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Abstract 

There are essential differences between multimedia databases 
(which may contain complicated objects, such as images), 
and traditional databases. These differences lead to inter- 
esting new issues, and in particular cause us to consider new 
typos of queries. Wr example, in a multimedia database it is 
reasonable and natural to ask for images that are somehow 
“similar to” some fixed image. Furthermore, there are differ- 
ent ways of obtaining and accessing information in a multi- 
media database than information in a traditional database. 
For example, in a multimedia database, it might be reason- 
able to have a query that asks for, say, the top 10 images 
that are similar to a fixed image. This is in contrast to a 
rolationnl database, where the answer to a query is simply 
a set, In this paper, we survey some new issues that arise 
for multimedia queries, with a particular focus on recent re- 
search by the author, developed in the context of the Garlic 
system at the IBM Almaden Research Center. 

1 Introduction 

As hardware becomes more powerful and as software be- 
comes more sophisticated, it is increasingly possible to make 
use of multimedia data, such as images and video. If we 
wish to access multimedia data through a database system, 
a number of new issues arise. In particular, objects in a 
multimedia database may be much more complicated than 
a typical entry in a column in a relational database. For 
example, a multimedia database might deal with pictures 
that have a complicated coloring pattern and that contain 
a number of shapes. These differences lead to fundamental 
differences between multimedia queries and standard rela- 
tional database queries. In this paper, we consider some of 
these issues, along with existing solutions and open prob- 
lems, 

In Section 2, we discuss the no8on of an atomic query in 
a multimedia database. Here we are often interested in “ap- 
proximate matches”. Therefore, an atomic query in a mul- 
timedia database is typically much harder to evaluate than 
an atomic query in a relational database. In Subsection 2.1, 

we discuss methods of speeding up the evaluation of atomic 
multimedia queries. In Section 3, we consider the evalua- 
tion of Boolean combinations of atomic queries. Unlike the 
situation in relational databases, where the semantics of a 
Boolean combination is quite clear, in multimedia databases 
it is not at all clear what the semantics is of even the con- 
junction of atomic queries. In order to make sense of this 
notion, it is convenient to introduce “graded” (or Yuzzy”) 
sets, in which scores are assigned to objects, depending on 
how well they satisfy atomic queries. There are then “scor- 
ing functions”, which combine scores (under subqueries) for 
an object into an overall score (under the full query) for 
that object. In Section 4, we consider the fact that a system 
capable of dealing with various flavors of multimedia data 
is often actually middleware, and we discuss the impact of 
this on multimedia queries. For example, it may be pos- 
sible to obtain data from some multimedia repositories in 
only limited ways. Algorithms for query evaluation must, 
of course, respect these limitations. In Subsection 4.1, we 
discuss such an algorithm from [Fags] that is optimal under 
certain conditions. This algorithm has been implemented in 
the Garlic system [CHS+95, CHN+95) at the IBM Almaden 
Research Center. In the process of the implementation, in- 
teresting “real-world” issues arose. These are discussed in 
Subsection 4.2. Finally, in Section 5, we discuss an issue 
that arises for multimedia queries but not for standard re- 
lational queries. Namely, in a multimedia query the user 
might want to give extra weight to certain subqueries. For 
example, the user might be interested in objects that are 
both red and round, but care more about the color than 
the shape. In Section 5, we discuss a technique, given by a 
formula from pW97], that shows how to do this weighting. 
This formula is the unique one that satisfies certain natural 
properties. Finally, in Section 6, we summarize, and give 
open problems. 

2 Atomic Queries 

In a multimedia system, an atomic query might ask for an 
object that is red. For simplicity, in this paper we will write 
such an atomic query as Color=‘red’, although in an actual 
system this query might be expressed by selecting a color 
from a color wheel, or by selecting an image Z (that might 
be predominantly red) and asking for other images whose 
colors are ‘close to” that of image I. In response to a query, 
a multimedia system might typically return a sorted list of 
the top, say, 10, items in its database that match the query 
the best. For example, if the query asks for red objects, then 
the result would be a sorted list with the reddest object first, 
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the next reddest object second, etc. 
In order to decide which object is reddest, which object 

is second reddest, and 80 on, there must be a notion of close- 
ncs8 of color, so that the reddest object is the object whose 
color is closest to red. Multimedia systems have sophis- 
ticated color-matching algorithms [1089, NBE+93, S095, 
SC961 that compute the closeness of the colors of two im- 
ages. For example, an image that contains a lot of red and 
a little green might be considered moderately close in color 
to another image with a lot of pink and no green. 

Computing the closeness in color between two images 
may be computationally expensive. For example, we now 
dcecrlbe a method for determining closeness in color that 
was suggeeted by loka [1089], and that is implemented in the 
QBIC (NBE+931 (“Query By Image Content”) system de- 
volopcd at the IBM Almaden Research Center. As described 
in [PBF+Q4], each object has a k-element color histogram 
(typical values of k are 64, 100, or 256). Let x and y be two 
k-dlmcnsionnl vectors that represent the color histograms of 
two objects. The color distance between the two object8 is 
taken to be the distance between the histograms, which is 
deflnod to be 

IAX - YY& - Y)* (1) 
Here the superscript T indicates taking the transpose, and 
A 18 a (symmetric) matrix whose (i,j)th entry describes the 
slmllnrity between color i and color j. 

As with COlOr8, there are a number of ways to define close- 
nC88 between shnpes. These include methods based on tum- 
lng all&h% (ACH-!-90, MKC+Ql], on the Hausdorff distance 
[HRKQ2], on various forms of moments [KKQi’, TCQl], and 
on Fourier descriptors [JaSQ]. Mehtre, Kankanhalli and Lee 
[MKLQ7] and Mumford [Mu911 discuss and compare various 
npproachcs. 

2,l Speeding Up the Evaluation 

As we have discussed, an attribute (such as color or shape) 
of a multimedia object is often represented by a multidi- 
mcnsional vector. This suggests the use of a multidimen- 
sionnl indexing method, in order to speed up the evaluation 
of atomic multimedia queries. But multimedia data often 
have high dimensionaIities: for example, as we noted, there 
nre commonly 64 or more color features. This is sometimes 
called the “dimensionality curse,, [FBF+Q4, page 2441. Two 
popular multidimensional indexing methods, namely linear 
qundtreee [Sa89] and grid files [NHS84], grow exponentially 
with the dimensionality. So these methods are not practi- 
cal in these situations. Another popular multidimensional 
indexing method is R.-trees [BKSSQO]. These tend to be 
more robuet for higher dimensions, at least for dimensions 
up to around 20 [OtQ2]. It is the author’s opinion that much 
more work is needed in high-dimensional indexing, or similar 
techniquee, in order to deal effectively with the hard issues 
of efficiently evaluating multimedia queries. 

We now discuss one approach to help deal with the di- 
mcnsionality curse. As a concrete example, we focus on 
a method from [HSE-i-951 that is used to deal with color 
feature vectors, and that is referred to in [FBF+94] as a 
diatance4ounding strategy. Let d(x, y) be the distance be- 
tween color histograms x and y (for example, d(x,y) could 
be given by (1)). They associate with each (long) color fea- 
ture vector x a short (say, dimension 3) color vector 2 that, 
intuitively, “summarizes,, x. They then give a simple-to- 
compute distance measure d^ that gives the distance between 
small color vectors, and show that if x and y are color fea- 

ture vectors, then 

d(X,Y) 1 &W). (2) 

Thus, assume that we wish to find those objects whose color 
feature vector y is close to some target color feature vector 
x (say, using (1)). We see from (2) that we can restrict our 
attention to objects whose short color vector 9 is close to the 
short color vector P. Intuitively, 2 is being used as a “filter” 
to eliminate from consideration objects with a short color 
vector 9 where d^(ji,?) is too large. This could be useful in 
two ways. First, we could potentially have a multidimen- 
sional index on short color vectors. Second, even without 
an index, we often need only compute d^(%,g) rather than 
d(x, y); the former is much easier to compute. 

Another approach, that is especially useful when the 
database is not too large (say, consisting of only a few thou- 
sand images), takes advantage of the fact that in many mul- 
timedia database situations (such as with image databases), 
updates are done rarely, if at all FBF+94, Gr97]. The idea 
is to precompute the distance (such as the color distance) 
between each pair of objects, and store the answers. If the 
user asks for those images whose color is close to the color of 
some other image in the database, no painful computations 
such as that given by the formula (1) needs to be done in 
real time. 

3 Boolean Combinations of Atomic Queries 

As we noted earlier, the result of a multimedia query i8 typ- 
ically a sorted list. For example, if the query asks for red 
objects, then the result would be a sorted list with the red- 
dest object first, the next reddest object second, etc. By 
contrast, the result of a query to a relational database is 
simply a set. This leads to a mismatch: the result of some 
queries is a sorted list, and for other queries, it is a set. 
How do we combine such queries in Boolean combinations? 
We now discuss the solution proposed in [FaQS], which has 
been implemented in Garlic, a multimedia information sys- 
tem being developed at the IBM Almaden Research Center. 

As an example (given in FaQS]), let us consider an ap- 
plication of a store that sells compact disks. A typical tradi- 
tional database query might ask for the names of all albums 
where the artist is the Beatles. The result is a set of names 
of albums. A multimedia query might ask for all album cov- 
ers with a particular shade of red. Here the result is a sorted 
list of album covers. We see the mismatch in this example: 
the query Artist=‘Beatlea’ gives us a set, whereas the query 
AlbumColor=Ved’ gives us a sorted list. How do we com- 
bine a traditional database query and a multimedia query? 
For example, consider the query 

(Artist=‘Beatles’) A (AlbumColor=‘red’). 

What is the result of this query? In this case, we probably 
want a sorted list, that contains only albums by the Beatles, 
where the list is sorted by goodness of match in color. What 
about more complicated queries? For example, what should 
the result be if we replaced A by V in the previous query? Is 
the answer a set, a sorted list, or some combination? How 
about if we combine two multimedia queries? An example 
is given by the query 

(Color=%ed’) A (Shape=‘round’). 

The solution in [Fa96] is in terms of “graded” (or “fuzzy”) 
sets [Za65]. A graded set is a set of pairs (e,g), where z is 
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an object (such as n tuple), and g (the grade) is a real num- 
ber in the interval [O, 11. It is sometimes convenient to think 
of a graded set as corresponding to a sorted list, where the 
objects are sorted by their grades. Thus, a graded set is a 
generalization of both a set and a sorted list. 

As earlier, we take atomic queties to be of the form 
X = t, where X is the name of an attribute, and t is a tar- 
get, Examples are the atomic query Artist=‘Beatlea’ and 
the atomic query AlbumC?olor=5vd? Queries are Boolean 
combinations of atomic queries. 

For each atomic query, a grade is assigned to each ob- 
ject, The grade represents the extent to which that object 
fulfills that atomic query, where the larger the grade is, the 
better the match. In particular, a grade of 1 represents 
a perfect match. For traditional database queries, such as 
Artfetz’Beatles’, the grade for each object is either 0 or 1, 
where 0 menns that the query is false about the object, and 
1 means that the query is true about the object. For other 
queries, such as a multimedia query corresponding to Album- 
Color=W’, grades may be intermediate values between 0 
and 1. 

We must now consider how to take Boolean combinations 
of atomic queries. A number of different rules for evaluat- 
ing Boolean combinations in fuzzy logic have appeared in 
the literature. In particular, there are a number of rea- 
sonable “scoring functions” that assign a grade to a fuzzy 
conjunction, as a function of the grades assigned to the con- 
junct% An m-ary scoring function is a function from [O, 11”’ 
to [O, I]. For the sake of generality, we will often consider 
m-my scoring functions for evaluating conjunctions of m 
atomic queries, although in practice an m-ary conjunction is 
nlmost always evaluated by using an associative 2-ary func- 
tion that is iterated. 

We consider now the standard rules of fuzzy logic, as 
defined by Zadeh [ZaNi]. If x is an object and Q is a query, 
let us denote by pq(x) the grade of m under the query Q. If 
WC assume that /IQ(Z) is defined for each atomic query Q and 
each object x, then it is possible to extend to queries that 
are Boolean combination of atomic queries via the following 
rules. 

Conjunction rule: p~hn(x) = min {~A(x),~B(x)} 

DIsjunction rule: pnvo(x) = max{pn(x),pg(x)) 

Negation rule: ,&A(Z) = 1 -p,,(x) 

Thus, the standard conjunction rule of two formulas in fuzzy 
logic is based on using min as the 2-ary scoring function. 

These rules are attractive for two reasons.’ First, they 
arc a conservative extension of the standard propositional 
semantics. That is, if we restrict our attention to situa- 
tione where ~Q(x) is either 0 or 1 for each atomic query 
Q, then these rules reduce to the standard rules of proposi- 
tional logic. The second reason is because of an important 
theorem of Bellman and Giertz [BG73], and extended and 
eimpllfled by Yager [Ya82], Voxman and Goetschel [VG83], 
Dubols and Prade [DP84], and Wimmers [Wi98]. We now 
discuss the Bellman-Giertz theorem. 

The standard conjunction and disjunction rules of fuzzy 
logic have the nice property that if &I and Qz are Iogi- 
tally equivalent queries involving only conjunction and dis- 
junction (not negation), then pQl(x) = ,!LQ2(x) for every 
object x. For example, GALA = PA(~). As another ex- 
amde, pAf@vC)(X) = ,~(~,,n)v(~hcl(z). This is desirable 
In a database context, since then an optimizer can replace a 
query by a logically equivalent query, and be guaranteed of 
getting the same answer. 

Furthermore, the scoring function min for conjunction is 
monotone, in the sense that if PA(~) 5 pi, and pa(z) 2 
pn(z’), then PA&B(~) < /JAI\B(~‘). Similarly, the scoring 
function max for disjunction is monotone. Monotonicity is 
certainly a reasonable property to demand, and models the 
user’s intuition. Intuitively, if the grade of object z’ under 
the query A is at least as big as that of object x, and the 
grade of object x’ under the query B is at least as big as that 
of object x, then the grade of object x’ under the query AAB 
is at least as big as that of object z. 

The next theorem, due to Yager pla82) and Dubois and 
Prade [DP84], is a variation of the Bellman-Giertz theorem 
that says that min and max are the unique scoring iimc- 
tions for conjunction and disjunction with these properties. 
(Bellman and Giertz’s original theorem required more as- 
sumptions.) 

Theorem 3.1: The unique scdng functions for evaluating 
A and V that preserve logical equivalence of queries involving 
only wnjunction and disjunction and that arc monotone in 
their arguments are min and max. 

Many other scoring functions have appeared in the liter- 
ature. We now consider an important class of 2-ary scoring 
functions. A triangular norm [SS63, DP80] is a 2-ary scoring 
function t that satisfies the following properties: 

A-Conservation: t(O,O) = 0; t(x, 1) = t&x) = 2. 

Monotonicity: t(xl,xz) 5 t(x;,x&) if 21 5 xi and xz < 
x;. 

Commutativity: t(xl,xp) = t(x2,xl). 

Associativity: t(t(x1, x2), 5s) = t(xl, t(xz, 2s)). 

It is reasonable to expect a scoring function for conjunc- 
tion to satisfy each of the properties of a triangular norm. 
We calI the first condition UA-conservation”, since it im- 
plies in particular a conservative extension of the standard 
propositional semantics for conjunction, as we discussed in 
the case of min. 

A triangular co-norm [DP85] is a 2-ary scoring function s 
that satisfies monotonicity, commutativity, and associativity 
as above, along with the following boundary conditions: 

V-Conservation: s&l) = 1; 3(x, 0) = s(O,z) = 2. 

It is reasonable to expect a scoring function for disjunc- 
tion to satisfy each of the properties of a triangular co-norm. 

Triangular norms and triangular co-norms are duals, in 
the sense that if t is a triangular norm, then the function s 
defined by s(xl,xa) = I-t(1 -x1,1-x1) is a t&mylar co- 
norm [Al85]. Bonnissone and Decker [BD86] show that for 
suitable negation scoring functions n (such as the standard 
44 = 1 - x), the natural generalization of DeMorgan’s 
Laws hold between a triangular norm t and its co-norm s: 

&,m) =n(t(n(x1),ra(x2))) 

t(m,xr) = n(s(n(m),n(x2))) 

The min function is a triangular norm, with co-norm 
the max function. Other triangular norms and their co- 
norms are discussed in [BD86, Mi89]; see also [Fa96] and 
Zimmermann’s textbook [ZiSS]. 

We can define an m-ary query (such as the conjunction 
of m formulas) in terms of an m-ary scoring function. In 
[Fa96], the semantics of an m-ary query F(Al,...,A,) is 
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given by defining ~L~(A~,...,A,,,). For example, the standard 
fuzzy logic semantics of the conjunction A1 A . . . A A, is 
given by defining 

~~,A...AA,,(~) = minbAlb),... ,PA,(~), 

for each object x. Let t be an m-ary scoring function. We 
dcflne the m-ary query ~(AI,. . . , A,,,) by taking 

PF,(A, ,,.,, A,+) = t(pLn, (xl,. ..,p~~(z)). 

For example, if t is min, then I;i(Al, . . . , A,,,) is equivalent 
in the standard fuzzy semantics to AI A . . . h A,, and if t 
1s mnx, then A(A1,. . . , Am) is equivalent in the standard 
fuzzy semantics to AI V , . . V A,,,. 

As we mentioned earlier, an m-ary conjunction can of 
course be obtained from a 2-ary conjunction by iterating. 
For example, if 2-ary conjunction is defined by the 2-q 
scoring function t, then 3-ary conjunction can be defined 
by l(t(~:1, za), ~3). As discussed in [Fags], the following two 
properties hold for every m-ary scoring function that is ob- 
tained by iterating a triangular norm: 

StriCtncSS: t(zl, . . . , Zm) = 1 iff 2i = 1 for every i. 

Monotonicity: t(zl,. . . , z,) 5 t(zi,. . . ,z’,) if zi 5 z{ for 
every i. 

Thus, a scoring function is strict if it takes on the maxi- 
mal value of 1 precisely if each argument takes on this max- 
imal value. 

We call ~(AI,. . , , A,,,) a strict (resp., monotone) query 
if t is strict (reap., monotone). The only properties of a query 
that are required for the theorems in [Fags] (some of which 
we shall discuss shortly) are strictness and monotonicity. 
Strictness is needed for a lower bound on the efficiency of 
algorithms for evaluating queries under certain assumptions, 
and monotonicity for an upper bound. 

There are scoring functions for conjunction that have 
been considered in the literature that are not triangular 
norms, For example, Thole, Zimmermann, and Zysno [TZZ79] 
found various weighted and unweighted arithmetic and geo- 
metric means to perform empirically quite well. Such scoring 
functions are not triangular norms: in fact, the arithmetic 
mcnn does not conserve the standard propositional seman- 
tics, since. with arpments 0 and 1 it takes the value l/2, 
rather than 0. These functions do satisfy strictness and 
monotonicity, and so the lower and upper bounds of [Fag61 
hold even in this case. Thus, if a system wele to use, say, 
the arithmetic mean as a scoring function for evaluating the 
conjunction, then these lower and upper bounds tell us how 
efficiently we can expect to evaluate the conjunction under 
natural assumptions. 

4 Middleware 

Because of the many varieties of data that a multimedia 
database system must handle, such a system may often re- 
ally be “middleware”. That is, the system is “on top of” 
various subsystems, and integrates results from the subsys- 
tems, For example, the Garlic system of the IBM Almaden 
Research Center is such a middleware system. Garlic is de- 
signed to be capable of integrating data that resides in dif- 
fcrent dntnbase systems as well as a variety of non-database 
data servers. A single Garlic query can access data in a 
number of different subsystems. An example of a nontra- 
ditional subsystem that Garlic accesses is QBIC [NBE+93], 

which was mentioned earlier. QBIC can search for images 
by various visual characteristics such as color, shape, and 
texture. 

There are a host of problems associated with middleware, 
including schema integration, dirty data (caused by multiple 
sources having conflicting information), security concerns, 
etc. We will focus here on some specific issues related to 
multimedia queries. 

What can we assume about the interface between a mul- 
timedia database system (such as Garlic) and a subsystem 
such as QBIC? In response to a query, such as Color=‘red’, 
we can assume that the subsystem will output the graded 
set consisting of all objects, one by one, along with their 
grades under the subquery, in sorted order based on grade, 
until Garlic tells the subsystem to stop. Then Garlic could 
later tell the subsystem to resume outputting the graded set 
where it left off. Alternatively, Garlic could ask the subsys- 
tem for, say, the top 10 objects in sorted order, along with 
their grades, then request the next 10, etc. We refer to such 
types of access as “sorted access”. 

There is another way that we could expect Garlic to in- 
teract with the subsystem. Garlic could ask the subsystem 
the grade (with respect to a query) of any given object. We 
refer to this as “random access”. 

Because of the limited modes of access to subsystems, 
issues of efficient query evaluation in a middleware system 
are very different from those in a traditional database sys- 
tem. In fact, it is not even clear what “efficient” means in 
a middleware system. 

We now give the performance cost of au algorithm, as 
defined in Fa96]. This measure of cost corresponds intu- 
itively to the amount of information that an algorithm ob- 
tains from the database. The sorted access cost is the total 
number of objects obtained from the database under sorted 
access. For example, if there are only two lists (correspond- 
ing, in the case of conjunction, to a query with two con- 
juncts), and some algorithm requests altogether the top 100 
objects corn the first list and the top 20 objects from the 
second list, then the sorted access cost for this algorithm is 
120. Similarly, the mndom uccess cost is the total number 
of objects obtained from the database under random access. 
The database access cost is the sum of the sorted access cost 
and the random access cost. 

Using this notion of the database access cost as a cost 
measure is somewhat controversial. After all, a single sorted 
access is probably much more expensive than a single ran- 
dom access. However, the results in [Fa96] are shown to be 
fairly robust with respect to a choice of cost measure. Of 
course, there are situations (such as in the case of a query 
optimizer) where we want a more realistic cost measure than 
the definition of the database access cost we just gave. 

4.1 Algorithms for Query Evaluation 

In this subsection, we give an algorithm from Fa96] for eval- 
uating monotone queries. Under certain assumptions the 
algorithm is optimally efficient up to a constant factor. 

Probably the most important queries are those that are 
conjunctions of atomic queries. For the sake of the current 
discussion, let us assume for now that conjunctions are be 
ing evaluated by the standard min rule. An example of a 
conjunction of atomic queries is the query 

(Artist=‘Beatles’) A (AlbumColor=%ed’). 

that we have discussed in our running example. In this 
example, the first conjunct Artist=‘Beatles’ is a traditional 
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database query, and the second conjunct AlbumColor=‘red’ 
would be addressed to a subsystem such as QBIC. Thus, 
two different subsystems (in this case, perhaps a relational 
database manngement system to deal with the first conjunct, 
along with QBIC to deal with the second conjunct) would be 
involved in answering the query. Garlic has to piece together 
information from both subsystems in order to answer the 
query. Under the reasonable assumption that there are not 
many objects that satisfy the first conjunct Artist=‘Bedes’, 
a good wny to evaluate this query would be to first determine 
nil objects thnt satisfy the first conjunct (call this set of 
objects S), nnd then to obtain grades from QBIC (using 
random access) for the second conjunct for all objects in S. 
We can thereby obtain a grade for all objects for the ful! 
quary. If the artist is not the Beatles, then the grade for the 
object is 0 (since the minimum of 0 and any grade is 0). If 
t!ie nrtlst 1s the Beatles, then the grade for the object is the 
grade obtained from QBIC in evaluating the second conjunct 
(slnco the minimum of 1 and any grade 9 is g). Note that, 
ns we would expect, the result of the full query is a graded 
sot where (a) the only objects whose grade is nonzero have 
the artist as the Beatles, and (b) among objects where the 
artist is the Beatles, those whose album cover are closest to 
red have the highest grades. 

Lot us now consider a more challenging example of a 
conjunction of atomic queries, where more than one conjunct 
is “nontraditional”. An example would be the query 

(Color=‘red’) A (Shape=‘round’) (3) 

that we mentioned earlier. For the sake of this example, we 
assume that one subsystem deals with colors, and a com- 
pletely different subsystem deals with shapes. Let AI de- 
noto the subquery Color=‘red’, and let AZ denote the sub- 
query Shape=‘round’. The grade of an object x under the 
query above is the minimum of the grade of x under the sub- 
quory AI from one subsystem and the grade of x under the 
subquery AZ from the second subsystem. Therefore, Garlic 
must again combine results from two different subsystems. 
Assume that we are interested in obtaining the top Ic an- 
swers (such as Ic = 10). This means that we want to obtain 
k objects with the highest grades on this query (along with 
their grades). If there are ties, then we want to arbitrar- 
ily obtain lu objects and their grades such that for each y 
among these k objects and each z not among these Ic ob- 
jects, /JQ(V) >, ~Q(z) for this query Q. There is an obvious 
ttnive algorithm: 

1, Have the subsystem dealing with color to output ex- 
plicitly the graded set consisting of all pairs (x, PA1 (z)) 
for every object zz. 

2, Have the subsystem dealing with shape to output ex- 
plicitly the grded set consisting of all pairs (2, p&(X)) 

for every object z. 

3. U8e this information to compute 

for every object 2. For the Ic objects x with the top 
grades /JA,AA,(x), output the object along with its 
grade. 

For this algorithm, the database access cost is 2N, where N 
;e;k;rfatnbase size (the number of objects). Can we do any 

Let us generalize beyond the query (3) above, which is 
the conjunction of two atomic queries, to consider conjunc- 
tions AlA... A A,,, of m atomic queries. An important case 
arises when these conjuncts are independent (as they are, 
at least intuitively, in (3)). We shall be somewhat informal 
here. The fu!! probabilistic model, including the definition of 
“independent”, appears in [Fags]. The next theorem shows 
that we can do substantially better than the naive algorithm. 

Theorem 4.1: [Fa96] There is an algorithm for finding 
the top k answers to each monotone query Ft(A1,. . . , Am), 
whereAl,..., A, are independent, with database access cost 
O(Nh-lb’klh), with arbitrarily high probability, where 
N is the database size. 

In particular, this theorem applies to the conjunction 
A1 A.. . h A,,, of atomic queries, when the scoring function 
is monotone. This includes any scoring function obtained 
by iterating triangular norms (such as min), and in fact 
almost any reasonable choice for evaluating the conjunction. 
Note that in the case m = 2, which corresponds to the 
conjunction of two atomic queries, the cost is of the order 
of the square root of the size of the database. By “with 
arbitrarily high probability”, we mean that for every c > 0, 
there is a constant c such that for every N, the probability 
that the database access cost is more than cN(“‘-‘)/“‘@’ is 
less than E. It is shown in pa961 that for strict queries, there 
is a matching lower bound. That is, if A is an algorithm for 
finding the top h answers to a strict query Ft(A1, . . . , Am), 
where AI,. . . , A, are independent, then for every e > 0, 
there is a constant c’ such that for every N, the probability 
that the database access cost is less than ~‘N(~-‘)‘~lc”~ 
is less than e. Thus, we have the following theorem, where 
as usual 0 means that is a matching upper and lower bound 
(up to a constant factor). 

Theorem 4.2: [Fa96] The database access cosd for finding 
the top k answers to a monotone, strict query Ft(Al, . . . , Am), 
where AI,..., A,,, are independent, is O(N(m-‘)‘“k”m), 
with arbitmtily high probability, where N is the daZchse 
size. 

Intuitively, Theorem 4.2 tells us that we have matching up- 
per and lower bounds for many natural notions of conjunc- 
tion, such as all triangular norms. 

We now give an algorithm that (as is shown in Fags]) ful- 
fills the conditions of Theorem 4.1. This algorithm is called 
do in Fa96]. It returns the top k answers for a monotone 
query Iii&, - . -, A,,,), which we denote by Q. We assume 
that there are at least b objects, so that ‘the top k answers” 
makes sense. Assume that subsystem i evaluates the sub- 
query Ai. We describe the algorithm informally; a more 
formal description appears in PaSSI. 

The algorithm consists of three phases: sorted access, 
random access, and computation. 

1. For each i, give subsystem i the query Ai under sorted 
access. Thus, subsystem i begins to output, one by 
one in sorted order based on grade, the graded set 
consisting of a!! pairs (x, pAi (x)), where as before x is 
an object and PAi (x) is the grade of a under query Ai. 
Wait until there are at least fi “matches”, that is, wait 
until there is a set L of at least Ic objects such that 
each subsystem has output all of the members of L. 

2. For each object x that has been seen, do random access 
to each subsystem j to find ,uaj (x). 

5 



3, Compute the grade /.4&r) = t(,.‘A1(2),...,&&,,(2)) 
for each obiect x that has been seen. Let Y be a 
set contain&g the k objects that have been seen with 
highest grades (ties are broken arbitrarily). The out- 
put is then the graded set {(~,PQ(x)) ] z E Y). 

Note that the algorithm has the nice feature that after 
Anding the top k answers, in order to find the next k best 
nnswers we can “continue where we left off”. 

We now sketch a proof of the correctness of the algo- 
rithm; more details, including the performance analysis, ap- 
pear in [F&O]. Let y be an object that is not seen when the 
algorithm is run, that is, which is not output by any of the 
subsystems during sorted access. For each z in L (where as 
above, L is a set of at least k objects that has been out- 
put by nil of the subsystems), and for each subsystem i, we 
know that pi(y) < pi(z): this is because z was output under 
sorted access by subsystem i while y was not. So by mono- 
tonicity of t, we know that pi = +A, (y), . . . ,pA, (y)) 
5 +4(~),**+,PAm X ( )) = ,uQ(z). So there are at least k 
objects in the output with grades at least as high as that of 
Ye 

Since algorithm Jlo fulfills Theorem 4.1, it follows from 
Thcorcm 4.2 that algorithm do is optima! (up to a con- 
stant fnctor). In spite of this optimality, there are various 
improvements (as discussed in [Fags]) that can be made to 
algorithm do (in particular, in the case when t is min, the 
standard scoring function in fuzzy logic for the conjunction). 

If the scoring function t is not strict, then do is not 
necessarily optima!. An interesting example arises when t is 
max, which corresponds to the standard fuzzy disjunction 
A1 V.. ,VAm. In this case [Fags], there is a simple algorithm 
whose database access cost is only mk, independent of the 
size N of the datnbase! 

Chaudhuri and Gravano [CGQtl] consider ways to simu- 
late algorithm do by using “filter conditions”, which might 
say, for example, that the color score is at least .2. 

4,2 Real-World limitations on Algorithm do 

The algorithm do has been implemented in the Garlic sys- 
tem. Pritchard [Pr95] did an experimental implementation 
on an early version of Garlic, and found that although the 
algorithm is simple, there are many implementation issues 
tlmt need to be addressed. Braendli did a more extensive im- 
plementation in a later version, as a part of an broad study 
carried out by Wimmers, Haas, Tork Roth, and Braendli 
[WHTBDB], which considered issues as to when de can be 
implemented in practice, and what its performance would 
be. WC discuss aome of these issues in this section. 

The performance of do, as measured in both [Pr95] and 
[WHTB08], is consistent with the theoretical analysis. Fur- 
thermore, in [WHTB98], they say: 

We have aeen that Fagin’s algorithm behaves we!! 
for a broad range of queries, and a broad range 
of access costs. 

The issues and concerns were the applicability of the algo- 
rithm in practice, as we now discuss. 

One issue arises from the fact that the algorithm is guar- 
anteed to be correct only when the scoring function is mono- 
tone. The Gnrlic implementers considered two options: (1) 
they could provide a fixed set of legal (i.e., monotone) scor- 
ing functions, such as min and average, and require the user 
to use a scoring function from this set, or (2) they could 
allow the user to use an arbitrary, user-defined scoring func- 
tion. To give the system and the user maximum flexibility, 

they chose the second option. This makes it necessary for 
the system to somehow guarantee monotonicity. 

Another issue was deciding what type of algorithm de 
is. The implementers struggled over the issue of whether 
the specification of the merge belonged in a WHERE clause 
like a join specification, or in an ORDER BY clause. Ulti- 
mately, they decided to treat & as a join: this was in part 
a pragmatic decision, brought on by the fact that it was eas- 
ier to teach the Garlic code about ordering requirements in 
the join phase rather than teaching the ordering code about 
multiple input streams. There are many issues brought on 
by the question of exactly how to implement algorithm do. 
After all, we have described this algorithm only at a very 
high level, and many details need to be resolved. 

Another issue arose from an important assumption un- 
derlying the algorithm do: given an object from-one input 
stream, the algorithm needs to be able to find the matching 
attributes of the same object in the second stream (this is 
what we referred to as “random access”). Since we are deal- 
ing with multiple subsystems, the “same” object might have 
different identities in different subsystems. Even if there is 
some correspondence between object id’s in different subsys- 
tems, Garlic has to be sure that the mapping is one-to-one. 

Other problems are brought on by the fact that Garlic 
deals with complex objects. As an example, let us assume 
that the system contains information about Advertisements, 
which are complex objects with AdPhotos among their sub- 
objects. Assume that we are interested in Advertisements 
with an AdPhoto that is red. Then Garlic would ask the 
subsystem that deals with AdPhotos to return all AdPho- 
tos in sorted order, based on redness. To apply algorithm 
& to a conjunction of subqueries, where one conjunct asks 
for AdPhotos that are red, we need to be able to obtain 
object id’s for Advertisements from the object id’s of their 
AdPhotos. This information may not be easily available 
(e.g., through an index). Further, this is complicated by the 
fact that different multimedia objects can share the same 
component objects. 

Finally, there are cost modeling issues. In order to use 
an optimizer, we need to understand the cost of applying 
various operators over various data in various repositories. 

The reader is encouraged to read Wimmers et al.% inter- 
esting paper [WHTB98], which gives much more detail, and 
discusses the solutions Garlic chose. 

5 Weighting the Importance of Subqueries 

In this section, we consider an interesting and important 
issue that arises for fuzzy queries in a multimedia database, 
but not for traditional queries in a standard database. As 
an example, let us consider again the query 

(Color=hd’) A (Shape=‘mund’) (4) 

What if the user cares twice as much about color as shape? 
Intuitively, we would then wish to assign twice as much 
weight to color as to shape. This would not make sense for 
traditional queries, but it does for fuzzy queries. In the user 
interface in a multimedia database, sliders are one mech- 
anism for conveying to the system information about how 
much weight to assign to various attributes. Sliders are bars 
on the screen that indicate the importance of each attribute. 
The user moves his mouse to slide an indicator along the bar 
in order to increase or decrease the weighting of a given at- 
tribute. 

How do we make sense of this weighting? That is, given 
a scoring function f, what is the %eighted version” of f? 
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There itl one scoring function where the answer is easy, namely, 
the average. For the weighted case, assume that the weight 
assigned to the color score in (4) is 01, and the weight as- 
signed to the shape score is 82, where OI,& are nonnega- 
tive and aum to 1. Thus, if we care twice as much about 
the color as the shape, then we would take 01 = 2/3 and 
Oa z l/3, When the scoring function is the average, then 
we would “modify” it in the weighted case by taking the 
score nasigned to (4) to be simply 01~1 I- 0222. 

But what if the scoring function is, say, the min? Then 
we cannot simply tnke the result to be 61~1 + 8252. For 
example, if we are indifferent to color versus shape, so that 
we weight them equally with 81 = 82 = l/2, then we would 
get the wrong nnswer by using 01~1 f 0222, since this does 
not give us the min of 21 and 22. (We are assuming here that 
we use the underlying, or “unweighted”, rule for combining 
scores when the &‘s are equal. Later, we shall make such 
aesumptions explicit.) What should the answer be, as a 
function of ml, ~2, 01, and ez? 

I?agin and Wimmers [FW97] give an explicit formula for 
incorporating weights. Instead of restricting attention to 
scoring functions, they consider a general context of ?-ules”. 
A rule is simply an assignment of a value to every tuple, 
of varying sizes. For example, the rule corresponding to 
taking the average is to take the average of the entries in 
the tuple, nnd the rule corresponding to taking the min is 
to take the min of the entries in the tuple. The formula given 
in [J?WO?] is surprisingly simple, in that it involves far fewer 
terms than one might have guessed. It has three further 
desirable properties. The first desirable property is that 
when all of the weights are equal, then the result is obtained 
by simply using the underlying rule. Intuitively, this says 
that when all of the weights are equal, then this is the same 
as considering the unweighted case. The second desirable 
property is that if a particular argument has zero weight, 
thon that argument can be dropped without affecting the 
value of the result. The third desirable property is that the 
value of the result is a continuous function of the weights. It 
le shovm in [FW97] that if these three desirable properties 
hold, then under one additional assumption (a type of Iocal 
linearity), their formula gives the unique possible answer. 

We now describe the framework of [FW97], somewhat 
ndaptcd to our application. Let us generalize beyond (4), 
by assuming that there are m conjuncts (not just two as in 
(4)), and that the score of conjunct i is zi, where 0 5 2< 5 1. 
In (4), the color score would be ~1, where values of 21 near 1 
correspond to very red objects, and values near 0 correspond 
to objects that are very far from being red. Similarly, in (4), 
the shape score is ~2. Let f be a function whose domain is 
the set of all tuples (of all sizes) over [O, 11, and with range 
[0, l]. Then f(z1,. . , , m,) is the overall score. (Note that 
we are loosening up our definition of a scoring function, by 
nllowing tuples of arbitrary size as arguments.) We assume 
for notational convenience here that f is symmetric, but this 
1~ not really essentia1.l 

Assume that B 1,. . . ,8, are all nonnegative and sum to 
one. Then we refer to 0 = (01,. . . ,#,) as a weighting. 
Intuitively Oi is the weight of attribute i. For each weight- 
ing 0 = (01,. , . , O,), we obtain (using the methodology of 
[l?W97]) a function fe whose domain consists of tuples of 
length m (the length of 0). Intuitively, if X = (21,. . . ,zzm), 
then f@(X) is the overall score when the weights are given 
by the weighting 0. If 01 2 . . . 2 &,, then we refer to 
the weighting 0 = @I,..., 0,) as ordered. For notational 

the 
‘The paper (FWO’IJ actually denls with families of functions, and 
roruml dclMtiou of %ynuuetric” is somewhat technical. 

simplicity, in this paper we restrict our attention to or- 
dered weightings (although this restriction did not appear 
in FW97)). 

The following desiderata are given in [FW97] for the 
functions fe: 

Dl. f~~;,...,~;,(~l,...,2rn) = fhr---r x,). That is, if all 
of the weights in 0 are equal, then the “weighted” 
function fe coincides with the “unweighted” function f. 

D2. fv l,...,e,_l,O)(xl,--.,x~) = f(el,...,em-l)(xlr'..,x~-l). 
That is, if a particular argument has zero weight, then 
that argument can be dropped without affecting the 
value of the result. 

D3. f(BI.....em)(~l,- w-3 zm) is a continuous function of 81,. . . , f& . 

The choice given in FW97) for fts, ,..., 0,)(x1,. . . ,xm) is 
as follows (modified to fit our terminology), when 01 1 . . .> 
e ill: 

(el - 02) * f (Xl ) + 
2~(B2-83)‘f(xl,x2)+ 

3. (e3 - 64). f (21,x2,23)+ (5) 

. . . + 

m-e, - f(x1,...,x,). 

It is straightforward to verify that Dl, D2, and D3 are 
satisfied when we take f(e, ,..., em)(xl, . . . . 2,) to equal (5). 
It is also shown in [FW97] that (5) is well-defined, even 
when some of the &‘s are equal. For example, if 0~ = 03, 
then we could reverse the roles of 82 and 83. Then the 
second summand in (5) would involve f (z1,23) rather than 
f (x1, ~2). The point is that this does not matter, because 
even though f(zl,zz) and f(xl,x3) may be different, they 
are multiplied by 82 - 03, which is 0. 

Although the formula (5) may look somewhat arbitrary, 
it is shown in [FWS’I] that it is actually uniquely determined, 
under one additional assumption that we now discuss. We 
say that our collection of weighted functions fe is locally 
linear if 

fo.e+(~-a).dX) = a - fee(X) + 0 - 4 * feG), (6) 

whenever O,O’,X are of the same length, and Q G [0, 1). 
(The definition of local linearity in FW97) says essentially 
that (6) must hold whenever 0 and 0’ are ordered. For us, 
this is always the case, since we define fe only when 0 is 
ordered.) Note that u - 0 f (1 -a) - 0’ is ordered whenever 
0 and 0’ are ordered. 

Define the condition D3’ as follows: 

D3’. The collection of weighted functions fe is locally lin- 
ear. 

Condition D3’ implies condition D3 above (that fe(X) is 
a continuous function of 01,. . . , 0,) FW97]. Furthermore, 
the choice of (5) for fe(X) is the unique one that satisfies 
Dl, D2, and D3’ [FW97]. 

We now discuss local linearity. Intuitively, local linear- 
ity says that the scoring functions act like a balance. Local 
linearity demands that the weighting that is the midpoint’ 
of two ordered weightings should produce a value that is the 

21n fact, local linearity extends beyond the midpoint to any weight- 
ing that is a convex cotnbirlation of two ordered wightings: if a 
weighting is a convex combination of two ordered weightinga, theu 
local linearity demands that the associated value should be the nanlo 



midpoint of the two values produced by the given weight- 
in&s, or in other terms that (6) must hold when 0 and 0’ 
are ordered, and so agree on which search term is the most 
important, which is the second most important, etc. Local 
linearity says that in this case, we do a linear interpolation, 
which is a very natural assumption. Another argument in 
favor of local linearity is that it leads to such a nice formula, 
namely, (6). 

The formula (6) for fee(X) is a convex combination of 
the values f(m), f(sl, ZZ), f(~1,22,23), . . ., f(zl,. . . ,h), 
since the coefficients (01 - f%), 2. (07, - 03), 3 - (83 - e4), . . ., 

me&,, are nonnegative and sum to 1. A surprising feature of 
(6) is that it depends only on the m terms f(zl), f(z1,z2), 
f(m, Za, 23), . . ., f(m, . . . , zm), and not on any of the other 
possible terms, such aa f(za), f(zl,z3), and so on. A priori, 
we might have believed that fe(X) would depend on all of 
the 2m - 1 such terms. 

It is shown in FW97] that monotonicity and strictness 
of the (unweighted) f is inherited by the (weighted) func- 
tions fe, In particular, algorithm do continues to be correct 
and optimal in the weighted case, where of course the “final 
score” is obtained by using fe rather than f. 

6 Summary and Open Problems 

Multimedia databases have interesting new issues beyond 
those of traditional databases. In this paper, we discussed 
some of these issues involving multimedia queries. These 
include: 

l The complexity of resolving atomic queries. Here there 
are two issues. First, it is often computationally ex- 
pensive to decide if a given object satisfies an atomic 
query. Second, there is typically a large database ac- 
cess cost in finding those objects that satisfy the query. 
In particular, we wish to avoid doing a sequential scan 
of the entire database, and instead use, for example, 
an indexing technique. Developing techniques to speed 
up the evaluation of atomic multimedia queries is an 
important problem, that requires more research. 

l Handling Boolean combinations of atomic queries. The 
author has made a first step, by giving a reasonable 
semantics, involving scoring functions, for evaluating 
Boolean combinations, and by giving an efficient algo- 
rithm for taking conjunctions of atomic queries, that 
is optimal under certain natural assumptions. In par- 
ticular, for the Fase of two independent conjuncts, the 
database access cost of the algorithm is of the order 
of the square root of the database size. Even here, 
as discussed in [WHTB98], there are numerous prac- 
tical issues aa to when the algorithm can be applied. 
Furthermore, it is hopeless to find efficient algorithms 
in general: in particular, in [Fa96] the author gives a 
(somewhat artificial) case where the database access 
cost is necessarily linear in the database size (in other 
words, there is a provable linear lower bound). Finding 
efficient algorithms in various natural cases that arise 
in prnctice is an interesting open problem. In fact, at 
this point, due to our lack of experience, it is not even 

COIlveX c0lllbillnti0rl of the values associated with the given vreigld- 
hlgs, 111 this papcr, our llfc Is wade siolpler by the fact that we 
co~~nirIor V/eightCd functions fe only for weighting8 0 that are or- 
darod. III [FW67], vrlwre the function fe Is defined even when 0 is 
IlOt ordorcd, it ia ahown that an ammption that (6) holds for every 
C~IO~CO OT 8 nnd 0’ would be incompatible witll the properties D1 
nut1 D2, unless f(zl,, , , , Q) = fC.1 )+*-+fbk) for e”ery k* 

k 

clear what queries will arise in practice. One of the in- 
teresting differences that arises in the multimedia case 
is that there are often restricted modes of access to 
a multimedia repository (such as what we call in this 
paper sorted access and random access). This leads to 
another problem: to give a more realistic cost measure 
than the definition in pa961 for the database access 
cost. This is especially important in the presence of 
query optimizers. 

Weighting the importance ofsubqueties. This is a good 
exampIe of an issue that arises for multimedia databases 
but not for traditional databases. Here we feel com- 
fortable with the solution from FW97], which gives 
a general formula that tells how to modify a rule to 
apply to the case where weights are assigned to the 
importance of each argument. In our case, we use this 
formula to weight the importance of the various con- 
juncts in a conjunction. 

Syntaz and user interface. We have been fairly simplis- 
tic in this paper as to the syntactical form of queries. 
In an actual system, the queries would have a much 
more complicated syntax. They could possibly be writ- 
ten in an SQL-like form [CB74, DD94], as is done in 
[WHTB98], or they could be given more graphically, 
as is done in the QBIC system. Getting the right user 
interface is a challenging problem. 

Multimedia databases are an increasingly important area, 
which involve fascinating new issues beyond those of tradi- 
tional databases. A great deal of new research is required. 
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