence, |Ji| = ti + s. Now the number
of j such that π(j) ≤ π(i) is exactly π(i), that is, s. So the number of members j of
Ji where π(i) < π(j) is at least |Ji| − s = ti.

Let J ′
i consist of those members j of Ji where π(i) < π(j). Note that i �∈ J ′

i . We
just showed that |J ′

i | ≥ ti. Now for each j in J ′
i , let Aj = {� | ψ(σ�)(j, i) = 1}. Then

|Aj | ≥ k/2, or else we would not have median{ψ(σ1)(j, i), . . . , ψ(σk)(j, i)} = 1. Now
ψ(σ�)(j, i) = 1 means that σ�(i) ≥ σ�(j), which implies that σ�(i) > σ�(j), because
j �= i.

Putting this all together, we see that the set of pairs (j, �) such that j ∈ J ′
i

and � ∈ Aj has cardinality at least tik/2, and for each such pair (j, �), we have
π(i) < π(j) and σ�(i) > σ�(j). Let J ′′

i be the set of pairs (j, �) such that π(i) < π(j)
and σ�(i) > σ�(j). We just showed that |J ′′

i | ≥ tik/2. Let T = |J ′′
i | ≥ tik/2, and let

Cq,i = |{(j, �) ∈ J ′′
i : |π(i)− π(j)| = q}|.
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We then have∑
i,j,�

wij� = 2
∑
i

∑
(j,�)∈J′′

i

wij� = 2
∑
i

∑
(j,�)∈J′′

i

|π(i)− π(j)|

= 2
∑
i

∑
q>0

q|{(j, �) ∈ J ′′
i : |π(i)− π(j)| = q}| = 2

∑
i

∑
q>0

qCq,i.(4.23)

The first equality holds, since wij� double counts for each pair i, j (the second time
when we reverse the roles of i and j), and since wij� = 0 when (j, �) �∈ J ′′

i . To prove
(4.21), we need only show that

∑
q>0 qCq,i ≥ kt2i /8. Since J ′′

i is the disjoint union
of the sets Cq,i for q > 0, it follows that

∑
q>0 Cq,i = T , and hence

∑
q>0 Cq,i ≥ T .

When we consider pairs (j, �) in J ′′
i , there is just one j such that π(j) = π(i) + 1, and

there are at most k choices of �. Therefore, there are at most k pairs (j, �) in J ′′
i such

that π(j) = π(i) + 1, so C1,i ≤ k; this implies that
∑

q>1 Cq,i ≥ T − k. Similarly,
there are at most k pairs (j, �) in J ′′

i such that π(j) = π(i) + 2, so we know that
C2,i ≤ k; this implies that

∑
q>2 Cq,i ≥ T − 2k. If we continue this argument, we see

that
∑

q>a Cq,i ≥ T − ak.
Summing these inequalities from q = 1 up to q = �T/k�, we obtain

(4.24)
∑
q>0

qCq,i ≥
�T/k	∑
q=1

qCq,i ≥
�T/k	−1∑

a=0

∑
q>a

Cq,i ≥
�T/k	−1∑

a=0

(T − ak).

The first inequality holds since each summand qCq,i is nonnegative, and every sum-
mand of the second sum is a summand of the first sum. The final sum in (4.24) equals
the following, where θ = �T/k� − T/k (so 0 ≤ θ < 1):

�T/k�T − k

2
(�T/k� − 1)�T/k� =

(
T

k
+ θ

)
T − k

2

(
T

k
+ θ − 1

)(
T

k
+ θ

)
.

The right-hand side equals
(4.25)
T 2

k

(
1− 1

2

)
+T

(
θ − θ

2
+

1− θ

2

)
+
k

2
θ(1− θ) = T 2

2k
+
T

2
+
k

2
θ(1− θ) ≥ T 2

2k
≥ kt2i /8,

since T ≥ tik/2. This was to be shown. This concludes the proof of (4.20).
If we let the role of σ in Theorem 4.8 be played by σ�, and thereby replace wπ,σ

i,j

in Theorem 4.8 by wij�, we obtain L2
2(π, σ�) =

∑
i,j wij�. Therefore,

(4.26)
∑
�

L2
2(π, σ�) =

∑
i,j,�

wij�.

Finally, we have∑
�

L2
2(u, σ�)

≤ 2
∑
�

L2
2(u, π) + 2

∑
�

L2
2(π, σ�) ∵ 2-approximate triangle inequality

= 2kL2
2(u, π) + 2

∑
�

L2
2(π, σ�)

≤ 8
∑
i,j,�

wij� + 2
∑
�

L2
2(π, σ�) ∵ (4.20)

= 10
∑
�

L2
2(π, σ�). ∵ (4.26)
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Theorem 4.12. Copeland voting is a 64-approximation to the Spearman rho op-
timum.

Proof. We apply Theorem 3.1 with h = hcop and d = L2
2. From Lemma 4.11, we

have b = 10.

5. Unbounded rank aggregation methods. In this section we investigate
the properties of three popular voting schemes, namely, plurality voting, Simpson–
Kramer minmax voting, and a version of STV. We show that none of these schemes
are a constant-factor approximation to the footrule optimum. While minmax obtains
a total ordering of the candidates, we have to extend both plurality voting and STV
in a natural manner to obtain a total ordering of the candidates (instead of identifying
just the winner).

5.1. Plurality voting. Plurality voting is defined as follows. For each candidate
i, let vi be an n-dimensional vector, where n is the number of candidates and where
vi(j) is the number of jth place votes that candidate i receives for j = 1, . . . , n. Then
candidate i defeats candidate i′ if vi precedes vi′ lexicographically. In particular,
if candidate i has strictly more first-place votes than candidate i′, then candidate i
defeats candidate i′. Note that plurality voting can be viewed as a modification of
the Borda voting scheme, where a candidate receives 2n−m points for each mth-place
vote.

Theorem 5.1. Plurality voting is not a constant-factor approximation to the
footrule optimum.

Proof. We now give the scenario for our counterexample. We shall take the can-
didates to be {1, . . . , n}, and the voters to be {1, . . . , k}. We shall take the number
n of candidates to be much bigger than the number k of voters. Voters 1 and 2
have the identity permutation, where they give their ith place vote to candidate i for
1 ≤ i ≤ n. Voter � gives his first-place vote to candidate � − 1 for 3 ≤ � ≤ k, and
his last-place vote to candidate 1. In particular, candidate 1 receives two first-place
votes (from voters 1 and 2), and no other candidate receives more than one first-place
vote. Hence, candidate 1 is the overall winner, even though k − 2 of the voters give
him their last-place vote. For 3 ≤ � ≤ k, voter � gives his remaining votes (other
than his first-place vote and his last-place vote) by ordering the remaining candidates
numerically (preferring candidate i to candidate i′ if i < i′). For example, voter 4,
who is committed to giving candidate 3 his first-place vote and candidate 1 his last
place vote, orders the candidates as 3, 2, 4, 5, 6. . . . , n− 1, n, 1. We let σ� represent the
permutation associated with voter � for 1 ≤ � ≤ k.

Let α be the identity permutation, which orders the candidates as 1, 2, . . . , n. It
is easy to verify that α gives the result of plurality voting (although all we need is
that candidate 1 comes out first under plurality voting). Let β be the permutation
that orders the candidates 2, 3, . . . , n− 1, n, 1.

The footrule cost associated with α is
∑k

�=1 F (α, σ�). Now F (α, σ�) ≥ n− 1 for
3 ≤ � ≤ k, since n − 1 is the penalty caused by candidate 1 alone, for voters � with
3 ≤ � ≤ k. So the footrule cost

∑k
�=1 F (α, σ�) is at least (k − 2)(n− 1).

The footrule cost associated with β is
∑k

�=1 F (β, σ�). Of this cost, the total
penalty caused by candidate 1 is 2(n− 1) (all caused by voters 1 and 2). Each of the
candidates 2, . . . , k is somewhere in the first k positions for every voter. Hence, for
each choice of one of the k voters and choice of one of these k − 1 candidates, the
penalty is less than k, and so the total penalty caused by all of the k voters with all of
these k− 1 candidates is less than k3. Each of the remaining n− k candidates � with
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k + 1 ≤ � ≤ n is in position � for voters 1 and 2, in position � − 1 for the remaining
k − 2 voters, and in position � − 1 for β. Therefore, the total penalty caused by
each of these n − k candidates is 2 for a total penalty associated with these n − k
candidates of 2(n − k). Hence, the footrule cost

∑k
�=1 F (β, σ�) associated with β is

at most 2(n− 1) + k3 + 2(n− k) = 4n+ k3 − 2k − 2.

The ratio
∑k

�=1 F (α, σ�)/
∑k

�=1 F (β, σ�) of the footrule cost of α to the footrule
cost of β is therefore at least (k− 2)(n− 1)/(4n+ k3− 2k− 2). If we hold k fixed and
let n get arbitrarily large, this ratio is asymptotic to (k − 2)/4. Since k is arbitrary,
this asymptotic value can get arbitrarily large. Hence, plurality voting does not give
a constant-factor approximation to the footrule optimum, since the cost of α is not
within a constant factor of the cost of the solution β over all choices of the parameters
k and n.

5.2. Simpson–Kramer minmax voting. Simpson–Kramer minmax voting is
defined as follows. Given permutations σ1, . . . , σk, define losses(i, j) for a pair i, j of
candidates to be the number of voters � for which σ� ranks i lower (worse) than j.
Further, define biggestLoss(i) = maxj{losses(i, j)}. Then the induced ordering from
minmax ranks the candidates in increasing order of biggestLoss(·), with the candidate
having the smallest biggestLoss(·) winning.

Theorem 5.2. The induced ordering from minmax voting does not yield a con-
stant-factor approximation to the footrule optimum.

Proof. We now give a scenario for our counterexample. Consider the following
set of votes over n candidates, where N > n will be set later. For convenience, we
assume that n is even.

• A total of N voters ranking candidates in order 1, 2, . . . , n; call this ranking
σ0.

• A total of n voters ranking candidates in order 1, n, n − 1, . . . , 2; call this
ranking σ1.

• For each i > 2, one voter ranking candidates in order i, i+1, . . . , n, 1, i−1, i−
2, . . . , 2; call this ranking σi.

Thus, the number k of voters is N + 2n − 2. First, note that candidate 1 beats
candidate i exactly N + n+ (n− i) times for each i > 1. Second, note that for fixed
i, j with j �= 1, candidate j beats candidate i less than N + n times: indeed, if i < j,
then candidate j beats i at most 2n− 2 times, and if i > j, then candidate j beats i
at most N + n− 2 times.

Since also each i �= 1 is beaten by 1 at least N + n times, it follows that the
ranking produced by minmax voting is determined by the number of times each i is
beaten by 1, and this ranking is given by the permutation σ1, So the ranking produced
by minmax voting is σ1. The total footrule distance to the input permutations from
σ1 is more than N ·F (σ0, σ1) = N ·n(n− 2)/2. This equality is why we assumed that
n is even.

On the other hand, the footrule distance of the inputs from σ0 is given by

N · F (σ0, σ0) + n · F (σ1, σ0) +
n∑

i=3

F (σi, σ0) ≤ 2n3,

where the final inequality holds because F (σ1, σ0) = n(n− 2)/2 < n2 and F (σi, σ0) <
n2. Thus, as N grows, we see that the ratio of the minmax ranking distance to the
distance for σ0 (which is no better than optimal) is unbounded.
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5.3. STV. There are several variants of STV; we now describe one such variant.
Given voter rankings σ1, . . . , σk, define the loser to be the candidate i with the fewest
first-place votes, that is, loser = argmini{|{� | σ�(i) = 1}|}. This loser is then removed
from each ranking to produce new rankings, σ′

1, . . . , σ
′
k. (In this way, rankings that

vote for losers can transfer their vote to someone who might win.) We do not describe
how to deal with ties for the biggest loser; in our example, there will be no ties. The
process is then repeated on the set of smaller rankings until all candidates but one
have been removed. The remaining candidate is declared the winner. A natural way
to induce a total ordering out of STV is put the first loser in last place, the second
loser in second-to-last place, and so on. We take this as the induced ordering of the
candidates.

Theorem 5.3. The induced ordering from STV does not yield a constant-factor
approximation to the footrule optimum.

Proof. We construct the following scenario for the counterexample. Consider the
following set of rankings, where N will be set later. Again, we assume that n is even.

• A total of N voters ranking candidates in the order 1, 2, . . . , n; call this rank-
ing σ1.

• For each i > 1, a total of i voters ranking candidates in the order i, 1, 2, . . . , i−
1, i+ 1, . . . , n; call this ranking σi.

Thus, the number k of voters is N +
∑n

i=2 i.
Assume that N > n. Now, consider STV. A candidate i > 1 has exactly i

first-place votes. This remains true even after other candidates are removed. So the
induced ranking τ ranks the candidates in the order 1, n, n − 1, . . . , 2. Note that
the total footrule distance of the permutations from τ is more than N · F (σ1, τ) =
N · n(n− 2)/2.

However, the total footrule distance from σ1 is

N · F (σ1, σ1) +
n∑

i=2

iF (σi, σ1) ≤ n3.

Thus, as N grows, the ratio of the distance for the STV ranking versus the distance
for the σ1 ranking is unbounded.

6. Conclusions. In this paper we showed that positional voting methods such
as Borda counting, median ranking, and Copeland ranking are all constant-factor
approximations with respect to the Kendall tau, Spearman footrule, and Spearman
rho distance measures. We established this result by developing a general framework
for reasoning about such methods. In contrast, we also show that natural extensions of
each of plurality voting, Simpson–Kramer minmax voting, and STV are not constant-
factor approximations. Our work thus offers a new perspective on a large class of
voting methods. The literature on voting is nearly limitless. It will be interesting
to bring the extensive set of prevalent voting methods into our framework and study
their approximation quality with respect to the Kemeny optimality criterion.

Appendix A. Alternative proof of (4.5). Let us say that (i, j) is an
inversion in π if either i < j and π(i) > π(j) or i > j and π(i) < π(j). If (k, k + 1)
is an inversion in π, then the adjacent swap of k with k + 1 is the permutation π′

where π′(k) = π(k + 1), π′(k + 1) = π(k), and π′(i) = π(i) for i /∈ {k, k + 1}. It is
well known that from an arbitrary permutation on [n], there is a sequence of adjacent
swaps that leads to the identity permutation. To prove (4.5), we shall show that the
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changes in the left-hand side and right-hand side of (4.5) after an adjacent swap are
identical. Since the left-hand side and right-hand side of (4.5) are equal (and, in fact,
each equals 0) when π is the identity permutation, this proves that (4.5) holds for
arbitrary π.

We first analyze the difference between the left-hand side of (4.5) for π′ and π.
Since all the terms other than k and k + 1 cancel out in the left-hand side, we have

L2
2(π

′)−L2
2(π) = (π′(k)−k)2+(π′(k+1)−(k+1))2−(π(k)−k)2−(π(k+1)−(k+1))2.

Focusing on the right-hand side of the preceding equation, if we replace π′(k) by
π(k + 1) and replace π′(k + 1) by π(k), we obtain

(π(k + 1)− k)2 + (π(k)− (k + 1))2 − (π(k)− k)2 − (π(k + 1)− (k + 1))2.

If we now apply a2 − b2 = (a+ b)(a− b) to the first and the third terms and also to
the second and the fourth terms, we obtain

(π(k+1)+π(k)− 2k)(π(k+1)−π(k))+ (π(k)+π(k+1)− 2(k+1))(π(k)−π(k+1)).

If we now factor out π(k)− π(k + 1) from the two products of sums of terms, we see
that the previous expression is simply

−2(π(k)− π(k + 1)).

We now analyze the difference in the right-hand side of (4.5) due to this adjacent
swap. Consider a generic term wi,j = wπ

i,j on the right-hand side corresponding to π.

Let w′
i,j = wπ′

i,j be the corresponding term for π′. We will study
∑

i,j w
′
i,j −

∑
i,j wi,j .

There are three disjoint cases to consider:
(i) i, j /∈ {k, k + 1}. In this case, wi,j = w′

i,j and hence the right-hand side
difference is zero.

(ii) {i, j} = {k, k+1}. Suppose i = k and j = k+1. In this case, w′
k,k+1 = 0 since

the pair (k, k+1) is no longer an inversion in π′. However, wk,k+1 = (π(k)−π(k+1))
since (k, k + 1) is an inversion in π. Likewise, if i = k + 1 and j = k, then we
have wk+1,k = (π(k) − π(k + 1)). Hence, the total right-hand side difference is
−2(π(k)− π(k + 1)).

(iii) Exactly one of i and j is in {k, k+1}. Assume without loss of generality that
i ∈ {k, k+1} and j �∈ {k, k+1}. We shall show that wj,k = w′

j,k+1 and wj,k+1 = w′
j,k.

Hence, wj,k + wj,k+1 = w′
j,k + w′

j,k+1, and so the right-hand side difference is zero.
We begin by showing that wj,k = w′

j,k+1. There are two cases, depending on
whether or not (j, k) is an inversion in π. Assume first that (j, k) is not an inversion
in π. If j < k and π(j) < π(k), then j < k + 1 and π′(j) = π(j) < π(k) = π′(k + 1)
and, hence, (j, k+1) is not an inversion in π′. Therefore, wj,k = 0 = w′

j,k+1. If j > k
and π(j) > π(k), then j > k + 1 (since j �= k) and π′(j) = π(j) > π(k) = π′(k + 1)
and, hence, (j, k + 1) is not an inversion in π′. So wj,k = 0 = w′

j,k+1.
Assume now that (j, k) is an inversion in π. If j < k and π(j) > π(k), then

j < k + 1 and π′(j) = π(j) > π(k) = π′(k + 1) and, hence, (j, k + 1) is an inversion
in π′. If j > k and π(j) < π(k), then j > k + 1 (since j �= k + 1) and π′(j) =
π(j) < π(k) = π′(k + 1) and, hence, (j, k + 1) is an inversion in π′. We just showed
that if (j, k) is an inversion in π, then (j, k + 1) is an inversion in π′. In these cases,
wj,k = |π(j)− π(k)| = |π′(j)− π′(k + 1)| = w′

j,k+1, as desired.
We now show that wj,k+1 = w′

j,k. There are two cases, depending on whether or
not (j, k+1) is an inversion in π. Assume first that (j, k+1) is not an inversion in π. If
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j < k+1 and π(j) < π(k+1), then j < k (since j �= k) and π′(j) = π(j) < π(k+1) =
π′(k) and, hence, (j, k) is not an inversion in π′. Therefore, wj,k+1 = 0 = w′

j,k. If
j > k + 1 and π(j) > π(k + 1), then j > k and π′(j) = π(j) > π(k + 1) = π′(k) and,
hence, (j, k) is not an inversion in π′. So wj,k+1 = 0 = w′

j,k.
Assume now that (j, k+1) is an inversion in π. If j < k+1 and π(j) > π(k+1),

then j < k (since j �= k) and π′(j) = π(j) > π(k + 1) = π′(k) and, hence, (j, k)
is an inversion in π′. If j > k + 1 and π(j) < π(k + 1), then j > k and π′(j) =
π(j) < π(k + 1) = π′(k) and, hence, (j, k) is an inversion in π′. We just showed
that if (j, k + 1) is an inversion in π, then (j, k) is an inversion in π′. In these cases,
wj,k+1 = |π(j)− π(k + 1)| = |π′(j)− π′(k)| = w′

j,k, as desired.
We have shown that the change in the left-hand side and right-hand side

of (4.5) after an adjacent swap of k with k + 1 is identical (in both cases it is
−2(π(k)− π(k + 1)). This was to be shown.

Acknowledgments. We ran Theorem 4.8 by Ronald Graham, Peter Winkler,
and Richard Karp to see if they had ever seen this surprising identity before (they
hadn’t). We thank them for their input.
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