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ABSTRACT
It is well known that a search engine can significantly bene-
fit from an auxiliary database, which can suggest interpreta-
tions of the search query by means of the involved concepts
and their interrelationship. The difficulty is to translate ab-
stract notions like concept and interpretation into a concrete
search algorithm that operates over the auxiliary database.
To surpass existing heuristics, there is a need for a formal
basis, which is realized in this paper through the framework
of a search database system, where an interpretation is iden-
tified as a parse. It is shown that the parses of a query can
be generated in polynomial time in the combined size of the
input and the output, even if parses are restricted to those
having a nonempty evaluation. Identifying that one parse
is more specific than another is important for ranking an-
swers, and this framework captures the precise semantics of
being more specific; moreover, performing this comparison
between parses is tractable. Lastly, the paper studies the
problem of finding the most specific parses. Unfortunately,
this problem turns out to be intractable in the general case.
However, under reasonable assumptions, the parses can be
enumerated in an order of decreasing specificity, with poly-
nomial delay and polynomial space.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

General Terms
Algorithms, Design, Theory
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1. INTRODUCTION
It has long been recognized that the quality of results

in an information-retrieval (IR) system can be significantly
improved by exploiting techniques from the area of infor-
mation extraction (IE) [3, 4, 9, 13, 19, 26, 28, 30]. Intuitively,
IE enables the search system to associate, with each docu-
ment, not just a sequence of constituent words (“tokens”),
but also semantically richer information in the form of en-
tities, relationships, sentiments, and opinions. For example,
IE applied to a collection of email messages can identify com-
monly occurring concepts such as persons, addresses, phone
numbers, and associated relationships [13]. Similarly, when
applied to product reviews, IE techniques can extract men-
tions of specific product features and associated positive or
negative sentiments expressed by the author of the review.
Several different approaches have been studied for exploiting
such information to improve search quality. One approach is
to use IE as a post-processing step to filter and reorder the
results from a retrieval engine [3,9,23]. Another approach is
to use this information for smarter indexing [19,20] or query
expansion [26]. However, all of these approaches apply in-

direct means of using the extracted information to improve
search, as they do not directly affect the core of the retrieval
engine.

In recent work [13, 30], focused on personal email search
and on intranet search, we adopted a more direct approach
of using IE for ”understanding” search queries. To illustrate
the potential of this approach, consider the search query
that contains the single word avi. On the Web, it is ex-
pected to rank highest a page that discusses the AVI multi-
media format. In an enterprise intranet search, we can use
IE techniques to recognize that Avi is a shorthand for the
person name Avigdor, who is mentioned in the underlying
corpus as an employee of the company; thus, we may choose
to explicitly interpret the keyword query avi as the query
“return personal home pages of people whose name matches
avi (e.g., Avigdor).”

While our work [13, 30] was originally motivated by aux-
iliary databases populated through IE, the overall approach
applies even if the auxiliary database is obtained from avail-
able data underlying the application, or a combination of
the two. As an example of available data, consider the query
buzz price posed to the search engine of an online toy store.
A database storing the business logic can indicate that buzz

matches the product “Buzz Lightyear,” and that price is a
known concept (that can appear as, e.g., “$49.99”). Thus,
the engine may decide to bring back, as top search results,
pages containing the aforementioned product and a price



(but not necessarily the word “price”). Even better, recog-
nizing that price is a property of a product, the aim can be
for pages where Buzz Lightyear and the price are associated
(i.e., Buzz Lightyear’s price is mentioned, as in a page with
the commercial “Buzz Lightyear—now on sale: $49.99”).

The above discussion illustrates one principle: an auxil-
iary database of concepts associated with the corpus can
help in understanding the user intent behind the search
query, and thereby significantly improve search. In contrast
to other published solutions, our approach is direct in the
sense that we actually apply a preprocessing step that sug-
gests interpretations of the query. Of course, the notion of
interpretation is vague (so far). Roughly, in the search sys-
tems we have implemented at IBM Almaden (which perform
quite well in practice [13, 30]), suggesting an interpretation
means applying heuristics that detect opportunities for as-
sociating keywords with database content. But to make a
significant progress in our search solutions, we needed to
establish a principled framework that formally captures the
task of understanding queries, and in particular that models
and relates the notions of auxiliary databases, concepts (e.g.,
“product” and “price”), relationships between concepts (e.g.,
“product-price”), and interpretations (e.g., buzz price refers
to Buzz Lightyear’s price). A major difficulty in establishing
such a framework is that this framework needs to capture
the core principles underlying an involved commercial prod-
uct, and at the same time be simple and elegant enough to
allow one to gain insights and develop algorithmic solutions.
We take this challenge in this paper. To place this work in
context, observe that the task of understanding queries is
one component out of many (e.g., rankers, indices, crawlers,
IE, etc.) comprising a complete search engine.

Our framework is encapsulated in what we call a search

database system (SDBS). The basic construct in an SDBS
is a concept, and there are two types of concepts: atomic

concepts (e.g., product and price) and compound concepts
(e.g., productPrice, which has the subconcepts product and
price). A schema is a collection of concepts with an acyclic
nesting relationship. A database instance over a schema is a
collection of records, where each record is associated with a
URI (i.e., a unique resource identifier, where a resource can
be a Web page, a document, an email message, etc.) and
with a concept of the schema; when that concept is atomic,
the record has textual content, and when the concept is com-
pound, the record comprises references to other records (that
correspond to the subconcepts of the compound concept).

In our framework, interpretations are derived from gram-

mar rules, which can be composed manually by a developer,
possibly with the aid of automatic techniques such as gram-
mar learning [24] and with heuristics that utilize the schema.
In these rules, a nonterminal is a concept, and a terminal is
either a keyword or an instantiation of an atomic concept
by means of a keyword match. For illustration, suppose that
the compound concept productPrice has the two subconcepts
product and price. The rule “productPrice → product price”
suggests that to refer to a product-price relationship, the
user could describe a product (by applying a rule for product)
followed by the word price. Here, productPrice and product

serve as nonterminals, and price is a terminal, which is
a keyword appearing in the search query. Next, the rule
“product → dproducte” says that in a query, a product is
referred to as a string (e.g., buzz or buzz lightyear) match-
ing a specific product in the database (e.g., the toy Buzz

Lightyear), as indicated by the instantiation dproducte. The
two rules allow us to interpret“buzz price”as“find pages con-
taining a product matching buzz and its price.” Formally,
we identify an interpretation as a hedge (ordered forest) of
parse trees (generated by the grammar), which we refer to as
a parse. An SDBS comprises a schema, a database instance,
and a grammar. Since both the instance and the grammar
are defined by means of the schema concepts, we can view
a parse as a structured query that evaluates to the match-
ing database URIs; thus, the semantics of interpretation is
captured.

We study the computational problem of generating the
data-nonempty parses, which are the parses that have at
least one answer in the database instance. If one makes as-
sumptions that upper bound by a constant the length of the
search query and the depth of the schema, then generating
the data-nonempty parses in polynomial time is straight-
forward. Without these assumptions, the number of data-
nonempty parses can be exponential; thus no polynomial-
time algorithm can produce all of them. Nevertheless, we
show (with no assumptions) that the data-nonempty parses
can be generated in time that is polynomial in the com-
bined size of the input and the output. To accommodate
the possibility of a large number of data-nonempty parses,
later in the paper we revisit this problem, where the goal is
to produce the parses incrementally, in a specific order.

A related problem is that of keyword proximity search

(KPS) in structured (e.g., relational and XML) databases [1,
8, 10, 12, 15, 21, 25].1 Both in our problem and in KPS, the
goal is to answer a search query based on database content.
A technical difference is that in KPS, answers are connected
database portions containing the keywords, whereas here an
answer is a URI. Some of the solutions proposed for KPS
are based on generating interpretations (queries) from the
schema [10, 21, 25],2 and that approach could, potentially,
be applied here for generating parses. Generation of in-
terpretations in KPS is generally based on connectivity of
query items, which has the advantage that a grammar is
not needed. However, compared to our grammar-based ap-
proach, it severely limits the control over the allowed inter-
pretations. Furthermore, it is not clear how that approach
can take advantage of highly important grammatical parts
of the query (e.g., “of” in price of buzz, and “from” in from

avigdor posed in email search), which our approach han-
dles gracefully. Furthermore, to our knowledge, no known
query generator in KPS guarantees both efficiency and data-
nonemptiness of the generated parses. Lastly, the aspects we
discuss next do not arise in KPS.

From our experience with the needs of search, we learned
that a central property of a parse is its specificity. As an ex-
ample, consider again the query buzz price. Different parses
can interpret the query as follows: (1) occurrence of the
toy Buzz Lightyear and some price (not necessarily that of
Buzz), and (2) occurrence of Buzz Lightyear along with its
price. The second interpretation is more specific, as it ties
the two terms of the query in a strictly tighter manner. It
is reasonable to decide that interpretation (2) positively af-
fects the rank of the page. As another example, consider
the query “Sara Enron” posed in the context of enterprise
search. Different parses can give interpretations such as (1)

1See [5] for a comprehensive survey of research on KPS.
2Other solutions [1, 8, 12, 15] operate directly on the
database.



occurrence of the person Sara and the company Enron, and
(2) specification that Sara is an Enron employee (e.g., as
part of a signature). Interpretation (2) is more specific than
(1), since an employee is a special case of a person (and (2)
has the extra works-for relationship). This illustrates that
higher specificity implies a stronger connection to the con-
cepts of interest, and/or a tighter connection between the
keywords.

By adopting the traditional notion of query containment,
our SDBS framework gives a natural way of comparing the
specificity of two parses: a parse p is at least as specific as
the parse p′ if for all instances over the schema, every answer
for p is also an answer for p′. We would like our notion of
containment to take into account the fact that one concept
can specialize another (e.g., employee specializes person). So,
we extend our framework by letting the schema specify a
preorder (i.e., a reflexive and transitive relationship) over its
atomic concepts, and require database instances to respect
this preorder (e.g., every employee is indeed a person).

Some delicate issues arise from the fact that a parse is
mapped to a database by means of (possibly fuzzy) key-
word matching. For example, the string java beans does not
necessarily match a record with the text java in the con-
text of programming (since the user typing java beans refers
to the specific Java-Bean construct rather than the general
Java language), but it makes perfect sense that java beans

matches java as a food item. Thus, keyword matching de-
pends on the concept under which it is made. As another
example, consider the query fisher price posed in an online
toy store. Consider two parses, where in the first fisher price

is a brand, and in the second, fisher is a brand and price is
the price concept. If we consider there to be a match for
fisher price whenever there is a match for fisher (which is
not necessarily true in practice), then the second parse is
more specific than the first. The last example is the query
avi from avigdor in the context of email search. Suppose
that we have two parses that interpret the query as an email
from Avigdor, but in the first avi refers to a person whereas
in the second avi refers to the format of an attachment. One
would think that the two parses are incomparable in terms
of specificity. However, the second interpretation is actually
more specific than the first, since the fact that Avigdor is
the sender already implies that the email contains a person
that matches avi (namely Avigdor), assuming that sender

specializes person. The above examples show some of the
subtleties arising from keyword matching, especially when
combined with specificity.

We study the problem of deciding, given two parses p1 and
p2, whether p1 is contained in (i.e., at least as specific as)
p2. For that, we give a structural characterization of con-
tainment, and show how it translates into a polynomial-time
decision on containment. Our approach is in the spirit of
testing containment among tree-pattern queries in XML [2]
(namely, by means of homomorphism), but our algorithm is
more involved due to the specific properties of our frame-
work. In particular, in tree-pattern containment there is
no correspondence to the fact that parses involve keyword
matches, or to the fact that concepts are interconnected by
the subconcept and the specialization relationships.

Due to the potential existence of many (data-nonempty)
parses for a query, one is likely to favor an incremental gen-
eration of parses, in some order of desirability, as opposed
to an arbitrary order. The exact meaning of desirability

varies in different contexts. However, based on our experi-
ence with deploying search systems in multiple domains, and
working with real users, we have observed that users typi-
cally intend interpretations that most strongly associate the
keywords constituting the query. Indeed, this has been our
basic motivation to formalizing and studying the notion of
specificity. So, we consider the problem of enumerating the
data-nonempty parses by decreasing specificity. Formally,
the goal is to enumerate the data-nonempty parses, where
for two parses p1 and p2, if p1 is strictly contained in p2, then
p1 should be generated prior to p2. The enumeration should
be incremental, which in particular means that k most spe-
cific parses should be generated in polynomial time in the in-
put and in k. Unfortunately, this turns out to be intractable:
no such enumeration exists unless P = NP. Nevertheless, we
show that under an assumption that, roughly, restricts the
ambiguity of the search query, enumeration in the order of
decreasing specificity can be done with polynomial delay [11]
and polynomial space.

2. SEARCH DATABASE SYSTEMS
In this section, we formalize our framework of a search

database system. We begin with some preliminaries.

2.1 Preliminaries: Strings, Trees and Hedges
Let Σ be a set, which we refer to as an alphabet. We

denote by Σ∗ the set of all strings over Σ, that is, all the
finite sequences σ1 · · · σn, where σi ∈ Σ for 1 ≤ i ≤ n. The
length n of a string s = σ1 · · ·σn is denoted by |s|. By Σ+ we
denote the set Σ∗ \ {ε}, where ε is the empty string. Given
two strings s1, s2 ∈ Σ∗, the string s1s2 is the concatenation
of s1 and s2.

The trees we use in this paper are directed and ordered
(i.e., the children of each node form a sequence), where each
node is assigned a label. A hedge is a sequence h = t1 · · · tn

of (pairwise node-disjoint) trees; in other words, it is a forest
where the trees are linearly ordered. Note that a tree is a
special case of a hedge. We denote by nodes(h) the set of
nodes of the hedge h. If (v, w) is an edge of h, then w is
a child of v, which in turn is the parent of w. The label
of the node v is denoted by label(v). A hedge h is over an
alphabet Σ if the label of every node belongs to Σ. A leaf of
a hedge is a node without children, and a non-leaf node is an
internal node. We use leaves(h) and internal(h) to denote
the sets of leaf and internal nodes of h, respectively. If a
hedge h contains a directed path from node v to node w,
then w is a descendant of v, which in turn is an ancestor of
w. For a tree t, the root of t, denoted root(t), is the unique
node without a parent.

2.2 Concepts, Schemas and Instances
A schema is a collection of concepts with acyclic nesting

relationships. Formally, a schema S is a finite set of concepts,
where each concept γ ∈ S is associated with a (possibly
empty) set of subconcepts δ ∈ S , and we denote by sc(γ)
the set of subconcepts of γ. We require S to be acyclic, in
the following sense. There is no cycle in the directed graph
that has S as its set of nodes, and an edge (γ, δ) whenever
δ ∈ sc(γ). A concept γ ∈ S such that sc(γ) = ∅ is called
an atomic concept, abbreviated a-concept. If γ ∈ S is such
that sc(γ) 6= ∅, then γ is a compound concept, abbreviated
c-concept. The subset of S containing all the a-concepts is



msgText

personPhone

phoneNumperson

senderInfo

sender fromAddr

subject

worksFor

employee org

(a) Schema S

rec. concept URI text

rsn sender em1 Sara Shackleton

rad fromAddr em1 sara@enron.com

rsb subject em1 Luisiana-Pacific(“LP”)

rmt msgText em1 ***

rpr1 person em1 John

rpr2 person em1 Sara Shackleton

rph phoneNum em1 713-853-5620

rem employee em1 Sara Shackleton

rorg org em1 Enron North America Corp.

sad fromAddr em2 john@enron.com

ssb subject em2 RE: Profile Error Again

smt msgText em2 ***

spr person em2 John Oh

sph phoneNum em2 503-464-5066

sem employee em2 John Oh

sorg org em1 Enron North America

(b) The a-records of the instance I

rec. concept URI references

rsi senderInfo em1
rsi[sender] = rsn,

rsi[fromAddr] = rad

rpp personPhone em1
rpp[person] = rpr2,

rpp[phoneNum] = rph

rwf worksFor em1
rwf [employee] = rem,

rwf [org] = rorg

spp personPhone em2
spp[person] = spr,

spp[phoneNum] = sph

swf worksFor em2
swf [employee] = sem,

swf [org] = sorg

(c) The c-records of the instance I

From:

Luisiana−Pacific (‘‘LP’’)

From:

Sent: 05/16/2001 at 15:32

John Malowney, Jason WilliamsTo:

RE: Profile Error Again

To: David Steiner

Sent: 01/31/2002 at 18:59

em2

Sara Shackleton

John:

LP executed our ISDA on
May 7. No need to discuss
your email. Thanks.

Sara Shackleton

Enron North America Corp.
1400 Smith Street, EB 3801a

Houston, Texas 77002
713-853-5620
sara@enron.com

〈sara@enron.com〉

〈john@enron.com〉

Realtime group—

This occurs when your H drive
is not mapped. To fix the map-
ping, follow the instructions at:

. . .
Hope this helps!

John Oh
Enron North America

121 SW Salmon Street
Portland, OR 97204

john@enron.com
503.464.5066

em1

(d) Email messages em1 and em2

Figure 1: A schema S, an instance I, and email mes-

sages em1 and em2

denoted by Sa. Similarly, the subset of S containing all the
c-concepts is denoted by Sc.

An example of a schema is the set S = {person, car, make,
model, carOwner}, where person, make and model are the a-
concepts (thus, the set sc(γ) is empty for each of these three
concepts γ), and car and carOwner are the c-concepts with
sc(car) = {make, model} and sc(carOwner) = {person, car}.
Another example of a schema is given next.

Example 2.1. Our running example is an email-search sys-
tem, and Figure 1(a) depicts a schema S for this system.
The a-concepts are sender, fromAddr, person, phoneNum,
msgText, subject, employee and org. The c-concepts are
senderInfo, personPhone, and worksFor, where

• sc(senderInfo) = {sender, fromAddr},
• sc(personPhone) = {person, phoneNum}, and
• sc(worksFor) = {employee, org}.

The schema S is very simple compared to the general def-
inition of a schema: First, the nesting level in S is 1 (i.e.,
the subconcepts of a c-concept are all atomic). Second, no
two c-concepts of S share the same subconcept.

Next, we define the notion of a database instance over
a schema. Throughout the paper, we fix two sets. First,
we have a set U of URIs (i.e., Unique Resource Identifiers,
which are used as document identifiers). Second, we have
a set T of terms; a term can appear in a document, and it
can be used as a keyword in a search query. For the sake
of complexity analysis (which is done later), we assume that
both U and T are infinite sets.

Let S be a schema. A database instance (or just instance)
I over S is a finite set of records, where each record r is
associated with a unique concept γ ∈ S (thus, γ acts as a
property of r). We write rγ (instead of just r) to denote
that r is associated with γ (so, the record r can be referred
to as either r or rγ). Every record r has a URI, which is
denoted by uri(r). As for the rest of the content of a record,
we distinguish between two types of records rγ , depending
on whether γ is atomic or not.

• If γ is an a-concept (i.e., γ ∈ Sa), then rγ is called an
a-record. Then, r has textual data, which is a string
of T∗. The textual data of r is denoted by txt(r).

• If γ is a c-concept (i.e., γ ∈ Sc), then rγ is called a c-

record. Then, for each subconcept δ ∈ sc(γ), the record
rγ references a record sδ ∈ I with the same URI (that
is, uri(r) = uri(s)); the record s is denoted by r[δ].

Example 2.2. The two tables in Figure 1 show an instance
I over the schema S (discussed in Example 2.1). The top
table (Figure 1(b)) contains the a-records and the bottom
one (Figure 1(c)) contains the c-records. This instance rep-
resents two email messages,3 which are depicted in Fig-
ure 1(d), with the URIs em1 and em2. Each row in the table
describes one record. For example, the first row of the top ta-
ble describes the a-record rsn, and the first row of the bottom
table describes the c-record rsi. The column “concept” gives
the concept of the record. For example, the concept of rsn is
sender. The column “URI” gives the URI of the record; for
example, uri(rsn) = em1. In the top table, the column“text”
shows the textual data (except for the “***” entries that

3These messages are from the Enron corpus [16], with details
omitted or slightly edited to meet space limitations.



we discuss later); for instance, txt(rsn) = Sara Shackleton

(which consists of the two terms Sara and Shackleton). In
the bottom table, the column “references” shows the refer-
ence for each subconcept.

Some of the records of I can be produced by a straightfor-
ward parsing of the email message (according to the email
protocol in use). This is the case for the records of the
concepts sender, fromAddr, senderInfo and subject, which are
obtained from the top parts of the email messages of Fig-
ure 1(d). This is also the case for msgText, which contains
the whole body of the email and is replaced in the table with
“***” (in order to fit the figure). Other records, however,
are not explicitly specified in an email message, and produc-
ing those may require more complicated (possibly heuristic)
techniques. For example, the person records are obtained
by identifying a person name in the message text. Simi-
larly, producing the phoneNum records requires a mecha-
nism for identifying that a substring of the text is a phone
number, and producing a personPhone record entails identi-
fying that a person and a phone number recognized in the
message text are semantically associated. In Figure 1(d), we
underlined the parts of the message that were used to ex-
tract the records. For example, in the email em1, the name
“Sara Shackleton” is extracted as a person (rpr2) as well as
employee (rem). These are typical tasks in information ex-

traction [17, 27], which we view as a primary tool for the
construction of an SDBS. Observe that the example con-
tains only a part of the relevant information that can be
extracted from the email. For example, the recipients of the
emails are ignored here.

2.3 Search Queries and Grammars
A search query is a nonempty string of terms, that is, a

string q of T+. Every term of a search query is called a
keyword. We denote by kw(q) the set of all the keywords of
q (thus, q is a string, whereas kw (q) is a set). We assign
a possible meaning to a search query, in the context of a
schema, by means of a parse. A parse is generated by a
grammar that comprises production rules (or just rules).

Let S be a schema. Conventionally, a grammar has ter-

minals and nonterminals. In our kind of grammar, the non-
terminals are the concepts of S , and there are two types of
terminals. A terminal of the first type is a term of T. A ter-
minal of the second type has the form dγe, where γ ∈ Sa is
an a-concept. Intuitively, dγe means an instantiation of the
concept γ. Thus, dpersone refers to Sara Shackleton, John,
etc. The exact role of the terminal dγe will be clarified later,
when we define the evaluation of a parse in the database.
We use dSae to denote the set of all the terminals dγe, such
that γ is an a-concept in S . Our grammar rules take the
standard form of rules in a context-free grammar. There are
two types of rules.
a-rules. An atomic-concept rule (over S), or a-rule for
short, defines how an a-concept γ is described by a string
of terms, and possibly an instantiation of γ (namely dγe).
An a-rule has the form γ → σ1 · · · σm, where γ ∈ Sa is an
a-concept, m is a positive integer, and each σi is either a
term of T or the terminal dγe. We allow at most one σi

to be dγe (while all the rest are terms). As an example,
person → someone means that a person can be referred to
by the keyword someone, and person → dpersone means that
a person can be referred to by a string (e.g., sara) that
matches an actual person (e.g., Sara Shackleton).

c-rules. A compound-concept rule (over S), or c-rule for
short, defines how a c-concept is described by a combina-
tion of its subconcepts and of terms. A c-rule has the form
γ → σ1 · · ·σm, where γ ∈ Sc is a c-concept, m is a positive
integer, and each σi is in either sc(γ) or T. We allow each
δ ∈ sc(γ) to appear at most once in σ1 · · ·σm. An exam-
ple of a c-rule is senderInfo → sender from fromAddr, where
sender and fromAddr are subconcepts of senderInfo, and from

is a term.
Note that in the definition of a c-rule, σ1 · · ·σm does not

necessarily contain all the subconcepts of γ. As an example,
for the c-concept car with the subconcepts make and model,
we may decide that model is enough to refer to a car (in a
search query), and have the c-rule car → model.

We refer to an a-rule or a c-rule simply as a rule. The head

of a rule ρ, denoted head(ρ), is the concept on the left-hand
side of ρ. The body of ρ, denoted body(ρ), is the string on
its right-hand side. A grammar (over S) is a finite set Γ of
rules over S .

Example 2.3. We now construct a grammar Γ over the
schema S of Figure 1(a). Following are the rules of Γ.

person → dpersone

sender → dsendere | from dsendere

fromAddr → dfromAddre | from dfromAddre

phoneNum → phone | number | phone number

msgText → dmsgTexte

employee → demployeee

org → dorge | dorge organization

personPhone → person phoneNum | phoneNum of person

senderInfo → sender fromAddr | sender at fromAddr

worksFor → employee org | employee from org

Note that x → y1 | y2 | · · · | yk denotes the k rules x → yi

for i = 1, . . . , k. Words in italic font (e.g., from and phone)
are terms. Note that the top seven lines show a-rules, and
the bottom three lines show c-rules.

Observe that all the a-rules use symbols of dSae in their
body (possibly, in addition to terms), except for those with
the head phoneNum. This illustrates the idea that we may
decide not to view a phoneNum part of a search query as
one that refers to a specific number (e.g., 408-123-4567),
because it is probably unlikely to capture the intent of the
user phrasing the query; rather, phoneNum always comes as
a description of the phone-number concept (e.g., by writing
“phone,”“number,” or “phone number”).

Some rules (e.g., the rule person → dpersone and the rule
personPhone → person phoneNum) can be obtained from the
schema automatically and straightforwardly. Other rules
(such as the rules phoneNum → number and personPhone →
phoneNum of person) are introduced either manually or by
adopting relevant learning techniques [24].

2.4 Search Database Systems
Now, we are ready to define a search database system,

which is our basic infrastructure for answering search queries.

Definition 2.4. A search database system, or SDBS for
short, is a triple (S , I, Γ), where S is a schema, I is an
instance over S , and Γ is a grammar over S .
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Figure 2: Parses for “from enron john number”

Example 2.5. In our running example, we have the SDBS
(S , I, Γ) of the email-search domain, where S (Figure 1(a))
is described in Example 2.1, I (Figures 1(b) and 1(c)) is
described in Example 2.2, and Γ is described in Example 2.3.

2.5 Parses
Next, we define a parse hedge (or just parse for short) for

a search query. Intuitively, a parse for a search query q is
a hedge that is produced by the grammar, such that every
tree represents the meaning of a fragment of q by means of
concepts and concept instantiations. The formal definition
follows.

Definition 2.6. Let (S , I, Γ) be an SDBS, and let q ∈ T+

be a search query. A parse for q is a hedge p = t1 · · · tn over
S ∪ dSae ∪ kw(q), such that p satisfies the following.

1. The leaves of p are exactly the nodes v having label(v) ∈
kw(q). Moreover, q is the concatenation of all the key-
words that appear in p from left to right. We note that
q is often referred to as the yield of p.

2. For each node v of p with children u1, . . . , um (from
left to right), if label(v) ∈ S , then Γ contains the rule

label(v) → label(u1) · · · label(um) .

3. For each node v of p, if label(v) ∈ dSae, then all the
children of label(v) are leaves (equivalently, the label
of each child of v is a keyword).

4. For all i = 1, . . . , n, the label of root(ti) is a concept
of S .

Example 2.7. Let (S , I, Γ) be the SDBS of Example 2.5,
and let q be the search query from enron john number. Fig-
ure 2 shows three parses for q. The parse p1 comprises
four trees, p2 comprises three trees, and p3 comprises two
trees. Note that Item 1 of Definition 2.6 holds in each
hedge, since the leaves constitute the search query when
read from left to right. As an example for Item 2, ob-
serve that p2 has a fromAddr node with children from and
dfromAddre, and indeed, the grammar Γ contains the rule

fromAddr → from dfromAddre. For Item 3, observe that the
child of each node with a label of the form dγe (e.g., dpersone)
is a leaf. Finally, Item 4 holds since every root label (e.g.,
fromAddr) is a concept.

Intuitively, a tree in a parse represents an independent
part of the search query, and the user intent for that part
is captured by the concept that labels the root of the tree.
For example, the parse p1 describes four parts: the first
and fourth keywords (i.e., from and number) are terms that
should appear in (or more precisely match) the message text,
the second keyword says that the sender address matches
enron, and the third one says that a person that matches
john should be in the message. The parse p2 has three parts:
the first one, which is described by the first two keywords,
says that the sender address matches enron, the second says
that there is a person that matches john, and the third says
that some phone number is specified in the email. Note that
unlike the parse p1, the parse p2 does not require any actual
match, in the email, for the keywords from and number.
Finally, p3 has two parts: first, the sender address matches
enron, and second, there is a person that matches john, who
has a phone number specified in the email.

Finally, we define the semantics of evaluating a parse in
an SDBS, namely, finding all the URIs with a content that
match the parse. We first consider the question of when a
string k of keywords matches an a-record rγ for an a-concept
γ. We do not actually study this aspect here; rather, we
assume a binary relationship over strings that is already re-
solved and represented by the relation ∝γ . Thus, k matches
r if k ∝γ txt(r). For simplicity, in our examples we interpret
∝γ as the pure substring relationship where case is ignored
(e.g., sara ∝person Sara Shackleton). Clearly, much more in-
tricate interpretations are required in practice (including,
e.g., dictionaries of synonyms). For example, in practice
we will probably have the following, even though there is
not a substring relationship: Sarah ∝person Sara Shackleton,
PGE Training ∝org PGE Energy Training, and ENA ∝org

Enron North America Inc. Note that using a specific ∝γ

for each a-concept γ is highly important in practice, since
one is likely to employ different matching techniques in dif-
ferent contexts. For example, consider the term chris and
the term Christopher, where the latter is a popular person
name and also the name of a city of Illinois. The term chris

is likely to match Christopher as a person name, but not
as a city name (thus, e.g., chris ∝person Christopher holds
whereas chris ∝city Christopher does not). Finally, observe
that in practice this binary relationship often means that
the level of relevancy of the record to the string (estimated
by some scoring function) is above some threshold.

Let (S , I, Γ) be an SDBS, let q be a search query, and let p
be a parse for q. For a node v of p, we denote by T+(v) the
string that comprises the terms (labels) of the leaves that
are descendants of v from left to right. A match of p in I is
a mapping µ : internal(p) → I (i.e., µ maps every internal
node of p to a record of I) that satisfies the following.

1. The image of µ has a single URI; that is, uri(µ(v)) =
uri(µ(u)) for all nodes v, u ∈ internal(p). We denote
this URI by uri(µ).

2. Concepts are preserved; that is, for all v ∈ internal(p)
where label(v) is either γ or dγe, the record µ(v) has
the concept γ.



3. For all nodes v ∈ internal(p), if label(v) is dγe (and, in
particular, γ is an a-concept), then T+(v) ∝γ txt(µ(v)).

4. For all edges (v, w) of p, if label(v) is γ and label(w)
is dγe (in particular, γ is an a-concept), then µ(v) =
µ(w).

5. For all edges (v, w) of p, if label(w) is a concept δ ∈ S
(hence, sc(label(v)) contains δ), then µ(v) references
µ(w); that is, r[δ] = µ(w), where r = µ(v).

We denote by p(I) the set of all the URIs u such that there
exists a match of p in I with uri(p) = u.

Example 2.8. Consider again the SDBS (S , I, Γ) of Ex-
ample 2.5, and the three parses p1, p2 and p3 of Figure 2
(discussed in Example 2.7). Recall that S and I are de-
picted in Figure 1. We will illustrate the notion of a match
by considering the parse p3. Since every node of p3 has a
unique label, we will describe a match µ by means of map-
pings label(v) 7→ r, where v is a node and r is a record. The
following is a match µ of p3 in I , such that uri(µ) = em2.

fromAddr 7→ sad dfromAddre 7→ sad person 7→ spr

dpersone 7→ spr phoneNum 7→ sph personPhone 7→ spp

Consider Items 1–5 in the above definition of a match. Item 1
holds for µ since every record r in the image of µ is such that
uri(r) = em2 (hence, uri(µ) = em2). For Item 2, observe that
each γ 7→ r and each dγe 7→ r are such that γ is the concept
of r. For Item 3, consider the mapping dfromAddre 7→ sad.
Note that the sequence of keywords under dfromAddre is en-

ron, the string txt(sad) is john@enron.com, and, as required,
it holds that enron ∝fromAddr john@enron.com (under our
specific interpretation of ∝γ in the examples). For Item 4,
note that the nodes of p3 labeled fromAddr and dfromAddre
(which are a parent and a child, respectively) are mapped to
the same record, namely sad. Finally, for Item 5, consider
the mapping personPhone 7→ spp. As required, the children
of the node labeled personPhone are mapped to the records
spr and sph, which are referenced by spp.

Since the match µ exists, we conclude that em2 ∈ p3(I).
Note that there is no match µ′ of p3 in I with uri(µ′) = em1,
since John is not associated with a phone number in em1.
Thus, it follows that p3(I) = {em2}.

One can similarly show that p2(I) = {em1, em2}. In par-
ticular, note that a match µ of p2 in I , with uri(µ2) = em1,
maps dpersone to rpr1 and phoneNum to rph (which are
unrelated person and phone number). Finally, note that
p1(I) = ∅; for example, this holds since there is a match of
the word number in neither of the two email bodies in I .

3. GENERATING PARSES
In this section, we consider the problem of producing the

parses for a search query. Formally, we are given as input
an SDBS (S , I, Γ) and a search query q ∈ T+, and the goal
is to generate all the data-nonempty parses, where a parse
p is data-nonempty if p(I) is nonempty.

If one assumes that the length of the query q and the
depth of the schema S are upper bounded by some constant
value, then all the parses can be generated by a straight-
forward polynomial-time algorithm that considers all the
hedges over S ∪ dSae ∪ kw(q) with bounded height and
width. Here, we show that tractability holds even with-
out any bound assumption. The problem is that, now, the

number of data-nonempty parses can be exponential in the
size of S and q. Thus, polynomial running time is not a suit-
able yardstick of efficiency, since just writing the output may
require exponential time. We view an algorithm for generat-
ing the parses as an enumeration algorithm that produces a
(possibly large) set of output items, where in our case an out-
put item is a parse for q. An enumeration algorithm is not
allowed to print the same output item more than once. The
conventional yardstick of efficiency for such an algorithm is
polynomial input-output complexity [11], which means that
the running time is polynomial in the combined size of the
input and the output. Our formal result is the following.

Theorem 3.1. Producing all the data-nonempty parses,

given an SDBS and a search query, has a polynomial input-

output complexity.

Note that the task that is considered in Theorem 3.1 dif-
fers from standard generation of parses (under context-free
grammars) in two technical aspects. First, our parses are
hedges (not necessarily trees). Second, data-nonemptiness
is required. In the remainder of this section, we prove this
theorem. We fix an SDBS (S , I, Γ) and a query q = q1 · · · qk

for the problem.
The algorithm is based on the notion of constraints over

parses, which we define as follows. Consider a parse p and a
node v of p. Suppose that among the keywords of q that are
descendants of v, the ith keyword, qi, is the leftmost one,
and the jth keyword, qj , is the rightmost one. We denote
by span(v) the pair (i, j). We use two types of constraints
over parses. A positive constraint has the form X

(i,j)
, where

X ∈ S∪dSae and i and j are indices such that 1 ≤ i ≤ j ≤ k.
A parse p satisfies X

(i,j)
if p contains a node v, such that

label(v) = X and span(v) = (i, j). A negative constraint
is the negation of a positive constraint, and it has the form
¬ X

(i,j)
.

Let C be a set of constraints. We say that a parse p sat-

isfies C if p satisfies each of the constraints of C. The set
C is data satisfiable if it is satisfied by at least one data-
nonempty parse. We say that C is saturated if there is no
positive constraint X

(i,j)
, such that X

(i,j)
/∈ C and C ∪ { X

(i,j)
}

is data satisfiable. Our algorithm is based on the following
lemmas.

Lemma 3.2. If C is a set of constraints that is data sat-

isfiable and saturated, then there exists exactly one data-

nonempty parse that satisfies C.

For a saturated, data satisfiable set C of constraints, we de-
note by pC the unique data-nonempty parse that satisfies
C.

Lemma 3.3. Given a set C of constraints, whether C is

data satisfiable and whether C is saturated can be decided

in polynomial time. Moreover, if C is data satisfiable and

saturated, then pC can be computed in polynomial time.

Building on Lemma 3.3, we get a simple algorithm for enu-
merating all the data-nonempty parses in polynomial time
in the combined size of the input and the output. This algo-
rithm is depicted in Figure 3, and it follows the lines of the
algorithm of [15] for enumerating “reduced subtrees.” The
algorithm gets as input the SDBS (S , I,Γ) and the search
query q. In addition, the algorithm gets as input a set C of



Algorithm EnumDataNonempty(C)

1: if C is not data satisfiable then

2: return

3: if C is saturated then
4: print pC
5: return

6: else

7: let X
(i,j)

be s.t. X
(i,j)

/∈ C and C∪{ X
(i,j)

} is data satisfiable

8: EnumDataNonempty(C ∪ { X
(i,j)

})

9: EnumDataNonempty(C ∪ {¬ X
(i,j)

})

Figure 3: Enumerating all the data-nonempty parses

constraints, which is empty when the algorithm is called for
the first time (i.e., not within a recursive call). For simplicity
of presentation, we omit (S , I, Γ) and q from the arguments,
and specify only C. EnumDataNonempty(C) enumerates all
the data-nonempty parses that satisfy C.

In Line 1, the algorithm tests whether C is data satisfiable.
If not, then the algorithm terminates in Line 2. In Line 3,
the algorithm tests whether C is saturated. If so, then pC

is printed in Line 4 and the algorithm terminates in Line 5.
The ability to efficiently execute Lines 1, 3 and 4 is due
to Lemma 3.3. If C is data satisfiable but not saturated,
then in Line 7 a constraint X

(i,j)
is chosen, such that C ∪

{ X
(i,j)

} is data satisfiable. Note that such a constraint can be

found efficiently by testing the applicability of each possible
X

(i,j)
(again, Lemma 3.3 is needed). Observe that there is

only a polynomial number of possible constraints. Then,
the space of data-nonempty parses that satisfy C is split
into two partitions: The recursive call of Line 8 prints all
the data-nonempty parses that satisfy C ∪ { X

(i,j)
}, and that

of Line 9 prints the rest, namely, the data-nonempty parses
that satisfy C ∪ {¬ X

(i,j)
}.

Correctness and efficiency of the algorithm are shown in
the next lemma. Note that theorem 3.1 follows immediately
from this lemma (specifically, when taking C = ∅).

Lemma 3.4. EnumDataNonempty(C) enumerates all the

data-nonempty parses that satisfy C. The running time is

polynomial in the combined size of the input and the output.

EnumDataNonempty does not have any guarantee on the
order of printed answers. Later on, we study the problem of
enumerating by decreasing specificity, where the notion of
specificity is considered in the next section.

4. CONTAINMENT OF PARSES
In this section, we consider the notion of specificity among

parses of a search query. In our implemented engines, this
notion plays a central role in ranking a set of candidate
parses. We identify specificity with the standard concept of
query containment. More formally, let S be a schema, let Γ
be a grammar over S , and let q be a search query. A parse
p1 is at least as specific as the parse p2 if p1(I) ⊆ p2(I) for
all instances I over S ; in that case, we also say that p1 is
contained in p2, and denote it by p1 v p2.

Example 4.1. As a simple example, consider the schema S
and the grammar Γ of Example 2.5. In Figure 2, the parse p3
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Figure 4: Examples of containment relationships

is contained in the parse p2. This is a simple example where
containment is obvious, since p2 can be obtained from p3

by removing the node with the label personPhone. More
interesting examples are depicted in Figure 4. The parses
p4 and p5 for the query chris phone number are such that
p4 v p5, since both require the specification of Chris with
his phone number, whereas p4 has the extra requirement
that “number” appears in the text (hence, p5 6v p4).

A more intricate example is about p6 and p7, which are
parses for tim hortons timothy. Recall that, in our examples,
we use the substring relationship as the specific (naive) in-
terpretation of ∝γ . With this interpretation, we claim that
p6 is contained in p7. To see that, consider an instance I
over S and suppose that u ∈ p6(I). Then in u, Timothy is
an employee of Tim Hortons. This implies that u satisfies
the right tree of p7. Moreover, if timothy ∝employee txt(r),
then tim ∝employee txt(r) (due to the special interpretation of
∝γ). Similarly, if tim hortons ∝org txt(r) for a record r ∈ I ,
then hortons ∝org txt(r). Therefore, a match of p6 can be
thought of as a match of the left tree of p7. It follows then
that u ∈ p7. Hence, p6 v p7, as claimed.

The discussion about p6 and p7 in Example 4.1 implies
that in order to reason about specificity of parses, one needs
to know when a match of one substring of the query guaran-
tees a match of another substring of the query. In the above
example, we used the transitivity and reflexivity of the sub-
string interpretation of ∝γ . In the remainder of this paper,
we take these two properties as an assumption. Formally,
we assume that, for each a-concept γ, the binary relation
∝γ is a preorder, that is, it is transitive (i.e., for all strings
k, r and s, if k ∝γ r and r ∝γ s, then k ∝γ s) and reflexive
(i.e., k ∝γ k for all strings k).4 We furthermore require that
for all a-concepts γ and nonempty strings k, it is never the
case that k ∝γ ε (where ε is the empty string).

4We note that the results in the remainder of this paper
hold under a restriction that is much weaker than ∝γ being
a preorder. However, this restriction requires a nontrivial
discussion that we avoid for simplicity of presentation.



Consider now the parses p7 and p8 of Figure 4. These
parses are similar, except that in p7 Timothy is an employee
whereas in p8 he is a person. So, in principle, these parses are
incomparable. However, person is effectively a generalization
of employee. Thus, it makes practical sense to assume that if
Timothy appears in an employee record, he will also appear
in a person record. By taking that into account, we would
like it to be the case that p7 is contained in p8 (and also, p6

is contained in p8 since p6 is contained in p7).
Related to the above is the following issue. The concept

msgText has a special role, since it contains the entire body
of the email. Since an organization is extracted from the
body of the email, it makes sense that whenever a string
(e.g., tim hortons) matches an organization, that string also
matches a msgText record. To accommodate that, we extend
our model with a preorder among the a-concepts. This is
formalized next.

From now on, we require a schema S to have a preorder
� over Sa.5 We interpret γ1 � γ2 as “γ1 specializes γ2.”
In the above examples, for instance, � can be such that
employee � person and org � msgText. If γ1 � γ2, then we
require the relation ∝γ2

to extend ∝γ1
in the following sense:

for all strings k1 and k2 in T∗, if k1 ∝γ1
k2, then k1 ∝γ2

k2.
For example, if tim matches timothy as an employee, then
tim also matches timothy as a person.

The introduction of � necessitates adapting the definition
of an instance over a schema S . An instance I over S is now
required to respect �, in the following sense. If I says that
Tim is an employee in the URI u, then Tim should also
appear as a person in u. If the URI u has the organization
“IBM Research,” then the message text of u contains (or
includes a match for) “IBM Research.” This adaptation is
formalized in the following requirement.

An instance I over S should satisfy that for all a-concepts
γ ∈ Sa, a-records rγ ∈ I , and a-concepts δ ∈ Sa such that
γ � δ, there exists an a-record sδ ∈ I , such that uri(rγ) =
uri(sδ), and txt(rγ) ∝δ txt(sδ).

4.1 Deciding on Containment
Next, we consider the computational problem of deciding

containment among parses. We will show that this problem
is tractable by presenting an efficient decision procedure.
The definition of containment is not constructive, as it re-
quires one to consider every instance I over S . So, to be
able to decide on containment, we first give a constructive
characterization. For that, some definitions are required.

Let δ and γ be concepts of a schema S . We say that δ
is derived from γ if the existence of a γ record implies the
existence of a δ record. For example, person is implied by
employee since employee � person. The concept person is also
implied by worksFor, since person is implied by employee and
employee is a subconcept of worksFor. Formally, δ is derived
from γ if there is a directed path from γ to δ in the directed
graph that has S as its set of nodes, and an edge (γ1, γ2)
whenever γ2 ∈ sc(γ1) or γ1 � γ2.

Let S be a schema, let Γ be a grammar, let q ∈ T+

be a search query, and let p be a parse for q. A node v
of p is dummy if none of the ancestors or descendants of
v (including v itself) has a label in dSae. For example, in
Figure 4, the dummy nodes of p5 are those with the labels
phoneNum, phone and number. We denote by p↓ the hedge

5Note that � is defined only over a-concepts. Extending �
to c-concepts is left for future work.
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Figure 5: Four parses for emily

that is obtained from p by removing all the dummy nodes.
Following is the definition of an embedding between parses.
Recall that T+(v) is the concatenation of the keywords that
are descendants of the node v.

Definition 4.2. Let S be a schema, let Γ be a grammar,
and let q ∈ T+ be a search query. Let p and p′ be two
parses for q. An embedding of p in p′ is a mapping ϕ :
internal(p↓) → internal(p′

↓) that satisfies the following.

1. For all nodes v ∈ internal(p↓), if label(v) ∈ Sc , then
label(ϕ(v)) = label(v).

2. For all nodes v ∈ internal(p↓), if label(v) ∈ Sa then
label(ϕ(v)) ∈ Sa and label(ϕ(v)) � label(v). More-
over, if v is not a root of p, then label(ϕ(v)) = label(v).

3. For all nodes v ∈ internal(p↓), if label(v) = dγe, then
label(ϕ(v)) ∈ dSae and T+(v) ∝γ T+(ϕ(v)).

4. For all nodes v, w ∈ internal(p↓), if (v, w) is an edge of
p, then (ϕ(v), ϕ(w)) is an edge of p′.

The following theorem gives a structural characterization
of the containment of one parse in another.

Theorem 4.3. Let S be a schema, let Γ be a grammar,

and let q ∈ T+ be a search query. Let p1 and p2 be two

parses for q. Then p1 v p2 if and only if both of the following

conditions hold.

1. Every concept that labels a dummy node v of p2 is de-

rived from some label of p1.

2. There is an embedding of p2 in p1.

Note that Condition 2 of Definition 4.2 has different re-
quirements for nodes v with atomic label(v), depending on
whether or not v is a root of p. We discuss this difference
by an example. Let S be the schema depicted in the top-left
corner of Figure 5. In this schema, services is a c-concept
that has as subconcepts the a-concepts agent and person,
and it represents the relationship “the agent services the
person.” In addition, agent � person. Consider the four
parses for the query emily in this figure. There is an embed-
ding of p9 in p10 and, indeed, if Emily is an agent then she
is also a person. Now, consider the parses p11 and p12. If
we removed the “Moreover” part of Condition 2, then there
would be an embedding of p11 in p12. However, p12 is not
contained in p11, since the fact that Emily is an agent that
gives service does not imply that she gets service as well.
Thus, the “Moreover” part of Condition 2 is necessary for
the correctness of Theorem 4.3.



The characterization of Theorem 4.3 implies an efficient,
bottom-up algorithm for testing containment among parses.
(We do not give the algorithm here, since it is fairly straight-
forward, and requires additional notation.) Hence, we get
the following result.

Theorem 4.4. Given a schema S, a grammar Γ, a search

query q and two parses p1 and p2 for q, whether p1 v p2

can be decided in polynomial time.

5. ENUMERATION BY SPECIFICITY
Theorem 3.1 says that the data-nonempty parses for a

search query can be produced in polynomial time in the
combined size of the input and the output. Since many data-
nonempty parses may exist, we may require more—generate
the parses incrementally in a ranked order. Ranking may
vary in different contexts. In our domains of interest, we
desire parses of a high specificity. So, here, we consider the
case where ranked order means decreasing specificity. Note
that an immediate corollary of Theorems 3.1 and 4.4 is that
we can generate all the data-nonempty parses with polyno-
mial input-output complexity, and then efficiently sort them
in the order of specificity. However, that requires the user to
wait until all the data-nonempty parses are generated and
sorted, before even one parse is printed. To avoid that, we
set the goal of an incremental enumeration that guarantees
only polynomial delay [11], that is, the time before print-
ing the first parse, and then between every two consecutive
parses, is polynomial only in the size of the input.

Formally, the problem at hand is the following. We are
given as input an SDBS (S , I, Γ) and a search query q ∈ T+.
For two parses p1 and p2, we denote by p1 < p2 the fact that
p1 v p2 holds, but p2 v p1 does not. The goal is to enumer-
ate the data-nonempty parses for q, so that for two parses p1

and p2, if p1 < p2 than p1 is printed before p2. We then say
that the enumeration is by decreasing specificity. Our goal is
to enumerate the data-nonempty parses by decreasing speci-
ficity with polynomial delay. Unfortunately, we next show
that this goal is intractable, even under strong restrictions.

Consider an SDBS (S , I,Γ). We say that S is flat if all
the concepts of S are atomic (i.e., S = Sa). We say that
S is unordered if the concepts of S are incomparable by �;
that is, for all concepts γ1, γ2 ∈ S , if γ1 6= γ2 then neither
γ1 � γ2 nor γ2 � γ1 holds. Finally, we say that Γ is text

oblivious if none of the rules of Γ contains a terminal of
dSae. Thus, if Γ is text oblivious, then a parse p is simply a
requirement for existence concepts (namely those specified
in p), and it disregards the textual content of records. We
use the following lemma.

Lemma 5.1. Given a schema S, a grammar Γ and a search

query q, deciding whether there is a parse p containing all

the concepts of S is NP-complete, even under the restriction

that S is flat and unordered, and Γ is text oblivious.

The proof of Lemma 5.1 is by a reduction from the prob-
lem of scheduling on a single machine, which is known to be
NP-complete6 [6].

6Our proof builds on the fact that this problem is NP-
complete in the strong sense [7], which means that the prob-
lem is NP-complete even if it is assumed that the lengths,
release times and deadlines of tasks are given in unary rep-
resentation.

Consider an SDBS (S , I, Γ) and a search query q ∈ T+.
Suppose that S is flat and unordered, and that Γ is text
oblivious. Suppose also that I contains a single URI u and
a record rγ , with uri(r) = u, for each γ ∈ S . In this specific
case, for two parses p1 and p2, the relation p1 v p2 is equiva-
lent to S(p1) ⊆ S(p2), where S(pi) is the set of concepts that
appear in pi. In particular, the first parse that is generated
by an algorithm that enumerates by decreasing specificity
includes all the concepts of S , unless no such parse exists.
Lemma 5.1 implies that such a parse cannot be obtained in
polynomial time if P 6= NP. Thus, we conclude the following
theorem, showing that the task of enumerating the parses
by decreasing specificity is intractable.

Theorem 5.2. If P 6= NP, then no algorithm enumer-

ates the data-nonempty parses by decreasing specificity with

polynomial delay.

In the remainder of this section, we formulate a restriction
of the general problem, which we believe holds commonly in
practice, and show that this restriction allows for ranked
enumeration with polynomial delay. The restriction is that
of requiring the query to be simple, which we define as fol-
lows. Let i and j be integers, such that i ≤ j. We denote
by [i, j] the set {i, i + 1, . . . , j}. Let us say that a parse tree
is dummy if it does not contain a label of dSae (i.e., all the
nodes are dummy).

Definition 5.3. Let (S , I,Γ) be an SDBS. A query q ∈ T+

is simple if the following conditions hold for all substrings
k = qi, . . . , qj and k′ = qi′ , . . . , qj′ of q.

1. If there is an a-concept γ ∈ Sa and a record rγ ∈ I
where k ∝γ k′ ∝γ txt(r), then [i, j] ⊆ [i′, j′].

2. If there are dummy parse trees t and t′ for k and k′, re-
spectively, where label(root(t)) = label(root(t′)), then
[i, j] ∩ [i′, j′] 6= ∅.

As an example, recall the search query tim hortons tim-

othy of Figure 4. This query is not simple if tim ∝person

timothy and I contains a person record that matches timothy,
because then Condition 1 is violated, as [1, 1] (which is the
span containing tim) is not contained in [3, 3] (which is the
span containing timothy). Note that k = tim and k′ =
tim hortons do not violate Condition 1, since [1, 1] ⊆ [1, 2].
As another example, consider the query q = phone number,
and suppose that Γ contains only two rules: phoneNum →
phone and phoneNum → phone number. With these two
rules, Condition 2 is not violated, since [1, 1] ∩ [1, 2] 6= ∅.
However, if we add the rule phoneNum → number, then
Condition 2 is violated since [1, 1] and [2, 2] are disjoint.
The following theorem shows that simplicity of the query
facilitates ranked enumeration.

Theorem 5.4. Let (S , I,Γ) be an SDBS, and let q ∈ T+

be a search query, such that q is simple. The data-nonempty

parses for q can be enumerated by decreasing specificity with

polynomial delay.

The proof of Theorem 5.4 is the most involved of any the-
orem in this paper. This proof presents an algorithm that
builds on the algorithm EnumDataNonempty of Figure 3,
with two main differences. First, we use constraints that
are more general than those defined in Section 3 (roughly



speaking, the new constraints involve containment, rather
than equality, of spans within the search query). Second,
the constraint that corresponds to that of Line 7 is care-
fully chosen, and the crux of the proof is in showing that
this choice guarantees the desired order. An important note
about the algorithm is that it enumerates all the parses even
if the query is not simple; of course, the order is not guar-
anteed then, but we highly believe that the resulting order
is a good heuristic. Finally, we note that ranked enumera-
tion by means of constraints stands behind the method of
Murty-Lawler-Yen [18, 22, 29] (which has been used in the
context of keyword search [8, 14]). However, that method
heavily builds on the fact that the order is complete (i.e.,
every two elements are comparable), and is not suitable to
handle a preorder (as required here).

6. CONCLUDING REMARKS
In an SDBS, a keyword-search query is assigned parses (in-

terpretations), within a contextual schema, where a parse is
evaluated over the database instance as a structured database
query. We gave a special consideration to the notion of speci-
ficity of parses, which is gracefully captured by the SDBS
framework using the standard notion of query containment.
We showed that this model is tractable, in the sense that
the parses can be efficiently generated, and containment can
be efficiently decided. Furthermore, parses can be enumer-
ated incrementally in decreasing specificity in the case of
simple search queries (but not in the general case, assum-
ing P 6= NP). In future work, we plan to implement the
SDBS framework and evaluate its benefits within a full-scale
search engine. We also plan to investigate principled ways
of quantifying the semantic value of parses. Such a quantifi-
cation may be realized by weighting the concepts, the rules
(in the spirit of the known notion of a weighted or stochas-

tic context-free grammar), and the substrings of the search
query (e.g., by incorporating their domain frequency).
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