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EFFICIENT CALCULATION OF EXPECTED MISS RATIOS 
IN THE INDEPENDENT REFERENCE MODEL* 

RONALD FAGINt AND THOMAS G. PRICE? 

Abstract. In the independent reference model of program behavior, King’s formulas for the expected 
FIFO (“first-in-first-out”) and expected LRU (“least-recently-used”) miss ratios each contain an exponen- 
tial number of terms (very roughly nCAP, where n is the number of pages and CAP is the capacity of main 
memory). Hence, under the straightforward algorithms, these formulas are computationally intractable. We 
present an algorithm which is both efficient (there are O(n * CAP) additions, multiplications, and divisions) 
and provably numerically stable, for calculating the expected FIFO miss ratio. In the case of LRU, we 
present an efficient method, based on an urn model, for obtaining an unbiased estimate of the expected 
LRU miss ratio (the method requires O(n . CAP) additions and comparisons, and O(CAP) divisions and 
random number generations). 
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1. Introduction. The independent reference model (IRM) is a simple, widely 
studied model of page reference behavior in a paged computer system (Aho, Denning 
and Ullman [l]; Aven, Boguslavskii and Kogan [2]; Fagin [7], [8]; Fagin and Easton 
[9]; Franaszek and Wagner [lo]; Gelenbe [ll]; King [13]; Yue and Wong [24]). In 
this model, at each point in discrete time, exactly one page is referenced, where page i 
is referenced with probability pz ,  independent of past history. We present an efficient, 
numerically stable algorithm for obtaining the expected FIFO (“first-in-first-out”) 
miss ratio, and an efficient algorithm, based on an urn model, for obtaining an 
unbiased estimate of the expected LRU (“least-recently-used”) miss ratio. 

It is known that actual program page reference and data base segment or page 
reference patterns in a paging environment are quite intricate (Lewis and Shedler 
1151; Lewis and Yue [16]; Madison and Batson [17]; Spirn and Denning [23]; 
Rodriguez-Rose11 [21 I). In particular, sequences of page references may be non- 
stationary. The assumption of independent references is not only intuitively suspect, 
but inconsistent with observed reference patterns. Why, therefore, should the IRM be 
investigated? 

In the study of computer system performance, it is sometimes helpful to experi- 
ment with overly simple models, in order to gain insight into system behavior. In 
particular, since paging is a complex phenomenon, it is useful to study the effects of 
paging in conjunction with simple models of page reference patterns. From a mathe- 
matical point of view, the IRM is the simplest model in which pages retain their 
identity (as opposed, for example, to the independent LRU stack model of Oden and 
Shedler [19], and related models, in which all pages are treated identically). We 
remark that the formulation of other simple models that capture salient aspects of the 
referencing behavior of programs remains an important problem. The IRM is simple 
enough so as to be tractable, yet complex enough in the context of paging that there 
are nontrivial, surprising results. Sometimes these results generalize to realistic situa- 
tions. Thus, in Fagin and Easton [9], it is shown that from the approximate indepen- 
dence of miss ratio on page size in the IRM, it follows that the miss ratio is approxi- 
mately independent of page size in certain more realistic models, in which there is a 
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“random” component and a “sequential” component. In fact, this independence of 
miss ratio on page size has been observed in an actual database system (see [9] for 
details). 

Beyond easing the task of experimenting with the IRM, there is a further 
justification for obtaining algorithms that efficiently calculate miss ratios for the IRM. 
The IRM has been used as a component of more complex models that have accurately 
predicted miss ratio behavior. Thus, the miss ratios for Easton’s model of data base 
references [6] and for Baskett and Rafii’s model of program references [3] can be 
obtained directly from miss ratios in an IRM. The Easton and the Baskett-Rafii 
miss ratios, in turn, are supposedly fairly accurate predictors of genuine systems miss 
ratios. 

Throughout, we assume that there are n pages, and that the probability that page 
i is referenced at time t is pI (i = 1 , .  + . , n) ,  independent of past history. Of course, 
C p i  = 1.  Denote the capacity, or size of first-level memory, by CAP (1 d C A P 5  n). 

We deal with two page replacement algorithms, both of which are demand 
policies (Aho et al. [l]); that is, a page is brought into main (first-level) memory if and 
only if it is referenced but not present in main memory. The choice of which page is 
removed from main memory to make room for the newly-referenced but nonpresent 
page is determined by the page replacement algorithm. The first page replacement 
algorithm which we study in this paper is FIFO (Belady [4]), which replaces the page 
that has spent the longest time in memory. The second page replacement algorithm 
which we study is LRU (Mattson, Gecsei, Slutz, and Traiger [18]), which replaces the 
page that has been least recently referenced. 

Define the expected miss ratio (in the independent reference model) to be the 
limit (as t + 00) of the probability that the page referenced at time f was not present in 
main memory at time t. King [ 131 showed that the expected FIFO and expected LRU 
miss ratios exist and are independent of the initial configuration of main memory. He 
showed that the expected FIFO miss ratio is 

where the sums are each taken over all CAP-tuples (il, * . . , iCAp) such that i, # i k  if 
j # k. Further, he showed that the expected LRU miss ratio is 

where again, the sum is taken over all CAP-tuples (il,. . . , iCAP) such that i, f ik if 
j f k. We note that Gelenbe [ l l ]  showed that under the RAND (“random”) page 
replacement algorithm (Belady [4]), in which the page to be removed from main 
memory in the event of a page fault is selected randomly, the expected miss ratio is the 
same as that of FIFO, that is, formula (1.1). 

Each of the sums appearing in (1 .1)  and (1.2) contain very roughly nCAP terms 
(actually n(n - 1) .  * (n  -CAP+ 1)  terms). Hence, for moderate values of n and 
CAP, formulas (1.1) and (1.2) cannot be evaluated numerically under the straight- 
forward algorithm. For example, if n = 100 and CAP = 30, then each of the sums 
contain over los7 terms. The purpose of this paper is to provide fast, stable methods 
for evaluating the expected FIFO miss ratio (1.1) and for approximating the expected 
LRU miss ratio (1.2). 
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2. An efficient algorithm for the expected FIFO miss ratio. In this section we 
present an efficient, provably stable algorithm for evaluating King’s formula 

for the expected FIFO miss ratio in the independent reference model. (The sums are 
taken over all CAP-tuples (il, * - . , I’CAP) such that ii # i k  if ] # k.) 

Let PI,  - * , pn be a fixed but arbitrary ordering of the n page probabilities. For 
each positive integer. m 5 n and each positive integer r, define 

E(r,m)=Cp,;.-p1,, 
where the sum is taken over all r-element subsets { i l ,  . . + , i,} of (1, * * * , m}. 

, pm, 
there is a term of E(r, m) which is the product of these r probabilities. We make the 
usual convention that an empty sum is 0; hence E(r, m) = 0 if r > m. 

We now express the expected FIFO miss ratio (2.1) as a function of the terms 
E(r, m). Note that the numerator of formula (2.1) can be rewritten as 

In other words, for each r-element subset of the first m probabilities pl, * 

which equals 

where the sum in (2.2) is taken over all (CAP+ 1)-tuples (il, * - , iCAPcl) such that 
ii # ik if j f k. But (2.2) is simply (CAP+ l)!E(CAP+ 1, n), since E(CAP+ 1, n )  is a 
sum over sets while (2.2) is the corresponding sum over tuples. Likewise, the 
denominator of (2.1) equals CAP!E(CAP, n). Since we just showed that the numera- 
tor of (2.1) equals (CAP+ l)!E(CAP+ l, n )  and the denominator is CAP!E(CAP, n), 
it follows that the expected FIFO miss ratio (2.1) equals 

(CAP+ l)E(CAP+ 1, n )  
E(CAP, n)  

We now show how to obtain an efficient, numerically stable algorithm for 
computing (2.3). Along the way, we also derive an efficient but unstable algorithm for 
computing (2.3). 

We first verify the following recurrence equation for E(r, rn) when r > 1 and 
m > l :  

(2.4) E(r, m)= E(r, m - l)+pmE(r- 1, tn - 1). 

The first term E(r, m - 1) of (2.4) is the sum of those terms in E(r, rn) which do not 
have pm as a factor, and the second term p,,,E(r - 1, m - 1) is the sum of the terms 
which do have pm as a factor. 

Recurrence equation (2.4) can be used recursively to compute the matrix of 
values E(r, m )  with 1 S r SCAP+ 1 and 1 5  m S n. Using this approach, we can 
calculate (2.3), the expected FIFO miss ratio, with approximately 2n . CAP additions 
and multiplications. Unfortunately, this method suffers from numerical instability, 
because for interesting values of n and CAP, the entries of the E matrix vary by 
enough orders of magnitude that they exceed the range of typical floating-point 
hardware (and so underflow occurs). For example, assume that all page reference 



THE INDEPENDENT REFERENCE MODEL 29 1 

probabilities are equal. Then E(r, m )  = (l/n)'. So if n = 1000,then E(1.1000)= 1 

and E(1000, lOOO)= The reason why underflow causes large errors for us is 
that if we add two terms x and y which are nearly equal (such as x = E(r, m - 1) and 
y = p m E ( r -  1, m - 1) on the right-hand side of (2.4)), and if the y term has 
underflowed to zero but the x term has not, then a large relative error is introduced 
and then propagated. In the example given, the actual value of x + y would be almost 
twice the calculated value. 

We now show how to calculate (2.3) both efficiently and stably. In order to 
calculate (2.3), we need only calculate the ratio E(CAP+ 1, n)/E(CAP, t i )  (but not 
E(CAP+ 1, n) and E(CAP, n) separately). Let 

(;I 

F(r, m)=E(r,  m) /E(r -  1, m )  

for 1 5 r I CAP + 1 and 1 5 m 5 n. Under the usual convention that empty products 
are l , w e d e f i n e E ( O , m ) t o b e  1 fo reachm;  thenF(l,m)=E(l,m)=p,+.~.+p,. 
Formula (2.3), and hence the expected FIFO miss ratio, equals (CAP+ l)F(CAP+ 
1, n). We can derive a recurrence equation for F directly and avoid our earlier 
numerical difficulties. We first note that if r > 1 and m > 1, then 

I 

E(r, m ) / E ( r -  1, m - 1) 
c(r - 1, m - 1)/E(r  - 2, m - 1). 

If we divide both sides of (2.4) by E(r - 1, rn - l ) ,  then we obtain 

E ( r , m ) / E ( r - l ,  m-l )=(E( r ,  m-- l ) /E(r - l ,  m-l) )+p ,  

= F(r, m - l)+p,. 
(2.6) 

If we use (2.6) to replace E(r, m) /E(r -  1, m - 1) in (2.5) by F(r, m - l)+p,, and if 
similarly, we replace E(r - 1, m)/E(r  - 2, m - 1) in (2.5) by F(r - 1,  m - l)+p,, then 
we obtain the recurrence equation 

F(r-  1,111 - l), F(r, m - l)+pm F(r, m )  = 
F(r -  1, m - l ) + p ,  

which holds for 1 5 r 5 CAP + 1 and 1 5 m 5 n. This recurrence equation can be used 
recursively to compute the matrix of values F(r, m )  starting from the boundary 
conditions 

p1, r = 1 ,  

0, 2 r r ~ C A P + l ,  
F(r, 1)= 

One way to calculate F is to initialize the first column and,row 'king the equations for 
F(r, 1) and F ( l ,  r n )  in (2.8) and then to calculate the entries for 2 5 r 5 CAP+ 1 and 
2 5 m 5 n, column by column, by using equation (2.7). Then the expected FIFO miss 
ratio with capacity CAP is (CAP+ l)F(CAP+ 1, n). 
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This algorithm requires approximately 4n * CAP additions, multiplications, and 
divisions. We note that this algorithm has the interesting property that in calculating 
the expected FIFO miss ratio with capacity CAP, we automatically calculate the 
expected FIFO miss ratios with capacities 1, * * , CAP - 1. 

We sketch a proof of the numerical stability of this FIFO algorithm in the 
Appendix. 

3. An unbiased estimate of the expected LRU miss ratio. In this section we 
present an efficient method for obtaining an unbiased estimate of the expected LRU 
miss ratio, which, we recall, is given by 

pl1pl2 * * pICAP(l-pll-a * ‘-p,AP) 
~ l - p l , ) ~ l - p l l - p l * ~ * ~  * o-Pll-PI2-* * *-PICAP-l)’ (3.1) c 

in the independent reference model. 
Consider the following experiment, which involves drawing balls from an urn 

without replacement. Assume that an urn contains n balls numbered 1,  - * . , n (which 
correspond to our n pages). We say that ball i has weight p I  (i  = 1, . . , n), where 
{ p l ,  - - - , pn} is the page probability distribution. Select one ball from the urn, in such 
a way that a given ball is selected with probability equal to its weight. Thus, ball i is 
selected with probability pl (i = 1, . . . , n). Assume that ball il was selected. Now 
renormalize the weights of the remaining (n - 1)  balls so that the sum of their weights 
is 1. Thus, the weight of ball j is now p,/(l -pll), for j f i l .  Select a second ball from 
the urn, where once again a given ball is selected with probability equal to its new 
weight. Assume that ball iz  was selected. Now renormalize the weights of the remain- 
ing (n -2) balls so that the sum of their weights is 1: thus, the weight of ball j is now 
p,/(l -pI1 - -pIz) ,  for j # il, iz. Continue the process until CAP balls have been selected. 
Let A (an estimate of (3.1)) be the value 1 -pI1 -. . . -plcAp. Note that with probability 

(3.2) 

ball i l  was selected first, ball i 2  was selected second, . a . , and ball iCAp was selected 
last; in this case A took on the value 1 -pl, - * * -pICAP. Therefore, the expected value 
of the random variable A is given by (3.1); that is, A is an unbiased estimate of (3.1). 

The experiment we just described is faithfully mimicked by the algorithm in 
Figure 1 for obtaining a value for A (in the first line, P is our probability vector of 
page probabilities). 

LET P1= P; 
LET A = l ;  
DO I =  1 TO CAP; 

SELECT A RANDOM NUMBER R BETWEEN 0 AND 1; 
FIND THE FIRST J BETWEEN 1 AND N SUCH THAT 

LET A = A - P(J); 
LET S=l -P l ( J ) ;  
DO K = l  TO N; 

END; 
LET * P1 (J) = 0; 

P1(1)+. . . + P l ( J ) z R ;  

LET Pl(K)=Pl(K)/S; 

END; 

FIG. 1 
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If there are, say, 100 independent replications of the experiment (that is, if the 
program is run 100 times, with different seeds to the pseudo-random number genera- 
tor), then the average of the 100 values of A which are obtained also, of course, give 
an unbiased estimate of (3.1), and we can use the central limit theorem to obtain 
approximate confidence intervals for our estimate. 

We now give a numerical example, using “Zipf’s Law” (Zipf [25]; Knuth [ 14, 
vol. 3, p. 397]), in which the probability pi of referencing the ith most frequently 
referenced page is 

k 
Pi==, 

I 

where 8 is a positive constant (the “skewness”), and k is a normalizing constant 
chosen so that 1 pi  = 1. 

In our example, the skewness 8 is 0.5, the number n of pages is 100, and the 
capacity CAP is 30. When we ran a version of the program in Fig. 1 100 times, we 
obtained 100 results A1, * . . ,Aloo. The average value 

A = ( A l + * .  .+Aloo)/100 

turned out to be 0.6119 (rounded to 4 decimal places). This value is our unbiased 
estimate of the expected LRU miss ratio (3.1). How much confidence should be 
placed in this estimate? To answer this question, we calculated several other statistical 
quantities of interest. Let 

1 /2  

D = (( (Ai -A)’)/99) . 
i =  1 

In general, instead of 99, we would use (L - l), where L is the number of independent 
runs of the program. Then D is an unbiased estimate of the standard deviation, and 
X=D/& of the standard deviation of the mean. In this case, D turned out to be 
0.0301, and so X was 0.0030. Under the normal approximation, which is valid in 
large samples by the central limit theorem (here the sample size is loo), we know that 
an approximate 95% confidence interval for the sample mean is given by A * 2 X .  
(The normal approximation was justified in this case by the Kolmogorov-Smirnov test 
[14, vol.2, p.411). So with approximately 95% confidence, we can say that the 
expected LRU miss ratio for this probability distribution (Zipf’s Law, skewness 0.5, 
number of pages 100) with capacity CAP= 30 is 0.6119*0.0060. 

. .  

4. Examples. As a demonstration of the power of current techniques (including 
those developed in this paper) for obtaining expected miss ratios in the independent 
reference model, we present a family of examples (Table 1). In each case, we consider 
a Zipf’s law probability distribution with skewness 0 = 0.5. We vary the number n of 
pages, and we also vary the capacity CAP in such a way that the “normalized 
capacity” CAPIn is 0.3. All values are rounded to four decimal places. We include 
not only the expected FIFO and LRU miss ratios, but also the expected WS, or 
working-set miss ratios (Denning and Schwartz [ 5 ] ) ,  the expected A. miss ratios 
(Aho et al. [l]). and the expected VMIN miss ratios (Prieve and Fabry [20]; Slutz 
1221). Here AO is the optimal page replacement algorithm with no knowledge of the 
future in the independent reference model, and VMIN is the optimal variable-space 
page replacement algorithm under demand paging (with lookahead). 

In the case of WS and VMIN, which are variable-space page-replacement 
algorithms, the quantity CAP is the expected number of pages in main memory. For 
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example, in the WS case, the window size T is chosen in such a way that CAP is the 
expected working-set size. 

The fact that the expected LRU, WS, Ao, and VMIN miss ratios have limiting 
values (as in Table 1) is proven in Fagin [8], where closed-form formulas are exhibited 
for these limits. Further, it is shown there that the limits in the LRU and WS cases are 
the same. (In the case of Table 1, the common limit is 0.5701.) It  is an open problem 
as to whether there is a limiting value for the expected FIFO miss ratio, and how to 
find the limit. 

We close this section with a minor technical comment on the LRU calculations in 
Table 1. Except for the n = 10 case, for which we used King's LRU formula, the given 
interval in the LRU column is approximately a 95% confidence interval. For the 
n = 100 and n = 1000 cases, the experiment described in § 3 was performed 100 times 
(that is, the L of 9 3 is €00). For the n = 10000 case, the experiment was performed 
only 30 times, because of the great amount of paging which takes place when dealing 
with very large vectors. 

TABLE 1 
Expecfed miss ratios. (Zipf's Law, skewness 0 = 0.5, normalized capacity 0.3) 

FIFO LRU ws A0 VMIN 

n = 10. CAP= 3 0.6660 0.6607 0.6599 0.5741 0.3601 
n = 100, CAP = 30 0.6304 0.6119*0.0060 0.6096 0.4870 0.2858 
n = 1,000, CAP = 300 0.6091 0.5827*0.0017 0.5831 0.4629 0.2706 
n = 10.000, CAP= 3,000 0.6007 0.5748 * 0.0010 0.5742 0.4556 0.2663 

Limiting value ? 0.5701 0.5701 0.4523 0.2643 

Appendix. The numerical stability of the FIFO algorithm. We sketch a proof that 
the FIFO algorithm described at the end of § 2 is numerically stable. We first show 
that there is not a large range in the matrix of values F(r, m): where 1 S r S CAP+ 1 
and 1 5  m 5 n ;  that is, we show that there are not many orders of magnitude between 
the smallest positive entry and the largest positive entry (note that there are no 
negative entries, although there are zero entries). In fact, we show that the largest 
entry is 1, and the smallest positive entry is at least (minpi)/(CAP+ 1). Therefore, 
there is no underflow in cases of interest. We then sketch a relative error analysis 
which shows that the maximum relative error in the entries F(m, r )  grows linearly with 
n (the number of pages). 

Pick ro and mo so that 1 5 ro 5 CAP + 1 and 1 S mo 5 n. If ro > mo then F(ro, mo) = 
0. So assume that r o S  mo. We now show that 

64.1) (min{p,: i=1;~~,n))/(CAP+1)SF(ro,mo)S1. 

LetS=p ,+ . - -+p , ,  and define = p J S  for 1 Si Smo;  that is, we take the first mo 
probabilities p1, * - - , p,, we normalize them so that their sum is 1, and we call the 
normalized probabilities 4], * * , qmo. Define El(ro, mo) and El(ro- 1, mo) in the same 
way as we defined E(ro, mo) and E(ro- 1, mo) in 9 2, except that we use the pro- 
babilities ql, . . . , q, instead of the probabilities pl,  + * - , p,,. Hence, by analogy with 
(2.3) we know that the expected FIFO miss ratio, using the probability distribution 
q l , .  . . , qmo, and with capacity r o -  1 is 

i 
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We now obtain upper and lower bounds for (A.2). Since (A.2) is the expected value of 
a miss ratio, it is bounded above by 1. Furthermore, (A.2) is at least as big as the 
expected value of the A. miss ratio (Ah0 et al. [ 11) with the same capacity, where A0 is 
the optimal page replacement algorithm with no knowledge of the future in the 
independent reference model. This expected A. miss ratio (with capacity ro- 1) is in 
turn at least as big as the expected A.  miss ratio with capacity mo- 1 (since ( ro-  1 ) s  
(mo- 1) by assumption). And, it is easy to check that the expected A.  miss ratio with 
capacity mo- 1 is at least as big as min {q , :  i = 1, * . . , mo}. (Recall that these miss 
ratios are over the probability distribution {ql, - . . , qmo}.) To summarize the bounds 
we have obtained for (A.2), we have shown that 

It is easy to see that E(ro, mo) = SroEl(ro, mo), since E(ro, mo) is a sum of products 
of ro-element subsets of {pl, * . * , pm}, while El(ro, mo) is the corresponding sum of 
products of ro-element subsets of {ql, - - * , qmo} = {pl/S, . * * , p , / S } .  Similarly, 
E(ro- 1, mo)= Sro-'El(ro- 1, mo). Hence 

If, using (A.4), we substitute F(r0, mo)/S for El(ro, mo)/El(ro- 1, mo) in (A.3), then 
after multiplying all parts of the resulting inequality by S/ro, we obtain 

64.5) (Slro) min {qi: i = 1, . * . , mo} S F(ro, mo)S Slro. 

Now (S/ro)S 1 since S I 1  and r o 2  1, and so it follows from (AS)  that F(ro, m o ) I  1, 
which establishes our upper bound on F. (In fact, this upper bound is attained, since 
F ( l , n ) = l . )  As for the lower bound: we know that min{q,: i = l ; . . , m o } =  
min { p,  : i = 1, . . * , mo}/S 2 rnin {pi: i = 1, . - - , n } / S .  Furthermore, ro 5 CAP + 1 ,  and 
so from (AS)  we obtain 

(A.6) min ( p i :  i = 1, - * * , n}/(CAP+ 1 ) s  F(r0, mo), 

which gives our lower bound on F. (This lower bound is actually attained when 
pi = l / n  for each i, when ro= C A P + l ,  and when mo= n.) 

Having shown that there is no underflow (in cases of interest), we can now 
analyze the propagation of relative error. (If A is a quantity and A' is the calculated 
value of A, then the relative error is (A'-A)/A; note that the relative error can be 
positive, negative, or zero.) The key to stability for our algorithm is the fact that if the 
relative error in F(r, m - 1) is E ~ ,  and if the relative error in F ( r -  1, m - 1) is ~ 2 ,  then 
the relative error in 

F ( r - 1 , m - 1 )  F(r, M - l)+pm 
F(r-  1, m - l ) + p m  

F(r, m ) =  

is smaller in magnitude than the maximum of the magnitudes of E~ and ~ 2 .  Why is 
this? For notational convenience, write A for F(r, m - l ) ,  B for F(r  - 1, m - l ) ,  and C 



296 RONALD FAGIN AND THOMAS G. PRICE 

for pm. We assume for now that C has no relative error. It is an important combina- 
torial fact that F(r - 1, m - l)ZF(r, m - 1); this is Theorem 53 in Hardy, Littlewood 
and Polya [ 12, p. 521. Therefore, B Z A. Let A' and B' be the calculated values of A 
and B respectively; thus, A' = A(l + & I ) ,  and B' = B(1+ E Z ) .  Then the relative error in 
F(r, m), that is, the relative error in (A + C)B/ (B  + C), is given by 

('4.7) 
(A'+ C)B' ( A  + C)B 

( (B '+C)  / ( B + C )  ) - l '  

Since (A.7) is the relative error in F(r, m), our goal is to show that the absolute value 
of (A.7) is bounded above by max ( /El l ,  1 ~ ~ 1 ) .  

If we replace A' by A(l  + e l )  and B' by B(l + E ~ )  in (A.7), it is easily verified that 
the resulting expression equals 

(A.8) ~ 1 ( 1 +  EZ)(B + C ) A  + EZC)/((l+ E * ) B  + C) .  ( ( A + C )  

The absolute value of (A.8) is bounded above by 

where we have assumed that 1.521 < 1 (so that 1 + E~ is positive). It follows immediately 
from B 1 A  that (B + C)A/ (A  + C ) S  B. Therefore, (A.9) is bounded above by the 
expression obtained by replacing (B + C)A/ (A  + C) in (A.9) by B. That is, (A.9) is 
bounded above by 

(A.lO) (CI IEI I  +C21EZl)/(C1 +C2) ,  

where c1 = (1 + E ~ ) B  and cz = C. But (A.lO) is a weighted average of 1.~11 and I B Z ) ,  and 
so is bounded above by their maximum. This is what we wanted to show. 

If we now take into consideration the effect of roundoff and the fact that the 
constants pm may also be in error due to the fact that they may not be represented 
exactly, then we find that the maximum relative error in the entries F(r, rn) is a small 
constant times the number n of columns of F, times E ,  where E is the inherent roundoff 
error in a floating-point number. (Thus, E is 2-', where t is the number of bits in the 
representation of the mantissa of a floating-point number.) 
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REFERENCES 

[ l ]  A. V. AHO, P. J. DENNING AND J. D. ULLMAN, Principles of optimal page replacement, J. Assoc. 

(21 0. I. AVEN, L. B. BOGUSLAVSKII AND YA. A. KOGAN, Some results on distribution-free analysis of 

[3] F. BASKE~T AND A. RAFII, The A,, inversion model of program paging behaoior, Computer Science 

[41 L. A. BELADY, A study of replacement algorithms for a oirtual-storage computer, IBM Systems J. ,  5 

151 P. J. DENNING AND S. C. SCHWARTZ. Properties of the working-set model, Cornrn. ACM, 15 (1972). 

161 M. C. EASTON, Model for interactiue data 6ase reference string, IBM J. Res. and Devel., 19 (Nov. 

Comput. Mach., 18 (1971). pp. 80-93. 

paging algorithms, IEEE Trans. Computers, C-25 (1976). pp. 737-745. 

Rep. CS-76-579, Stanford University, Nov. 1976, Cornm. ACM, to appear. 

(1966). pp. 78-101. 

pp. 191-198. 

1975), pp. 550-556. 



THE INDEPENDENT REFERENCE MODEL 297 

[7] R. FAGIN, A counterintuitive example of computer paging, Comm. ACM, 19 (1976). pp. 96-97. 

P I  - , Asymptotic miss ratios over independent references, J .  Comput. System Sci., 14 (1977). pp. 

[9] R. FAGIN AND M. C. EASTON, The independence of miss ratio on page size, J .  Assoc. Comput. Mach., 

[IOJ P. A. FRANASZEK AND T. J. WAGNER, Some distribution-free aspects of paging algorithm per- 

[ l l ]  E.  GELENBE, A unified approach to the evaluation of a class of replacement algorithms, IEEE Trans. 

[12] G. H. HARDY, J. E. LITTLEWOOD AND G. POLYA, Inequalities, Cambridge University Press, 

[I31 W. F. KING, 111, Analysis of paging algorithms, IFIP Conf. Proc. Ljubljana, Yugoslavia (Aug. 1971). 
[14] D. E. KNUTH, The Art of Computer Programming, vol. 2, 1969, and vol. 3, 1973, Addison-Wesley, 

[15] P. A. W. LEWIS AND G. S. SHEDLER, Empirically derived micromodels for sequences of page 

[16] P. A. LEWIS AND P. c. YUE, Statistical analysis of program reference patterns in a paging environment, 

[17] A. W .  MADISON AND A. P. BATSON, Characteristics of program localities, Comm. ACM, 19 (1976). 

[18] R. MATTSON, J. GECSEI, D. SLUTZ AND I. TRAIGER, Evaluation techniques for storage hierarchies, 

[19] P. H. ODEN AND G. S. SHEDLER, A model of memory contention in a paging machine, Comm. ACM, 

[20] B. G. PRIEVE AND R. S. FABRY, VMIN-an optimal variable-space page replacement algorithm, 

[21] J .  RODRIGUEZ-ROSELL, Empirical data reference behavior in data base systems, IEEE Computer, 9 

[22] D. R. SLUTZ, A relation between working set and optimal algorithms for segment reference strings, IBM 

[23] J .  R. SPIRN AND P. J. DENNING, Experiments with program locality, AFIPS Conf Proc. 41, (1972), 

[24] P. c. YUE AND C. K. WONG, On the optimality of the probability ranking scheme in storage 

[25] G. K .  ZIPF, Human Behavior and the Principle of Least Effort, Addison-Wesley, Cambridge, MA, 

(Corrigendum: Comm. ACM, 19 (1976), p. 187.) 

222-250. 

23 (1976), pp. 128-146. 

formance, Ibid., 21 (1974), pp. 31-39. 

Computers, C-22 (1973), pp. 61 1-618. 

London, 1964. 

Reading, MA. 

exceptions, IBM J. Res. Devel., 17 (1973), pp. 86-100. 

Proc. IEEE Conf. Computers, Boston, 1971. 

pp. 285-294. 

IBM Systems J., 9 (1970), pp. 78-117. 

15 (1972), pp. 761-771. 

Ibid., 19 (1976), pp. 295-297. 

(1976), no. 11, pp. 9-13. 

Research Rep. RJ 1623, JuIy 1975, San Jose, California. 

pp. 611-621. 

applications, J .  Assoc. Comput. Mach., 20 (1973), pp. 624-633. 

1949. 


