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TOOLS FOR TEMPLATE DEPENDENCIES* 

RONALD FAGINt, DAVID MAIERS, JEFFREY D. ULLMANO 
AND MIHALIS YANNAKAKISY 

Abstract. Template dependencies (TD’s) are a class of data dependencies that include multivalued 
and join dependencies and embedded versions of these. A collection of techniques, examples and results 
about TD’s are presented. The principal results are: 

1) Finite implication (implication over relations with a finite number of tuples) is distinct from 
unrestricted implication for TD’s. 

2) There are, for TD’s over three or more attributes, infinite chains of increasingly weaker and 
increasingly stronger full TD’s. 

3) However, there are weakest (nontrivial) and strongest full TD’s over any given set of attributes. 
4) Over two attributes, there are only three distinct TD’s. 
5) There is no weakest (not necessarily full) TD over any set of three or more attributes. 
6) There is a finite relation that obeys every strictly partial TD but no full TD. 
7) The conjunction of each finite set of full TD’s is equivalent to a single full TD. However, the 

conjunction of a finite set of (not necessarily full) TD’s is not necessarily equivalent to a single TD and 
the disjunction of a finite set of full TD’s is not necessarily equivalent to a single TD. 

8) There is a finite set of TD’s with an infinite Armstrong relation but no finite Armstrong relation. 
9) A necessary and sufficient condition for the existence of finite Armstrong relations for sets of TD’s 

can be formulated in terms of the implication structure of TD’s. 
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1. Introduction. Template dependencies (TD’s) were introduced by Sadri and 
Ullman [SU] and, independently, by Beeri and Vardi [BV2]. Both sets of authors 
introduced TD’s to provide a class of dependencies (sentences about relations) that 
include join dependencies [Ri] and embedded multivalued dependencies [Fa21 and 
that also has a complete axiomatization (no complete axiomatization is known for 
either join dependencies or embedded multivalued dependencies). TD’s are examples 
of the “tuple-generating dependencies” of Beeri and Vardi [BV2]. Tuple-generating 
dependencies, along with “equality-generating dependencies” (which include func- 
tional dependencies [Co]) together comprise Fagin’s [Fa31 class of embedded implica- 
tional dependencies (which is equivalent to Y annakakis and Papadimitriou’s [YP] 
class of algebraic dependencies). This paper is a compendium of techniques, examples 
and counterexamples for TD’s. 

In § 2, we present definitions. In 0 3, we demonstrate the existence of a strongest 
TD and a weakest nontrivial full TD. (Note. Unless stated otherwise, TD’s are not 
assumed to be full.) We show that there is no weakest TD. In § 4, we show that there 
are only three distinct TD’s on two attributes. In 9 5 ,  we demonstrate a useful 
correspondence between TD’s and graphs and introduce the notion of an lp- 
homomorphism (label-preserving homomorphism). In 0 6, we utilize this correspon- 
dence to help prove the existence of infinite chains of progressively weaker and 
progressively stronger full TD’s. In 8 7, we show that for TD’s, implication is distinct 

join dependency . 
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from implication restricted to finite relations. In 0 8, we show that the conjunction of 
a finite set of full TD’s is equivalent to a single full TD. However, we show that the 
conjunction of a finite set of TD’s is not necessarily equivalent to a single TD, and 
the disjunction of a finite set of full TD’s is not necessarily equivalent to a single TD. 
In 0 9, we show that there is a finite relation that obeys every strictly partial TD but 
no nontrivial full TD. In Q 10, we demonstrate a finite set of TD’s with no finite 
Armstrong relation [Fa31 (although we know [Fa31 that there is an infinite Armstrong 
relation), We also give a necessary and sufficient condition for the existence of finite 
Armstrong relations for sets of TD’s. 

2. Definitions. A relational database scheme consists of a universal set of 
attributes U and a set of “dependencies”. The attributes in U are names for the 
components (columns) of relations in the database. The most common forms of 
dependencies are functional dependencies, or FD’s [Co], and multivalued dependen- 
cies, or MVD’s [Fa2]. We shall not discuss FD’s in this paper. 

In database theory, a tuple is formally regarded as a mapping from attributes to 
values, rather than as a list of component values, although the latter viewpoint is 
handy when the order of the attributes in the list is understood. We often use t[Z], 
where t is a tuple and 2 is a set of attributes, to stand for t restricted to domain 2, 
that is, the components of f for the attributes in 2. If A is an attribute, then we call 
t[A] the A enfry or A value of t. 

Multivalued dependencies are denoted syntactically by X + Y. The meaning of 
this dependency is that if relation R obeys the dependency, and if t t  and t2 are tuples 
of R with t J X ]  = t2[X], then there exists t3 in R such that: 

1. r,[X] = c l[X] = f2[X], 

3. t,[U-XY]= t,[U-XY]. 
2. t 3 [  Y ]  = t ~ [  Y] and 

Intuitively, the set of Y-values associated with each given X-value is independent of 
the values in all other attributes. By X Y  in 3 above, we mean X U Y. 

Example. Consider the relation R, in Fig. 1.1, where U = {A, B, C, D}. 

A B C D  

0 1 2 3  
0 2 1 4  
0 1 1 4  
0 2 2 3  
5 1 3 2  

FIG. 1.1. The relation R. 

The MVD A B holds in R. For example, if tl and t2 are the first two tuples in Fig. 
1.1, then we may check that the tuple t3, where t3[Al= t ~ [ A l =  t2[Al = 0, t3[Bl= tl[BI = 
1, and t3[CD] = t2[C.] = 14, is present; it is row three. (By 14, we mean the tuple 
with first entry 1 and second entry 4; we shall sometimes find this type of abbreviation 
convenient.) 

Let Z be a set of dependencies, and let u be a single dependency. When we say 
that Z logically implies u or that u is a logical consequence of Z, we mean that whenever 
every dependency in Z holds for a relation R, then u also holds for R. That is, there 
is no “counterexample relation” such that every dependency in Z holds for R, but 
such that u fails in R. We write Zka to mean that Z logically implies u. For example, 
if A, B, and C are attributes, then {A --u B, B -+ C} +A --u C. 
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It appears that FD’s and MVD’s are almost sufficient to describe the “real world,” 
and thus could be used for a database design theory. However, there is at least one, 
more general form of dependency that appears naturally, and this form causes severe 
difficulties when we try to infer dependencies. This type of dependency, called an 
embedded multivalued dependency (EMVD), was first studied by Fagin [Fa21 and 
Delobel [De]. For disjoint X, Y and Z, we say X + Y IZ holds if, when any “legal” 
relation over the set of attributes is projected onto the set of attributes XYZ (we 
project by restricting tuples to these attributes), then the MVD X + Y holds. (Note 
that X -n Y holds in X Y Z  if and only if X -n 2 holds [Fa2]). 

Another way of looking at the EMVD X + Y 12 is that if the relation R over 
attributes U obeys the dependency, then whenever we have two tuples f l  and f 2  in 
R, and fl[X] = f2[X), it follows that there is some f3 in R, where 

1. f3[X] = tI[X] = fZ[X], 
2. f3[ Y] = fl[ Y] and 
3. r3[Z] = f2[z]. 

Note that f3[U-XYZ] can be arbitrary; we can assert nothing about the values f3  
has in these components. 

Unfortunately, when we try to make inferences about EMVD’s we appear to  run 
into a stone wall. It is not known whether the decision problem for EMVD’s is 
decidable (the decision problem for EMVD’s is the problem of deciding whether Zku, 
when C is a set of EMVD’s and u is a single EMVD). Neither is a complete 
axiomatization for EMVD’s known. It is known [SW], [CFP] that there is no k-ary 
complete axiomatization for EMVD’s for any fixed k, and, in particular, no finite 
complete axiomatization. 

To tackle these problems for EMVD’s, some more general types of dependencies 
have been studied recently, with the hope that the more general class would have a 
complete axiomatization or would provide insights on the EMVD decision problem. 
In particular, Sadri and Ullman [SU] and, independently, Beeri and Vardi [BV2] 
introduced template dependencies, or TD’s, and provided a complete axiomatization. 
TD’s include as special cases (a) MVD’s, (b) EMVD’s, (c) subset dependencies [SW], 
(d) mutual dependencies [Nil, (e) generalized mutual dependencies [MM] and (f) join 
dependencies [Ri]. The class of TD’s was studied independently by Beeri and Vardi 
[BV2] and by Paradaens and Jannsens [PJ], and still more general classes were 
considered by Fagin [Fa31 and Yannakakis and Papadimitriou [YP]. Vardi [Val] and, 
independently, Gurevich and Lewis [GL] have recently shown that the decision 
problem for TD’s is undecidable. 

A template dependency is an assertion about a relation R, that if we find tuples 
rl ,  - - , rk in R with certain specific equalities among the entries of these tuples, then 
we can Cind in R a tuple r that has certain of its entries equal to certain of the entries 
in r l ,  - - - , r k .  Other entries of r may be arbitrary. Formally, we write a template 
dependency as r l ,  * * , rk /r ,  or as 

rl  

where the ri’s and r are strings of abstract symbols (sometimes called variables). The 
length of the ri’s and r equals the number of attributes in the universal set, and positions 
in these strings are assumed to correspond to attributes in a fixed order. No symbol 
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may appear in two distinct components among the ri’s and r. It is, of course, permissible 
that one symbol appear in the same component of several of the ri‘s or r. 

Let R be a relation and let T be a TD. Let h be a homomorphism that maps 
symbols in T into entries of R. By saying that h is a homomorphism, we mean that 
h (a1 * * a,) is defined to be h ( a l )  - * h (a,). We call h a valuation. Relation R is said 
to obey TD T if whenever there is a valuation h on the symbols appearing in the ri’s 
such that h(ri) is a tuple in R for all i, then we can extend h to those symbols that 
appear in r but do not appear among the Ti’s, in such a way that h(r) is also in R. 

Example. Let U = {A, B, C, D }  and let R be the relation previously given in Fig. 
1.1. Let T be the TD 

a2 63 c2 dt 

Define h by: h(a1) = h(a2) = 0 ;  h(b1) = h(c1) = 1; h (bz) = h(cz) = 2; h ( d ~ )  = h(d3) = 
3, and h(d1) = 4. Then h ( a l b l c l d l )  = 0114, h(a2blc2dZ) = 0123, and h(alb2czd3) = 
0223, which are rows three, one, and four of Fig. 1.1. Thus, we must exhibit a value 
b for h(bJ  such that h(azb3cZdl) is in the relation of Fig. 1.1, if that relation is to 
obey the TD T. However, for no value of b is 0624 a row of Fig. 1.1, so we may 
conclude without further ado that R does not obey T. Of course, if a value of b had 
been found, we would then have to check all other possible valuations that mapped 
the first three rows of T into rows of Fig. 1.1. 

When we say that a relation is finite (respectively, infinite), we mean that it has 
a finite (respectively, infinite) set of tuples. Database theory is most concerned with 
finite relations; however, sometimes it is convenient to consider infinite relations. If 
Z is a set of dependencies, such as TD’s, then by SAT (Z), we mean the collection of 
relations (finite or infinite) that obey all of Z. Note that Z ! = a  if and only if SAT (Z) c 
SAT (a). If we wish to consider only finite relations, then we can write SATfi, (Z) to 
mean the collection of finite relations that obey Z. Similarly, we can define Z bfin a 
to mean that every finite relation that obeys Z also obeys a. As above, Z bfin a if and 
only if SATfi, (Z)G SATfi, (a). Note that if X b a ,  then Z bfin a. As we shall show in 
9 7, the converse fails for TD’s. 

When we speak of two dependencies a and 7 being equivalent, we mean that 
SAT (a) = SAT (T), or equivalently, that a b  7 and 7 !=a. Similarly, we can define 
equivalent sets of dependencies. We shall sometimes speak of conjunctions or disjunc- 
tions of TD’s. A relation obeys the conjunction (respectively, disjunction) of a set of 
TD’s precisely if it obeys all (respectively, at least one) of them. Thus, 

SAT ( ~ { a :  a E S}) = n{SAT (cT): a E S}, 

SAT ( ~ { a :  a E S}) = U{SAT (a): a E S } .  

The following terminology will prove helpful. If rl ,  . , rk/r is a TD, then 
rlr  - * , rk are called the hypothesis rows, or hypotheses, and r is the conclusion row, 
or simply the conclusion. Each symbol that appears in the conclusion is said to be 
distinguished. A TD is said to be full if each of its distinguished symbols also appears 
in the hypotheses; otherwise, it is said to be strictly partial. If T is a TD, and if V is 
exactly the set of attributes for which the hypothesis rows of T contain distinguished 
variables, then we may call T a V-partial TD (we allow the possibility that V = U, 
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the set of all attributes). A TD is trivial if it always holds (in relations over the 
appropriate attributes). 

Remark. A V-partial TD is trivial precisely if some hypothesis row of T contains 
distinguished variables for every one of its V entries. For if no hypothesis row of T 
contains distinguished variables for every one of its V entries, then the relation that 
consists of all of the hypothesis rows of T but not the conclusion is a relation not in 
SAT (T); hence, T is nontrivial. 

Example. Let U = {A, B, C, D}.  Then the MVD A * B is synonymous with the 
TD: 

a1 61 c1 dl 
a1 62 c z  d2 

Note that this EMVD is a strictly partial TD. However, MVD’s are full TD’s. 

3. Strongest and weakest TD’s. An important tool in the study of dependencies 
is the chase process [ABU], [MMS], [SU]. When TD’s alone are involved, could the 
chase go on forever in a nontrivial way? The question of the existence of infinite 
chases where “things keep happening” can be related to the existence of certain 
infinite sequences of TD’s as follows. The set of rows in the tableau at any time during 
a chase may be taken to be the hypothesis rows of a TD whose conclusion row is the 
goal row for the chase. It is easy to show that as the chase proceeds, these TD’s get 
progressively weaker. If the chase is successful, then we eventually arrive at a TD so 
weak that it is trivial. 

If the chase is unsuccessful, then we might obtain an infinite sequence of TD’s 
that, although some could be equivalent to the previous TD, would include an infinite 
subsequence of strictly weaker TD’s. Or, we might necessarily reach a point where 
all successive TD’s were equivalent but not trivial, and if we knew that we had reached 
that point, then we could deduce that the chase was unsuccessful. 

These observations lead to the consideration of the structure of the space of 
TD’s. Are there infinite sequences of strictly weaker TD’s? Can we construct such a 
sequence by showing that for every nontrivial TD there is a weaker nontrivial TD? 
The answers to these (yes and no, respectively) and related questions are contained 
in later sections. 

THEOREM 3.1. For each set of attributes, there is a strongest TD. That is, there is 
a TD T such that TI= T‘ for each TD T’ over the same set of attributes as T. 

Proof. The TD that states a relation is a Cartesian product is the strongest TD. 
For example, the Cartesian product TD over three attributes is 

a1 bl 62 
b3 a2 64 
bs b6 a3 
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The Cartesian product TD is strongest because each relation that is a Cartesian product 
is easily seen to obey every TD (over the same attributes). 0 

Recall that a TD is said to be V-partial if V is the set of attributes for which the 
hypothesis rows of T contain distinguished variables. 

COROLLARY 3.2. There is a strongest V-partial TD. That is, there is a V-partial 
TD Tsuch that TI= T’ for every V-partial TD T‘ over the same attributes. 

Proof. The V-partial TD that says of a relation that its projection onto V is a 
Cartesian product is the strongest V-partial TD. Thus, if U is A B C  and V is AB, 
then this TD is 

THEOREM 3.3. Assume that V contains at least two attributes. Then there is a 
weakest nontrivial V-partial TD. That is, there is a nontrivial V-partial TD T such 
that T’k T for every nontrivial V-partial TD T‘ over the same attributes. In particular 
(when V = U )  there is a weakest nontrivial full TD. 

Note. The assumption that V contains at least two attributes is necessary, since 
it is easy to see that if V contains 0 or 1 attribute, then every V-partial TD is trivial. 

Proof. Assume that the attributes in V are A1, - - * , A,. Denote by W the 
attributes not in V. (Possibly, W is empty.) Assume that the attributes in W are 
A,+1, * , A,. The variables of T that appear in the column A,  (1 S i 5 m )  of T are 
a, and b,. The only variable that appears in the hypothesis rows of A,, for j > m, is c,. 
The projection of the hypothesis of T into V contains all possible rows el * . * em, 
where el is either a, or bi, except that the row of all a’s does not appear. The conclusion 
row contains all a’s. For example, if V=A1A2A3 and W =A4A5,  then T is 

a1 a2 63 c4 c5 
a1 b2 a3 c4 cs  
a1 b2 63 c4 cs  
bl a2 a3 c4 cs  

Clearly, T is nontrivial (see the remark near the end of 9 2). We now show that 
if T’ is a nontrivial, V-partial TD, then SAT (T’) c SAT ( T ) ,  that is, that T’k T. Let 
r be a relation (over set of attributes U )  that is not in SAT ( T ) ;  we shall show that 
r is not in SAT (T‘). Let g be a valuation that maps every hypothesis row of T to a 
tuple in r, but such that g(al  - * a,) does not appear in the projection r[ V] of r onto 
V. We know that g exists since r is not in SAT (T). We define a valuation h on T’ 
as follows. We assume for convenience that T‘ and T have the same distinguished 
variables a l ,  * * , a,. For each distinguished variable a, let h (a) = g(a) .  For each 
nondistinguished variable d in T’, if d is in the Ai  column, for some Ai  in V, then 
let h (d) = g(bi); if d is in the A j  column for A j  in W, then let h (d) = g(cj). 

a, as its V entries. 
Let w‘ be an arbitrary hypothesis row of T’ and let w be the row in T that has a’s 

Since T’ is nontrivial, no hypothesis row of T’ contains a l  * 
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in its V entries exactly where w’ does. Since those entries are not all a’s, we know 
that w exists. By definition of h, we know that h(w’)  = g ( w ) ,  and so h(w‘) is a tuple 
in r. However, h(al  * - * a,,,) = g(al - - - a,,,) is not in r [V] ,  so r violates T’, as was to 
beshown 0 

We sfiall conclude this section by showing that there is no weakest nontrivial TD 
(including full and strictly partial TD’s) if the number of attributes is at least 3. We 
first need a preliminary result. 

THEOREM 3.4. Let X be a set of Vl-partial TD’s and let u be a nontrivial V2-partial 
TD. If Zku, then V 2 s  V1. 

Proof. Assume that X k u  and that it is false that V 2 s  V1; we shall derive a 
contradiction. Let Tl be the strongest V1-partial TD constructed in the proof of 
Corollary 3.2, and let T2 be the weakest nontrivial V2-partial TD constructed in the 
proof of Theorem 3.3. Since (a) T1kZ (that is, T l k ~  for every r in 2), (b) Zku, and 
(c) u k T2, it follows by transitivity of logical implication that T1 k T2. Let r be the 
relation consisting of the hypothesis rows of T2. Then r violates T2. We shall show 
that r obeys T 1 ,  a contradiction. 

Since it is false that V2 c Vl there is an attribute A in V2 but not V1. It is easy 
to verify that the projection r[U - A ]  of r onto every attribute except A is the Cartesian 
product of the projection of r onto each attribute in U - A  (see Fig. 3.1). So, r obeys 
T1,  which was to be shown. 0 

THEOREM 3.5. Assume that there are at least three attributes. Then there is no 
weakest nontrivial TD. That is, there is no nontrivial TD T such that T’k T for every 
nontrivial TD T’ over the same attributes. 

Note. The assumption that there are at least three attributes is necessary, as we 
shall see in Q 4. Also, observe that unlike Theorem 3.3, which might seem superficially 
to contradict Theorem 3.5, we are not fixing our attention on V-partial TD’s for a 
given V, but rather considering the whole class of TD’s at once. 

Proof. Assume that there are at least three attributes, and that a weakest nontrivial 
TD T exists. Then T is V-partial for some V (possibly V = U). Now V is nonempty, 
since each V-partial TD with V = 0 is trivial. So V contains an attribute A. Let 
W = U -A. Then W contains at least two attributes, since U contains at least three 
attributes. So there is a nontrivial W-partial TD T‘. By definition of T, we know that 
T’k T. This implication contradicts Theorem 3.4, since V is not a subset of W. 0 

4. TD’s over two attributes. In this section, we prove the following result. 
THEOREM 4.1. There are only three distinct TD’s (up to equivalence) on two 

Proof. The three TD’s over two attributes are the following: 
attributes. 

a1 b2 

a1 a2 bl a2 bl a2 

a1 a2 at a2 a1 a2 

a1 62 bi b2 

Ti T2 T3 
TD Tl  is the trivial TD, obeyed by every relation. TD T2 says that the relation is a 
Cartesian product; it is the strongest TD. T3 is the weakest nontrivial TD over two 
attributes. It is easy to check that none of T l ,  T2, and T3 are equivalent. We must 
show that every TD over two attributes, say T = t l ,  t2, . * * , tn /a la2  is equivalent to 
one of these. 
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Case 1. None of t l ,  - * - , t,, has al  in the first column, or none of tl, * - - , t,, has 
a2 in the second column, or some ti is ala2. It is easy to show that T is trivial. Thus, 
every strictly partial TD over two attributes is trivial. 

Case 2. Case 1 does not hold, but there is no sequence of rows among tl, * - , I,, 
of the form 

ai 61 
62 61 
b2 63 

(*) b4 b3 ... ... 

for any b l ,  * , bk, with k 22. Then, we can divide tl, - * , t,, into two groups. The 
first group contains those “reachable” from al ,  in the sense that they appear in some 
sequence alb l ,  b2bl, b2b3, b4b3, * - , and the second contains those that are not. Tuples 
in the second category may be “reachable” from a2 or they may be “reachable” from 
neither a l  nor a2. 

We now show that T and T2 are equivalent. We know that T2 != T, since the proof 
of Theorem 3.1 shows that T2 implies every TD over two attributes. To show that 
T != T2, we need only show that when we chase [MMS] the hypothesis rows of T2, 

using T, we get the conclusion row of T2 [SU]. But this chase needs only one step. 
Map all tuples of T in the first group to a1b2 and all others to 6 1 ~ 2 .  This mapping 
cannot map one symbol of T to two distinct symbols of T2, or the groups are not 
defined correctly. That is, we cannot have some tuple t, = cd mapped to a1b2, and 
then have some tuple t, =ed or cf mapped to b1a2, because ed and cf would be in 
group 1. 

Case 3. A sequence (*) exists, with k 2 2, and a1a2 is not a hypothesis row. Then 
T is nontrivial, so by the proof of Theorem 3.3, we know that T 1 T3 (since T3 is the 
weakest nontrivial full TD). 

To show that T3 != T, we can chase the hypotheses of T with T3 to infer successively 
the rows a163, alb5,  * - a ,  albk-l and then a1a2. 0 

5. The correspondence between TD’s and graphs. For the upcoming examples, 
it is useful to give a graphical interpretation to TD’s and relations. The graph for a 
TD or relation will have a node for each row or tuple, and edges labeled with attribute 
symbols, indicating in which components the rows or tuples agree. More precisely: 

Definition. Given relation r on relation scheme R = {A 1, A2, * * * , A,,}, the graph 
of r, denoted G,, is defined as follows. Let {tl, t2 ,  * , t,} be the tuples in r ;  the nodes 
in G, will also be t l ,  t 2 ,  * * , t,. For nodes tl and t2, there is an undirected edge ( t l ,  t 2 )  
with label A (possibly among others) in R exactly when tl(A) = t2(A). 

Example. Let r be 
A B C  

t1: 0 0 1 
t 2 :  0 1 0 
13: 0 1 1 
t4: 1 0 0 
t 5 :  1 0 1 
t6:  1 1 0 
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Then G, is as in Fig. 5.1. There is always a self-loop from each node to itself, labeled 
by all the attributes, but we shall omit drawing such edges. We can also omit drawing 
some of the edges implied by transitivity of equality, to help reduce the clutter. Figure 
5.2 represents the same relation as Fig. 5.1 when transitivity of equality is considered. 

The graph (denoted GT) for a template dependency T is defined similarly, except 
that there is a node denoted (*) that represents the conclusion row. 

Example. Let T = 

w l :  a bl  c1 
w2: at b c1 
w3: a1 61 c 

a b c .  

Then GT is as in Fig. 5.3. 
We can characterize when a relation obeys a TJ3 in terms of certain homomorph- 

isms between their respective graphs. 
DEFINITION. An lp-homomorphism (label-preserving homomorphism) between 

labeled, undirected graphs G I  = (V1, El) and GZ = ( V2, E2) is a mapping h : V I  -* VZ 
such that if (v, w )  is an edge of El with label A (possibly among others) then 
(h (v), h ( w ) )  is an edge of E2 with label A. 

Example. Let G, and GT be the graphs in the last two examples. Define the 
mappings hi and h2 as follows: 

hi(*) = t s ,  

hi (w i )  = t s ,  
h i ( W z )  = t i ,  

hi(w3) = ti ,  

hz(*) = t 3 ,  

hz (wi )  = f3 ,  

hz(w2) = t 3 ,  

h 2 ( ~ 3 )  = t 3 .  

Then hi  and h2 are each lp-homomorphisms from GT to G,. 
The mapping 

h3(*) = t i ,  
h 3 ( W 1 )  = t 3 ,  

h3(wZ) = t S ,  

h 3 ( W 3 )  = t6 

is not an lp-homomorphism from GT to G, since (h(*) ,  h(w3))  = ( t i ,  t6) does not exist 
in G,, and thus certainly does not have label C, as (*, w3) does. 

We can now interpret the criterion for a relation r to obey a TD T in terms of 
their respective graphs. 

THEOREM 5.1. Relation r obeys T if and only if every lp-homomorphism from 
GT -{*} to G, can be extended to an Ip-homomorphism from all of GT to G,. 

The straightforward proof of Theorem 5.1 is left to the reader. 
Example. Let T and r be the TD and relation used in previous examples. Some 

lp-homomorphisms from GT -{*} to G, can be extended, such as hi and h2 below: 

h i ( w i )  = t s ,  

h i ( W z )  = t i ,  
hz(wi)  = t 3 ,  

h z ( W z )  = t 3 ,  

h l ( W 3 )  = t i ,  h 2 ( W 3 )  = f 3 .  

In fact, any lp-homomorphism that maps GT-{*} to a single node in G, can be 
extended to GT. We shall later use this fact to show that a particular TD T is obeyed 
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by r, by showing that every lp-homomorphism from GT -{*} to r maps all of GT -{*} 
to a single node in r. 

Relation r in our previous examples does not obey T, because there are lp- 
homomo:phisms from GT - {*} to G, that cannot be extended, such as 

h3(W1) = t3, 
h 3 ( ~ 2 )  = t 5 ,  

h 3 ( ~ 3 )  = t6. 

For, if h3(*) = t, then t would have to agree with t3 on A, with t 5  on B, and with t6 
on C. Then t would be (0, 0, 0), which is not in the relation r. 

6. Chains of full TD’s. We now use the correspondence between TD’s and graphs 
to help prove the existence of infinite chains of progressively weaker and stronger 
full TD’s. 

LEMMA 6.1. Let T’ be a TD derived from TD T by the addition of hypothesis 
rows that use no distinguished symbols not already used in some hypothesis row. Then 
T is at least as strong as T‘. That is, T k T’. 

Proof. This result is easily verified by noting that any lp-homomorphism h’ from 
GT*-{*} to a relation r can be restricted to an lp-homomorphism h from GT -{*} to 
r. Furthermore, if h cannot be extended to GT,, then h cannot be extended to GT. 0 

THEOREM 6.2 (progressively weaker chain). There exists an infinite sequence of 
full TD’s T I ,  Tz,  T3, * - * such that SAT (Ti) c SAT (Ti+l) for i 21. Thus, Ti k T.+l for 
each i, and no Ti’s are equivalent. 

Proof. Consider the infinite graph G (Fig. 6.1). Let Ti be the TD corresponding 
tothesubgraphofGonnodes*, 1,2, * .  * ,i+l.ByLemma6.l,SAT(T,)~SAT(Ti+d. 

G 

A A A A 

A A 

FIG. 6.1 

To show proper containment, we need only exhibit a relation r in SAT(T+*) that 
does not obey Ti. 

Relation r is simply the hypothesis rows of Ti considered as a relation. That is, 
r is any relation such that G, is G restricted to nodes 1,2, - * - , i + 1. We see that r 
violates Ti, since the lp-homomorphism h from GT, -{*} to G, defined by h ( j )  = j ,  
1 5 j  5 i + 1, cannot be extended to GT,. 

We now show that r obeys Ti+l, that is, that each lp-homomorphism h from 
GTI+I-{*} to G, can always be extended to an lp-homomorphism from GT,+~  to G,. 

Case 1. For some nodes j and j + 1 in GT,+I - {*}, we have h ( j )  = h ( j  + 1). Since 
in G, all odd nodes agree on A, and likewise all even nodes, if h ( j )  = h ( j  + 1) it follows 
that h ( p )  and h (4) agree on A for all p and q. In particular, h (l), h (2) and h (3) agree 
on A, so we can extend h by letting h (*) = h (2). 

Case 2. No nodes j and j + l  are mapped to the same node in G, by h. Let 
h (1) = j .  There are 2 subcases, depending on whether j is even or odd. 
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Case 2a. j is odd. We shall show inductively that h (k) = j + k - 1 for 1 d k 5 i + 2. 
Assume h (k - 1) = j + k - 2. Suppose k is odd. Since k - 1 and k are connected 

by a C-labeled edge, h ( k  - 1) and h (k) must be connected by a C-labeled edge. Since 
j +  k -2 is even, the only candidates for h ( k )  are j + k -2 and j + k - 1. The j + k -2 
choice is ruled out, since we are not in Case 1. Hence, h (k) = j + k - 1. A similar 
argument holds if k is even. 

Now look at h ( i  + 2). By our inductive argument, h (i + 2) = j + i + 1 2 i + 2, which 
is nonsense, since G, contains only nodes 1, - * * , i + 1. Thus, Case 2a cannot occur. 

Case 2b. j is even. This case is very similar to Case 2a, except that we show 
inductivelythat h ( k ) = j + l - k , f o r  l S k S i + 2 . T h e n  h ( i + 2 ) = j - i - 1 5 0 ,  whichis 
nonsense, since G, contains only nodes 1, * * , i + 1. Thus, Case 2b cannot occur. 

We have shown that Case 2 cannot occur. Thus, r obeys T,+l, and the proof is 
complete. 0 

THEOREM 6.3 (progressively stronger chain). There exists an infinite sequence of 
full TD's T1,  Tz, T3, * such that SAT (TI+l)  c SAT (TI).  That is, T,+l != T, for each i, 
and no two Tl's are equivalent. 

Proof. Let TI be the TD corresponding to the finite graph of Fig. 6.2, which we 
shall call G,. GI is just the graph for TD T21 in the last proof wrapped around with 
nodes 1 and 2' + 1 overlaid. 

FIG. 6.2 

The hard part of this proof is showing that SAT (Ti+l) s SAT (Ti). 
Let r be any relation in SAT (Ti+1); we shall show that r is in SAT (Ti). To prove 

this, let h be any lp-homomorphism from Gi -{*} to G,; we must show that h can be 
extended to an lp-homomorphism from Gi to G,. We define an lp-homomorphism h' 
from Gi+l-{*} to G, in terms of h, by letting h ' ( j )  be h ( j ) ,  if 1 S j 5 2 ' ,  and h ( j  -2i) 
if 2' < j  d 2'+l. Essentially, h' wraps Gicl twice around the image of Gi in G, under 
h. Since r is in SAT (T+l), we know that h' can be extended to Gi+l. The reader may 
check that h can be extended to Gi by letting h (*) = h'(*). 

The proof that SAT (T+l) is a proper subset of SAT (Ti) is by a counting argument 
similar to that used in the proof of Theorem 6.2. The relation r to use is one 
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corresponding to Gi+l-{*}. This relation is not in SAT(Ti+l). However, it is in 
SAT (Ti). For, any lp-homomorphism h from Gi -{*} to G, must map two nodes j 
and j + 1 to the same node in G,, which means the extension of h by h(*)  = h(2) will 
always work. 0 

7. Finite implication versus implication. In this section we show that finite impli- 
cation (implication where we restrict our attention to finite relations) and unrestricted 
implication are distinct for TD’s. Thus, the inference rules of Sadri and Ullman [SU] 
and of Beeri and Vardi [BV2] for TD’s, which are complete for unrestricted implica- 
tion, are incomplete when implication over finite relations only is considered. To state 
the result another way, let SATfi, ( T )  be the set of all finite relations that obey a TD 
T. We shall exhibit TD’s To, T1,  T2, * * , Tk such that 

SATfin ( T I ,  * ’ ’ Tk) E SATfin (TO), 

but 

SAT (Ti,  * * * , Tk)g SAT (To). 

Thus, {T1,  * 9 , Tk}  kfin To, but it is false that {Ti ,  . * * , Tk}k To. Further, we show that 
there can be no such example with k = 1. That is, we show that if To and Ti are TD’s, 
then T1 kfin To if and only if TI k TO. 

Apart from its inherent interest, we note another reason for studying the issue 
of whether finite and unrestricted implication are distinct. If finite implication and 
unrestricted implication were the same, then the decision problem would be decidable. 
That is, it would be decidable whether or not Zka ,  whenever C is a finite set of TD’s 
and a is a single TD. For, {(C, a): C is finite and C k a }  is r.e. (recursively enumerable), 
by Godel’s completeness theorem for first order logic [En] (or, in our special case, 
by the known [BV2], [SU] complete set of inference rules for TD’s). Also, {(C, a): C 
is finite and it is false that C kfin a} is r.e., since it is possible to systematically check 
for finite relations that obey C but not a. Hence, if k and Ffin were the same, then 
{(C, a): C is finite and C k a }  would be both r.e. and co-r.e., and hence decidable. As 
we have noted, Vardi [Val] and, independently, Gurevich and Lewis [GL] have 
recently shown that the decision problem for TD’s is undecidable. 

THEOREM 7.1. k and kfin are distinct. That is, implication of TD’s over the universe 
of all relations is distinct from implication of TD’s over the universe of finite relations. 

Proof. This proof draws its basic outline from a proof by Beeri and Vardi [BV3] 
of the same result for untyped TD’s, that is, TD’s in which a symbol may appear in 
more than one column. The construction used here is greatly more complicated than 
Beeri and Vardi’s. We exhibit TD’s To, T I ,  T2, T3, T4 for which there is an infinite 
relation that obeys T1, - - , T4 and violates To, but for which there is no such finite 
relation. The TD’s T l ,  - . , T4 are given by graphs G1, . * * , G4 in Fig. 7.1. 

There is an underlying logic to these TD’s. The intuition is that if we look at a 
relation r, we interpret the subgraph of G, in Fig. 7.2 as representing a directed edge 
from t l  to f 3 .  The relation r can then be interpreted as a directed graph D, on some 
subset of its tuples. TD’s TI and T2 together say that if D, has an edge u + v then 
for some w it has edge v + w. That is, no node v is a sink. TD T3 says roughly that 
D, is transitively closed. What it actually tells us is that if we have the linked 
configuration of Fig. 7.3, then for some tuple t’ we have Fig. 7.4, where t’ is the tuple 
* of G3. As we shall see, TD T4 applies nontrivially when D, has an edge u such that 
u + u. 

The last TD, To, corresponds to graph Go in Fig. 7.5. 
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The property of directed graphs we shall exploit is that any finite directed graph 
D that has no sinks and that is transitively closed has at least one loop edge. This 
statement is not true for infinite graphs; consider the graph on the natural numbers, 
where i + j is an edge if and only if i < j .  

We now present an infinite relation rI, and show that rI obeys Tl, T2, T3 and T4, 
but violates To. Thus, it is false that {TI, T2, T3, T4}k To. 

Let rI = {(i, i, j ,  0): 1 5 i < j }  U ((0, i, i, i): 1 S i}. We shall refer to tuples of rI of the 
form (i, i, j ,  0) with 1 S i < j as tuples of the first type and tuples (0, i, i, i) with 1 5 i 
as tuples of the second type. 

1. rI obeys TI .  We shall show that if we chase rI with TI, then no new tuples 
appear. Consider the first time that a new tuple could appear. The only AC combina- 
tions not already present in rI that could be forced by chasing with TI are those in 
which the A entry is i (we write this informally as A =i), C=j,  and i 2z jZ l .  To 
obtain such an A C  combination, an application of T1 must have f4 = ( -  , 6,  j ,  a )  and 
t3  = (i, 6,  -, -). (By this we mean that f 3  and t4 have the same B entry b, and the a ’ s  

represent entries we don’t care about now.) Since i 2 1, we know that f 3  is a tuple of 
the first type, so b = i. So t4 is ( a ,  i, j ,  - )  with i 2 j .  Thus, f4 is a tuple of the second 
type, so f4 = (0, i, i, i). Since f 2  agrees with f4 in D ,  we know that f 2  = f4. Hence, f4 
agrees with f 3  in C (since f 2  agrees with f 3  in C). So the A and C entries of t3 are 
both i, and hence equal. But in no tuple of rI do the A and C entries agree. This is 
a contradiction, so chasing rI with Tl can produce no new A C  entries. Hence, rI obeys 
TI, since TI is an AC-partial TD. 

2. rI obeys T2. The only BD combinations that can be generated by chasing rI 
with T2 and that are missing have B = i, D = j ,  i # j and j # 0. So f 3  = ( *  , * , c, j ) ,  and 
t4 = ( *  , i, c, -). Since j # 0, we know that f 3  = (0, j ,  j ,  j ) .  Since j = c # i, we know f4 = 
(i, i, j ,  0). Now f 2  agrees with f4 in A, so t2 = (i, i, * ,  0). Thus, t2 does not agree with t3  
in B, a contradiction. 

3 .  rI obeys T3. Since f 2  and f4 agree on D ,  they are both tuples of the first type 
or they are both tuples of the second type. If they are both tuples of the second type 
then they are equal, since they agree on D. In this case, either can serve as * (* must 
have C from f4, and BD from f 2 ) .  So we can assume that f 2  and f4 are both of the 
first type. The only way that no tuple of rI can serve as * is if the B entry of tl  (and 
t2), say i, is greater than or equal to the C entry of t5 (and f4), say j .  So assume i 2 j .  
Let t3 = (a ,  i’, j ’ ,  -). Since t2 = ( i ,  i, j ‘ ,  0), we know that i <j ’ .  Similarly, f4 = (i’, if ,  j ,  0) 
and i ‘ < j .  There are now two cases. Case 1. a # 0. Then, f l ,  f 3  and t5 are all of the 
first type. Since f 3  is of the first type, a = i f .  Now, the B entry of f1 is i, so the A entry 
of tl  is i. Thus, a = i, so i = i f .  Since i f  < j ,  it follows that i < j ,  a contradiction. Case 
2. a = 0. Then i’ =if, so i < j ’  = i f  < j ,  a contradiction. 

4. rI obeys T4. Since f 1  and f2  agree on B and C, it follows easily that tl  = f2 .  
Thus, * can be taken to be f l .  

5. rI violates To. Let t l =  (0, 1, 1, l), t 2 =  (1, 1,2,0) ,  t3  = (0,2,2,2) and f 4 =  
(2,2,3,0). Then * must be (0, - , -, 0), and rI contains no such tuple. 

We now show that no finite relation rF in SAT (TI, T2, T3, T4) violates To. Suppose 
rF violates To. Then, G,F contains the configuration in Fig. 7.6 (ignoring X and its 
edges), where no tuple in rF can serve as the node marked X (and so tl # tz) ,  even if 
we allow other edges connecting X to f1, * * - , f4. By TD’s TI and T2, we know that 
rF must also contain tuples f 5  and f6  such that G,F contains the subgraph in Fig. 7.7. 
We do not require that the tuples be distinct. Further applications of TI and Tz give 
the subgraph in Fig. 7.8, which we shall abbreviate as in Fig. 7.9. We remarked before 
that the tuples need not be distinct. Actually, if we extend this chain far enough they 



TOOLS FOR TEMPLATE DEPENDENCIES 5 1  

t tl FIG. 7.6 t 3  

2 
tI f 3  15 

A 

FIG. 7.7 

FIG. 7.8 

... 

FIG. 7.9 

FIG. 7.10 

n 

FIG. 7.11 

cannot be distinct, since rF is finite. The chain must eventually loop back on itself 
(Fig. 7.10). By repeated application of the “transitivity” TD, T3, we eventually get 
an edge from ti to itself (Fig. 7.11). The self-loop from ti to itself means the same as 
the configuration shown in Fig. 7.12, where ti appears twice, and where the exact 
identities of t’ and t” do not matter (except that t’[D] = t i+l[D] = t2[D]).  As we see, 
t’ agrees with ti on both B and C. T4 now applies to give us a tuple f where Fig. 7.13 
holds. But t i[A] = [ , [A]  and t‘[D] = tz[D],  so Fig. 7.14 holds. Hence, t serves as the 
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slot marked by X in the original figure, a contradiction. Relation rF cannot violate 
To, concluding the proof. 0 

Although, as we just proved, there are TD’s To, Tl ,  * -  - ,  Tk such that 
{Tl ,  * * - , Tk} kfin To but for which {Tl ,  * - , Tk}k To fails, we now show that this is 
impossible if k = 1. 

THEOREM 7.2. Let To and TI be TD’s. Then T1hn TO if and only if TI ’F TO. 
Proof. It is immediate that if Tl ’F To, then Tl’Ffin To. So assume that TI kfin To. 

We must show that TI k To. Assume that TI is Vl-partial, and that To is Vo-partial. 
Now Theorem 3.4 holds when “’F” is replaced by “’Ffin’’, by the same proof. So, since 
TI kfin To, it follows that Voz  Vl. So, when we use Tl to chase the hypothesis rows 
of To, it is easy to see that we never need to add a new row whose projection onto 
Vl is already present. No new variables are added in the Vl columns during the chase, 
so the chase terminates after a finite number of steps. Thus, as in the theory of the 
chase for full TD’s [MMS], if there is a “counterexample” relation that obeys Tl but 
not To, then there is a finite such counterexample. The result follows. D 

FIG. 7.12 

FIG. 7.13 

FIG. 7.14 

We note that Theorem 7.2 was proven by Sadri [Sa] in the case where To and 
TI are EMVD’s. Also, Beeri and Vardi [BVl] showed if Z is a set of V-partial TD’s 
and u a TD, then Z’Fu if and only if Z kfin u. This implies Theorem 7.2. 

8. Closure of full TD’s under conjunction. In this section, we show that full TD’s 
are closed under finite conjunction. That is, we show that if Z is a finite set of full 
TD’s, then there is a single full TD T that is equivalent to Z (in other words, 
SAT (T)  = SAT (Z)). The same result was obtained independently by Beeri and Vardi 
[BV2]. However, we show that the conjunction of a finite set of TD’s (not necessarily 
full) is not necessarily equivalent to a single TD, and the disjunction of a finite set of 
full TD’s is not necessarily equivalent to a single TD. 
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Since every multivalued dependency is equivalent to a full TD, it follows in 
particular that (the conjunction of) every set of multivalued dependencies is equivalent 
to a TD. However, sets of multivalued dependencies that are not only equivalent to 
a TD, but even to a join dependency (which are special cases of TD’s), are quite 
special [BFMMUY], [BFMY], [FMU]. 

Our main tool is the direct product construction of Fagin [Fa3]. Let r and r‘ be 
relations, each with attributes U = A l  * - A,,. The direct product rOr’  has the same 
set U of attributes. The possible entries in the Ai column of rOr’ are elements (a, a’), 
where a is an entry in the Ai column of r, and a‘ is an entry in the Ai column of r’. 
A tuple ( (a l ,  a i), - * + , (a,,, a:) )  is a tuple of the direct product if and only if (a l ,  - * * , a,) 
is a tuple of r and (a ; ,  - - , a ; )  is a tuple of r’. Fagin [Fa31 shows that if T is a TD 
(or even more generally, an embedded implicational dependency), and if r and r’ are 
nonempty relations, then T holds for rOr‘ if and only if T holds for each of r and 
r’.  Th.is property is called faithfulness of T. 

THEOREM 8.1. Full TD’s are closed under finite conjunction. 
Proof. It is sufficient to prove that if T I  and T2 are full TD’s, then there is a TD 

T that is equivalent to their conjunction; the result then follows by an easy induction. 
We use the direct product construction on hypothesis rows of the TD’s T1 and T2. 
That is, let T1 be 

c11 c 1 2  a : ’  C l n  

C r 1  C r 2  * * ’ Crn 

and let T2 be 

We now define a new TD T, that we shall prove is equivalent to T I  A T2. The hypothesis 
rows of T are the direct product of the hypothesis rows of T1 (treated as a relation) 
and the hypothesis rows of T2 (treated as a relation). Thus, let the symbols for the 
kth column of T be the product symbols (C ik ,  d j k )  for 1 5 i S r and 1 S j  5 s, with (uk, a k )  

being the distinguished symbol for column k. The rs hypothesis1 rows of T are all of 
the rows of the form 

(cil, djd(ci2, dj2) * * (Gin, djn) 
for all i and j .  The conclusion row of T is (al ,  al)(a2, a 3  * 

T k T1, as we can show in one step of a chase by using the mapping that sends 
(cij, d )  to cij for each d. Similarly, T k T2. 

We shall show, by chasing the hypothesis rows of T, that {TI ,  T2)kT. First, for 
each (fixed) j ,  apply T I  to the r hypothesis rows of the form (ci1, d j l )  (tin, din) for 
1 5 i 5 r to infer the rows of the form (al ,  djl) * (a,,, din) for 1 5 j 5 s. Then apply T2 
to these rows to infer (al ,  a l )  

Although the finite conjunction of full TD’s is equivalent to a single TD, we now 
show that the finite conjunction of TD’s (not necessarily full) is not necessarily 
equivalent to a single TD. 

THEOREM 8.2. There is a pair of TD’s whose conjunction is not equivalent to a 
single TD. 

(a,,, a,,), of course. 

* (a,,, a,). 0 














