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Abstract. We provide a comprehensive picture of how to compare partial rankings, that is,
rankings that allow ties. We propose several metrics to compare partial rankings and prove that
they are within constant multiples of each other.
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1. Introduction. The study of metrics on permutations (i.e., full rankings) is
classical and several well-studied metrics are known [10, 22], including the Kendall tau
distance and the Spearman footrule distance. The rankings encountered in practice,
however, often have ties (hence the name partial rankings), and metrics on such
rankings are much less studied.

Aside from its purely mathematical interest, the problem of defining metrics on
partial rankings is valuable in a number of applications. For example the rank aggre-
gation problem for partial rankings arises naturally in multiple settings, including in
online commerce, where users state their preferences for products according to various
criteria, and the system ranks the products in a single, cohesive way that incorporates
all the stated preferences, and returns the top few items to the user. Specific instances
include the following: selecting a restaurant from a database of restaurants (where
the ranking criteria include culinary preference, driving distance, star rating, etc.), se-
lecting an air-travel plan (where the ranking criteria include price, airline preference,
number of hops, etc.), and searching for articles in a scientific bibliography (where the
articles may be ranked by relevance of subject, year, number of citations, etc.). In all
of these scenarios, it is easy to see that many of the ranking criteria lead to ties among
the underlying set of items. To formulate a mathematically sound aggregation prob-
lem for such partially ranked lists (as has been done successfully for fully ranked lists
[12] and “top k lists” [16]), it is sometimes necessary to have a well-defined distance
measure (preferably a metric) between partial rankings.

In this paper we focus on four metrics between partial rankings. These are ob-
tained by suitably generalizing the Kendall tau distance and the Spearman footrule
distance on permutations in two different ways. In the first approach, we associate
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with each partial ranking a “profile vector” and we define the distance between the
partial rankings to be the L1 distance between the corresponding profile vectors. In
the second approach, we associate with each partial ranking the family of all full rank-
ings that are obtained by breaking ties in all possible ways. The distance between
partial rankings is then taken to be the Hausdorff distance between the correspond-
ing sets of full rankings.1 In addition to the four metrics we obtain by extending the
Kendall tau distance and the Spearman footrule distance using these two approaches,
we consider a method obtained by generalizing the Kendall tau distance where we
vary a certain parameter. For some choices of the parameter, we obtain a metric, and
for one natural choice, we obtain our Kendall profile metric. All the metrics we define
admit efficient computation. These metrics are defined and discussed in section 3.

Having various metrics on partial rankings is good news, but exactly which one
should a practitioner use to compare partial rankings? Furthermore, which one is best
suited for formulating an aggregation problem for partial rankings? Our summary
answer to these questions is that the exact choice does not matter much. Namely,
following the lead of [16], we define two metrics to be equivalent if they are within
constant multiples of each other. This notion was inspired by the Diaconis–Graham
inequality [11], which says that the Kendall tau distance and the Spearman footrule
distance are within a factor of two of each other. Our main theorem says that all of
our metrics are equivalent in this sense. The methods where we generalize the Kendall
tau distance by varying a certain parameter are easily shown to be equivalent to each
other, and in particular to the profile version of the Kendall tau distance (since one
choice of the parameter leads to the profile version). It is also simple to show that the
Hausdorff versions of the Kendall tau distance and the Spearman footrule distance are
equivalent and that the Hausdorff and the profile versions of the Kendall tau metric
are equivalent. Proving equivalence for the profile metrics turns out to be rather
tricky and requires us to uncover considerable structure inside partial rankings. We
present these equivalence results in section 4.

Related work. The Hausdorff versions of the Kendall tau distance and the Spear-
man footrule distance are due to Critchlow [9]. Fagin, Kumar, and Sivakumar [16]
studied a variation of these for top k lists. Kendall [23] defined two versions of the
Kendall tau distance for partial rankings; one of these versions is a normalized version
of our Kendall tau distance through profiles. Baggerly [5] defined two versions of the
Spearman footrule distance for partial rankings; one of these versions is similar to
our Spearman footrule metric through profiles. However, neither Kendall nor Bag-
gerly proceeded significantly beyond simply providing the definition. Goodman and
Kruskal [20] proposed an approach for comparing partial rankings, which was recently
utilized [21] for evaluating strategies for similarity search on the Web. A serious dis-
advantage of Goodman and Kruskal’s approach is that it is not always defined (this
problem did not arise in the application of [21]).

Rank aggregation and partial rankings. As alluded to earlier, rank aggregation is
the problem of combining several ranked lists of objects in a robust way to produce
a single consensus ranking of the objects. In computer science, rank aggregation has
proved to be a useful and powerful paradigm in several applications including meta-
search [4, 12, 24, 25, 26, 29], combining experts [8], synthesizing rank functions from
multiple indices [15], biological databases [28], similarity search [17], and classification
[17, 24].

1The Hausdorff distance between two point sets A and B in a metric space with metric d(·, ·) is
defined as max{maxγ1∈A minγ2∈B d(γ1, γ2),maxγ2∈B minγ1∈A d(γ1, γ2)}.
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There has been an extensive body of work in economics and computer science on
providing a mathematical basis for aggregation of rankings. In the “axiomatic ap-
proach,” one formulates a set of desiderata that the aggregation function is supposed
to satisfy, and characterizes various aggregation functions in terms of the “axioms”
they satisfy. The classical result of Arrow [2] shows that a small set of fairly natural
requirements cannot be simultaneously achieved by any nontrivial aggregation func-
tion. For a comprehensive account of specific criteria satisfied by various aggregation
methods, see the survey by Fishburn [18]. In the “metric approach,” one starts with
a metric on the underlying set of rankings (such as permutations or top k lists) and
defines the aggregation problem as that of finding a consensus ranking (permutation
or top k list, respectively) whose total distance to the given rankings is minimized.
It is, of course, natural to study which axioms a given metric method satisfies, and
indeed several such results are known (again, see Fishburn’s survey [18]).

A prime consideration in the adoption of a metric aggregation method in computer
science applications is whether it admits an efficient exact or provably approximate
solution. Several metric methods with excellent properties (e.g., aggregating full lists
with respect to the Kendall tau distance) turn out to be NP-hard to solve exactly
[6, 12]; fortunately, results like the Diaconis–Graham inequality rescue us from this de-
spair, since if two metrics are equivalent and one of them admits an efficient algorithm,
we automatically obtain an efficient approximation algorithm for the other! This is
one of the main reasons for our interest in obtaining equivalences between metrics.

While the work of [12, 16] and follow-up efforts offer a fairly clear picture on how
to compare and aggregate full or top k lists, the context of database-centric applica-
tions poses a new, and rather formidable, challenge. As outlined earlier through the
example of online commerce systems, as a result of nonnumeric/few-valued attributes,
we encounter partial rankings much more than full rankings in some contexts. While
it is possible to treat this issue heuristically by arbitrarily ordering the tied elements
to produce a full ranking, a mathematically well-founded treatment becomes possible
once we are equipped with metrics on partial rankings. By the equivalence outlined
above, it follows that every constant-factor approximation algorithm for rank ag-
gregation with respect to one of our metrics automatically yields a constant-factor
approximation algorithm with respect to all of our metrics. These facts were crucially
used in [14] to obtain approximation algorithms for the problem of aggregating partial
rankings.

2. Preliminaries. Bucket orders. A bucket order is, intuitively, a (strict) linear
order with ties. More formally, a bucket order is a transitive binary relation ≺ for
which there are sets B1, . . . ,Bt (the buckets) that form a partition of the domain such
that x ≺ y if and only if there are i, j with i < j such x ∈ Bi and y ∈ Bj . If x ∈ Bi,
we may refer to Bi as the bucket of x. We may say that bucket Bi precedes bucket Bj

if i < j. Thus, x ≺ y if and only if the bucket of x precedes the bucket of y. We think
of the members of a given bucket as “tied.” A linear order is a bucket order where
every bucket is of size 1. We now define the position of bucket B, denoted pos(B).
Let B1, . . . ,Bt be the buckets in order (so that bucket Bi precedes bucket Bj when
i < j). Then pos(Bi) = (

∑
j<i |Bj |) + (|Bi| + 1)/2. Intuitively, pos(Bi) is the average

location within bucket Bi.

Comment on terminology.2 A bucket order ≺ is irreflexive, that is, there is
no x for which x ≺ x holds. The corresponding reflexive version � is defined by

2The authors are grateful to Bernard Monjardet for providing the information in this paragraph.
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saying x � y precisely if either x ≺ y or x = y. What we call a bucket order is
sometimes called a “weak order” (or “weak ordering”) [1, 19]. But unfortunately,
the corresponding reflexive version � is also sometimes called a weak order (or weak
ordering) [2, 13, 27]. A bucket order is sometimes called a “strict weak order” (or
“strict weak ordering”) [7, 27]. The reflexive version is sometimes called a “complete
preordering” [3] or a “total preorder” [7]. We are using the terminology bucket order
because it is suggestive and unambiguous.

Partial ranking. Just as we can associate a ranking with a linear order (i.e.,
permutation), we associate a partial ranking σ with each bucket order, by letting
σ(x) = pos(B) when B is the bucket of x. We refer to a partial ranking associated
with a linear order as a full ranking. When it is not otherwise specified, we assume
that all partial rankings have the same domain, denoted D. We say that x is ahead
of y in σ if σ(x) < σ(y). We say that x and y are tied in σ if σ(x) = σ(y). When
we speak of the buckets of a partial ranking, we are referring to the buckets of the
corresponding bucket order.

We define a top k list to be a partial ranking where the top k buckets are sin-
gletons, representing the top k elements, and the bottom bucket contains all other
members of the domain. Note that in [16] there is no bottom bucket in a top k list.
This is because in [16] each top k list has its own domain of size k, unlike our scenario
where there is a fixed domain.

Given a partial ranking σ with domain D, we define its reverse, denoted σR, in
the expected way. That is, for all d ∈ D, let σR(d) = |D| + 1 − σ(d).

We also define the notion of swapping in the normal way. If a, b ∈ D, then
swapping a and b in σ produces a new order σ′, where σ′(a) = σ(b), σ′(b) = σ(a),
and σ′(d) = σ(d) for all d ∈ D \ {a, b}.

Refinements of partial rankings. Given two partial rankings σ and τ , both with
domain D, we say that σ is a refinement of τ and write σ � τ if the following
holds: for all i, j ∈ D, we have σ(i) < σ(j) whenever τ (i) < τ (j). Notice that when
τ (i) = τ (j), there is no order forced on σ. When σ is a full ranking, we say that
σ is a full refinement of τ . Given two partial rankings σ and τ , both with domain
D, we frequently make use of a particular refinement of σ in which ties are broken
according to τ . Define the τ -refinement of σ, denoted τ ∗ σ, to be the refinement of
σ with the following properties. For all i, j ∈ D, if σ(i) = σ(j) and τ (i) < τ (j), then
(τ ∗ σ)(i) < (τ ∗ σ)(j). If σ(i) = σ(j) and τ (i) = τ (j), then (τ ∗ σ)(i) = (τ ∗ σ)(j).
Notice that when τ is in fact a full ranking, then τ∗σ is also a full ranking. Also note
that ∗ is an associative operation, so that if ρ is another partial ranking with domain
D, it makes sense to talk about ρ∗ τ ∗ σ.

Notation. When f and g are functions with the same domain D, we denote the
L1 distance between f and g by L1(f, g). Thus, L1(f, g) =

∑
i∈D |f(i) − g(i)|.

2.1. Metrics, near metrics, and equivalence. A binary function d is called
symmetric if d(x, y) = d(y, x) for all x, y in the domain, and it is called regular if
d(x, y) = 0 if and only if x = y. A distance measure is a nonnegative, symmetric,
regular binary function. A metric is a distance measure d that satisfies the triangle
inequality : d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z in the domain.

The definitions and results in this section were derived in [16], in the context
of comparing top k lists. Two seemingly different notions of a “near metric” were
defined in [16]: their first notion of near metric is based on “relaxing” the polygonal
inequality that a metric is supposed to satisfy.
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Definition 1 (near metric). A distance measure on partial rankings with domain
D is a near metric if there is a constant c, independent of the size of D, such that
the distance measure satisfies the relaxed polygonal inequality: d(x, z) ≤ c(d(x, x1) +
d(x1, x2) + · · · + d(xn−1, z)) for all n > 1 and x, z, x1, . . . , xn−1 ∈ D.

It makes sense to say that the constant c is independent of the size of D when, as
in [16], each of the distance measures considered is actually a family, parameterized
by D. We need to make an assumption that c is independent of the size of D, since
otherwise we are simply considering distance measures over finite domains, where
there is always such a constant c.

The other notion of near metric given in [16] is based on bounding the distance
measure above and below by positive constant multiples of a metric. It was shown
that both the notions of near metrics coincide.3 This theorem inspired a definition of
what it means for a distance measure to be “almost” a metric, and a robust notion of
“similar” or “equivalent” distance measures. We modify the definitions in [16] slightly
to fit our scenario, where there is a fixed domain D.

Definition 2 (equivalent distance measures). Two distance measures d and
d′ between partial rankings with domain D are equivalent if there are positive con-
stants c1 and c2, independent of the size of D, such that c1d

′(σ1,σ2) ≤ d(σ1,σ2) ≤
c2d

′(σ1,σ2) for every pair σ1,σ2 of partial rankings.
It is clear that the above definition leads to an equivalence relation (i.e., reflexive,

symmetric, and transitive). It follows from [16] that a distance measure is equivalent
to a metric if and only if it is a near metric.

2.2. Metrics on full rankings. We now review two well-known notions of
metrics on full rankings, namely the Kendall tau distance and the Spearman footrule
distance.

Let σ1,σ2 be two full rankings with domain D. The Spearman footrule distance is
simply the L1 distance L1(σ1,σ2). The definition of the Kendall tau distance requires
a little more work.

Let P = {{i, j} | i �= j and i, j ∈ D} be the set of unordered pairs of distinct
elements. The Kendall tau distance between full rankings is defined as follows. For
each pair {i, j} ∈ P of distinct members of D, if i and j are in the same order in σ1 and
σ2, then let the penalty K̄i,j(σ1,σ2) = 0; and if i and j are in the opposite order (such
as i being ahead of j in σ1 and j being ahead of i in σ2), then let K̄i,j(σ1,σ2) = 1. The
Kendall tau distance is given by K(σ1,σ2) =

∑
{i,j}∈P K̄i,j(σ1,σ2). The Kendall tau

distance turns out to be equal to the number of exchanges needed in a bubble sort to
convert one full ranking to the other.

Diaconis and Graham [11] proved a classical result, which states that for every
two full rankings σ1, σ2,

K(σ1, σ2) ≤ F (σ1, σ2) ≤ 2K(σ1, σ2).(1)

Thus, the Kendall tau distance and the Spearman footrule distance are equivalent
metrics for full rankings.

3. Metrics for comparing partial rankings. In this section we define metrics
on partial rankings. The first set of metrics is based on profile vectors (section 3.1).
As part of this development, we consider variations of the Kendall tau distance where

3This result would not hold if instead of relaxing the polygonal inequality, we simply relaxed the
triangle inequality.
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we vary a certain parameter. The second set of metrics is based on the Hausdorff
distance (section 3.2). Section 3.3 compares these metrics (when the partial rankings
are top k lists) with the distance measures for top k lists that are developed in [16].

3.1. Metrics based on profiles. Let σ1,σ2 be two partial rankings with do-
main D. We now define a family of generalizations of the Kendall tau distance to
partial rankings. These are based on a generalization [16] of the Kendall tau distance
to top k lists.

Let p be a fixed parameter, with 0 ≤ p ≤ 1. Similar to our definition of

K̄i,j(σ1,σ2) for full rankings σ1,σ2, we define a penalty K̄
(p)
i,j (σ1,σ2) for partial

rankings σ1,σ2 for {i, j} ∈ P. There are three cases.
Case 1. i and j are in different buckets in both σ1 and σ2. If i and j are in

the same order in σ1 and σ2 (such as σ1(i) > σ1(j) and σ2(i) > σ2(j)), then let

K̄
(p)
i,j (σ1,σ2) = 0; this corresponds to “no penalty” for {i, j}. If i and j are in the

opposite order in σ1 and σ2 (such as σ1(i) > σ1(j) and σ2(i) < σ2(j)), then let the

penalty K̄
(p)
i,j (σ1,σ2) = 1.

Case 2. i and j are in the same bucket in both σ1 and σ2. We then let the

penalty K̄
(p)
i,j (σ1,σ2) = 0. Intuitively, both partial rankings agree that i and j are

tied.
Case 3. i and j are in the same bucket in one of the partial rankings σ1 and σ2,

but in different buckets in the other partial ranking. In this case, we let the penalty

K̄
(p)
i,j (σ1,σ2) = p.

Based on these cases, define K(p), the Kendall distance with penalty parameter p,
as follows:

K(p)(σ1,σ2) =
∑

{i,j}∈P
K̄

(p)
i,j (σ1,σ2).

We now discuss our choice of penalty in Cases 2 and 3. In Case 2, where i and
j are in the same bucket in both σ1 and σ2, what if we had defined there to be a

positive penalty K̄
(p)
i,j (σ1,σ2) = q > 0? Then if σ were an arbitrary partial ranking

that had some bucket of size at least 2, we would have had K(p)(σ,σ) ≥ q > 0. So
K(p) would not have been a metric, or even a distance measure, since we would have
lost the property that K(p)(σ,σ) = 0. The next proposition shows the effect of the
choice of p in Case 3.

Proposition 3. K(p) is a metric when 1/2 ≤ p ≤ 1, is a near metric when
0 < p < 1/2, and is not a distance measure when p = 0.

Proof. Let us first consider the case p = 0. We now show that K(0) is not even
a distance measure. Let the domain D have exactly two elements a and b. Let τ 1

be the full ranking where a precedes b, let τ 2 be the partial ranking where a and
b are in the same bucket, and let τ 3 be the full ranking where b precedes a. Then
K(0)(τ 1, τ 2) = 0 even though τ 1 �= τ 2. So indeed, K(0) is not a distance measure.
Note also that the near triangle inequality is violated badly in this example, since
K(0)(τ 1, τ 2) = 0 and K(0)(τ 2, τ 3) = 0, but K(0)(τ 1, τ 3) = 1.

It is easy to see that K(p) is a distance measure for every p with 0 < p ≤ 1. We
now show that K(p) does not satisfy the triangle inequality when 0 < p < 1/2 and
satisfies the triangle inequality when 1/2 ≤ p ≤ 1. Let τ 1, τ 2, and τ 3 be as in our
previous example. Then K(p)(τ 1, τ 2) = p, K(p)(τ 2, τ 3) = p, and K(p)(τ 1, τ 3) = 1.
So the triangle inequality fails for 0 < p < 1/2, since K(p)(τ 1, τ 3) > K(p)(τ 1, τ 2) +
K(p)(τ 2, τ 3). On the other hand, the triangle inequality holds for 1/2 ≤ p ≤ 1, since
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then it is easy to verify that K̄
(p)
i,j (σ1,σ3) ≤ K̄

(p)
i,j (σ1,σ2) + K̄

(p)
i,j (σ2,σ3) for every

i, j, and so K(p)(σ1,σ3) ≤ K(p)(σ1,σ2) + K(p)(σ2,σ3).

We now show that K(p) is a near metric when 0 < p < 1/2. It is easy to verify
that if 0 < p < p′ ≤ 1, then K(p)(σ1,σ2) ≤ K(p′)(σ1,σ2) ≤ (p′/p)K(p)(σ1,σ2).
Hence, all of the distance measures K(p) are equivalent whenever 0 < p. As noted
earlier, it follows from [16] that a distance measure is equivalent to a metric if and
only if it is a near metric. Since K(p) is equivalent to the metric K(1/2) when 0 < p,
we conclude that in this case, K(p) is a near metric.

It is worth stating formally the following simple observation from the previous
proof.

Proposition 4. All of the distance measures K(p) are equivalent whenever 0 <
p ≤ 1.

For the rest of the paper, we focus on the natural case p = 1/2, which corresponds
to an “average” penalty for two elements i and j that are tied in one partial ranking
but not in the other partial ranking. We show that K(1/2) is equivalent to the other
metrics we define. It thereby follows from Proposition 4 that each of the distance
measures K(p) for 0 < p ≤ 1, and in particular the metrics K(p) for 1/2 ≤ p ≤ 1, is
equivalent to these other metrics.

We now show there is an alternative interpretation for K(1/2) in terms of a “pro-
file.” Let O = {(i, j) : i �= j and i, j ∈ D} be the set of ordered pairs of distinct
elements in the domain D. Let σ be a partial ranking (as usual, with domain D).
For (i, j) ∈ O, define pij to be 1/4 if σ(i) < σ(j), to be 0 if σ(i) = σ(j), and to be
−1/4 if σ(i) > σ(j). Define the K-profile of σ to be the vector 〈pij : (i, j) ∈ O〉 and
Kprof(σ1,σ2) to be the L1 distance between the K-profiles of σ1 and σ2. It is easy
to verify that Kprof = K(1/2).4 It is also easy to see that the K-profile of σ uniquely
determines σ.

It is clear how to generalize the Spearman footrule distance to partial rankings—
we simply take it to be L1(σ1,σ2), just as before. We refer to this value as Fprof(σ1,σ2),
for reasons we now explain. Let us define the F -profile of a partial ranking σ to be
the vector of values σ(i). So the F -profile is indexed by D, whereas the K-profile is
indexed by O. Just as the Kprof value of two partial rankings (or of the correspond-
ing bucket orders) is the L1 distance between their K-profiles, the Fprof value of two
partial rankings (or of the corresponding bucket orders) is the L1 distance between
their F -profiles. Since Kprof and Fprof are L1 distances, and since the K-profile and
the F -profile each uniquely determine the partial ranking, it follows that Kprof and
Fprof are both metrics.

3.2. The Hausdorff metrics. Let A and B be finite sets of objects and let d
be a metric on objects. The Hausdorff distance between A and B is given by

dHaus(A,B) = max

{
max
γ1∈A

min
γ2∈B

d(γ1, γ2), max
γ2∈B

min
γ1∈A

d(γ1, γ2)

}
.(2)

Although this looks fairly nonintuitive, it is actually quite natural, as we now
explain. The quantity minγ2∈B d(γ1, γ2) is the distance between γ1 and the set B.
Therefore, the quantity maxγ1∈A minγ2∈B d(γ1, γ2) is the maximal distance of a mem-
ber of A from the set B. Similarly, the quantity maxγ2∈B minγ1∈A d(γ1, γ2) is the

4The reason that the values of pij in the K-profile are 1/4, 0, and −1/4 rather than 1/2, 0, and
−1/2 is that each pair {i, j} with i �= j is counted twice, once as (i, j) and once as (j, i).
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maximal distance of a member of B from the set A. Therefore, the Hausdorff dis-
tance between A and B is the maximal distance of a member of A or B from the
other set. Thus, A and B are within Hausdorff distance s of each other precisely if
every member of A and B is within distance s of some member of the other set. The
Hausdorff distance is well known to be a metric.

Critchlow [9] used the Hausdorff distance to define a metric, which we now define,
between partial rankings. Given a metric d that gives the distance d(γ1, γ2) between
full rankings γ1 and γ2, define the distance dHaus between partial rankings σ1 and σ2

to be

dHaus(σ1,σ2) = max

{
max
γ1�σ1

min
γ2�σ2

d(γ1, γ2), max
γ2�σ2

min
γ1�σ1

d(γ1, γ2)

}
,(3)

where γ1 and γ2 are full rankings. In particular, when d is the footrule distance,
this gives us a metric between partial rankings that we call FHaus, and when d is the
Kendall distance, this gives us a metric between partial rankings that we call KHaus.
Both FHaus and KHaus are indeed metrics, since they are special cases of the Hausdorff
distance.

The next theorem, which is due to Critchlow (but which we state using our
notation), gives a complete characterization of FHaus and KHaus. For the sake of
completeness, we prove this theorem in the appendix.5

Theorem 5 (see [9]). Let σ and τ be partial rankings, let σR be the reverse of
σ, and let τR be the reverse of τ . Let ρ be any full ranking. Then

FHaus(σ, τ ) = max{F (ρ∗ τR∗ σ, ρ∗ σ∗ τ ),

F (ρ∗ τ ∗ σ, ρ∗ σR∗ τ )},
KHaus(σ, τ ) = max{K(ρ∗ τR∗ σ, ρ∗ σ∗ τ ),

K(ρ∗ τ ∗ σ, ρ∗ σR∗ τ )}.

Theorem 5 gives us a simple algorithm for computing FHaus(σ, τ ) and KHaus(σ, τ ):
we simply pick an arbitrary full ranking ρ and do the computations given in Theo-
rem 5. Thus, let σ1 = ρ∗ τR ∗ σ, let τ1 = ρ∗ σ ∗ τ , let σ2 = ρ∗ τ ∗ σ, and let
τ2 = ρ∗ σR ∗ τ . Theorem 5 tells us that FHaus(σ, τ ) = max {F (σ1, τ1), F (σ2, τ2)}
and KHaus(σ, τ ) = max {K(σ1, τ1),K(σ2, τ2)}. It is interesting that the same pairs,
namely (σ1, τ1) and (σ2, τ2), are the candidates for exhibiting the Hausdorff distance
for both F and K. Note that the only role that the arbitrary full ranking ρ plays
is to arbitrarily break ties (in the same way for σ and τ ) for pairs (i, j) of distinct
elements that are in the same bucket in both σ and τ . A way to describe the pair
(σ1, τ1) intuitively is as follows: break the ties in σ based on the reverse of the order-
ing in τ , break the ties in τ based on the ordering in σ, and break any remaining ties
arbitrarily (but in the same way in both). A similar description applies to the pair
(σ2, τ2).

The algorithm just described for computing FHaus(σ, τ ) and KHaus(σ, τ ) is based
on creating pairs (σ1, τ1) and (σ2, τ2), one of which must exhibit the Hausdorff dis-
tance. The next theorem gives a direct algorithm for computing KHaus(σ, τ ) that we
make use of later.

Theorem 6. Let σ and τ be partial rankings. Let S be the set of pairs {i, j}
of distinct elements such that i and j appear in the same bucket of σ but in different

5Our proof arose when, unaware of Critchlow’s result, we derived and proved this theorem.
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buckets of τ , let T be the set of pairs {i, j} of distinct elements such that i and j
appear in the same bucket of τ but in different buckets of σ, and let U be the set of
pairs {i, j} of distinct elements that are in different buckets of both σ and τ and are
in a different order in σ and τ . Then KHaus(σ, τ ) = |U | + max {|S|, |T |}.

Proof. As before, let σ1 = ρ∗ τR∗ σ, let τ1 = ρ∗ σ∗ τ , let σ2 = ρ∗ τ ∗ σ, and
let τ2 = ρ∗ σR∗ τ . It is straightforward to see that the set of pairs {i, j} of distinct
elements that are in a different order in σ1 and τ1 is exactly the union of the disjoint
sets U and S. Therefore, K(σ1, τ1) = |U | + |S|. Identically, the set of pairs {i, j}
of distinct elements that are in a different order in σ2 and τ2 is exactly the union
of the disjoint sets U and T , and hence K(σ2, τ2) = |U | + |T |. But by Theorem 5,
we know that KHaus(σ, τ ) = max {K(σ1, τ1),K(σ2, τ2)} = max {|U | + |S|, |U | + |T |}.
The result follows immediately.

3.3. Metrics in this paper for top k lists vs. distance measures defined
in [10]. Metrics on partial rankings naturally induce metrics on top k lists. We now
compare (a) the metrics on top k lists that are induced by our metrics on partial
rankings with (b) the distance measures on top k lists that were introduced in [16].
Recall that for us, a top k list is a partial ranking consisting of k singleton buckets,
followed by a bottom bucket of size |D|−k. However, in [16], a top k list is a bijection
of a domain (“the top k elements”) onto {1, . . . , k}. Let σ and τ be top k lists (of
our form). Define the active domain for σ, τ to be the union of the elements in the
top k buckets of σ and the elements in the top k buckets of τ . In order to make
our scenario compatible with the scenario of [16], we assume during our comparison
that the domain D equals the active domain for σ, τ . Our definitions of K(p), FHaus,
and KHaus are then exactly the same in the two scenarios. (Unlike the situation in
section 3.1, even the case p = 0 gives a distance measure, since the unpleasant case
where K(0)(σ1,σ2) = 0 even though σ1 �= σ2 does not arise for top k lists σ1 and
σ2.) Nevertheless, K(p), FHaus, and KHaus are only near metrics in [16] in spite of
being metrics for us. This is because, in [16], the active domain varies depending on
which pair of top k lists is being compared.

Our definition of Kprof(σ, τ ) is equivalent to the definition of Kavg(σ, τ ) in [16],
namely the average value of K(σ, τ) over all full rankings σ, τ with domain D, where
σ � σ and τ � τ . It is interesting to note that if σ and τ were not top k lists
but arbitrary partial rankings, then Kavg would not be a distance measure, since
Kavg(σ,σ) can be strictly positive if σ is an arbitrary partial ranking.

Let � be a real number greater than k. The footrule distance with location pa-
rameter �, denoted F (�), is defined by treating each element that is not among the
top k elements as if it were in position �, and then taking the L1 distance [16]. More
formally, let σ and τ be top k lists (of our form). Define the function fσ with domain
D by letting fσ(i) = σ(i) if 1 ≤ σ(i) ≤ k, and fσ(i) = � otherwise. Similarly, define
the function fτ with domain D by letting fτ (i) = τ (i) if 1 ≤ τ (i) ≤ k, and fτ (i) = �
otherwise. Then F (�)(σ, τ ) is defined to be L1(fσ, fτ ). It is straightforward to verify
that Fprof(σ, τ ) = F (�)(σ, τ ) for � = (|D| + k + 1)/2.

4. Equivalence between the metrics. In this section we prove our main the-
orem, which says that our four metrics are equivalent.

Theorem 7. The metrics Fprof , Kprof , FHaus, and KHaus are all equivalent, that
is, within constant multiples of each other.

Proof. First, we show

KHaus(σ1,σ2) ≤ FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2).(4)
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The proof of this equivalence between FHaus and KHaus uses the robustness of the
Hausdorff definition with respect to equivalent metrics. It is fairly easy, and is given
in section 4.1.

Next, we show

Kprof(σ1,σ2) ≤ Fprof(σ1,σ2) ≤ 2Kprof(σ1,σ2).(5)

We note that (5) is much more complicated to prove than (4) and is also much more
complicated to prove than the Diaconis–Graham inequality (1). The proof involves
two main concepts: “reflecting” each partial ranking so that every element has a mirror
image and using the notion of “nesting,” which means that the interval spanned by
an element and its image in one partial ranking sits inside the interval spanned by
the same element and its image in the other partial ranking. The proof is presented
in section 4.2.

We note that the equivalences given by (4) and (5) are interesting in their own
right.

Finally, we show in section 4.3 that

Kprof(σ1,σ2) ≤ KHaus(σ1,σ2) ≤ 2Kprof(σ1,σ2).(6)

This is proved using Theorem 6.
Using (4), (5), and (6), the proof is complete, since (4) tells us that the two Haus-

dorff metrics are equivalent, (5) tells us that the two profile metrics are equivalent,
and (6) tells us that some Hausdorff metric is equivalent to some profile metric.

4.1. Equivalence of FHaus and KHaus. In this section, we prove the simple
result that the Diaconis–Graham inequalities (1) extend to FHaus and KHaus. We
begin with a lemma. In this lemma, for metric d, we define dHaus as in (2), and
similarly for metric d′.

Lemma 8. Assume that d and d′ are metrics where there is a constant c such
that d ≤ c · d′. Then dHaus ≤ c · d′Haus.

Proof. Let A and B be as in (2). Assume without loss of generality (by reversing
A and B if necessary) that dHaus(A,B) = maxγ1∈A minγ2∈B d(γ1, γ2). Find γ1 in A
that maximizes minγ2∈B d(γ1, γ2), and γ2 in B that minimizes d(γ1, γ2). Therefore,
dHaus(A,B) = d(γ1, γ2). Find γ′

2 in B that minimizes d′(γ1, γ
′
2). (There is such a

γ′
2 since by assumption on the definition of Hausdorff distance, A and B are finite

sets.) Then dHaus(A,B) = d(γ1, γ2) ≤ d(γ1, γ
′
2), since γ2 minimizes d(γ1, γ2). Also

d(γ1, γ
′
2) ≤ c · d′(γ1, γ

′
2), by assumption on d and d′. Finally c · d′(γ1, γ

′
2) ≤ c ·

d′Haus(A,B), by definition of d′Haus and the fact that γ′
2 minimizes d′(γ1, γ

′
2). Putting

these inequalities together, we obtain dHaus(A,B) ≤ c · d′Haus(A,B), which completes
the proof.

We can now show that the Diaconis–Graham inequalities (1) extend to FHaus and
KHaus.

Theorem 9. Let σ1 and σ2 be partial rankings. Then KHaus(σ1,σ2) ≤
FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2).

Proof. The first inequality KHaus(σ1,σ2) ≤ FHaus(σ1,σ2) follows from the first
Diaconis–Graham inequality K(σ1,σ2) ≤ F (σ1,σ2) and Lemma 8, where we let the
roles of d, d′, and c be played by K, F , and 1, respectively. The second inequality
FHaus(σ1,σ2) ≤ 2KHaus(σ1,σ2) follows from the second Diaconis–Graham inequality
F (σ1,σ2) ≤ 2K(σ1,σ2) and Lemma 8, where we let the roles of d, d′, and c be played
by F , K, and 2, respectively.
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4.2. Equivalence of Fprof and Kprof . In order to generalize the Diaconis–
Graham inequalities to Fprof and Kprof , we convert a pair of partial rankings into full
rankings (on an enlarged domain) in such a way that the Fprof distance between the
partial rankings is precisely 4 times the F distance between the full rankings, and the
Kprof distance between the partial rankings is precisely 4 times the K distance between
the full rankings. Given a domain D, produce a “duplicate set” D� =

{
i� : i ∈ D

}
.

Given a partial ranking σ with domain D, produce a new partial ranking σ�, with
domain D ∪D�, as follows. Modify the bucket order associated with σ by putting i�

in the same bucket as i for each i ∈ D. We thereby double the size of every bucket.
Let σ� be the partial ranking associated with this new bucket order. Since i� is in the
same bucket as i, we have σ�(i) = σ�(i�). We now show that σ�(i) = 2σ(i) − 1/2 for
all i in D.

Fix i in D, let p be the number of elements j in D such that σ(j) < σ(i), and let
q be the number of elements k in D such that σ(k) = σ(i). By the definition of the
ranking associated with a bucket order, we have

σ(i) = p + (q + 1)/2.(7)

Since each bucket doubles in size for the bucket order associated with σ�, we similarly
have

σ�(i) = 2p + (2q + 1)/2.(8)

It follows easily from (7) and (8) that σ�(i) = 2σ(i) − 1/2, as desired.
We need to obtain a full ranking from the partial ranking σ�. First, for every full

ranking π with domain D, define a full ranking π† with domain D ∪D� as follows:

π†(d) = π(d) for all d ∈ D,

π†(d�) = 2|D| + 1 − π(d) for all d in D

so that π† ranks elements of D in the same order as π, elements of D� in the reverse
order of π, and all elements of D before all elements of D�.

We define σπ = π†∗ (σ�). For instance, suppose B is a bucket of σ� containing
the items a, b, c, a�, b�, c�, and suppose that π orders the items π(a) < π(b) < π(c).
Then σπ will contain the sequence a, b, c, c�, b�, a�. Also notice that in this example,
1
2 (σπ(a) + σπ(a�)) = 1

2 (σπ(b) + σπ(b�)) = 1
2 (σπ(c) + σπ(c�)) = pos(B). In fact,

because of this “reflected-duplicate” property, we see that in general, for every d ∈ D,

1

2
(σπ(d) + σπ(d�)) = σ�(d) = σ�(d�) = 2σ(d) − 1/2.(9)

The following lemma shows that no matter what order π we choose, the Kendall
distance between σπ and τπ is exactly 4 times the Kprof distance between σ and τ .

Lemma 10. Let σ, τ be partial rankings, and let π be any full ranking on the
same domain. Then K(σπ, τπ) = 4Kprof(σ, τ ).

Proof. Assume that i and j are in D. Let us consider the cases in the definition
of K(p) (recall that Kprof equals K(p) when p = 1/2).

Case 1. i and j are in different buckets in both σ and τ . If i and j are in the same
order in σ and τ , then the pair {i, j} contributes no penalty to Kprof(σ, τ ), and no
pair of members of the set

{
i, j, i�, j�

}
contribute any penalty to K(σπ, τπ). If i and j

are in the opposite order in σ and τ , then the pair {i, j} contributes a penalty of 1 to
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Kprof(σ, τ ), and the pairs among
{
i, j, i�, j�

}
that contribute a penalty to K(σπ, τπ)

are precisely {i, j},
{
i�, j�

}
,
{
i, j�

}
, and

{
i�, j

}
, each of which contributes a penalty

of 1.
Case 2. i and j are in the same bucket in both σ and τ . Then the pair {i, j}

contributes no penalty to Kprof(σ, τ ), and no pair of members of the set
{
i, j, i�, j�

}
contribute any penalty to K(σπ, τπ).

Case 3. i and j are in the same bucket in one of the partial rankings σ and τ ,
but in different buckets in the other partial ranking. Then the pair {i, j} contributes
a penalty of 1/2 to Kprof(σ, τ ). Assume without loss of generality that i and j are in
the same bucket in σ and that τ (i) < τ (j). There are now two subcases, depending
on whether π(i) < π(j) or π(j) < π(i). In the first subcase, when π(i) < π(j), we
have

σπ(i) < σπ(j) < σπ(j�) < σπ(i�)

and

τπ(i) < τπ(i�) < τπ(j) < τπ(j�).

So the pairs among
{
i, j, i�, j�

}
that contribute a penalty to K(σπ, τπ) are precisely{

i�, j
}

and
{
i�, j�

}
, each of which contribute a penalty of 1.

In the second subcase, when π(j) < π(i), we have

σπ(j) < σπ(i) < σπ(i�) < σπ(j�)

and

τπ(i) < τπ(i�) < τπ(j) < τπ(j�).

So the pairs among
{
i, j, i�, j�

}
that contribute a penalty to K(σπ, τπ) are precisely

{i, j} and
{
i�, j

}
, each of which contribute a penalty of 1.

In all cases, the amount of penalty contributed to K(σπ, τπ) is 4 times the amount
of penalty contributed to Kprof(σ, τ ). The lemma then follows.

Notice that Lemma 10 holds for every choice of π. The analogous statement is
not true for Fprof . In that case, we need to choose π specifically for the pair of partial
rankings we are given. In particular, we need to avoid a property we call “nesting.”

Given fixed σ, τ , we say that an element d ∈ D is nested with respect to π if
either

[σπ(d),σπ(d�)] � [τπ(d), τπ(d�)]

or [τπ(d), τπ(d�)] � [σπ(d),σπ(d�)],

where the notation [s, t] � [u, v] for numbers s, t, u, v means that [s, t] ⊆ [u, v] and
s �= u and t �= v. It is sometimes convenient to write [u, v] � [s, t] for [s, t] � [u, v].

The following lemma shows us why we want to avoid nesting.
Lemma 11. Given partial rankings σ, τ and full ranking π, suppose that there

are no elements that are nested with respect to π. Then F (σπ, τπ) = 4Fprof(σ, τ ).
Proof. Assume d ∈ D. By assumption, d is not nested with respect to π. We now

show that

|σπ(d) − τπ(d)| + |σπ(d�) − τπ(d�)|
= |σπ(d) − τπ(d) + σπ(d�) − τπ(d�)|.(10)
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There are three cases, depending on whether σπ(d) = τπ(d), σπ(d) < τπ(d), or
σπ(d) > τπ(d).

If σπ(d) = τπ(d), then (10) is immediate. If σπ(d) < τπ(d), then necessarily
σπ(d�) ≤ τπ(d�), since d is not nested. But then the left-hand side and right-hand side
of (10) are each τπ(d)−σπ(d) + τπ(d�)−σπ(d�), and so (10) holds. If σπ(d) > τπ(d),
then necessarily σπ(d�) ≥ τπ(d�), since d is not nested. But then the left-hand side
and right-hand side of (10) are each σπ(d) − τπ(d) + σπ(d�) − τπ(d�), and so once
again, (10) holds.

From (9) we obtain σπ(d) + σπ(d�) = 4σ(d) − 1. Similarly, we have τπ(d) +
τπ(d�) = 4τ (d) − 1. Therefore

|σπ(d) − τπ(d) + σπ(d�) − τπ(d�)| = 4|σ(d) − τ (d)|.(11)

From (10) and (11) we obtain

|σπ(d) − τπ(d)| + |σπ(d�) − τπ(d�)| = 4|σ(d) − τ (d)|.

Hence,

F (σπ, τπ) =
∑
d∈D

(|σπ(d) − τπ(d)| + |σπ(d�) − τπ(d�)|)

=
∑
d∈D

4|σ(d) − τ (d)|

= 4Fprof(σ, τ ).

In the proof of the following lemma, we show that in fact, there is always a full
ranking π with no nested elements.

Lemma 12. Let σ, τ be partial rankings. Then there exists a full ranking π on
the same domain such that F (σπ, τπ) = 4Fprof(σ, τ ).

Proof. By Lemma 11, we need only show that there is some full ranking π with no
nested elements. Assume that every full ranking has a nested element; we shall derive
a contradiction. For a full ranking π, we say that its first nest is mind π(d), where d
is allowed to range over all nested elements of π. Choose π to be a full ranking whose
first nest is as large as possible.

Let a be the element such that π(a) is the first nest of π. By definition, a is
nested. Without loss of generality, assume that

[σπ(a),σπ(a�)] � [τπ(a), τπ(a�)].(12)

The intuition behind the proof is the following. We find an element b such that
it appears in the left-side interval but not in the right-side interval of (12). We
swap a and b in the ordering π and argue that b is not nested in this new ordering.
Furthermore, we also argue that no element occurring before a in π becomes nested
due to the swap. Hence, we produce a full ranking whose first nest—if it has a nested
element at all—is later than the first nest of π, a contradiction. We now proceed with
the formal details.

Define the sets S1 and S2 as follows:

S1 =
{
d ∈ D \ {a} | [σπ(a),σπ(a�)] � [σπ(d),σπ(d�)]

}
and

S2 =
{
d ∈ D \ {a} | [σπ(a),σπ(a�)] � [τπ(d), τπ(d�)]

}
.
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We now show that S1 \S2 is nonempty. This is because |S1| = 1
2 |[σπ(a),σπ(a�)]| − 1,

while |S2| ≤ 1
2 |[σπ(a),σπ(a�)]| − 2, since [σπ(a),σπ(a�)] � [τπ(a), τπ(a�)] but a is

not counted in S2. Choose b in S1 \ S2. Note that the fact that b ∈ S1 implies that a
and b are in the same bucket for σ. It further implies that π(a) < π(b).

We now show that a and b are in different buckets for τ . Suppose that a and b
were in the same bucket for τ . Then since π(a) < π(b), we would have τπ(a) < τπ(b)
and τπ(a�) > τπ(b�). That is, [τπ(a), τπ(a�)] � [τπ(b), τπ(b�)]. If we combine this
fact with (12), we obtain [σπ(a),σπ(a�)] � [τπ(a), τπ(a�)] � [τπ(b), τπ(b�)]. This
contradicts the fact that b /∈ S2. Hence, a and b must be in different buckets for τ .

Now, produce π′ by swapping a and b in π. Since π(a) < π(b), we see that
π′(b) = π(a) < π(b) = π′(a). We wish to prove that the first nest for π′—if it has
a nested element at all—is larger than the first nest for π, which gives our desired
contradiction. We do so by showing that b is unnested for π′ and further, that d is
unnested for π′ for all d in D such that π′(d) < π′(b). In order to prove this, we need
to examine the effect of swapping a and b in π.

We first consider σ. We know that a and b appear in the same bucket of σ. Let
Bab be the bucket of σ that contains both a and b. Swapping a and b in π has the
effect of swapping the positions of a and b in σπ (so in particular σπ′(b) = σπ(a)),
swapping the positions of a� and b� in σπ (so in particular σπ′(b�) = σπ(a�)) and
leaving all other elements d and d� in Bab in the same place (so σπ(d) = σπ′(d)
and σπ(d�) = σπ′(d�)). Since σπ′(b) = σπ(a) and σπ′(b�) = σπ(a�), and since two
closed intervals of numbers are equal precisely if their left endpoints and their right
endpoints are equal, we have

[σπ′(b),σπ′(b�)] = [σπ(a),σπ(a�)].(13)

Now, let B be a bucket of σ other than Bab. Then swapping a and b in π has no
effect (as far as σπ is concerned) on the elements in B, since the relative order of all
elements in B is precisely the same with or without the swap. That is, σπ(d) = σπ′(d)
and σπ(d�) = σπ′(d�) for all d in B. But we noted earlier that these same two equalities
hold for all elements d in Bab other than a and b. Therefore, for all elements d other
than a or b (whether or not these elements are in Bab), we have

[σπ′(d),σπ′(d�)] = [σπ(d),σπ(d�)].(14)

We now consider τ . We know that a and b appear in different buckets of τ .
Let B be a bucket of τ containing neither a nor b (if there is such a bucket). As
with σ, we see that elements in B are unaffected by swapping a and b in π. That is,
τπ(d) = τπ′(d) and τπ(d�) = τπ′(d�) for all d in B.

Now, let Ba be the bucket of τ containing a (but not b). Notice that for all d in Ba

such that π(d) < π(a), we have π(d) = π′(d). Hence, the relative order among these
most highly ranked elements of Ba remains the same. Therefore, τπ(d) = τπ′(d) and
τπ(d�) = τπ′(d�) for all d in Ba such that π(d) < π(a). Furthermore, π′(a) > π(a),
and so a is still ranked after all the aforementioned d’s in τπ′ . Hence, τπ(a) ≤ τπ′(a)
and τπ(a�) ≥ τπ′(a�). That is,

[τπ′(a), τπ′(a�)] ⊆ [τπ(a), τπ(a�)].(15)

Finally, let Bb be the bucket of τ that contains b (but not a). As before, for all d
in Bb such that π(d) < π(a), we have π(d) = π′(d). Hence, the relative order among
these most highly ranked elements of Bb remains the same. Therefore, τπ(d) = τπ′(d)
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and τπ(d�) = τπ′(d�) for all d in Bb such that π(d) < π(a). That is, for every d such
that π(d) < π(a) (i.e., every d such that π′(d) < π′(b)), we have

[τπ′(d), τπ′(d�)] = [τπ(d), τπ(d�)].(16)

Furthermore, π′(b) < π(b), and so b is still ranked before all d′ in Bb such that
π(b) < π(d′) = π′(d′). Hence, τπ(b) ≥ τπ′(b) and τπ(b�) ≤ τπ′(b�). That is,

[τπ′(b), τπ′(b�)] ⊇ [τπ(b), τπ(b�)].(17)

From (14) and (16), we see that d remains unnested for all d such that π′(d) <
π′(b). So we need only show that b is unnested for π′ to finish the proof. If b were
nested for π′, then either [σπ′(b),σπ′(b�)] � [τπ′(b), τπ′(b�)] or [τπ′(b), τπ′(b�)] �
[σπ′(b),σπ′(b�)]. First, suppose that [σπ′(b),σπ′(b�)] � [τπ′(b), τπ′(b�)]. Then

[σπ(a),σπ(a�)] = [σπ′(b),σπ′(b�)] by (13)

� [τπ′(b), τπ′(b�)] by supposition

⊇ [τπ(b), τπ(b�)] by (17).

But this contradicts the fact that b /∈ S2. Now, suppose that [τπ′(b), τπ′(b�)] �
[σπ′(b),σπ′(b�)]. Then

[τπ′(b), τπ′(b�)] � [σπ′(b),σπ′(b�)] by supposition

= [σπ(a),σπ(a�)] by (13)

� [τπ(a), τπ(a�)] by (12)

⊇ [τπ′(a), τπ′(a�)] by (15).

But this implies that a and b are in the same bucket for τ , a contradiction. Hence, b
must not be nested for π′, which was to be shown.

We can now prove our desired theorem that Fprof and Kprof are equivalent.
Theorem 13. Let σ and τ be partial rankings. Then Kprof(σ, τ ) ≤ Fprof(σ, τ ) ≤

2Kprof(σ, τ ).
Proof. Given σ and τ , let π be the full ranking guaranteed by Lemma 12. Then

we have

Kprof(σ, τ ) = 4K(σπ, τπ) by Lemma 10

≤ 4F (σπ, τπ) by (1)

= Fprof(σ, τ ) by Lemma 12.

And similarly,

Fprof(σ, τ ) = 4F (σπ, τπ) by Lemma 12

≤ 8K(σπ, τπ) by (1)

= 2Kprof(σ, τ ) by Lemma 10.

4.3. Equivalence of KHaus and Kprof . We now prove (6), which is the final
step in proving Theorem 7.

Theorem 14. Let σ1 and σ2 be partial rankings. Then Kprof(σ1,σ2) ≤
KHaus(σ1,σ2) ≤ 2Kprof(σ1,σ2).
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Proof. As in Theorem 6 (where we let σ1 play the role of σ, and let σ2 play
the role of τ ), let S be the set of pairs {i, j} of distinct elements such that i and j
appear in the same bucket of σ1 but in different buckets of σ2, let T be the set of
pairs {i, j} of distinct elements such that i and j appear in the same bucket of σ2

but in different buckets of σ1, and let U be the set of pairs {i, j} of distinct elements
that are in different buckets of both σ1 and σ2 and are in a different order in σ1 and
σ2. By Theorem 6, we know that KHaus(σ1,σ2) = |U | + max {|S|, |T |}. It follows
from the definition of Kprof that Kprof(σ1,σ2) = |U |+ 1

2 |S|+
1
2 |T |. The theorem now

follows from the straightforward inequalities |U |+ 1
2 |S|+

1
2 |T | ≤ |U |+max {|S|, |T |} ≤

2(|U | + 1
2 |S| +

1
2 |T |).

This concludes the proof that all our metrics are equivalent.

5. An alternative representation. Let σ and σ′ be partial rankings. Assume
that the buckets of σ are, in order, B1, . . . ,Bt, and the buckets of σ′ are, in order,
B′

1, . . . ,B′
t′ . Critchlow [9] defines nij (for 1 ≤ i ≤ t and 1 ≤ j ≤ t′) to be |Bi ∩ B′

j |.
His main theorem gives formulas for KHaus(σ,σ′) and FHaus(σ,σ′) (and for other
Hausdorff measures) in terms of the nij ’s. His formula for KHaus(σ,σ′) is particularly
simple, and is given by the following theorem.

Theorem 15 (see [9]). Let σ, σ′, and the nij’s be as above. Then

KHaus(σ,σ′) = max

⎧⎨
⎩

∑
i<i′, j≥j′

nijni′j′ ,
∑

i≤i′, j>j′

nijni′j′

⎫⎬
⎭ .

It is straightforward to derive Theorem 6 from Theorem 15, and to derive Theo-
rem 15 from Theorem 6, by using the simple fact that if S, T, U are as in Theorem 6,
then

|U | =
∑

i<i′, j>j′

nijni′j′ ,

|S| =
∑

i=i′, j>j′

nijni′j′ ,

|T | =
∑

i<i′, j=j′

nijni′j′ .

Let us define the Critchlow profile of the pair (σ,σ′) to be a t× t′ matrix, where t
is the number of buckets of σ, t′ is the number of buckets of σ′, and the (i, j)th entry
is nij . We noted that Critchlow gives formulas for KHaus(σ,σ′) and FHaus(σ,σ′) in
terms of the Critchlow profile. The reader may find it surprising that the Critchlow
profile contains enough information to compute KHaus(σ,σ′) and FHaus(σ,σ′). The
following theorem implies that this “surprise” is true not just about KHaus and FHaus,
but about every function d (not even necessarily a metric) whose arguments are a
pair of partial rankings, as long as d is “name-independent” (that is, the answer is
the same when we rename the elements). Before we state the theorem, we need some
more terminology. The theorem says that the Critchlow profile “uniquely determines
σ and σ′, up to renaming of the elements.” What this means is that if (σ,σ′) has
the same Critchlow profile as (τ , τ ′), then the pair (σ,σ′) is isomorphic to the pair
(τ , τ ′). That is, there is a one-to-one function f from the common domain D onto
itself such that σ(i) = τ (f(i)) and σ′(i) = τ ′(f(i)) for every i in D. Intuitively, the
pair (τ , τ ′) is obtained from the pair (σ,σ′) by the renaming function f .
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Theorem 16. The Critchlow profile uniquely determines σ and σ′, up to renam-
ing of the elements.

Proof. We first give an informal proof. The only relevant information about an
element is which Bi it is in and which B′

j it is in. So the only information that matters
about the pair σ,σ′ of partial rankings is, for each i, j, how many elements are in
Bi ∩ B′

j . That is, we can reconstruct σ and σ′, up to renaming of the elements, by
knowing only the Critchlow profile.

More formally, let (σ,σ′) and (τ , τ ′) each be pairs of partial rankings with the
same Critchlow profile. That is, assume that the buckets of σ are, in order, B1, . . . ,Bt,
the buckets of σ′ are, in order, B′

1, . . . ,B′
t′ , the buckets of τ are, in order, C1, . . . , Ct,

and the buckets of τ ′ are, in order, C′
1, . . . , Ct′ , where |Bi∩B′

j | = |Ci∩C ′
j | for each i, j.

(Note that the number t of buckets of σ is the same as the number of buckets of τ ,
and similarly the number t′ of buckets of σ′ is the same as the number of buckets of
τ ′; this follows from the assumption that (σ,σ′) and (τ , τ ′) have the same Critchlow
profile.) Let fij be a one-to-one mapping of Bi ∩ B′

j onto Ci ∩ C′
j (such an fij exists

because |Bi ∩ B′
j | = |Ci ∩ C′

j |). Let f be the function obtained by taking the union
of the functions fij (we think of functions as sets of ordered pairs, so it is proper to
take the union). It is easy to see that (σ,σ′) and (τ , τ ′) are isomorphic under the
isomorphism f . This proves the theorem.

The Critchlow profile differs in several ways from the K-profile and the F -profile,
as defined in section 3.1. First, the K-profile and the F -profile are each profiles of
a single partial ranking, whereas the Critchlow profile is a profile of a pair of partial
rankings. Second, from the K-profile of σ we can completely reconstruct σ (not
just up to renaming of elements, but completely), and a similar comment applies to
the F -profile. On the other hand, from the Critchlow profile we can reconstruct the
pair (σ,σ′) only up to a renaming of elements. Thus, the Critchlow profile “loses
information,” whereas the K-profile and F -profile do not.

6. Conclusions. In this paper we consider metrics between partial rankings. We
define four natural metrics between partial rankings. We obtain efficient polynomial
time algorithms to compute these metrics. We also show that these metrics are all
within constant multiples of each other.

Appendix. Proof of Theorem 5. In this appendix, we prove Theorem 5.
First, we state a fact that we use several times.

Lemma 17. Suppose a ≤ b and c ≤ d. Then |a− c| + |b− d| ≤ |a− d| + |b− c|.
Proof. To see this, first note that by symmetry, we can assume, without loss of

generality, that a ≤ c. Now there are three cases: a ≤ b ≤ c ≤ d, a ≤ c ≤ b ≤ d, and
a ≤ c ≤ d ≤ b. In the first case (when a ≤ b ≤ c ≤ d), it is easy to verify that both the
left-hand side and the right-hand side of the inequality equal |a− b|+2|b− c|+ |c−d|,
and so the left-hand side and the right-hand side are equal. In both the second case
(when a ≤ c ≤ b ≤ d) and the third case (when a ≤ c ≤ d ≤ b), it is easy to verify
that the right-hand side equals |a− c|+ 2|b− c|+ |b− d|, which exceeds the left-hand
side by 2|b− c|.

We next show a simple lemma.
Lemma 18. Let π be a full ranking, and let σ be a partial ranking. Suppose that

π �= σ. Then there exist i, j such that π(j) = π(i) + 1 while σ(j) ≤ σ(i). If σ is in
fact a full ranking, then σ(j) < σ(i).

Proof. For each m with 1 ≤ m ≤ |D|, let dm be the member of the domain D,
where π(dm) = m. Thus, D =

{
d1, . . . , d|D|

}
and π(d1) < π(d2) < · · · < π(d|D|). If

σ(d�) < σ(d�+1) for all �, then we would have Kprof(σ, π) = 0, contradicting the fact
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that π �= σ. Hence, there must be some � for which σ(d�+1) ≤ σ(d�). Setting i = d�
and j = d�+1 gives us the lemma.

If σ is a full ranking, then σ(j) �= σ(i), showing σ(j) < σ(i).
The next two lemmas will be helpful in obtaining a characterization of the Haus-

dorff distance.
Lemma 19. Let σ be a full ranking, and let τ be a partial ranking. Then the

quantity F (σ, τ), taken over all full refinements τ � τ , is minimized for τ = σ∗ τ .
Similarly, the quantity K(σ, τ), taken over all full refinements τ � τ , is minimized
for τ = σ∗ τ .

Proof. First, note that if τ is a full ranking with τ � τ , then there is a full ranking
π such that τ = τ ∗ π. We show that F (σ, σ∗ τ ) ≤ F (σ, π∗ τ ) and K(σ, σ∗ τ ) ≤
K(σ, π∗ τ ) for every full ranking π. The lemma will then follow. Let

U = {π | π is a full ranking and F (σ, σ∗ τ ) > F (σ, π∗ τ )} ,

V = {π | π is a full ranking and K(σ, σ∗ τ ) > K(σ, π∗ τ )} ,

and let S = U ∪ V . If S is empty, then we are done. So suppose not; we derive
a contradiction. Over all full rankings π ∈ S, choose π to be a full ranking that
minimizes K(σ, π). In other words, choose a full ranking in S that is as close to σ as
possible, according to the Kendall distance.

Clearly σ �∈ S, and so π �= σ (since π ∈ S). Since π �= σ, Lemma 18 guarantees
that we can find a pair i, j such that π(j) = π(i) + 1, but σ(j) < σ(i). Produce π′

by swapping i and j in π. Clearly, π′ has one fewer inversion with respect to σ than
π does. Hence, K(σ, π′) < K(σ, π). If we can show that π′ ∈ S, then we obtain our
desired contradiction, since π is the full ranking in S that minimizes K(σ, π). So we
need only show that π′ ∈ S.

If i and j are in different buckets for τ , then π′∗ τ = π∗ τ . Hence, F (σ, π′∗ τ ) =
F (σ, π∗ τ ) and K(σ, π′∗ τ ) = K(σ, π∗ τ ). So if π ∈ U , then π′ ∈ U , and if π ∈ V ,
then π′ ∈ V . In either case, π′ ∈ S, and we are done.

On the other hand, assume that i and j are in the same bucket for τ . Then
π′∗ τ (i) = π∗ τ (j) and π′∗ τ (j) = π∗ τ (i). Furthermore, since π(i) < π(j) and i and
j are in the same bucket for τ , we have π∗ τ (i) < π∗ τ (j), while σ(j) < σ(i).

Either π ∈ U or π ∈ V . First, consider the case where π ∈ U . We have

|π′∗ τ (j) − σ(j)| + |π′∗ τ (i) − σ(i)|
= |π∗ τ (i) − σ(j)| + |π∗ τ (j) − σ(i)|(18)

≤ |π∗ τ (i) − σ(i)| + |π∗ τ (j) − σ(j)|,

where the inequality follows from Lemma 17 with a = π∗ τ (i), b = π∗ τ (j), c = σ(j),
and d = σ(i). We also have |π′∗ τ (d)− σ(d)| = |π∗ τ (d)− σ(d)| for all d ∈ D \ {i, j},
since π′∗ τ and π∗ τ agree everywhere but at i and j. If we sum over all d (where
we make use of (18) for d = i and d = j), we obtain F (σ, π′∗ τ ) ≤ F (σ, π∗ τ ). Since
π ∈ U , we have F (σ, π∗ τ ) < F (σ, σ∗ τ ). Combining these last two inequalities, we
obtain F (σ, π′∗ τ ) < F (σ, σ∗ τ ). Therefore, π′ ∈ U , and so π′ ∈ S, which was to be
shown.

Now consider the case where π ∈ V . Since π(j) = π(i)+1 and since i and j are in
the same bucket of τ , we have π∗τ (j) = π∗τ (i)+1. Similarly, π′∗τ (i) = π′∗τ (j)+1.
And as we noted earlier, π ∗ τ and π′ ∗ τ agree everywhere except at i and j. In
other words, π′∗ τ is just π∗ τ , with the adjacent elements i and j swapped. Since
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σ(i) > σ(j) we see that π′∗τ has exactly one fewer inversion with respect to σ than π∗τ
does. Hence, K(σ, π′∗τ ) < K(σ, π∗τ ). Since π ∈ V , we have K(σ, π∗τ ) < K(σ, σ∗τ ).
Combining these last two inequalities, we obtain K(σ, π′∗τ ) < K(σ, σ∗τ ). Therefore,
π′ ∈ V , and so π′ ∈ S, which was to be shown.

Lemma 20. Let σ and τ be partial rankings, and let ρ be any full ranking. Then
the quantity F (σ, σ∗ τ ), taken over all full refinements σ � σ, is maximized when
σ = ρ∗ τR ∗ σ. Similarly, the quantity K(σ, σ ∗ τ ), taken over all full refinements
σ � σ, is maximized when σ = ρ∗ τR∗ σ.

Proof. First, note that for any full refinement σ � σ, there is some full ranking π
such that σ = π∗ σ. We show that for all full rankings π,

F (ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) ≥ F (π∗ σ, π∗ σ∗ τ )

and K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) ≥ K(π∗ σ, π∗ σ∗ τ ).

The lemma will then follow.
Let U = {full π | F (ρ ∗ τR ∗ σ, ρ ∗ τR ∗ σ ∗ τ ) < F (π ∗ σ, π ∗ σ ∗ τ )}, let

V = {full π | K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) < K(π∗ σ, π∗ σ∗ τ )}, and let S = U ∪ V .
If S is empty, then we are done. So suppose not; we derive a contradiction. Over all
full rankings π ∈ S, choose π to be the full ranking that minimizes K(ρ∗ τR, π).

Clearly ρ∗ τR �∈ S, and so π �= ρ∗ τR (since π ∈ S). Since π �= ρ∗ τR, Lemma 18
guarantees that we can find a pair i, j such that π(j) = π(i) + 1, but ρ∗ τR(j) <
ρ∗ τR(i). Produce π′ by swapping i and j. Clearly, π′ has one fewer inversion with
respect to ρ∗τR than π does. Hence, K(ρ∗τR, π′) < K(ρ∗τR, π). We now show that
π′ ∈ S, producing a contradiction.

If i and j are in different buckets for σ, then π′∗ σ = π∗ σ. Hence, F (π′∗ σ, π′∗
σ∗ τ ) = F (π∗ σ, π∗ σ∗ τ ) and K(π′∗ σ, π′∗ σ∗ τ ) = K(π∗ σ, π∗ σ∗ τ ). So if π ∈ U ,
then π′ ∈ U , and if π ∈ V , then π′ ∈ V . In either case, π′ ∈ S, and we are done.

Likewise, if i and j are in the same bucket for both σ and τ , then swapping i and
j in π swaps their positions in both π∗σ∗ τ and π∗σ and leaves all other elements in
their same positions in both π∗σ∗ τ and π∗σ. So again, we see F (π′∗σ, π′∗σ∗ τ ) =
F (π∗ σ, π∗ σ∗ τ ) and K(π′∗ σ, π′∗ σ∗ τ ) = K(π∗ σ, π∗ σ∗ τ ). As before, π′ ∈ S.

The only remaining situation is when i and j are in the same bucket for σ, but in
different buckets for τ . Let us consider this situation. First of all, π′∗ σ is just π∗ σ
with the adjacent elements i and j swapped, since i and j are in the same bucket for
σ. Second, π′∗ σ∗ τ = π∗ σ∗ τ since i and j are in different buckets for τ .

Since π(i) < π(j), we have π ∗ σ(i) < π ∗ σ(j). Further, τ (i) < τ (j) since
ρ∗ τR(j) < ρ∗ τR(i) and ρ∗ τR is a refinement of the reverse of τ . Since τ (i) < τ (j),
we have π∗ σ∗ τ (i) < π∗ σ∗ τ (j).

Either π ∈ U or π ∈ V . Let us first examine the case that π ∈ U . Substituting
a = π∗ σ(i), b = π∗ σ(j), c = π∗ σ∗ τ (i), d = π∗ σ∗ τ (j) in Lemma 17 gives us

|π∗ σ(i) − π∗ σ∗ τ (i)| + |π∗ σ(j) − π∗ σ∗ τ (j)|
≤ |π∗ σ(i) − π∗ σ∗ τ (j)| + |π∗ σ(j) − π∗ σ∗ τ (i)|(19)

= |π′∗ σ(j) − π′∗ σ∗ τ (j)| + |π′∗ σ(i) − π′∗ σ∗ τ (i)|,

where the equality follows from the facts that (a) π∗ σ(i) = π′∗ σ(j) and π∗ σ(j) =
π′∗ σ(i) since π′∗ σ is just π∗ σ with the adjacent elements i and j swapped, and
(b) π′∗ σ∗ τ = π∗ σ∗ τ . Also, since π′∗ σ is just π∗ σ with the adjacent elements
i and j swapped, |π′ ∗ σ(d) − π′ ∗ σ ∗ τ (d)| = |π ∗ σ(d) − π ∗ σ ∗ τ (d)| for all d ∈
D \ {i, j}. If we sum over all d (where we make use of (19) for d = i and d = j),
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we obtain F (π ∗ σ, π ∗ σ ∗ τ ) ≤ F (π′ ∗ σ, π′ ∗ σ ∗ τ ). Since π ∈ U , we have that
F (ρ∗ τR∗σ, ρ∗ τR∗σ∗ τ ) < F (π∗σ, π∗σ∗ τ ). Combining these last two inequalities,
we obtain F (ρ∗ τR∗σ, ρ∗ τR∗σ∗ τ ) < F (π′∗σ, π′∗σ∗ τ ). Therefore, π′ ∈ U , and so
π′ ∈ S, which was to be shown.

We now examine the case that π ∈ V . From above, we see that π′∗σ∗τ = π∗σ∗τ ,
while π′∗σ and π∗σ differ only by swapping the adjacent elements i and j. Since, as
shown above, π′∗ σ(i) > π′∗ σ(j) while π′∗ σ∗ τ (i) < π′∗ σ∗ τ (j), we see that there
is exactly one more inversion between π′∗ σ and π′∗ σ∗ τ than between π∗ σ and
π∗σ∗ τ . Hence, K(π∗σ, π∗σ∗ τ ) < K(π′∗σ, π′∗σ∗ τ ). By our assumption, π ∈ V ,
and so K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) < K(π∗ σ, π∗ σ∗ τ ). Combining these last two
inequalities, we obtain K(ρ∗ τR∗ σ, ρ∗ τR∗ σ∗ τ ) < K(π′∗ σ, π′∗ σ∗ τ ). Therefore,
π′ ∈ V , and so π′ ∈ S, which was to be shown.

We can now prove Theorem 5. We prove the theorem for FHaus. The proof for
KHaus is analogous. Recall that

FHaus(σ, τ ) = max
{

max
σ

min
τ

F (σ, τ),max
τ

min
σ

F (σ, τ)
}
,

where throughout this proof, σ and τ range through all full refinements of σ and τ ,
respectively. We show maxσ minτ F (σ, τ) = F (ρ∗τR∗σ, ρ∗σ∗τ ). A similar argument
shows that maxτ minσ F (σ, τ) = F (ρ∗ τ∗σ, ρ∗σR∗ τ ). The claim about FHaus in the
statement of the theorem follows easily.

Think for now of σ � σ as fixed. Then by Lemma 19, the quantity F (σ, τ),
where τ ranges over all full refinements of τ , is minimized when τ = σ∗ τ . That is,
minτ F (σ, τ) = F (σ, σ∗ τ ).

By Lemma 20, the quantity F (σ, σ ∗ τ ), where σ ranges over all full refine-
ments of σ, is maximized when σ = ρ∗ τR ∗ σ. Hence, maxσ minτ F (σ, τ) = F (ρ∗
τR∗ σ, ρ∗ τR∗ σ∗ τ ). Since ρ∗ τR∗ σ∗ τ = ρ∗ σ∗ τ , we have maxσ minτ F (σ, τ) =
F (ρ∗ τR∗ σ, ρ∗ σ∗ τ ), as we wanted.
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