
Allowing users to weight search terms

Ronald Fagin1

IBM Almaden Research Center

San Jose, CA 95120-6099, USA

fagin@almaden.ibm.com

Yo�elle S. Maarek

IBM Research Laboratory in Haifa

MATAM, Haifa 31905, Israel

yoelle@il.ibm.com

Abstract

Information retrieval systems typically weight the importance of search terms according to

document and collection statistics (such as by using tf � idf scores, where less common terms

are given higher weight). We consider here the scenario where a user can express her own

subjective weighting of the importance of the terms that form the query on top of the system-

generated weighting, and show how this should modify the relevance scores of documents.

This has been allowed before, but only by ad hoc heuristics. We give the �rst principled

method for taking into account the user's subjective weighting of the importance of query

terms. Our method is based on an approach by Fagin and Wimmers, that gives a simple

formula derived from any existing \unweighted" ranking function. A naive application of the

formula would require issuing as many distinct queries as there are terms in the query (search

terms), thus damaging the response time of the retrieval. We explain here how to \smoothly"

integrate the formula in most information retrieval systems so as not to a�ect the retrieval

performance in terms of response time.

Appeared in: Proc. RIAO (Recherche d'Informations Assistee par Ordinateur =

Computer-Assisted Information Retrieval) '2000, pp. 682{700.

1 Introduction and Motivation

Users issuing a query (either free-text or Boolean) in an information retrieval (IR) system often

feel the need to specify to the system which terms in the query, which we will refer to in the

following as \search terms", are more crucial to them. Thus, for the same query, two distinct

users might have di�erent perspectives, and might wish to give that information to the IR engine.

In this paper, we assume that the user can assign a weight to each search term (where the default

would be that each search term is given equal weight). We now consider two scenarios for this

approach.

1Most of this research was done while the author was a Research Fellow at the IBM Haifa Research Laboratory.

Scenario 1: Modifying the IR engine. Most IR engines will not consider search terms

equally, but instead evaluate their relative importance by considering their distribution in the

full document collection. The intuition behind this approach is that the more frequent a term is

in a collection, the less discriminating it is. The most classical embodiment of this approach is

the family of tf � idf scores [Har92, SM83] where tf stands for the \term frequency" of a term

in a document, and idf for the \inverse document frequency".

The possibility of allowing the user to assign weights to search terms exists already in some

IR engines (although apparently not in any of the popular Web search services), but is typically

implemented via ad hoc heuristics, such as arbitrarily increasing the contributing score of the

preferred search terms. As a typical example, in the INQUERY system [BCCN95], the user may

be given the option of modifying the weightings in the tf factor. Similarly, some expert users who

understand the underlying retrieval model of some given IR engine can often \trick" the retrieval

process by simply repeating the preferred terms in the query as if they were appearing more, so

as to increase their tf factor, and thus arti�cially boost the relevance scores of documents that

contain it. We propose here a principled method for taking user-assigned weights into account

in the ranking process (using any kind of GUI artifact). Note that user-assigned weights might

be drastically di�erent from the relative importance assigned to each term (or indexing unit)

by the IR engine according to collection statistics. In the �rst case, we refer to a manually

assigned subjective weighting, while in the latter, we have an \objective" weighting derived from

the intuition that the more frequent a term is in a collection, the less discriminating it is.

Scenario 2: Post-processing the results of an IR engine. We now consider another

scenario in which the user might wish to weight the importance of search terms. Assume that

the user gives a standard (unweighted) query to an IR engine, and the IR engine gives back a

ranked list of results. The user might wish to use a post-processor to rerank the results. Such

a situation might arise because the user is not satis�ed with the results, since some documents

that prioritize one perspective of the query get a higher rank (and steal \real estate" on the top

of the ranked list) than others that re
ect what the user really intended. To answer such needs,

most search services give users the option to re�ne results. Apart from the traditional \relevance

feedback" facility, some search services propose simpler re�nement paradigms. Thus, on the Web,

Excite2 proposes a set of search terms to be added to the query by the user, and Infoseek3 allows

users to search within the search results. In the same spirit as the latter, we propose here a less

drastic approach that does not actually prune the search results, but instead simply reranks them

according to user-assigned weights on the query terms. In other words, instead of doing a binary

choice, as to whether search terms are included or not, we propose a more continuous approach,

where search terms are each given a weight between 0 and 1.

Consider the following example, where a user is looking for information about tax treaties

between the U.S. and France, and issues the query \tax treaties US France" to Infoseek.4 She

will get a number of documents, dealing with tax treaties or simply U.S. treaties, ranked higher

2http://www.excite.com
3http://www.infoseek.com
4Note that we use Infoseek here for the sake of the example. For that particular query, we did in fact �nd much

more authoritative answers via Yahoo or Google, for instance.

than the �rst relevant document, which comes as candidate number 21:

Figure 1: InfoSeek 21st candidate to \U.S.-France tax treaties"

She might improve her results signi�cantly by using the \Search within results" feature (See

one of the two buttons below the search �eld in Fig. 1) using the term \France". She will get

then the same candidate in second position.

However, in the above mentioned example, our user might still be interested in other related

tax treaties (e.g., with Spain) and might want a �ner control than a binary choice regarding

the presence/absence of the term \France". We propose here a mechanism for letting the user

manually (and subjectively) assign a higher weight to the term \France", so that the IR engine

will produce a ranking that re
ects the user's preferences. Thus, in the example cited above,

once she has assigned a higher weight to the term \France" in her query, our user would obtain a

di�erent ranking of the results. Some \new" documents, that were at lower ranks in the previous

example, suddenly make their appearance in the top �ve.

In this paper, we propose a principled method for taking user-assigned weights into account

in the ranking process, that can be applied in either scenario. This method is based on a formula,

developed by Fagin and Wimmers [FW97] for evaluating queries in a multimedia database system.

(Fagin and Wimmers were interested in a situation where, say, the user searches for objects that

are red and round, and where, say, the user cares twice as much about the color as the shape.)

As we shall discuss, we both extend and simplify Fagin and Wimmers' approach, in order to

apply it to weighting search terms. As another contribution, we show how the formula can

be implemented e�ciently in IR engines. A naive \direct" implementation of the formula would

require issuing as many distinct queries as there are search terms, which would signi�cantly a�ect

the e�ciency. We show here that in most IR engines (typically those based on the vector space

model), this multiple issuing of queries is not necessary, and the same results can be achieved via

Figure 2: InfoSeek results after \Search within results" on term \France"

a simple modi�cation of the retrieval scheme that does not a�ect the retrieval response time.

Section 2 discusses Fagin and Wimmers' formula for incorporating weights into scoring rules,

which is unique under certain natural assumptions, and gives our extension and simpli�cation.

Section 3 shows how, in practice, the weighted ranking formula can be integrated in typical IR

engines while not drastically changing their architecture or a�ecting their e�ciency in terms of

response time. In Section 4, we describe the integration of the reranking feature into Fetuccino

[BSHJ+99], and continue our discussion of our running example of U.S.-France tax treaties.

Section 5 considers the e�ects, in the weighted case, of allowing search terms to be prefaced by

the plus symbol (+) and the minus symbol (�) (in the unweighted case, the plus symbol typically

means that the search term must appear in the document, and the minus symbol typically means

that the search term must not appear in the document). Section 6 summarizes our contributions.

2 A Principled Formula for Incorporating Weights into Scoring

Rules

In this section, we discuss a technique developed by Fagin and Wimmers [FW97] for incorpo-

rating user preferences in multimedia queries. We show how we both extend and simplify their

methodology, in order to apply it to weighting search terms.

In a multimedia database system, queries may be fuzzy: thus, the answer to a query such as

(Color=`red') may not be 0 (false) or 1 (true), but instead a number between 0 and 1. A con-

junction, such as (Color=`red') ^ (Shape=`round'), is evaluated by �rst evaluating the individual

conjuncts and then combining the answers by some aggregation function. Typical aggregation

functions include the min (the standard aggregation function for the conjunction in fuzzy logic)

and the average. Fagin and Wimmers were concerned with the issue of permitting the user to

weight the importance of atomic subformulas (so that, for example, the user can say that she

cares twice as much about the color as the shape). Thus, they dealt with the following question.

Assume that we are given an aggregation function. How should this function be \modi�ed" so

that it is possible to weight the importance of the arguments?

Let us consider more closely the situation where the user cares twice as much about the color

as the shape. How should we combine the color score and the shape score to obtain an overall

score? If the aggregation function is simply to take the average, then the answer is fairly clear.

We would assign a weight �1 = 2=3 to the color, and a weight �2 = 1=3 to the shape. (The

weights must sum to one, and the weight for color, namely �1, should be twice the weight �2 for

shape.) We then take the weighted average �1x1 + �2x2. But what if we are using a di�erent

aggregation function than the average for combining scores? For example, let us assume that we

are using the min. Then as we now show, we cannot simply take the result to be �1x1 + �2x2.

For, consider the case where �1 = �2 = 1=2, which corresponds to the situation where the user

cares equally about the color and the shape. Then �1x1 + �2x2 gives us the wrong answer: it

gives the average, not the min. How should the min function be \modi�ed" so that it is possible

to weight the importance of the arguments?

We face a similar situation in our search application. We are given the indexing units, or

for short, search terms, extracted from a query, and we are given an IR engine that assigns a

relevance score telling how well these search terms match a given document. We want to know

how the search engine should be modi�ed so that it is possible to weight the importance of the

search terms.

In [FW97], the \input" to the method is a collection of aggregation functions, one for each set

of attributes. For example, if the attributes of interest are color, shape, and texture, then there

are seven aggregation functions, one for every nonempty subset of fcolor, shape, textureg. Then

the aggregation function that deals with, say, the subset fcolor, shapeg tells how to combine the

color score and the shape score to obtain a combined score.

One of our contributions in this paper is the realization that there is an unnecessary restriction

in [FW97]: the methodology there is applied only to aggregation functions (which combine a tuple

of numbers, such as the color score and the shape score, into a single number). We wish to allow

the arguments to be non-numerical (namely, search terms). Further, instead of dealing with the

complexity of a set of (aggregation) functions, we realized that all that is needed is that there be

an underlying scoring rule, which is an assignment of a value to every tuple, of varying sizes.

Fagin and Wimmers give an explicit formula for incorporating weights. Their formula is

surprisingly simple, in that it involves far fewer terms than one might have guessed. It has three

further desirable properties. The �rst desirable property is that when all of the weights are equal,

then the result is obtained by simply using the underlying scoring rule. Intuitively, this says that

when all of the weights are equal, then this is the same as considering the unweighted case. The

second desirable property is that if a particular argument has zero weight, then that argument

can be dropped without a�ecting the value of the result. The third desirable property is that

the value of the result is a continuous function of the weights. They prove that if these three

desirable properties hold, then under one additional assumption (a type of local linearity), their

formula gives the unique possible answer.

We now describe our modi�cation of the framework of [FW97]. Let d be a �xed document.

Let f be a function whose domain is the set of all tuples (of all sizes) over some common domain,

and with range the set of real numbers. In our application, if x1; : : : ; xm are search terms,

then f(x1; : : : ; xm) is interpreted as the relevance of document d with respect to these search

terms. Typically, search results consist of a list of documents ranked by decreasing f value (the

list being possibly truncated according to the settings of the considered retrieval system). In

situations where we want to make explicit the dependence on d (like in Section 3), we shall write

rx1;:::;xm(d) instead of f(x1; : : : ; xm).

Assume that �1; : : : ; �m are all nonnegative and sum to one. Then we refer to � = (�1; : : : ; �m)

as a weighting. Intuitively �i is the weight of search term xi. For each weighting � = (�1; : : : ; �m),

we obtain (using the methodology of [FW97]) a function f� whose domain consists of tuples of

length m (the length of �). Intuitively, if X = (x1; : : : ; xm) is a tuple of search terms, then

f�(X) is the relevance of document d with respect to the search terms x1; : : : ; xm, when �i is the

weight of search term xi.

Fagin and Wimmers give the following desiderata for the functions f�:

D1. f(1

m
;:::;

1

m
)(x1; : : : ; xm) = f(x1; : : : ; xm). That is, if all of the weights in � are equal, then the

\weighted" function f� coincides with the \unweighted" function f .

D2. f(�1;:::;�m�1;0)(x1; : : : ; xm) = f(�1;:::;�m�1)(x1; : : : ; xm�1). That is, if a particular argument has

zero weight, then that argument can be dropped without a�ecting the value of the result.

D3. f(�1;:::;�m)(x1; : : : ; xm) is a continuous function of �1; : : : ; �m.

Fagin and Wimmers give the following choice for f(�1;:::;�m)(x1; : : : ; xm), under the assumption

that �1 � � � � � �m:

(�1��2) �f(x1)+2 �(�2��3) �f(x1; x2)+3 �(�3��4) �f(x1; x2; x3)+ � � �+m ��m �f(x1; : : : ; xm): (1)

It is straightforward to verify thatD1,D2, andD3 are satis�ed when we take f(�1;:::;�m)(x1; : : : ; xm)

to equal (1). This formula (1) for f(�1;:::;�m)(x1; : : : ; xm), which we call the weighting formula, is

the formula we adopt for use in our application.

It is shown in [FW97] that the weighting formula is well-de�ned, even when some of the �i's

are equal. For example, if �2 = �3, then should the second term of the weighting formula involve

f(x1; x2) or f(x1; x3)? The point is that it does not matter, since in either case the result is

multiplied by (�2 � �3), which is 0.

Although the weighting formula may look somewhat arbitrary, it is shown in [FW97] that

it is actually uniquely determined, under one additional assumption that we now discuss. Two

weightings are called comonotonic if they agree on the order of importance of the arguments.

Formally, assume that �;�0 are weightings (over the same index set). Then �;�0 are comono-

tonic if there do not exist i; j with �i < �j and �0
j
< �0

i
both holding. For example, (:2; :7; :1) and

(:3; :5; :2) are comonotonic because in both cases, the second entry is biggest, the �rst entry is

next-biggest, and the third entry is smallest. It is clear that comonotonicity is re
exive and sym-

metric. Comonotonicity is not transitive, since for example (0; 1) and (1; 0) are not comonotonic,

while (0:5; 0:5) is comonotonic to both (0; 1) and (1; 0). We say that our collection of weighted

functions f� is locally linear if

f���+(1��)��0(X) = � � f�(X) + (1� �) � f�0(X); (2)

whenever �;�0; X are comonotonic, and � 2 [0; 1].

De�ne the condition D30 as follows:

D30. The collection of weighted functions f� is locally linear.

Condition D30 implies condition D3 above (that f(�1;:::;�m)(x1; : : : ; xm) is a continuous function of

�1; : : : ; �m) [FW97]. Furthermore, the choice of the weighting formula (1) for f(�1 ;:::;�m)(x1; : : : ; xm)

is the unique one that satis�es D1, D2, and D30 [FW97].

We now discuss local linearity. Intuitively, local linearity says that the aggregation function

acts like a balance. Local linearity demands that the weighting that is the midpoint of two

comonotonic weightings should produce a value that is the midpoint of the two values produced

by the given weightings. In fact, local linearity extends beyond the midpoint to any weighting that

is a convex combination of two comonotonic weightings: if a weighting is a convex combination

of two comonotonic weightings, then local linearity demands that the associated value should

be the same convex combination of the values associated with the given weightings. In other

words, local linearity demands that (2) must hold when � and �0 are comonotonic, and so agree

on which search term is the most important, which is the second most important, etc. Local

linearity says that in this case, we do a linear interpolation, which is a very natural assumption.

Another argument in favor of local linearity is that it leads to such a nice formula, namely, (1).

We note that it is shown in [FW97] that an assumption that (2) holds for every choice of � and

�0, even those that are not comonotonic, would be incompatible with the properties D1 and D2,

unless the unweighted function f is of a very special form, namely, f(x1; : : : ; xk) =
f(x1)+���+f(xk)

k

for every k.

The weighting formula is a convex combination of the values f(x1), f(x1; x2), f(x1; x2; x3),

: : :, f(x1; : : : ; xm), since the coe�cients (�1 � �2), 2 � (�2 � �3), 3 � (�3 � �4), : : :, m � �m are

nonnegative and sum to 1. A surprising feature of the weighting formula is that it depends only

on the m terms f(x1), f(x1; x2), f(x1; x2; x3), : : :, f(x1; : : : ; xm), and not on any of the other

possible terms, such as f(x2); f(x1; x3), and so on. A priori, we might have believed that f�(X)

would depend on all of the 2m � 1 such terms.

3 Implementation of the formula

In this section, we consider how to implement the weighting formula in an IR engine, in order

to weight the importance of search terms. From now on, we shall use the notation rx1;:::;xm(d)

to represent the relevance score assigned by the IR engine to the document d when the search

terms are x1; : : : ; xm. In the notation of the previous section, this is f(x1; : : : ; xm). Similarly, we

use r�1;:::;�m
x1;:::;xm

(d) to represent the relevance score that the weighting formula gives in the weighted

case, where the search terms x1; : : : ; xm are assigned the weights �1; : : : ; �m, respectively. Thus,

when �1 � � � � � �m, we have that r
�1;:::;�m
x1;:::;xm

(d) is given by

(�1� �2) � rx1(d)+2 � (�2� �3) � rx1;x2(d)+3 � (�3� �4) � rx1;x2;x3(d)+ � � �+m � �m � rx1;:::;xm(d): (3)

We shall hereafter refer to (3) as the weighting formula.

3.1 General Case

Assume that we are given an arbitrary IR engine that, when given search terms x1; : : : ; xm, assigns

a relevance score to each document d. By making use of the weighting formula, this IR engine

can be adapted to assign a relevance score even in the weighted case, where the search terms

x1; : : : ; xm are assigned the weights �1; : : : ; �m, respectively, and where �1 � � � � � �m. Thus,

the IR engine need only compute rx1(d); rx1;x2(d); : : : ; rx1;:::;xm(d), and then take the convex

combination of these values given by the weighting formula (3). Thus, by means of the weighting

formula, the IR engine can be given the additional capability of allowing the search terms to be

weighted. On the face of it, this procedure of passing to the weighted case requires m calls to the

IR engine: once for the query with search term x1; once for the query with search terms x1; x2;

and so on. In the next two subsections, we discuss situations where the weighted case can be

done much more e�ciently: essentially as e�ciently as in the unweighted case.

3.2 A Simple, Concrete Example

In this section, we consider a simple example of an IR engine, and show how to modify it to deal

with the weighted case. We assume that the ranking formula in the unweighted case is derived

from tf � idf in the vector space model. To keep the example especially simple, we assume that

there is no query normalization [Sal89] (although this assumption is not really needed).

In practice, given search terms x1; : : : ; xm, such a search engine does not compute rx1;:::;xm(d)

for every document d in the collection being searched. Instead, by an inverted index �le, the IR

engine accesses only the postings of those search terms that appear in the query, and updates an

accumulator that stores the score of every document that shares at least one search term with

the query5.

In such an IR engine, the accumulator can be updated using the following simple algorithm:

Let acc[d] be the entry for document d in the score accumulator

Init all accumulator entries to 0

For each xi in the query pro�le

Retrieve its associated postings list f(di1; �i(di1)); (di2; �i(di2)); : : : ; (dini ; �i(dini))g

For each document dik (with k = 1; : : : ; ni) in the postings list

Do acc[dik] = acc[dik] + g(�i(dik); xi)

Sort the accumulator by decreasing order

Return the list of documents sorted according to score accumulator value

Here di1; : : : ; dini are the documents associated in the inverted index �le with the search term xi.

Also, �i(dik) represents some numerical information pertinent to the occurrence of search term

xi in document dik; in the case we are considering, this is derived from the occurrence count tf .

Finally, g(�i(dik); xi) gives a value that depends on the document-speci�c information �i(dik) and

on collection-speci�c information about the search term xi, such as idf . In our case of interest,

g(�i(dik); xi) gives a score derived from the tf and idf values for the search term xi.

5Some heuristics such as partial list searching [Sal89] could also be used in which even less documents are

considered. However, the explanation stated here still holds in that case.

It can be shown easily that for additive ranking measures such as the cosine measure of

similarity as classically used in the vector space model, applying the above algorithm gives the

appropriate value. In other words, at the end of the accumulative process, we have

acc[d] =
mX

i=1

g(�i(d); xi) = rx1;:::;xm(d):

Let us consider the weighted case, where the search terms x1; : : : ; xm are assigned the weights

�1; : : : ; �m, respectively, and where �1 � � � � � �m. We now show how to modify this simple

accumulator algorithm to use in the weighted case, so that the acc[d] value at the end of the

process is equal to the value given by the weighting formula.

Since we are assuming in this example that there is no query normalization, we can easily

verify that for each j (with 1 � j � m), we have

rx1;:::;xj(d) = rx1(d) + � � �+ rxj(d): (4)

Therefore, it follows simply from (3) that

r�1;���;�m
x1;:::;xm

(d) = ((�1 � �2) + 2 � (�2 � �3) + � � �+ (m� 1) � (�m�1 � �m) +m � �m) � rx1(d)

+ (2 � (�2 � �3) + � � �+ (m� 1) � (�m�1 � �m) +m � �m) � rx2(d)

+ � � �

+ m � �m � rxm(d)

Let us denote the coe�cient of rxi(d) above by �i. Thus, if �m+1 is arti�cially de�ned to be

0, then

�i =
mX

j=i

j(�j � �j+1):

Hence, the accumulator algorithm stated above (which deals with the unweighted case) can be

modi�ed so as to take into account weighted terms by simply changing the computation of the

acc formula as follows:

acc[dik] = acc[dik] + �i � g(�i(dik); xi):

Now 1 = �1 � �2 � � � � � �m � 0 (this follows from the fact, noted in Section 2, that the

coe�cients (�1 � �2), 2 � (�2 � �3), 3 � (�3 � �4), : : :, m � �m of (1) are nonnegative and sum to 1).

Therefore, the net e�ect of the change in the weighted accumulator algorithm from the unweighted

accumulator algorithm is to multiply the term associated with xi (namely, g(�i(dik); xi)) by a

multiplier �i that takes on the value 1 for the highest-weighted xi (namely, x1), and whose value

decreases the less highly weighted xi is. On the face of it, this is a reasonable heuristic. The

weighting formula determines exactly what the values of these multipliers �i should be.

3.3 Su�cient Conditions for E�ciency

There are many situations, much more general than that described in the previous subsection,

where we can convert an algorithm for the unweighted case into an algorithm for the weighted

case, without drastically changing the architecture or a�ecting the performance of the IR engine.

This applies to IR engines such that:

1. There is an inverted index �le, which for each search term xi gives those documents d that

are relevant to xi, possibly along with other information. (This information could be about,

say, the number and/or location of occurrences of xi in document d.) From the information

associated with x1, the information associated with x2, : : :, and the information associated

with xj , it is possible to compute (quickly) rx1;:::;xj(d), for each document d.

2. The value rx1;:::;xj(d) is positive precisely if document d is relevant to at least one of

x1; : : : ; xj , and otherwise rx1;:::;xj(d) = 0.

3. Given search terms x1; : : : ; xj, we are interested only in determining some subset of the

documents d such that rx1;:::;xj(d) is positive.

Intuitively, the �rst condition shows what the inverted index �le is for: to determine certain

documents d that are relevant to the search terms xi. Taken together, these three conditions

intuitively say that given the search terms x1; : : : ; xj, the relevant documents d that we wish

to determine all have rx1;:::;xj(d) positive, and these documents d can be obtained by using

information in the inverted index �le about x1; : : : ; xj.

Let D be the set of all documents d that are relevant to at least one of x1; : : : ; xm. We then

see from the weighting formula (3) that the set of documents d where r�1;:::;�m
x1;:::;xm

(d) is positive

is a subset of D. Therefore, the documents d that are relevant in the weighted case (where

in particular r�1;:::;�m
x1;:::;xm

(d) is positive) can be obtained by using only information in the inverted

index �le about x1; : : : ; xm. Hence, we can use the inverted index �le to determine the relevant

documents in the weighted case, just as we could in the unweighted case. Further, we look at the

inverted index �le only to �nd values for the search terms x1; : : : ; xm, just as in the unweighted

case.

3.4 Using a Post-processor

We now discuss the implementation of a post-processor, that takes the results of an IR engine

and reranks them to take into account the user-assigned weights (this is Scenario 2 in the intro-

duction). There are two di�erent sub-scenarios.

Sub-scenario 1: Using information from the IR engine. The �rst sub-scenario requires

a modi�cation of the IR engine, so that the IR engine returns not only the top documents and

their scores using the set of search terms, but also the scores of those documents using each search

term separately. Just as before, there is very little loss in e�ciency, since the same entries in the

inverted index �le are touched as in the unweighted case. In this sub-scenario, we could imagine

that the IR engine has a \Rerank" button, that the user can press to impose weights and thereby

rerank the results.

Sub-scenario 2: Using a search parasite. In the second sub-scenario, there is a search

\parasite", that takes the small set of documents that are a result of the unweighted query, and

reranks them using its own ranking algorithm. Thus, under this approach, the scores obtained

from the original IR engine are ignored: the input to the search parasite is simply the set of

documents obtained from the original search, along with the set of search terms and the user-

assigned weighting.

By using our weighting formula, we can convert any search parasite into one that takes

into account user-assigned weightings. Since we have available to us a search parasite, namely

Fetuccino [BSHJ+99], we implemented this approach. We describe this implementation in more

detail in the next section.

4 Integration in a Search Parasite for Dynamic Reranking

We integrated the \dynamic reranking" feature described above, in an experimental version

of Fetuccino [BSHJ+99]. Fetuccino is a search parasite that validates and augments existing

Web search services results (by local directed crawling �a la WebGlimpse [MSG97]), and �nally

visualizes them in a Java applet. Its standard version (without the rerank feature) is available

as a free service on the IBM Corporate Java page6, as well as a free stand-alone application

on the IBM Alphaworks site7. The integration was done by simply modifying the similarity

measure computation in the relevance ranking component, using the weighting formula, and by

adding a customized view in the result visualization applet. In the example below, the user

selected Excite as the primary IR engine, entered the query \tax treaty between US and France"

(without assigning any weighting yet) and Fetuccino returned the results shown in Fig. 3.

Once the user clicks on the \Add-Ons/Rerank" function, she needs to assign weights to each

indexing unit of the query (Fig. 4). In the case of Fetuccino, not only are single terms considered,

but also \lexical a�nities", that is, binary word correlations (that were also used in the original

ranking in Fig. 3), since the Fetuccino internal IR engine is provided by the Guru IR system

[MS89], [Maa91], that supports this original indexing scheme. This demonstrates the
exibility

of the weighting formula. It can be applied not only to single terms, but to any kind of indexing

unit.

After clicking on \Rerank", the default view is changed to a \reranked view" (Fig. 5), where

the scoring of each document has been changed to the new score computed dynamically according

to the weighting formula (of course, we normalize the weights so that they add to 1). For the

6Free service avaiable at http://www.ibm.com/java/fetuccino.
7Stand-alone application downloadable from http://www.alphaworks.ibm.com, choose Mapuccino/Fetuccino

technology download.

Figure 3: Fetuccino results for unweighted query

Figure 4: Assigning weights to query terms

sake of the comparison, this view does not reorder the documents, but rather leaves them in the

descending order shown in Fig. 3. The changes of the relevance score of each result is re
ected

in three ways: (a) the score itself, which prefaces the document title, (b) the shade of blue,

which re
ects the score (the darker, the more relevant), and (c) the rank in the list according

to the score appended to the title. Thus, the top candidate had its score changed from 38%

to 7%, and its rank moved to 7, while the 3rd candidate was boosted to 1st place. Note that,

interestingly enough, the previous 4th candidate (\Spanish wealth tax") is rightly boosted to 2nd

place, because in spite of its title, its contents mainly refers to the tax treaty with France. The

previous second candidate that was highly ranked is \demoted", since it does not refer either to

France or to tax treaties, but to general U.S. treaties.

Figure 5: Fetuccino results to a weighted query

The examples provided constitute in no way an evaluation of the e�ectiveness of the weighting

formula, but rather an example of its usage in an existing system. Indeed, we do not propose here

yet another ranking mechanism, but rather, assuming that such a ranking mechanism is given, we

give a principled formula for integrating user-assigned weights into this mechanism, which is the

unique possible such formula under certain assumptions. Therefore, evaluation based on recall

and precision is out of the scope of this paper. However, evaluating such results would de�nitely

be interesting, in the context of the TREC forum for instance, to decide not on the correctness

of the weighting formula itself, but rather whether weighting search terms at all is bene�cial to

the search process.

5 Allowing + and �

Nearly every major Web search service allows a search term to be prefaced by the plus symbol

(+), which means that the search term must appear in the document, or by the minus symbol

(�), which means that the search term must not appear in the document. See for example the

help pages of AltaVista 8, Excite9, Lycos10 Infoseek11, etc. Thus, the plus and minus symbols can

be viewed as �ltering functions, that cause the results of a search to be �ltered by search terms

that must be present or absent from the answer [BYRN99]. In some search services, such as

Google12, the plus symbol has no e�ect, since each search term is already required to be present

in documents that match the query.

What should the meaning of plus and minus symbols be when weightings are allowed? For

example, let +x be a search term, prefaced by a plus symbol, that is given a very low user-

assigned weight. There seems to be a con
ict, since the plus symbol attaches great importance

to the term, whereas the low weight attaches low importance to the term.

Our methodology can be applied directly to the case where plus and minus symbols are

allowed. All we need to assume is that in the unweighted case, a score is still assigned to every

document, even when some of the search terms may be prefaced by a plus or a minus symbol

Of course, in the unweighted case, because of the semantics of the plus and minus symbols, the

score for a document should be zero if it does not contain a search term that is prefaced by a

plus symbol, or if it does contain a search term that is prefaced by a minus symbol.

Just as before, our weighting formula gives the unique solution that satis�es our desiderata in

Section 2. For example, assume that the search terms are +x1, +x2, �x3, with weights �1; �2; �3,

respectively, where �1 � �2 � �3 and �1 + �2 + �3 = 1. Then the weighting formula tells us that

r
�1;�2;�3

+x1;+x2;�x3
(d) should be taken to be

(�1 � �2) � r+x1
(d) + 2 � (�2 � �3) � r+x1;+x2

(d) + 3 � �3 � r+x1;+x2;�x3
(d): (5)

8http://doc.altavista.com/help/search/search help.shtml
9http://www.excite.com/Info/searching2.html
10http://www.lycos.com/help/search-help.html#exclude
11http://infoseek.go.com/Help/help.html?key=HELP T00008 SRCHQUIK
12http://www.google.com

Note that if �1 is strictly greater than �2, then by applying (5) we might get a high score for

a document d that does not contain the search term x2 (because r+x1
(d) might be large). This

is in spite of the fact that x2 is prefaced by a plus symbol. This is probably as it should be,

since the fact that +x2 does not have the highest weight somewhat \overrides" the fact that x2 is

prefaced by a plus symbol. Similarly, by applying (5) we might get a high score for a document d

that contains the search term x3, in spite of the fact that x3 is prefaced by a minus symbol.

Intuitively, this corresponds to the fact that we are not giving a large weight to �x3.

It is instructive to see why our desiderata in Section 2 imply that the semantics of the plus

symbol must change in the weighted case, in the sense that a plus symbol does not force a term

to appear. That is, there may be a document with a positive score, and in fact even a very high

score, even though there is some search term +x where x does not appear in the document (this

search term has a low weight).

Let us assume that the search terms are x1 and +x2. Let d be a document where x2 does

not appear (x2 plays the role of x in our discussion above), but whose score is very high when

x1 is the only search term (the latter statement means that the unweighted score rx1(d) is very

high). By our continuity condition D3 of Section 2, it follows that as � converges to 0, we have

that r
1��;�

x1;+x2
(d) must converge to r

1;0
x1;+x2

(d), which by condition D2 must equal r1
x1
(d), which by

condition D1 (with m = 1) must equal rx1(d). In particular, there is some positive � such that

r
1��;�

x1;+x2
(d) is very high (as close as we want to the very high score rx1(d)). Thus, r

1��;�

x1;+x2
(d) is

very high, even though the term x2 does not appear in document d. So indeed, the semantics of

the plus symbol must change in the weighted case, in the sense that there may be a document

with a very high score, even though there is some search term +x where x does not appear in

the document.

A problematic case occurs when some search term that is prefaced by a minus symbol gets

strictly the highest weight. For example, assume that the search terms are �x1, x2, with weights

�1; �2, respectively, where �1 > �2 and �1 + �2 = 1. Then the weighting formula tells us that

r
�1;�2

�x1;x2
(d) is taken to be

(�1 � �2) � r�x1
(d) + 2 � �2 � r�x1;x2

(d): (6)

But in the evaluation of r
�x1

(d) in (6), we are in a situation where there is only one search

term, and it is prefaced by a minus symbol. This is a peculiar search, in which, intuitively, all

we care about is that the term x1 not appear. This is analogous to \unsafe queries" [Zan86,

RBS87] in a database context, which, intuitively, can produce through the use of negation an

in�nite set of answers.13 It is amusing to try a search against major Web search services with

only one search term, and with that search term prefaced by a minus symbol, and to see the

results that are produced. AltaVista seems to follow the literal meaning of a minus symbol: for

example, the query \�dog" seems to return every Web page that does not contain the word

\dog". Somewhat mysteriously, if we give AltaVista a query such as \�widleoikldiejf", where

widleoikldiejf is a nonsense word that presumably does not appear in any Web page14, then the

number of documents returned varies by one percent or so, depending on which nonsense word

13An example is a query that asks for the name of every person not listed in the database.
14except for those containing this document!

appears after the minus symbol. (Note, incidentally, that this number of Web pages returned

seems to give us a quick estimate of the number of Web pages indexed by AltaVista.) However,

when there is only one search term, and that search term is prefaced by a minus symbol, most

major Web search services simply say that there is no match: apparently, they treat such a search

as illegal.

6 Summary of contributions

IR engines typically weight the importance of search terms (such as by using tf � idf scores,

where less common terms are given higher weight). We consider here the scenario where a user

can express her own subjective weighting of the importance of the search terms on top of the

system-generated weighting, and show how this should modify the relevance scores of documents.

This has been allowed before, but only by ad hoc heuristics. We give the �rst principled method

for taking into account the user's subjective weighting of the importance of search terms. Our

method is based on a formula that has the key advantages of being very simple and of being

uniquely determined under certain constraints that seem intuitively desirable.

We now consider what our contributions have been. First, we have introduced to the infor-

mation retrieval community the formula in [FW97], which was designed originally to deal with

queries in a multimedia database system. In doing so, we made a \conceptual leap": we realized

that the formula in [FW97] can be applied whenever there is an underlying scoring rule (an

assignment of a value to every tuple, of varying sizes) that we want to convert into a weighted

version (where we can weight the importance of each argument). By contrast, Fagin and Wim-

mers considered only methods for combining various numerical scores into an overall numerical

score. Furthermore, we have simpli�ed the notation of [FW97].15 We show how to implement

the weighting formula e�ciently in our application; this is important because a naive application

of the weighting formula would require issuing as many distinct queries as there are search terms.

Finally, we exemplify the usage of the weighting formula in the Web, by showing how it was

integrated in the Fetuccino search mapping system.

7 Acknowledgments

We thank David Carmel, Byron Dom, David Notkin and Frank Smadja for their valuable com-

ments and feedback on previous versions of this paper. Furthermore, we are grateful to Yael Dvir

and Miki Herscovici for integrating the weighting formula in Fetuccino in record time. Finally,

we thank David Carmel for discussions about the role of + and � that led to Section 5.

15Subsequently to our work, Fagin and Wimmers have incorporated our extensions and simpli�cations into a

revised version [FW99] of their paper.

References

[BCCN95] J. Broglio, J. P. Callan, W. B. Croft, and D. W. Nachbar. Document retrieval

and routing using the INQUERY system. In Proceedings of Third Text Retrieval

Conference (TREC-3), pages 29{38, 1995.

[BSHJ+99] I. Ben-Shaul, M. Herscovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim,

V. Soroka, and S. Ur. Adding support for dynamic and focused search with Fetuccino.

In Proceedings of the WWW8 Conference, Toronto, CA, May 1999.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley,

1999.

[FW97] R. Fagin and E. L. Wimmers. Incorporating user preferences in multimedia queries.

In Proceedings of the 1997 International Conference on Database Theory, pages 247{

261, 1997.

[FW99] R. Fagin and E. L. Wimmers. A formula for incorporating weights into scoring

rules. (This is the journal version of \Incorporating user preferences in multimedia

queries".) Theoretical Computer Science, to appear, 1999.

[Har92] D. Harman. Ranking algorithms. In W. B. Frakes and R. Baeza-Yates, editors,

Information Retrieval, Data Structure and Algorithms, pages 241{263. Prentice Hall,

1992.

[Maa91] Y.S. Maarek. Software library construction from an IR perspective. SIGIR Forum,

25(2):8{18, Fall 1991.

[MS89] Y.S. Maarek and F.A. Smadja. Full text indexing based on lexical relations. an

application: Software libraries. In N.J. Belkin and C.J. van Rijsbergen, editors,

Proceedings of SIGIR'89, pages 198{206, Cambridge, MA, June 1989. ACM Press.

[MSG97] U. Manber, M. Smith, and B. Gopal. Webglimpse: Combining browsing and search-

ing. In Proceedings of the Usenix Technical Conference, Los Angeles, CA, 1997.

[RBS87] R. Ramakrishnan, F. Bancilhon, and A. Silberschatz. Safety of recursive Horn clauses

with in�nite relations. In Proceedings of the Sixth ACM Symposium on Principles of

Database Systems, pages 328{339, 1987.

[Sal89] G. Salton. Automatic text processing, the transformation, analysis and retrieval of

information by computer. Addison-Wesley, Reading, MA, 1989.

[SM83] G. Salton and M.J. McGill. Introduction to Modern Information Retrieval. Computer

Series. McGraw-Hill, New York, 1983.

[Zan86] C. Zaniolo. Safety and compilation of nonrecursive Horn clauses. In Proceedings of

First International Conference on Expert Database Systems, pages 167{178, 1986.

