Common Knowledge: Now You Have it, Now You Don’t*

Ronald Fagin! Joseph Y. Halpern?
IBM Almaden Rescarch Center IBM Almaden Rescarch Center
Yoram Moscs? Moshe Y. Vardi¥
The Weizmann Institute of Science Rice University

Appeared in Intelligent Systems: A Semiotics Perspective, Proc. 1996 Int'l
Multidisciplinary Conf., Vol. I, October 1996, pp. 177-183.

1 Introduction

The notion of common knowledge, where everyone knows, cveryone knows that everyone knows, eic., has
proven to be fundamental in various disciplines, including Philosophy [Lew69], Artificial Intelligence [MSHI79],
Econonics [Aum76], and Psychology [CM81]. This key notion was first studied by the philosopher David Lewis
{Lew69] in the context of conventions. Lewis pointed out that in order for something to be a convention, it must
in fact be common knowledge among the members of a group. (For example, the convention that green means
“go” and red means “stop” is presurmably common knowledge among the drivers in our society.)

Common knowledge also arises in discourse understanding [CM81]. Suppose Ann asks Bob “What did you
think of the movie?” referring to a showing of Monkey Business they have just seen. Not only must Ann and
Bob both know that “the movie” refers to Monkey Business, but Ann must know that Bob knows (so that she can
be sure that Bob will give a reasonable answer to her question), Bob must know that Ann knows that Bob knows
(so that Bob knows that Ann will respond appropriately to his answer), and so on. In fact, by a closer analysis of
this situation, it can be shown that there must be common knowledge of what movic is meant in order for Bob to
answer the question appropriately.

Finally, common knowledge also turns out to be a prerequisite for agreement and coordinated action in
distributed systems [HM90]. This is precisely what makes it such a crucial notion in the analysis of interacting
groups of agents. On the other hand, in practical settings common knowledge is impossible to achieve. This
puts us in a somewhat paradoxical situation, in that we claim both that common knowledge is a prerequisite for
agrecment and coordinated action and that it cannot be attained. We discuss two answers to this paradox: (1)
modeling the world with a coarser granularity, and (2) relaxing the requirements for coordination.

*The material in this extended abstract is based on [HM90, FHMV96]: the reader is referred there for more details. A book length treatment
of knowledge and common knowledge in multi-agent system is offered in [FHMV95].
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2 Agreement and Coordination

We start by discussing two well-known puzzles that involve attaining common knowledge. The first is the “muddy
children” puzzle [Bar81].

The story goes as follows: himagine n children playing together. Some, say & of them, get mud on their
foreheads. Each can sce the mud on others but not on his own forehcad. Along comes the father, who says, “At
least one of you has mud on your forchead,” thus expressing a fact known to each of them before he spoke (if
k > 1). The father then asks the following question, over and over: “Docs any of you know whether you have

mud on your own forchead?” Assuming that all the children are perceptive, intelligent, truthful, and that they
answer simultancously, what will happen?

There is a straightforward proof by induction that the first k£ — | times he asks the question, they will all say
“No,” but then the £™ time the children with muddy forcheads will all answer “Yes.” Let us denote the fact “at
least one child has a muddy forchead” by p. Notice that if k > 1, i.¢., more than one child has a muddy forehead,
then every child can see at least one muddy forchead, and the children initially all know p. Thus, it would seem
that the father docs not provide the children with any new information, and so he should not need to tell them that
pholds when & > 1. But this is false! What the father provides is common knowledge. If exactly & children have
muddy forcheads, then it is straightforward to see that 12~ p holds before the father speaks, but £*p does not
(here E¥p means o, if & = 0, everyone knows ¢, if k£ = 1, and everyonc knows E¥ 1, if k > 1). The father’s
statement actually converts the children’s state of knowledge from £*~Tp to Cp (here Cp means that there is
common knowledge of p). With this cxtra knowledge, they can deduce whether their forecheads are muddy.

In the muddy children puzzle, the children do not actually need common knowledge; E¥p suffices for them
to figure out whether they have nwd on their forcheads. On the other hand, the coordinated auack problem
[Gra78] provides an cxample where conunon knowledge is truly necessary. In this problem, two generals, cach
commanding a division of an army, want to attack a common enemy. They will win the battle only if they attack
the enemy simultancously; if only one division attacks, it will be defeated. Thus, the generals want to coordinate
their attack. Untortunately, the only way they have of communicating is by means of messengers, who might get
lost or captured by the enemy.

Suppose a messenger sent by General A reaches General B with a message saying “attack at dawn.” Should
General I3 attack? Although the message was in fact delivered, General A has no way of knowing that it was
delivered. A must therefore consider it possible that B did not receive the message (in which case B would
definitely not attack). Hence A will not attack given his current state of knowledge. Knowing this, and not willing
to risk attacking alone, I3 cannot attack based solely on receiving A’s message. Of course, 3 can try to improve
maticrs by sending the messenger back to A with an acknowledgment. Even if the messenger reaches A, similar
rcasoning shows that neither A nor I3 will attack at this point cither. In fact, it can be proved, by induction on the
number of messages, that no number of successful deliveries of acknowledgments to acknowledgments can allow
the gencrals to attack [YC79].

Halpern and Moses [HM90] showed the relationship between coordinated attack and conunon knowledge, and
used this to give a “knowledge-based” proof the impossibility result. Specifically, assume that the generals behave
according to some predetermined deterministic protocol; that is, a general’s actions (what messages he sends and
whether he attacks) are a deterministic function of his history and the time on his clock. Assume further that in the
absence of any successful communication, neither general will attack. Halpern and Moses proved that a correct
protocol for the coordinated attack problem must have the property that whenever the generals attack, it is common
knowledge that they are attacking. A key feature of the coordinated attack problem is that communication is not
guaranteed. Roughly speaking, this means (1) it is always possible that from some point on, no messages will
be received, and (2) if gencral ¢ does not get any information to the contrary (by receiving some message), then
i considers it possible that none of its messages were received. Halpern and Moscs proved that in such a system,

nothing can become common knowledge unless it is also conimon knowledge in the absence of communication.
This implies the impossibility of coordinated attack.



3 Common Knowledge and Uncertainty

As we have seen, common knowledge cannot be attained when communication is not guaranteed. Halpern
and Moses showed further that conwon knowledge cannot be attained in a system in which communication is
guarantecd, but where there is no bound on the time it takes for messages to be delivered. It would scem that when
all messages arc guaranteed to be delivered within a fixed amount of time, say one second, attaining common
knowledge should be a simple matter.  But things are not always as simple as they seem; even in this case,
uncertainty causes major difficultics.

Consider the f{ollowing cxample: Assume that two agents, Alice and Bob, communicate over a channel in
which (it is commmon knowledge that) message delivery is guaranteed. Moreover, suppose that there is only slight
uncertainty concerning message delivery times. It is commonly known that any message scnt from Alice to Bob
reaches Bob within ¢ time units. Now supposc that at some point Alice sends Bob a message ¢ that does not
specify the sending time in any way. Bob does not know initially that Alice sent him a message. We assume that
when Bob receives Alice’s miessage, he knows that it is (rom her, How do Alice and Bob’s state of knowledge
change with time?

Let sent(p) be the statement that Alice sent the message p. Afier e time units, we have K 4 K psent(p), that
is, Alice knows that Bob knows that she sent the message p. And clearly, this state of knowledge does not occur
before ¢ time units. Define (K 4 K p)Fsent(p) by letting it be sent(p) for k = 0, and K 4K (KA K p)*'sent(p)
for £ > 1. Itis not hard to verify that (K 4 K g)*sent(p) holds afler ke time units, and does not hold before then.
In particular, common knowledge of sent(p) is never attained. This may not seem too striking when we think of e
that is relatively large, say a day, or an hour. The argument, however, is independent of the magnitude of e, and
remains true even for small values of €. Even if’ Alice and Bob arc guaranteed that Alice’s message arrives within
one nanosecond, they still never attain common knowledge that her message was sent!

Now let us consider what happens if both Alice and Bob use the same clock, and suppose that, instcad of
sending u, Alice sends at time m a message u' that specifies the sending time, such as

“This message is being sent at time m; p.”

Recall that it is common knowledge that cvery message sent by Alice is received by Bob within € time units. When
Bob reccives p', he knows that ' was sent at time m. Moreover, Bob’s reccipt of ' is guaranteed to happen no
later than time m + €. Since Alice and Bob use the same clock, it is common knowledge at time m + ¢ that it
is m + ¢. It is also common knowledge that any message sent at time m is received by time m + €. Thus, at
time m + €, the fact that Alice sent ¢ to Bob is common knowledge.

Note that in the first example common knowledge will never hold regardiess of whether € is a day, an hour, or
ananosecond. The slight uncertainty about the sending time and the message transmission time prevents common
knowledge of p from ever being attained in this scenario. What makes the second example so dramatically
different? When a fact ¢ is common knowledge, cverybody must know that it is. It is impossible for agent 2 to
know that ¢ is common knowledge without agent 7 knowing it as well. This means that the transition from ¢
not being common knowledge to its being common knowledge must involve a simultaneous change in all relevant
agents’ knowledge. In the first example, the uncertainty makes such a simultancous transition impossible, while
in the sccond, having the samc clock makes a simultancous transition possible and this transition occurs at time
m + €. These two examples help illustrate the connection between simultaneity and common knowledge and the
eflect this can havce on the attainability of common knowledge. We now explore this connection.

4 Simultaneous Events

The Alice and Bob examples iltustrate how the transition [rom a situation in which a fact is not common knowledge
to onc where it is common knowledge requires simultancous cvents (o take place at all sites of the system. The
relationship between simultaneity and common knowledge, however, is even more fundamental than that. We
saw by example carlier that actions that must be performed simulianeously by all parties, such as attacking in the



coordinated attack problem, become conimon knowledge as soon as they are performed: common knowledge is
a prerequisite for simultaneous actions. It actually can be shown that that a fact’s becoming common knowledge
requires the occurrence of simultancous events at different sites of the system. Moreover, the occurrence of

simultaneous cvents is necessarily common knowledge. This demonstrates the strong link between common
knowlcdge and simultancous cvents.

To make this claim precise, we need to formalize the notion of simultancous events. We assume that at cach
point in time, each agent is in some local state. Informally, this local state encodes the information available to the
agent at this point. In addition, there is an environment state, that keeps track of everything relevant to the system
not recorded in the agents’ states. A global state describes the local states of the environment and the agents. An
agent cannot distinguish two global states if he is in the same local states in both global states. A run of the system
is a complete description of how the system evolves over time in one possible cxccution of the system. We take
a svstem 10 consist of a set of runs. Intuitively, these runs describe all the possible sequences of events that could
occur in a system. At a particular point in time in a certain run and agent knows a fact ¢ if o holds in all global
statcs in the system that are indistinguishibie to the agent from the current global state.

A local event for an agent is a sct of local states of that agent. Intuitively, the cvent occurs when the agent
enters a state in the sct. For example, sending a message, receiving a message, and performing an internal action
arc examples of local events. We arc interested here in local events that are coordinated in time. An event ensemble
is an assignment of a local cvent to cach agent. An ensemble is said to be perfectly coordinated if the local events
in it hold simultancously for all agents. An example of a perfectly coordinated event ensemble is the set of local
events that correspond to the ticking of a global clock, if the ticking is guaranteed to be reflected simultancously

at all sites of a system. Another example is the event of shaking hands: being a mutual action, the handshakes of
the parties are perfectly coordinated.

It can now be shown that the event ensemble of attaining common knowledge is perfectly coordinated, that
is, all agents attain common knowledge at the same time, and furthermore, if an cvent cnsemble is perfectly
coordinated, then whenever the events in it occur the agents have common knowledge of that fact. This capturcs
the close correspondence between common knowledge and simultancous events, and helps clarify the difference
between the two examples considered in Scction 3: In (he first cxample, Alice and Bob cannot attain common
knowledge of sent(u) because they are unable to make such a simultancous transition, while in the sccond example
they can (and do).

The close relationship between common knowledge and simultancous actions is what makes common knowl-
edge such a useful tool for analyzing tasks involving coordination and agreement. It also gives us some insight
into how common knowledge ariscs. For cxample, the fact that a public announcement has been made is common
knowledge, since the announcement is heard simultancously by cveryone. (Strictly speaking, of course, this is
not quite true; we return (o this issue in Section 6.) Morc generally, simultancity is inherent in the notion of
copresence. As a consequence, when people sit around a table, the existence of the table, as well as the nature of
the objects on the table, are common knowledge.

Aswe discussed carlier, common knowledge is inherent in agreements and conventions. Hand shaking, face-to-
face or telephone conversation, and a simultancous signing of a contract are standard ways of rcaching agreements.
They all involve simultancous actions and have the effect of making the agreement common knowledge.

5 Temporal Imprecision

As we illustrated previously, simultancity is inherent in the notion of common knowledge (and vice versa).
It follows that simultaneity is a prerequisite for attaining common knowledge. Alice and Bob’s failure to reach
common knowledge in the first exaniple above can therefore be blamed on their inability to perform a simultaneous
state transition. As might be expected, the fact that simultaneity is a prerequisite for attaining common knowledge
has additional consequences. For example, in many distributed systems each process possesses a clock. In
practice, in any distributed system there is always some uncertainty regarding the relative synchrony of the clocks
and regarding the precise message transmission times. This results in what is called the temporal imprecision
of the system. The amount of temporal imprecision in different systems varies, but it can be argued that every



practical system will have some (possibly very small) degree of imprecision. Techniques from the distributed-
systems literature can be used to show that any system in which, roughly speaking, there is some initial uncertainty
regarding refative clock readings and uncertainty regarding exact message transmission times must have temporal
imprecision.

Systems with temporal imprecision turn out to have the property that no protocol can guarantee to synchronize
the processes’ clocks perfectly. Furthermore, in systems with temporal imprecision events cannot be perfectly
coordinated. 1t follows from this that no fact can become common knowledge during a run of a system with
temporal imprecision. If the units by which time is mcasured in our model are sufficiently small, then all
practical distributed systems have temiporal imprecision, As a result, no fact can ever become common knowledge
in practical distributed systems. Carrying this argument even further, we can view cssentially all real-world
seenarios as situations in which true simultancity cannot be guaranteed. For example, the children in the muddy
children puzzle neither hear nor comprehend the father simultancously. There is bound to be some uncertainty
about how long it takes cach of them to process the information. Thus, according to our carlier discussion, the
children in fact do not attain common knowledge of the father’s statement.

We now scem to have a paradox. On the one hand, we have argucd that common knowledge is unattainable in
practical contexts. On the other hand, given our claim that common knowledge is a prerequisite for agreements

and conventions and the obscrvation that we do reach agreements and conventions arc maintained, it seems that
common knowledge is attained in practice.

Where is the catch? How can we explain this discrepancy between our practical experience and our technical
results? In the next two sections, we consider two resolutions to this paradox. The first rests on the observation
that if we model time at a sufficiently coarse level, we can and do attain common knowledge. The question then
becomes when and whether it is appropriate to model time in this way., The second says that, although we indeed
cannot attain common knowledge, we can attain close approximations of'it, and this suffices for our purposes.

6 The Granularity of Time

Given the complexity of the real world, any mathematical model of a situation must abstract away many dctails. A
useful model is typically one that abstracts away as much of the irrelevant detail as possibie, leaving all and only
the relevant aspects of a situation. When modeling a particular situation, it can often be quite difficult to decide
the Ievel of granularity at which to model time. The notion of time in a run rarely corresponds to real time. Rather,
our choice of the granularity of time is motivated by convenience of modeling. Thus, in a distributed application,

it may be perlectly appropriate to take a round to be sufficiently long for a process to send a message to all other
processes, and perhaps do some local computation as well.

As we have observed, the argument that cvery practical system has some degree of temporal imprecision holds
only relative to a sufficiently finc-grained model of time. For our previous analysis of tcmporal imprecision to
apply, time must be represented in sufficiently fine detail for temporal imprecision to be reflected in the model. If
a model has a coarse notion of time, then simultancity, and hence common knowledge, are often attainable. For
example, in synchronous systems (those where the agents have access 1o a shared clock, so that, intuitively, the
time is common knowledge) there is no temporal imprecision. As an example, consider a simplificd model of
the muddy children problem. The initial statcs of the children and the father describe what they sce; later states
describe cverything they have heard. All communication proceeds in rounds. In round 1, if there is at least one
muddy child, a message to this cffect is sent to all children. In the odd-numbered rounds 1, 3, 5, .. ., the father
sends to all children the message “Docs any of you know whether you have mud on your own forchead?” The
children respond “Yes” or “No” in the even-nuimbered rounds. In this simplified model, the children do attain
common knowledge of the father’s statement (after the first round). If, however, we “enhance” the model to take
into consideration the minute details of the neural activity in the children’s brains, and considered time on, say, a
millisecond scale, the children would not be modeled as hearing the father simultaneously. Moreover, the children
would not attain common knowledge of the father’s statement. We conclude that whether a given fact becomes
common knowledge at a certain point, or in fact whether it ever becomes common knowledge, depends in a crucial



way on the model being used. While common knowledge may be attainable in a certain model of a given real
world situation, it becomes unattainablc once we consider a more detailed model of the same situation.

When are we justified in rcasoning and acling as if common knowledge is attainable? This reduces to the
question of when we can argue that one model—in our case a coarser or less detailed model—is “as good”
as another, finer, model. The answer, of course, is “it depends on the intended application” Our approach
for deciding whether a less detailed model is as good as another, finer, model, is to assume that there is some
“specification” of interest, and to consider whether the finer model satisfies the same specification as the coarser
model. For example, in the muddy children puzzle, our carlicr model implicitly assumed that the children all hear
the father’s initial statement and later questions simultaneously. We can think of this as a coarse model where,
indeed, the children attain conimon knowledge. For the fine model, suppose instead that every time the father
speaks, it takes somewhere between 8 and 10 milliseconds for cach child to hear and process what the father says,
but the exact time may be difTerent for cach child, and may cven be difTerent for a given child every time the father
speaks. Sumilarly, afier a given child speaks, it takes between 8 and 10 milliseconds for the other children and the
father to hear and process what he says. (While there is nothing particularly significant in our choice of 8 and 10
milliscconds, it is important that a child does not hear any other child’s response to the tather’s question before
he utters his own responsc.) The father docs not ask his & question until he has received the responses from all
children to his (k — 1) question.

The specification of interest for the muddy children puzzie is the following: A child says “Yes” if he knows
whether he is muddy and says “No” otherwise. This specification is satisfied in particular when each child follows
the protocol that if he sees & muddy children, then he responds “No” to the father’s first & questions and “Yes™ to
all the questions after that. This specification is true in both the coarse model and the fine model. Therefore, we

consider the coarse model adequate. I part of the specification had been that the children answer simultancously,
then the coarse model would not have been adequate.

7 Approximations of Common Knowledge

Section 4 shows that common knowledge captures the state of knowledge resulting from simultangous events. It
also shows, however, that in the absence of events that are guaranteed to hold simultancously, common knowledge
is not attained. In Scction 6, we tried to answer the question of when we can reason and act as if certain events
were simultaneous. But there is another point of view we can take. There are situations where cvents holding
at different sites need not happen simultancously; the level of coordination required is weaker than absolute
simultancity. For example, we may want the events to hold at most a certain amount of time apart. It turns out
that just as common knowledge is the state of knowledge corresponding to perfect coordination, there are states
of shared knowledge corresponding 1o other forms of coordination. We can view these states of knowledge as
approximations of tru¢ common knowledge. Fortunately, while perfect coordination is hard to attain in practice,
weaker forms of coordination arc oficn attainable. This is one explanation as to why the unattainability of common
knowledge might not spell as great a disaster as we might have originally cxpected. This scetion considers two of
these weaker forms of coordination, and their corresponding states of knowledge.

Let us return to the first Alice and Bob example. Notice that if € = 0, then Alice and Bob attain common
knowledge of sent{ 1) immediately after the message is sent, In this case, it is guaranteed that once the message is
sent, both agents immediately know the contents of the message, as well as the fact that it has been sent. Intuitively,
it seems that the closer £ is to 0, the closer Alice and Bob’s state of knowledge should be to common knowledge.
Compare the situation when € > 0 with e = 0. As we saw, il € > 0 then Alice does not know that Bob received
her message immediately after she sends the message. She does, however, know that within e time units Bob will
reccive the message and know both the contents of the message and that (he message has been sent, The sending
of the message results in a situation where, within € time units, everyone knows that the situation holds. This is
analogous to the fact that common knowledge corresponds to a situation where everyone knows that the situation
holds. This suggests that the state of knowledge resulting in the Alice and Bob scenario should involve a fixed
point of some sort. We now discuss a notion of coordination related to the Alice and Bob example, and define an
approximation of common knowledge corresponding to this type of coordination.



An cvent ensemble is said to be e-coordinated if the local events in it never hold more than ¢ time units
apart. Note that e-coordination with ¢ = 0 is perfect coordination. While it is essentially infcasible in practice
to coordinate cvents so that they hold simultaneously at different sites of a distributed system, e-coordination
is ofien attainable in practice, even in systems where there is uncertainty in message delivery time. Morcover,
when ¢ is sufficiently small, there are many applications for which e-coordination is practically as good as perfect
coordination. For example, instcad of requiring a simultancous attack in the coordinated attack problem, it may
be sufficient to require only that the two divisions attack within a certain e-time bound of each other. This is called
an e-coordinated attack.

More generally, e-coordination may be practically as good as perfect coordination for many instances ol
agreements and conventions.  One example of e-coordination results from a message being broadeast to all
members of a group, with the guarantee that it will reach all of the members within e time units of one another. In
this case it is casy to sec that when an agent reccives the message, he knows the message has been broadcast, and

knows that within ¢ time units cach of the members of the group will have reccived the message, and will know
that withine . ..

Let ¢ be arbitrary. We say that within an e-interval evervone knows @, denoted E° @, if there is an interval of ¢
time units containing the current time such that each agent comes to know ¢ at some point in this interval. We
define e-common knowledge of ¢, denoted by C¢ o, as the state of shared knowledge in which ¢ (¢ A C¢ ) hold
(this is defined formally as a greatest fixpoint) [HM90].

Just as common knowledge is closely related to perfect coordination, e-common knowledge is related to
e-coordination. It can now be shown that the event ensemble of attaining e-common knowledge is e-coordinated,
that is, all agents attain common knowledge within an e-interval, and furthermore, if an event ensemble is
e-coordinaled, then whenever the events in it occur the agents have e-common knowledge of that fact.

Since in the coordinated attack problem message delivery is not guaranteed, it can be shown that the generals
cannot achieve cven e-coordinated attack. On the other hand, if messages are guaranteed to be delivered within
€ units of time, then e-coordinated attack can be accomplished. General A simply sends General B a message
saying “atfack” and attacks immediately; General B attacks upon receipt of the message.

Although e-common knowledge 1s useful for the analysis of systems where the uncertainty in message
communication time is small, it is not quitc as uselul in the analysis of systems where message delivery may
be delayced for a long period of time. In such systems, rather than perfect or e-coordination, what can often be
achieved is eventual coordination. An example of an eventual coordination consists of the delivery of (copies of)
a message broadcast to every agent in a system with arbitrary message delays. An agent receiving this message
knows the contents of the message, as well as the fact that each other agent must receive the message at some
point in time, either past, present, or futurc. Eventual coordination gives rise to eventual common knowledge, that

is related to eventual coordination just as common knowledge is related to perfect coordination, and e-common
knowledge is related 1o e-coordination.

Just as e-coordinated attack is a weakening of the simultaneity requirement of coordinated attack, a further
weakening of the simultaneity requirciment is given by eventually coordinated attack. This requircment says that
if one of the two divisions attacks, then the other division eventually attacks, If messages are guaranteed to be

dclivered eventually, then even it thiere is no bound on message delivery time, an cventually coordinated attack
can be carried out.

8 Summary

The central theme of this paper is an attempt 1o resolve the paradox of common knowledge: Although common
knowledge can be shown 1o be a prerequisite for day-lo-day activitics of coordination and agrecment, it ¢an also
be shown to be unattainable in practice. The resolution of this paradox leads to a deeper understanding of the
nature of common knowledge and coordination.
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