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Abstract 1. Introduction 

We suggest here a methodology for updating data- The ability of the database user lo modify the con- 
bases with integrity constrain& and rules for deriving inex- tent of the database, the so-called updale operation, is fun- 
plicit information. First we consider the problem of damental to all database management systems. Since 
updating arbitrary theories by inserting inu, them or delet- many users do not deal with the entire conceptual database 
ing from them crbitrary sentences. The solution involves but only with a view of it, the problem of view updating, 
two key ideas: when replacing an old theory by a new one i.e., translating updates on a user view into updates of the 
we wish lo niuiiniize the change in the theory,, and when actual database, is of paramount importance, and has been 
there are several theories that involve minimal changes, we addressed by several works, e.g.. [BS, CA. C1, Da. DB1. 
look for a new theory that reflects that ambiguity. The DB2, FS, J a 2 .  KD. Ke, KI, Os]. An assumption h a t  
methodology is also adapted to updating databases. where underlies all of these works is that only the view update 
different facts can carry different priorities, and lb updating issue is problematic (because of the ambiguity in translat- 
user views. ing view updates into database updates), and that the issue 

of updating the database directly is quite clear. 
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While in the above example it s e e m  that the 
integrity constraint is the source of the problem, we 
believe that even in the absence of such constraints the 
semantics of updates on the database itself is not com- 
pletely clear. Consider for example a relational database 
with a ternary relation SUPPIJES.  where a tuple 
<a ,B ,c > means that supplier a supplies part b to project 
c.  Suppose now that the relation contains the tuple 
<Hughes, files, Space Shurile>. and that the user asks to 

delete this tuple. A simple-minded approach would be to 
just go ahead and delete the tuple from the relation. How- 
ever, while it is true that Hughes does not supply tiles to 

the Space Shuttle project anymore, it is not clear what to 
do about three other facts that were implied by the above 
tuple, i.e, that Hughes supplies tiles. that Hughes supplies 
parts to the Space Shuttle project, and that the Space Shut- 
tle project uses tiles. In some circumstances it might not 
be a bad idea to replace the deleted tuple by three tuples 
with null values: 

<Hughes, riles, NULL >, 

<Hughes, N U L L ,  Space Shuiile>, 

and 

<NUI.L,  iiles, Space Shuiile>. 

The common denominator to both examples is that 
the database is not viewed merely as a collection of atomic 
facts, but rather as a collection of facts from which other 
facts can be derived. It is the interaction belween the 
updated facts and h e  derived facts th3t is the source of the 
problem. This is exactly the source of the problem in the 
case of view updates. since the view is really a collection of 
facts that are derived from the database. Thus, under- 
standing the semantics of updates in general will hopefully 
also lead to a solution of the view update  problem^. 

We believe that the appropriate framework for 
studying the semantics of updates is one in which we treat 
the database as 3 consistent set (not nccessarily finite) of 
slatcmenls in firjt-order logic, i.e., a rheory. A theory is a 

description of the world, but it is not necessarily a corn- 
plete description. Every state that is a model of the theory 
is a possible state of the world. Thus. the database can be 
viewed as an exact description of our knowledge of the 
world. This approach is propounded in [KO, MUV, NG, 
Rei] for several reasons: 11 has the advantage of uniformity 
in treating atomic facts. integrity constraints, and deriva- 
tion rules, which are all expressed as sentences in first- 
order logic. It offers ease in modeling partial information 
[Mi. Reil, It also facililates defining a universal relation 
interface [MUV]. 

When one tries to update a theory by inserting, 
deleting, or replacing some first-order statement several 
new theories can accomplish the update. It seems reason- 
able that we would like to change the existing theory as lit- 
tle as possible while still accomplishing the update. That 
is, some partial order should be defined on the possible 
new theories, a partial order that reflects the divergence of 
the new theory from the old one, and only theories that 
are minimal with respect to this partial order should be 
considered. This idea is originally due to Todd Fo], who 
considered only theories of atomic facts. 

If there is no unique minimal new theory, then the 
update does not give us enough information about the pm- 
sible new states of the world. While Todd considers such 
a case as an illegal update. we see it as a case of incom- 
plete information, and we believe that the new theory 
should reflect this state of knowledge. In fact, since an 
update reflects the user's most recent piece of knowledge, 
we believe that no update should be illegal. If the uset 
insists that his update is correct, then the theory should be 
modified to reflect this new piece of knowledge. (How- 
ever, it could be the case that the new state of knowledge 
is not expressible in first-order logic). 

There is. however, a marked difference between 
databases and arbitrary theories. In a theory all sentences 
carry the same weight in the sense that there is no way to 
prefer one over the other. On the other hand, in a data- 
base some parts are easier LO update than others. For 
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example, while a salary change in the appropriate relation 
is a daily routine, changing the integrity constraints 
governing this relation occurs usually- only in the course of 
a database reorganization. Thus, we have to modify our 
fmework to accommodate for that difference. Giving 
different parts of the theory greater weight than others is 
similar in spirit to the idea of “modal categories” in [Res]. 

We see the view update problem as a specific exam- 
ple of the more general problem of updating databases 
under constraints. Works on view updates often encounter 
difficulties that, we believe, are attributable to an1 underly- 
ing dubious assumption. The assumption is that we know 
exactly what change to the view is desired by the user. 
These works see the central problem as that of reflecting 
that change “correctly” in the database. Rather, we pro- 
pose to look at a request to update a view as supplying an 
information unit in terms of the view. To implement the 
update, we interpret that information unit in terms of the 
database and then treat it as an ordinary update. 

While the application that we have in mind here is 
updating databases, we believe that the framework 
developed here is also relevant to any kind of knowledge 
base management system. From the point of view of 
Artificial Intelligence, what we have here is a logic for 
belief revision, that is, a logic for revising a system of 
beliefs to reflect perceived changes in the environment or 
acquisition of new information. The reader who is 
interested in that aspect is referred to [DL]. 

What we propose in this preliminary report is 
mainly the logical framework, without getting down to 
implementation details. We do. however, give one con- 
crete example. We shall discuss more of the implementa- 
tion aspect in the full paper. 

2. Updating thcories 

Our basic units of information are first-order well- 
formed formulas with no free variables. Two extreme 
cases should, however, be excluded. Inconsistent formulas 
represent contradictory information, and valid formulas 

represent always-me information. Since we want to 
prevent insertions of contradictory information or deletions 
of always-true information, we define a sentence to be a 
first-order well-formed formula with no free variables that 
is’neither valid nor inconsistent. A lheory is a consistent 
set of sentences. The set of logical consequences of a 
theory T is denoted T , i.e., 

t 

# 

T = {u : T logically implies a). 

# 
If 7‘ = T then T is closed with respect to logical impli- 
cation, and we say that it is a closed theory. We will some- 
times restrict ourselves to closed theories. The class of all 
models of a theory T is denoted by Mod(T) .  In our con- 
text, models of T are databases that obey T .  Our results 
hold regardless whether we consider arbitrary models or 
just finite models. 

When the user asks for an update, he intends to 

replace the existing theory by a new one’. Let T be a 

theory, and let (T be a sentence. A theory s accompfishes 
the insertion of a into T if uES.  S accomplishes the 
deletion of afiorn T if rrgS . # 

Some observations should be made with regard to 
this definition. We consider the sentences in T as basic 
facts from which all the sentences in T follow. Thus, 
there is a difference between the sentences in T and the 

sentences in T - T ,  in the sense that those in T att 
represented explicitly, while those in T - T are not, even 
though they logically follow from the sentences that are in 
T.  When we insert a into T we want it to be represented 
explicilly, so we require ha t  aES in order for S to 
accomplish the insertion. On the other hand, it is not 
sufficient to have a&l’ for S lo accomplish the deletion of 
u from T ,  and we require that uES . (If only closed 
theories are considered, then we do not have this distinc- 
tion between insertion and deletion. We deal with updates 
of closed thcories in the end of this section.) Also. we 

’ WC considcr hcrc only insertions and dclction. RcplacP 

* 

# 

* 

rncnls will bc dcak with in thc t i l l  vcrsion of thc paper. 
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distinguish between the deletion of u and the insertion of 
l u .  We insert 7 6  when we know that o is not true 
anymore, and we delete u when we do not know anymore 
that u is true. 

If TU(u}  is consistent, then obviously this theory 
accomplishes the insertion and should be Taken as the 
result of the update. Similarly, if ~ Q T  *, then1 T itself can 
be taken as the result of deleting u from T .  The interest- 
ing cases are when we try to insert u into T ,  where 
T U ( u )  is inconsistent, or when we try to delete u from 
T ,  where uET . 

Suppose now that we are trying to update a theory 
T .  and that T1 and T2 are two theories thait accomplish 
the update. Each of T I  and T2 is different fmm T .  We 
would clearly prefer the theory that involves a “smaller 
change” from T .  In order to formalize this intuitive 
notion of “smaller change” when going from a theory T 
to a theory S ,  we have to consider the set S -- T of facts 
that are added to the theory, and the set T - - S  of facts 
that are deleted from the theory. 

We say that T1 has fewer insertions than Ta with 
respect to T ,  if T I -  T C T 2 -  T :  T I  has no more inser 
lions than T t  with respect to T ,  if T I -  TC 7’2- T ;  and 
T1 has the same insertions as T2. with respect to T ,  if 
T I -  T = T2- T.’ Similarly, we s a y  that TI.  has fewer 
deletions than Tt, with respect to T ,  i f  T - TIC T - T2: 
T I  has no more deletions than T2 with respect to T ,  if 
T - T1C T - T2; and T1 has the same delei,ions as Tt, 
with respect 10 T .  i f  T -  TI= T-T2. We shall omit 
reference to T when it is clear from the context. 

Clearly, we would like to minimize both the set of 
inserted facts and ihe set of deletcd facts. and this is why 
Todd [To] says that T1 does not involve a greater change 
than T2 with respect to T if T1 has no more: insertions 
and no more deletions than T2. 

* Wc usc C Lo dcnotc containment and C Lo dcnotc proper 
containmcnt 

We, however, contend that the notion of “smaller 
change” can not be defined precisely without considering 
the nature of the update. The next lemma claims that 
when dealing with deletions it suffices to consider the set 

of deleted facts. 

Lemma 1. Let T be a theory and let u be a sentence. 
Then for each theory S that accomplishes the deletion of 
u from T ,  there is a theory S ’ such that 

(1) 

( 2 )  S ’ C T ,  and 

(3) 

S’  accomplishes the deletion of u from T ,  

S ‘ has the same deletions as S .  

It follows that when dealing with deletions it suffices 
to consider the set of deleted facts. Let us now consider 
insertions. It would have been nice if, analogously to the 
case of deletions, it would have sufficed to consider the set 

of added facts. Unfortunately, this is not the case. Con- 
sider a propositional theory with the propositions A and 
l ( A & B ) .  Suppose that we want to insert B .  It is clear 
that either A or l ( A $ B )  must be deleted. Thus, con- 
sideration of the set of the deleted fxts is unavoidable. 
The reason for the discrepancy between deletions and 
insertions is that consislency is preserved when going to 

subsets but not when going to supersets. 

The next lemma suggests that in the case of an 
insertion if we were to minimize the set of inserted facts 
first, or if we were to minimize both sets of inserted and 
deleted facts simultaneously, then the result would not be 
very usehl. 

Lemma 2. Let T be a closed theory, let u bc a scntence 
not in T ,  and let T‘ be the closed fieory {a) . Then 
there is no closed thcory S that accomplishes thc insertion 
of u into T .  such that either S has fewer insertions than 
T‘ ,  or S has the same insertions as T’ but S has fewer 
deletions than T‘. o 

The idea is that if we do not wish LO add anything that 
does not follow from u, then we must delete everything 
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not following from u. 

As a consequence of Lemmas 1 and 2 we believe 
that with both deletions and insertions we should try first 
to minimize the set of deleted facts. This is justified on 
the intuitive grounds that we would like to stick with as 
many as possible of the facts that were known to be true. 
Thus, we say that T I  accomplishes an update 11 of T wiih 

a smaller change than T2 if both T1 and T,  accomplish u , 
and either T I  has fewer deletions than T2 or T1 has the 
same deletions as T,  but T1 has fewer insertions than T2- 
Observe that when u is a deletion we can assume, by 
Lemma 1, that there are no inserted facts. 

Now that we have defined formally the: notion of 
“smaller change” we can define the notion of “minimal 
change”. We say that S accomplishes an update u of T 
minimally if there is no theory S ‘  that accomplishes u 
with a smaller change than S . 

The above definition is non-constructive in the sense 
that it does not give us any clue as to how to find those 
theories that accomplish an update minimally. The follow- 
ing theorem gives ;1 constructive equivalent condition. 

Theorem 1. Let S and T be theories, and let cr be a sen- 
tence. Then, 

(1) S accomplishes the deletion of u from T minimally 
if and only if  S is a maximal subset of T that is 
consistent with l u , .  and 

(2) SUa accomplishes the insertion of a into T 
minimally if and only if S is a maximal subset of T 
that is consistent with D.  0 

Observe that there is an interesting duality in the theorem: 

Corollary. S accomplishes the deletion of B from T 
minimally if and only if SUTu accomplishes the inser- 
tion of 10 into T minimally. o 

If when trying to update a theory T there is a 
unique theory S that accomplishes the update minimally, 
then clearly we would take S as our new theory. What, 

however, should be done if several theories accomplish the 
update minimally? Consider for example the propositional 
theory T = (Ad8 +C, A ,  B ,  C). The reader can verify 
that there are three theories that accomplish the deletion 
of C from T minimally: T1=(A&R-+C,A}. 
T2=(A&.B4C, B ) .  and T , = ( A ,  B ) .  

Our contention is that a theory T is a description of 
the class Mod(T) of possible worlds. If 
TL . . . , T,, . . . are the theories that accomplish an 
update of T minimally, then the only thing we do know 
for sure after the update is that the world must be a model 
of some T :  that is, our class of possible worlds is the class 
U Mod(Ti). It is not a priori clear that this class is ele- 
i 21 
mentary, i.e., can be axiomatized by a first-order theory (it 
can be shown that this class can be axiomatized in an 
infinitary language). Nevertheless, if it is elementary then 
its theory is the new state of knowledge and should be 
taken as the new theory. That is to say, if 
U Mod(Ti)=Mod(T’), then T’ is a result of the 

update of T .  Observe that there can be more than one 
result of an update, but all results are logically equivalent. 

i 21 

One case for which we know that updates are well- 
defined is when there are only finitely many theories h a t  
accomplish h e  update minimally. Let T I ,  . . . , T,, be 
theories. The disjunciion of Lhese theories is 

\ ;Ti={~IV - - -  Vrn:riETi . l<i<n} 
i = l  

Lemma 3. Let T L  . . . , Tn be theories, let T’ be the 

theory \/7;., and let T” be n Ti Then 

Mood(T’)= Mod(T”)= U Mod(Ti). O 

n 

i = l  

n *  

i = l  
n 

i=l 

Thus, if T I .  . . . , T, are the theories that accomplish an 
update u niinirnally. then T‘ and T” given in the lemma 
are resu1t.s of U. 
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Suppose now that we try to update a finite theory 
T .  In that case there are only finitely many.theones that 
accomplish the update minimally, and by Lemma 3 we are 
guaranteed that there exists a result of the update. Furth- 
ermore, in that case all the theories that accomplish the 
update minimally are finite, so the theory T' given in the 
lemma is also a finite theory (note that T" is infinite). 
That means that we can again update it and get a well- 
defined result. 

Another case for which updates are well defined is 
the case of closed theories. By that we mean that we con- 
sider only updates of closed theories, and among the 
theories that accomplish the update minimally we consider 
only 'the closed theories. Formally, let T be a closed 
theory, let u be an update, and let TI, . . . T,,, . . . be 
the closed theories that accomplish u minimally. T' is the 
closed result of the update u if T' is closed and 
Mod(T')= U Mod(T;).  Observe that T'.  if it exists, is 

unique. The following theorem guarantees the existence 
of the result 

i 21 

Theorem 2. Let T be a closed theory, let u be an update, 
and let TI ,  . . . , T,,,. . . be the closed theories that accom- 
plish u minimally. Then T ' =  n Ti is the closed result 

of the update u .  o 
i 21 

While the above theorem guarantees the existence 
of the result, the description of the result by a possibly 
infinite intersection is highly non-constnictive. The next 
theorem describcs explicitly the closed result of an update 
of a closed theory. 

Theorem 3. Let T be a closed theory, and let u be a sen- 
tence. I f  oET. then the closed result of deleting cr from 
T is ( { l c r ) V T )  . If crCT then the closed result of 

inserting cr into T is {u} .3 o 

* 
# 

Clcarly. i f  uQT. thc closcd rcsult of dclciing u from T is 
T. and if ~ € 7 ' .  thc closcd rcsult of insening u into T' is 7'. 

It follows that when we try to augment a closed theory by 
a statement that is inconsistent with it we have to abandon 
completely the old theory. We demonstrate the insertion 
m e  with an example of an insertion into a propositional 

uieory. 

Example 1. Let T be the propositional theory 
( A ,  if?} , and suppose that we want to insert B into 
T .  It helps to thinkof T as { A , l B , A s i B }  ,which 
is another way of describing the same closed theory. 
There are two closed theories that accomplish the insertion 
minimally: T l = ( A , B }  and T * = ( l A , B }  . Thus, 
the closed result of the insertion is the theory T', where 
T'={(A&fl)\L(~A&fl)} =In}*. Consider now 
non-closed theories. The reader can verify that T' is also 
a result of inserting B into the theory 
{ A , l B , A = i B } .  If. however, we insert B into the 
theory ( A ,  7 B 3 ,  then the theory ( A ,  B )  accomplishes 
the insertion minimally, and hence is a result of the inser- 
tion. 0 

This example demonstrates the difference in updating 
closed and non-closed theories. This difference explains 
why we have chosen to consider non-closed theories. If 
the database has the facts A and 18 and then is 
inserted, then we expect the fact 1 1 3  to be replaced by 
the fact B .  It is true that if both A and 1 B  hold then 
A G ~ B  also holds, but the truth of A = i l l  does not 
seem to be as basic as the truth of A and 7 B .  If, how- 
ever, we consider the closure of the theory, then A = l B  
has the same status as A and l l ? ,  and that forces us to 
delete another fact in addition to l B ,  either A or 
A r l B .  

* 

* * 

t 

This example also shows that our logic is non- 

monotonic. Standard logics are monotonic in the sense 
that adding more axioms or more inference rules enables 
us to prove new theorems, while the old theorems are still 
true. In a non-monotonic logic some of the old theorems 
may be invalidated in such a case. Indeed, the insertion of 
f1 into the theory { A ,  l l l ,  A = i l l } ,  forces us to delete 
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all the facts in the theory. 

3. Updating Databases 

When we try to apply the framework developed in 
the previous section to updates of databases we encounter 
difficulties, because in that framework all theories that 
accomplish an update minimally are equally viable candi- 
dates to be the new theory. However, consider a proposi- 
tional database ( A }  that has the integrity constraint 
A&B-*C. The theory of this database is 
{ A & B + C , A } .  The theory {A,h' )  accomplishes the 
insertion of B into the database minimally. But it does 

not make sense to throw away an integrity mnstraint 
because of an update that violates i t  The solution is to 

give sentences in the databases priorities Now, instead of 
arbitrarily constructing theories that accomplish an update 
minimally, we will construct them by selecting sentences 
according to their priorities 

A fagged sentence is a pair <i,a>, where i is a 
natural number and u is a sentence. A logical database is 
a finite set of tagged sentences. The intention is that the 
lower the tag, the higher the priority. We shall occasion- 
ally ignore h e  fact that the sentences are tagged and just 
regard them as sentences, while also talking about their 
tags. The sentences that are tagged by 0 have the highest 
priority. We expect the the integrity constraints to be 
tagged by 0. 

Let D be a logical database. Then 
D ' = ( < j , ~ > : < j , r > € D  and jsi) is thesetofsentences 
in D whose tag is smaller or equal to i. (In particular, 
/I-'=@.) The theory of D is obtained by stripping the 
tags, i.e.. T h ( D ) = { ~ : < i , 7 > E n ) .  A logical database E 
accomplishes the inserfion of B into a logical database D if 
<i,o>E E.  for some i>O.  E accomplishes (he deletion of 
af iom D i fueTh(E)  . 3 

Now, when we compare two logical databases to see 
which of them acconiplishes an update with a smaller 
change, we compare them according to the priorities given 
to the sentences. Let D be a logical database with n as 

the highest tag in i t  and let E and F be two logical data- 
bases that accomplish an update u.  We say that E accom- 
plishes u with a smaller change than F if either for some i ,  
0 s  i 5 t i ,  we have either 

D i -  1 - Ei -1 = D i - 1 - Fi -1 * 

but 

D' - E'C D i  - F', 

or else 

but 

E - 11 C F - D. 

Remark. The above definition has also the advantage that 

it facilitates attaching an authorization mechanism to the 
update mechanism by specifying for every user a tag i 
such that E' must be equal to D'. For example, even 
though the definition allows a change in Do, ie.. .the 
integrity constraints, we anticipate that most users will not 
be authorized to update that part of the database. o 

We say that a logical database E accomplishes u 
minimally if there is no logical database F that a=&- 
plishes u with a smaller change than E. 

The next theorem is the analog of Theorem 1 for 
logical databases. 

Theorem 4. Let D and E be logical databases. with n 
the highest tag in D ,  and let u be a sentence. 

(1) E accomplishes the deletion of u from D 
minimally if and only if E' is a maximal subset of 
D' that is consistent with l u  for i = 1. . , . , n. 

EU<j,o> accomplishes the insertion of u into D 
minimally if and only if E' is a maximal subset of 
D' that is consistent with u for i = 1, . . . , ) I .  o 

( 2 )  

As is the case wilh theories, a result of an update 
should be a logical database whose class of models is 



exactly the union of all classes of models of logical data- 
bases that accomplish the update minimally. If 
D1, . . . , D, are the logical databases that aosomplish an 
update u minimally, and D' is a logical database such that 

R 

then D' is a result of u.  Lemma 3 gives us a 'way to con- 
struct such a result, because if 

then D ' is a result of u .  

What we have not specified is how LO convert a 
theory into a logical database; that is, how to tzig the sen- 
tences in a meaninghl way. This is left to the database 
administrator to specify. since this is the means through 
which he can control the actual implemeiitation of 
updates. We shall illustrate this point with an example. 

Example 2. Let the database consist of a relation 
R (Employee, Child, Depar/nient) with h e  functional 
dependency Employee +Deparfmenf. Let the cumnt 
relation be 

Employee Child Department 
Gauss Yoni Math 

Turing Yomm Mach 

Turing Gabi Math 

Babbage Andrei cs 

The language we use has a relation name R for h e  rela- 
tion R and cOnstantS for the elemen& of the domain. The 
integrity constraints consist of the given fimctionid depen- 
dency plus distinctness axioms saying that all elements are 
distinct [Rei]. The logical database D consists of the 
integrity constraints tagged by 0, existential sentences, 
tagged by 1. describing the tuples in the projection of the 
relation on columns Employee and Child, and atomic 

sentences, tagged by 2. describing the tuples in the rela- 
tion. That is, D O  is the set 

<0, Gauss dTuring>, . . . , <0, Math dCS>), 

D' is the set 

Do U 

{<l, 3 x(R(Guuss, Yuni, x))>. 

<1, =Jx(R(Turing, Yorum, x))>, 

<1, ]x(R(Tun'ng, Gabi, x))>. 

<1, =Jx(R(llubbage, Andrei, x>). 

and D2 is the set 

D' U 

{<2, R(Guuss, Yoni, Math)>, 

<2, R(Turing, Yorurn, Math)>, 

<2, R(Turing , Gabi, Marh )>, 

<2, R(nabbage, Andrei, CS)>), 

suppose now ha t  we insert into D a sentene-o, 
where u is 3x(R(Tur ing ,  x,  CS)). Let us now construct 
a logical database that accomplishes the insertion 
minimally. In facl. there is a unique such logical database 
D'. Do is consistent with u so we put it in D'. Actually, 
D' is also consistent with u so we can put it in D'. We 
can also put <2. R(Gauss, Yuni. Marh)> and 
<2. R(Bnbbage, Andrei. CS>> in D'. However. we can 
put neither <2, H( Tiiring , Yorain, Marh )> nor 
<2, li(Turitrg, Gabi. Mnfh)> in D', because then the 

functional dependency together with (I entail Illafh = CS, 
in contradiction lo the axiom Math JCS, which was 

already put in D'. It follows that 
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D ’ = ( < i .  a>} UD’ U 

{<2, R(Guuss, - * - )>, <2, R(Bubbuge, - - * >) 

is the unique (up to the choice of i) logical database that 
accomplish the insertion minimally. The reader can verify 

R(Turing, Yorum, CS) and R(Turing, Gubi, CS). It 
follows that the logical database describing the’extension 

that Th (D ’) logically implies both 

Employee Child Department 
Gauss Yoni Math 

Turing Yoram cs 
Turing Gabi cs 

Babbage Andrei cs 
is a result of the insertion. Thus, the net effect of the 
insertion is to change Turing’s department from Math to 
CS. Note how our decision to have the Employee-Child 
facts in the logical database was essential for us to obtain 
this result. This is an example how the database adminis- 
trator can control the implementation of updates. 13 

4. Updating Views 

A problem that has attracted a lot of interest is that 
of updating views. The problem is usually posed in the 
following way. A user view (or view, for short) is defined 
by some mapping a on the collection of possible data- 
bases. The intention is that when the database is B ,  the 
user sees V = a ( B ) .  Suppose now that the user wants to 
apply an update operation u that will effect ii certain 
change in l’. This should be accomplished by applying 
some update operation v to ll so that the change in B 
“reflects” the change in V “correctly”. There are two 

major difficulties here. First, it is not clear what is the 
right way to define formally the above intuitive notion of 
“correct reflection”. Secondly, it is not clear how to con- 
struct Y given u .  

In our opinion the difficulties arise from h e  premise 
that the user knows exactly how the update is going to 

effect’hk view. The user view, however, has to satisfy cer- 
tain integrity constraints, either because the database has 
to satisfy some integrity constraints or because it has to be 
an image of a. For example, it is easy to show that if the 
view is defined by a join operation then it has to satisfy a 
certain join dependency. As observed earlier. the effect of 
updates in the presence of integrity constraints is not tran- 
sparent at all. 

We believe that a better approach is to consider an 
update operation as an addition or deletion of an informa- 
tion unit. If the user expresses that information in terms 
of his view, then we should first translate that into infor- 
mation in terms of the database and then apply the metho- 
dology of the preceding sections. The crucial point is 
shifting the focus from the change that the update is sup- 
posed to effect to the information that it carries. Let us 
now formalize our approach. 

We assume for simplicity that the database consists 
of one ti -ary relation R , the view consists of one tit-ary 
relation P .  and both the database and the view have the 
same underlying domain A .  The relation names are R 
and P. respectively. For any relation name Q, we use the 
notation T(Q,x~. . . . . x k )  to denote a formula T that has 
Q as its only relation name and has XI, . . . , Xk as free 
variables. The view defnifion is a formula 
q(R,  XI.. . . ,x,,,). Thus, given a database B = ( A & ) ,  
the view k’ is ( A , P ) ,  where 

P = { < u L . .  . ,U, , ,>: (A.  R ) F v ( R ,  ~ 1 ,  . . . ,a,,,)}. 

Suppose now that we have a sentence u(P). which 
conveys some information about h e  view. What infoma- 
tion does it convey about the database? In order to 
answer that, it helps to lump both the database and the 
view into an  extended structure ( A ,  R ,  P ) .  By the way 
P was defined. we know that this extended structure 
satisfies the sentence #(P, q(R)): 

V X ~  . * * x ~ ( P ( x ~ ,  . . ~ m ) r v ( R , x l .  + - . * Xm)). 
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The desired translation is given by the following lemma. 

Lemma 4. Let cp(R, X I ,  . . . , x,) be the view definition, 
let o(P) be a sentence. and let o(cp(R)) be the result of 
replacing each atomic forniula P(v1, . . , v,) by 
q(R. v1. . . . , v,). Then 

W’, cp(R)) I= u=u(cp(R)). 0 

Intuitively, Lemma 4 says that the information that 
a(P) conveys about P is equivalent to the information 
that a(cp(R)) conveys about R .  In the terms of [Jalj 

there is a database B’ such that (a ,PXB‘)= (V’ ,  W )  then 
there is a unique one, since (a$)  is injective. n u s ,  
changing B to B ‘ is the correct translation of the update. 

While the idea is quite attractive it is not very con- 
structive. Not only it is unclear how to verify that the two 
views are complementary and how to find B‘ given V’ 
and W ,  but, as already argued, the basic premise, that the 
user knows what change his update is going to effect. is 
dubious. Nevertheless, the spirit of the methodology can 
be captured by our approach of assigning priorities to sen- 
tences. We now present the logical framework. 

a(cp(R)) is the inrepretalion of o(P) under 
rp(R, XI. . . . , x,). Thus, if the user asks to insert u(P) 
into his view or to delete o(P) from his view, the update 
should be implemented by inserting a(q(R)) into the 
database or deleting a(cp(K) from the database by the 
methodology of lhe preceding sections. 

Recall that the database consists of a relation R 
with relation name H, and that the view consists of a rela- 
tion P with relation name P, defined by 
q(R, X I ,  . . . , x,). In addition we now have another 
view, consisting of an I-ary relation Q with relation name 
Q. defined by x(R, XI. . . . , x~) .  We use x to denote a 

Remark. Our appioach also gets around another difficulty. 
While the database can be described by a finite logical 
database. it is not clear what is the logical description of 
the view. Let T(R) be the theory of the logical database. 
Then the theory of the view is 

: T ( R ) U ( W , q ( R ) ) l  I= u(P)l. 

This theory is not only infinite but may not even be 
finitely axiomatizable. In practice the user is going to see 
only a subset of this theory, say all quantifier-free sen- 
tences. Nevertheless, the update can be. implemented 
wilhout any reference to what b e  user actually sees. 0 

Another methodology for updating views. based on 
the nolion of complemeniary view, was suggested in [BS). 
We say that two views, defined by the mappings a and p, 
respectively, are complementary if the mapping (a$), 
defined by (a,/3)(B)=(a(h’), P(h’>). is an injective map- 

ping. The basic idea is to accompany each view-defining 
mapping a by a complementary view dcfining mapping p .  
Suppose now that the database is U ,  V=a(L?). 
W=/3(B), and h e  user wan& to change V to V‘. If 

sequence XI,XZ, . . . of variables, where the length of the 
sequence is to be determined by the context. Let R‘ be a 
new n-ary relation name, let cp(R’,x) be the result of 
replacing R by R’ in q(R,x). and similarly for x(R’,x). 

The following theorem gives a necessary and 
sufficient logical condition for complementariness. 

Theorem 5. Let cp(R,x) and x(H,x)  be view definitions. 
Then cp and x define complementary views if and only if 

tf x(qdR,x>~cp(R’.x))& ’d x(x(R,xkx(R’ ,x) )  

- 

Remark. Theorem 5 has a very interesting corollary. based 
on Beth’s Definability Theorem [Be]. I f  cp(R,x) and 
x(R,x) define complementary views, hen  there is a for- 
mula p(P, Q, XI. . . . , x,), such that if 

and 



then 

R = { < a t . .  . ,a , , . ,>:(A,P,Q)l=p(P,  Q, a1, .  . . .a,,)}. 

That is, if the two complementary mappings a and /3 are 
given as first-order formulas, then the inverse of the map- 
ping (a$) is also given by a first-order formula. We note 
that the p m f  of this corollary assumes that infinite data- 
bases are also considered. 

The basic idea in the complementary views 
approach is that some information has to be kept invariant 
while the update is performed. Let D be the logical data- 
base, and let T(Q) be a theory about the complementary 
view. In analogy with #(P, cp(R)), let #(Q, x(R)) be the 
sentence 

Thus, keeping T(Q) invariant when an update involving 
a(P) is performed is equivalent to keeping T(x(R)) 
invariant when that update is performed with a(cp(R)). In 
order to achieve that. we perform the update on a new 
logical database D ': 

{<O,T>: TET(X(R)))U{<i  + 1,~) : <i,T>ED). 

That is. we add T(x(R)) to the logical database, while 
giving it a higher priority. 

Example 3. Consider again the relation 
R (Employee,Child,Deparrmenr) wilh the functional 
dependency Employee + Deparrinenl of Example 2. Let 
the logical database D be: 

<0, Gauss +Turing>, . . . , <0, Marh JCS>, 

<1, R( Gauss, Yoni, Mafh )>, . . . , 
<1, R(Babbage, Andrei, CS)>}. 

The view that we are interested in is the relation 
P(Employee, Depar(men0 obtained by projecting R on 
the columns Employee and Deparimeni. Thus, its 
defining formula cp(R, x1,xd is: 

The complementary view is the relation 
Q(Employee,Child) obtained by projecting R on the 
columns Employee and Child. Thus, its defining formula 

x(R, ~ 1 ~ 3  is: 

The relation names of P and Q are P and Q. respec- 
tively. Suppose that the user asks to insert to his view the 

tuple 

Employee Department 
Turing cs 

i.e., the formula o ( P )  is: 

P( Turing, CS 1. 

and o(cp(R)) is: 

3 x(R(Turing.x.C.9)). 

The information that we want to keep invariant is the rela- 
tion Q (Employee ,Child): 
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Employee Child 
Gauss Yoni 

Turing Yoram 

Turing Gobi 

Babbage Andrei 

Thus, T(Q) is: 

{Q( Gauss, Yoni), - . . , Q(Babbage,Andrei)), 

and T(x(11)) is 

12 x(R( Gauss, Yoni, x)), . . . , 
3 x(R(Bubbuge, Andrei, x)). 

Now, D‘, the new logical database is: 

{<O, 3 x(R(Guuss, Yoni, x))>. . . . , 
<0, 3 x(R(Babbage, Andrei, x))>, 

<I, V Y l  - * * YS(RCvl9Y*J3)& RCvI9Y4?Y5)-*Y3 ‘ Y 4 k  

<I, Gauss $Turing>, . . . , <1, Muth JCS>, 

(2, R(Gauss, Yoni, Math)>, . . . , 
<2, R(Bubbage, Andrei, CS)>), 

We leave it to the reader to verify that the effect of the 
update is change Turing’s department from Math to CS, as 
in Example 2 . 0  

5. Concluding Remarks , 

In the previous sections we described a framework 
for updates of theories and logical databases, which is also 
applicable to updating views. As was demonstrated in 
Example 2, the actual result of an update is dependent 
upon the way the logical database is constructed. More 
research should done on that aspect to niake our metho- 
dology practical. 

As an example, we shall propose, in the full version 
of the paper, a specific construction for relational 

databases. We shall show that if we restrict ourselves to 
databases where the initial state hns complete information 
and the integrity constraints are data dependencies, then as 
a result of insertions and delelions we get a theory that is 
very similar to the generalized relational theory with nulls 
of Reiter [Rei]. This is meant to be a demonstration of the 
methodology and not a practical approach, since it is com- 
putationally quite intractable: insertions are NP-hard and 
deletions cause combhatorial explosion of disjuncts. 

Until now we have assumed that our constraints are 
slate laws, i.e., they deal with the legality of database 
states. In contrast, transifion laws are constraints that deal 
with the legality of transitions between states. For exam- 

ple, the constraiht “ages can never decrease” is a transition 
law. The way we deal with transition laws is again to 
lump both the present and the next database states into an 
extended database, in which state laws express the transi- 
tion laws. Obviously, we require that the update has no 
effect on the part of the extended database that reflects the 
present state. 

Acknowledgemcnt. We would like to thank Jim David- 
son, Joan Feigenbaum, Anna Karlin, Arthur Keller, Gabi 
Kuper, John McCarthy, and Allen VanGelder. for helpful - 
discussions and suggestions. 

REFERENCES 

Beth, E.W.: On Padoa’s method in the theory of 
definitions. Indag. Math. 15 (1953), pp. 330-339. 

Bancilhon, F., Spyratos. N.: Update semantics of 
relational views. ACM Trans. on Database Sys- 
tems G (1981). pp. 557-575. 

Carlson, C.R., Arora, A X . :  The updatability of 
relalional views based on hnctional dependen- 
cies. Proc. IEEE COMPSAC. 1979, pp. 415-420. 

Clemons. E.K.: An external schema facility to 
support database update. In Database, Academic 
Press, 1978. 

36 3 



THIS PAGE 

INTENTIONALLY 

LEFT BLANK 



.' CI 

Dayal, U.: Schema mapping problems in database 
systems. Technical Report TR-11-79. Center for 
Research in Computing Technology, Harvard 
University, 1979. 

Dayal, U.. Bernstein, P.A.: On the updatability of 
relational views. Prcc. 4th Int'l Conf,  on VLDB. 
Berlin, 1978, pp. 368-377. 

Dayal. U.. Bernstein. P.A.: Translation of update 
operations on relational views. ACM Trans. on 
Database Systems 8 (1982). pp. 381-416. 

Doyle, J., London, P.: A selected descriptor- 
indexed bibliography to the literature on belief 
revision. SIGART Newsletter 71(1980). pp. 7-23. 

Furtido, A.L.. Sevcik, K.C.: Permitting updates 
through views of databases. Inf. Syst 4 (1979). 
pp. 269-283. 

Jacobs, B.E.: On interpretations in database logic 
and their applications. Technical Report TR 815, 
Dcpt. of Computer Science, University of Mary- 
land at College Park, 1979. 

Jacobs. B.E.: Application of database logic to the 
view update problem. Technical Report TR 960, 
Dept. of Computer Science, University of Mary- 
land at  College Park, 1980. 

Kaplan, S.J.. Davidson. J.: Interpreting natural 
language database updates, Proc. 19th Ann. 
Meeting of the Assoc. for Computational Linguis- 
tics, Skinford, 1981, pp. 139-142. 

Keller, A.M.: Updates to relational databases 
through v.iews involving joins. In Improving data- 
buse usability and responsiveness (P. Scheuermann. 
ed.), Academic Press, 1982, pp. 363-384. 

Klug, A.C.: Theory of database mapping. Techn- 
ical Report CSRG-98. Dept. of Computer Sci- 
ence, University of Toronto. 1978. 

Kowalski, R.: Logic as database language. 
Unpublished Manuscript Dept. of Computing. 

Imperial College, London. 1981. 

[Mi] Minker, J.: On indefinite databases and the 
closed world assumption. Technical Report TR- 
1076, Dept. of Computer Science. University of 
Maryland at College Park, July 1981. 

[MUV] Maier. D.. Ullman, J.D.. Vardi. M.Y.: The 
revenge of the JD. Proc. 2nd ACM Symp. on 
Principles of Database Systems, Atlanta, 1983. 

[NG] Nicolas. J.M.. Gallaire. H.: Database - theory ys. 
interpretation. In Logic and Databases (H. Gal- 
laire and J. Minker, eds.), Plenum Press. 1978, 
pp. 33-54. 

[NY] Nicolas, J.M., Yazdanian. K.: Iiitegrity checking 
in deductive databases. In Logic and Databases 
(H. Gallaire and J. Minker, eds.), Plenum Press, 
1978, pp. 325-344. 

[Os] Osman, I.M.: Updating defined relations. PKIG 
Nat'l Computer Conf.. Vol. 48,. AFIP Press. 
1979. pp- 733-740. 

Reiter, R.: Towards a logical reconstruction of 
relational database theow. Unpublished 
Manuscript, University of British Columbia. 1981. 

[Res] Resher, N.: Hypothetical Reasoning. Ncrrth- 

[Rei] 

Holland, Amsterdam. 1964. 

Sciore. E.: The univeml instance and database 
design. Technical Report TR-271, Dept. of 
EECS, Princeton University. 1980. 

Todd, S.: Automatic constraint maintenance and 
updating defined relations. Proc. IFIP 77 (B. GiJ- 
Christ, ed.), North-Holland, 1977, pp. 145-148. 

[Sc] 

Po] 

365 


