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Abstract. The descriptive complexity of a problem is the complexity of describing the 
problem in some logical formalism. One of the few techniques for proving separation results 
in descriptive complexity is to make use of games on graphs played between two players, 
called the spoiler and the duplicator. There are two types of these games, which differ in the 
order in which the spoiler and duplicator make various moves. In one of these games, the 
rules seem to be tilted towards favoring the duplicator. These seemingly more favorable rules 
make it easier to prove separation results, since separation results are proven by showing that 
the duplicator has a winning strategy. In this paper, the relationship between these games is 
investigated. It is shown that  in one sense, the two games are equivalent. Specifically, each 
family of graphs used in one game (the game with the seemingly more favorable rules for the 
duplicator) to prove a separation result can in principle be used in the other game to prove 
the same result. This answers an open question of Ajtai and the author from 1989. It is 
also shown that in another sense, the games are not equivalent, in that there are situations 
where the spoiler requires strictly more resources to win one game than the other game. 
This makes formal the informal statement that one game is easier for the duplicator to win. 
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1 Introduction 

T h e  computa t iona l  complexi ty  of a problem is the amount of resources, such as time 
or space, required by a machine that solves the problem. T h e  descr ip t i ve  complexi ty  
of a problem is the complexity of describing the problem in some logical formalism 
(see [9]). There is an  intimate connection between the  descriptive complexity and the 
computational complexity. In  particular (see [5]), the  complexity class N P  coincides 
with the  class of properties of finite structures expressible in existential second-order 
logic, otherwise known as C:. A consequence of this result is that NP=co-NP if and 

‘)A preliminary version of this paper appeared under the title “Comparing the power of monadic 
NP games” in Logic and Computational Complexity (D. LEIVANT, ed.), Springer Lecture Notes in 
Computer Science 960 (1995), pp. 414 - 425. The author is grateful to NEIL IMMERMAN, PHOKION 
KOLAITIS and MOSHE VARDI for helpful discussions. The author is also grateful to THOMAS WILKE 
for asking questions that led the author to Theorems 5.3 and 5.5. 

2)e-mail: fagin@almaden.ibm.com; http://www.almaden.ibm.com/cs/people/fagin/ 
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only if existential and universal second-order logic have the same expressive power 
over finite structures, i.e., if and only if C: = ll;. 

One way of attacking these difficult questions is to restrict the classes under con- 
sideration.Instead of considering C: (=NP) and lli (=co-NP) in their full generality, 
we could consider the monadic restriction of these classes, i. e., the restriction obtained 
by allowing second-order quantification only over sets (as opposed to  quantification 
over, say, binary relations). Following FAGIN, STOCKMEYER and VARDI [8], we refer 
to  the restricted classes as monadic N P  (resp., monadic co-NP) .  It should be noted 
that,  in spite of its severely restricted syntax, monadic NP does contain NP-complete 
problems, such as 3-colorability and satisfiability. The hope is that  the restriction to 
the monadic classes will yield more tractable questions and will serve as a training 
ground for attacking the problems in their full generality. 

As a first step in this program, the author [6] separated monadic NP from monadic 
co-NP. Specifically, it was shown that connectivity of finite graphs is not in monadic 
NP,  although it is easy to see that it is in monadic co-NP. The proof that connectivity 
is not in monadic N P  makes use of a certain type of Ehrenfeucht-Fraissk game on 
graphs played between two players, called the spoiler and the duplicator. The game 
involves coloring steps (where the players color nodes of the graphs) and selection 
steps (where the players select nodes of the graphs, round by round). We call this 
game the (original) monadic N P  game. In this game, the duplicator selects two graphs 
Go and GI, where Go is connected and GI is not. The spoiler then colors Go, and the 
duplicator colors GI. They then play a first-order Ehrenfeucht-Fraissk game on these 
colored graphs, where, as usual, the spoiler tries to  expose differences in the graphs, 
and the duplicator tries to cover up these differences. A necessary and sufficient 
condition for proving that connectivity is not in monadic NP is to  show that for each 
choice of parameters (number of colors and number of first-order rounds), there are 
graphs Go and G1 on which the duplicator has a winning strategy. By showing that,  
indeed, the duplicator has a winning strategy, the author showed that connectivity is 
not in monadic NP. 

Later, AJTAI and the author [l] continued this program by showing that ( s , t ) -  
connectivity of directed graphs (otherwise known as directed reachability) is not in 
monadic NP. They made use of a modified game, which is now often referred to as 
the Altar-Fagin monadic NP game. Here the duplicator selects a graph Go that is 
(s,t)-connected, and the spoiler colors Go. Then the duplicator selects and colors a 
graph G1 that is not (s,t)-connected. The game again concludes with a first-order 
game. The difference between the Ajtai-Fagin game and the original game is that 
in the Ajtai-Fagin game, the spoiler must commit himself to a coloring of Go before 
seeing GI. Putting it another way, the duplicator can wait to  decide on his choice of 
G1 until he sees how the spoiler colors Go. Because the change in rules between the 
original game and the Ajtai-Fagin game favors the duplicator, on the face of it the 
Ajtai-Fagin game is “easier for the duplicator to win”, which makes it easier to  prove 
that the duplicator has a winning strategy. In fact, AJTAI and the author introduced 
their variation on the original game because they did not see how to prove that the 
duplicator has a winning strategy in the original game. However, they were able to 
prove that the duplicator has a winning strategy in their variation of the game. Since 
the duplicator has a winning strategy, directed reachability is not in monadic NP. 
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There is some mystery about the relationship between the Ajtai-Fagin game and 
the original game. On the one hand, the two games are equivalent, in the sense that 
in both cases, the existence of a winning strategy for the spoiler is a necessary and 
sufficient condition for a class to be in monadic NP. Thus, in both cases, showing that 
a problem is not in monadic N P  corresponds precisely to showing that the duplicator 
has a winning strategy. On the other hand, as we noted, the Ajtai-Fagin game seems 
intuitively to  be easier for the duplicator to win. Because of the fundamental role 
of Ehrenfeucht-FraissC games as tools in descriptive complexity, it is important to 
understand better the difference in power of the Ajtai-Fagin game and the original 
game. In this paper, we explore this difference. 

For the sake of generality, we consider not just monadic N P  games, but the more 
general (6-ary) NP games, where the players color not just points, but &tuples of 
points for some fixed positive integer 6 (the monadic case corresponds to  6 = 1). 
Similarly to  before, the difference between the NP game and the Ajtai-Fagin NP 
game is that in the Ajtai-Fagin NP game, the spoiler must commit himself to  a 
coloring of 6-tuples of points of Go before seeing GI. Let us define 6-ary NP to be 
the restriction where second-order quantification is allowed only over 6-ary relations. 
Again, monadic NP is the case where 6 = 1. Binary NP (which corresponds to  6 = 2) 
is studied in [3]. The full class NP (that is, C:) is the union over 6 of 6-ary NP.  

Let 6 be fixed. In both the NP game and the Ajtai-Fagin N P  game, a class C 
is given (such as the class of connected graphs). Then various graphs are selected 
and &tuples are colored by the players, and a first-order game is played on these 
colored graphs. The equivalence of the games corresponds to the fact that for each 
class C, the duplicator has a winning strategy in the original game for each choice 
of the remaining parameters (number of colors and number of rounds) if and only if 
the duplicator has a winning strategy in the Ajtai-Fagin game for each choice of the 
remaining parameters. 

In this paper, we investigate the relationship between the original game and the 
Ajtai-Fagin game at a finer level. We show that in one sense, even at a finer level, 
Ajtai-Fagin N P  games are no stronger than the original NP games. This sense cor- 
responds to fact that in a game-theoretic proof that a class is not in 6-ary NP,  the 
same families of graphs can be used in the original game as in the Ajtai-Fagin game. 
We also show that in another sense, Ajtai-Fagin games are stronger, in that there are 
situations where the spoiler requires more resources (colors) to win the Ajtai-Fagin 
game than the original game, when the choices of graphs are fixed. We now explain 
the details a little more. 

In a game-theoretic proof that a specific class of graphs is not in 6-ary NP, the 
duplicator inevitably restricts himself to selecting graphs only of a certain type. For 
example, in the proof that connectivity is not in monadic N P  (see [ S ] ) ,  the graph 
Go is a cycle, and GI is a disjoint union of two cycles. In the proof that directed 
reachability is not in monadic NP (see [l]), the graph Go is a path from s to  t along 
with certain backedges, and GI is the result of deleting one forward edge from Go. 
We show that each family of graphs used in the Ajtai-Fagin game to prove that a 
problem is not in 6-ary N P  can in principle be used in the original game to prove the 
same result (where for a given choice of parameters, bigger graphs of the same type 
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are used for the original game than for the Ajtai-Fagin game). For example, in the 
case of showing that directed reachability is not in monadic NP,  we prove that for 
every choice of number of colors and number of rounds, the duplicator has a winning 
strategy in the (original) monadic NP game where the graph Go is a path from s 
to t along with certain backedges, and GI is the result of deleting one forward edge 
from Go. This answers an open question of AJTAI and the author [l]. 

How do we obtain this result? First, we generalize the framework of the games. 
Rather than saying that the duplicator selects Go from a class C, and selects GI from 
the complement c, we instead consider a more general game, where the duplicator 
selects Go from a class Go, and G1 from a class GI.  Intuitively, 60 and correspond 
to the classes of graphs that are actually used in the games. For example, in the 
case of proving that connectivity is not in monadic NP, the class GO would contain 
only graphs that are cycles, and the class would contain only graphs that are the 
disjoint union of two cycles. There are once again two versions, one corresponding 
to the original game, and one to the Ajtai-Fagin game. In the first version of this 
new game, the duplicator selects G1 before the spoiler has colored the &tuples of 
points of Go; in the Ajtai-Fagin version, the duplicator selects GI after the spoiler 
has colored the &tuples of points of Go. We show that given 6, for each choice of the 
number c of colors and the number r of rounds there are c’ and r’ such that for every 
choice of GO and where the duplicator has a winning strategy in the Ajtai-Fagin 
version of the new game with parameters c’ and r’, the duplicator also has a winning 
strategy in the first version of this game with parameters c and r (in fact, we can 
take r’ = r ) .  This result tells us that the same families of graphs can be used in 
the original game as in the Ajtai-Fagin game (such as to prove that a class is not 
in monadic NP). Intuitively, for a given choice of c , r ,  we use bigger graphs in the 
original game than in the Ajtai-Fagin game, since in the original game we use GO, 
that correspond to the Ajtai-Fagin game with more colors (since c’ 2 c ) .  

We now consider a sense in which Ajtai-Fagin games are stronger. Here, we 
investigate the resources involved in the games. Specifically, we consider the number 
of colors required for the spoiler to win when the choices of graphs are fixed. Since the 
spoiler is trying to expose differences between Go and GI,  and the duplicator is trying 
to cover up these differences, it helps the spoiler for there to be more colors. We show 
that there are situations even when 6 = 1 where the spoiler requires strictly more 
colors to win the Ajtai-Fagin game than the original game. Thus, in such situations, 
it is indeed true, in a precise sense, that it is easier for the duplicator to win the 
Ajtai-Fagin game than the original game. 

Our analysis gives a nonelementary upper bound on the number of extra colors 
that are required for the spoiler to win the Ajtai-Fagin game than the original game. 
We conjecture that there is also a nonelementary lower bound. 

In Section 2, we give some definitions and conventions. In Section 3,  we discuss 
Ehrenfeucht-Fra’issd games (see [4,7]). In particular, we define both the original 6-ary 
N P  game and the Ajtai-Fagin 6-ary NP game. In Section 4, we state and prove a useful 
result that is implicit in [6]. In Section 5, we introduce a notion of inseparabili ty,  with 
which we can precisely define the notion of “the graphs used in a game”. In Section 6, 
we demonstrate a strong sense in which the original game and the Ajtai-Fagin game 
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are equivalent. In particular, we show that the same graphs used in the Ajtai-Fagin 
game to prove that a problem is not in 6-ary NP can in principal be used in the 
original game (for a different choice of parameters c and T )  to prove this result. In 
Section 7, we discuss this strong equivalence in the context of AJTAI and the author’s 
proof [l] that directed reachability is not in monadic NP.  In Section 8, we show that 
the Ajtai-Fagin game is stronger than the original game, in that there are situations 
where the spoiler requires strictly more colors to win the Ajtai-Fagin game than the 
original game. In Section 9, we consider how many more colors may be necessary. In 
Section 10, we give our conclusions, and state some open problems. 

2 Definitions and conventions 

We begin with a few conventions. For convenience, we shall usually discuss only graphs 
(usually directed graphs, sometimes with distinguished points s and t ) ,  but everything 
we say can be generalized to  arbitrary structures. We are also interested in “colored 
graphs”, where each &tuple of points has some color. We assume throughout this 
paper that we are restricting our attention to f in i te  graphs (and so are doing finite 
model theory), although all of the results hold also without this assumption. If G is 
a structure and p is a sentence, then we use the usual Tarskian truth semantics to 
define what it means for p to be t rue  or satisfied in G, written G I= p. 

A Ci sentence  is a sentence of the form 3A1...3Ak $, where $ is first-order and 
where the Ai’s are relation symbols. We assume for convenience that the relation 
symbols Ai are all of the same arity 6 (it is easy to see that this gives us no loss 
in expressive power). We refer to $ as the f i r s t -order  p a d  of 3A1...3Ak $. As an 
example, we now construct a 2: sentence that says that a graph (with edge relation 
denoted by P )  is 3-colorable. In this sentence, the three colors are represented by the 
monadic relation symbols A l ,  A2, and A3. Let $1 say “Each point has exactly one 
color”. Thus, is 

VZ ( ( A ~ z  A -A21 A ~ A s z )  V (’Air A A ~ z  A l A 3 2 )  V (’A12 A ’A22 A A ~ z ) ) .  

Let 112 say “No two points with the same color are connected by an edge”. Thus, 
$2 is 

VZVy((A1z A A l y  3 ~ P Z Y )  A (A22 A A2y 3 ~ P C Y )  A (A32 A A3y 3 1P.y)). 

The following sentence, which is C:, then says “The graph is 3-colorable”: 

(1) 3A13A23A3($1 A $2) 

A C: sentence 3A1...3Ak 11, where $ is first-order, is said to be 6 - a r y  if each of 
the Ai’s is 6-ary, that is, the existential second-order quantifiers quantify only over 
6-ary relations. When 6 = 1, so that the existential second-order quantifiers quantify 
only over sets, we say that the sentence is monadic .  A class C of graphs is said to be 
( 6 - a r y )  Ci if it is the class of all graphs that obey some fixed (6-ary) C: sentence. One 
reason that C :  classes are of great interest is the result [5] that the collection of C: 
classes coincides with the complexity class NP. For this reason, as we noted earlier, we 
follow FAGIN, STOCKMEYER, and VARDI [8] by referring to  the collection of monadic 
C: classes as m o n a d i c  N P ,  and more generally, to 6-ary C: classes as 6 - a r y  N P .  We 
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often refer t o  a class of graphs by a defining property, for example, 3-colorability. As 
we saw above, 3-colorability is in monadic NP. 

In a 6-ary Ci sentence 3A1 ... 3Ak+, the Ai’s are, intuitively, allowed to  inter- 
sect in arbitrary ways. We shall sometimes find i t  convenient to use slightly more 
restricted quantifiers, which we call color quantifiers. For a fixed choice of 6, we 
write 3{&,  . . . , B,} 1c, to  mean, intuitively, that there is a way to color the 6-tuples 
with c colors such that $ holds; we think of 3{B1, . . . , Be}  as a 6-ary color quantifier. 
More formally, we define 3 { & ,  . . . , Be}  $ to be an abbreviation for 3A1 ... 3A, (+’A p ) ,  
where A l ,  . . . , A,  are 6-ary relation symbols that do not appear in $J, where 4’ is the 
result of replacing Bi by Ai for each i with 1 5 i 5 c, and where e is the sentence that 
is the obvious generalization of sentence $1 above from 3 colors to  c colors, except that 
2 represents an arbitrary &tuple, rather than a point. As a natural example of the 
use of color quantifiers, let 4; be the first-order sentence obtained from $2 above by 
replacing each Ai by the corresponding (unary) Bi, for i = 1 , 2 , 3 .  Then the C i  sen- 
tence (1) above, which says “The graph is 3-colorable”, is equivalent t o  the sentence 
3{ B1, Bz, B3} $a. Note that,  in a natural way, the color quantifier 3{ B1, . . . , B,}, 
which involves c colors in the color quantifier, can be simulated by 3A1.. .3Ar~,pel,  
which involves [log c1 quantifiers. In particular, when 3{ B1, . . . , B,} is a 6-ary color 
quantifier, then every sentence 3{ B1, . . . , B,} II, where 1c, is first-order is 6-ary Ci . 

The quantifier depth QD(’p) of a first-order formula ‘p is defined recursively as 
follows. 

. QD(’p) = 0 if ‘p is quantifier-free, 

. QD(T) = QD(cP), 

. QD(3z 9)  = 1 + QD((p). 
QD(cpi A CPZ) = max{QD(cpi), QD(cpz)), 

3 Ehrenfeucht-Fkai’ssB games 

Among the few tools of model theory that “survive” when we restrict our atten- 
tion to  finite structures are Ehrenfeucht-FraissC games [4, 71. For an introduction 
to  Ehrenfeucht-FraissC games and some of their applications to  finite model theory, 
see [l,  pp. 122-1261. 

We begin with an informal definition of an r-round f irs t -order Ehrenfeucht-Fraisse‘ 
game  (where r is a positive integer), which we shall call an r -game  for short. It is 
straightforward to  give a formal definition, but we shall not do so. There are two 
players ,  called the spoiler and the duplicator,  and two structures, Go and GI. In the 
first round, the spoiler selects a point in one of the two structures, and the duplicator 
selects a point in the other structure. Let a1 be the point selected in Go, and let bl 

be the point selected in GI. Then the second round begins, and again, the spoiler 
selects a point in one of the two structures, and the duplicator selects a point in the 
other structure. Let a2 be the point selected in Go, and let bz be the point selected 
in GI. This continues for r rounds. The duplicator wins if the substructure of Go in- 
duced by ( a l ,  . . . , a,) is isomorphic to  the substructure of G1 induced by ( b l ,  . . . , b , ) ,  
under the function that maps a; onto b; for 1 5 i 5 r .  For example, in the case 
where Go and GI are colored graphs (where each 6-tuple of points is colored with one 
of c possible colors), then for the duplicator to win, (a) ai = a, iff bi = b,,  for each i , j ;  
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(b) (a i ,  a,)  is an edge in Go iff (b i ,  b j )  is an edge in GI,  for each i, j; and 
(c) (ai l ,  . . . , a i , )  has the same color as ( b j l , .  . . , b i d ) ,  for each il,. . . , ia. Otherwise, 
the spoiler wins.3) We say that the spoiler or the duplicator has a winning strategy 
if he can guarantee that he will win, no matter how the other player plays. Since the 
game is finite, and there are no ties, the spoiler has a winning strategy iff the dupli- 
cator does not. If the duplicator has a winning strategy, then we write Go -r GI. In 
this case, intuitively, Go and G1 are indistinguishable by an r-game. 

The following important theorem (from [4, 71) shows why these games are of 
interest. If C is a class of structures, then let be the complement of C, that is, the 
class of structures not in c . ~ )  

T h e o r e m  3.1. Let C be a class of structures.  C is  f irst-order definable i f l  there 
is r such that whenever Go E C and G1 E c, then the spoiler has a winning strategy 
an the r -game  over Go, GI.  

We now discuss a more complicated game, which is a c-color, r-round, 6-ary NP 
game, and which we shall call a ( 6 , c , r ) - g a m e  for short. This game was essentially 
introduced in [6] to prove that connectivity is not in monadic NP. We start with two 
graphs Go and G1 (in this case, not colored). Let C be a set of c distinct colors. The 
spoiler first colors each of the &tuples of points of Go, using the colors in C, and then 
the duplicator colors each of the &tuples of points of GI, using the colors in C. Note 
that there is an asymmetry in the two graphs in the rules of the game, in that the 
spoiler must color the &tuples of points of Go, not GI. The game then concludes with 
an r-game. The duplicator now wins if the substructure of Go induced by (al, . . . , a,) 
is isomorphic to the substructure of G1 induced by ( b l ,  . . . , b y ) ,  under the function 
that maps ai onto bi for 1 5 i 5 r .  When 6 = 1 (where individual points are colored), 
we get the monadic NP game,  which we shall sometimes refer to  as the ( c ,  r ) -game .  

The following theorem (essentially from [6]) is analogous to Theorem 3.1.  
T h e o r e m  3.2. Let C be a class of graphs, and let 6 be a positive integer. C i s  in  

6 - a r y  NP i f f  there are c , r  such that whenever Go E C and G1 E c, then the spoiler 
has a winning strategy in the (6, c ,  r ) - g a m e  over Go, GI. 

In [6] it is shown that given c and r ,  there is a graph Go that is a cycle, and 
a graph G1 that is the disjoint union of two cycles, such that the duplicator has a 
winning strategy in the (c, r)-game over Go, GI. Since GO is connected and G1 is not, 
it follows from Theorem 3.2 that connectivity is not in monadic NP. 

In addition to considering games over pairs Go, G1 of graphs, AJTAI and the 
author [l] found it convenient, for reasons we shall see shortly, to consider games over 
a class C of graphs. The rules of an r-game over C are as follows. The duplicator 

3)If we are dealing with structures that have constant symbols c1, . . . , cz, then we slightly modify 
the definition of when the duplicator wins. Specifically, let a,+, denote the interpretation in Go 
of c , ,  and let br+, denote the interpretation in GI of c, ,  for 1 5 i 5 z.  The duplicator wins if 
the substructure of Go induced by (al, . . . , a r t l )  is isomorphic to the substructure of GI induced 
by ( b l ,  . . . , b , + , ) ,  under the function that maps a, onto b,  for 1 5 i 5 r + z.  Thus, we consider 
the substructure that is generated by not only the points selected in the structures, but also by the 
interpretations of the constant symbols. This modification is necessary for Theorem 5.1 to hold in 
the presence of constant symbols. 

')Of course, we are restricting attention to structures of a given similarity type. For example, if 
the similarity type is that of graphs, then 2 contains the graphs not in C. 



Ronald Fagin 438 

begins by selecting a member of C to be Go, and a member of c to be GI. The players 
then play an r-game over Go, GI to determine the winner. Similarly, we can define a 
(6, c, r)-game over C. The rules are as follows. 

1. The duplicator selects a member of C to be-Go. 
2. The duplicator selects a member of c to be GI. 
3. The spoiler colors the &tuples of points of Go with the c colors. 
4. The duplicator colors the 6-tuples of points of G1 with the c colors. 
5. The spoiler and duplicator play an r-game on the colored Go, GI. 

The next theorem follows easily from Theorems 3.1 and 3.2. 
T h e  o r e m  3.3. Let C be a class of graphs. 

(a) C is first-order definable iff there is r such that the spoiler has a winning strategy 
in the r-game over C. 

(b) C is in 6-ary NP iff there are c, r such that the spoiler has a winning strategy in 
the (6, c, r)-game over C. 

Theorem 3.3 says that r-games are sound and complete for proving that a class 
is not first-order, and that (6, c, r)-games are sound and complete for proving that a 
class is not in 6-ary NP. Thus, in the case of 6-ary NP, we have the following. 

S o u n d n e s s  : To show that C is not in 6-ary NP, it is sufficient to  show that for 
every c ,  r, the duplicator has a winning strategy in the (6, c, r)-game over C. 

C o m  p 1 e t e n e s s : If C is not in 6-ary NP, then in principle this can be shown by 
a game argument (that is, for every c, r ,  the duplicator has a winning strategy in the 
(6, c, r)-game over C). 

We now explain why AJTAI and the author allowed Go and GI to be selected by 
the duplicator, rather than inputs to the game. A directed graph with distinguished 
points s , t  is said to be (s,t)-connected if there is a directed path in the graph from 
s to  t .  AJTAI and the author wished to prove that directed (s,t)-connectivity (also 
known as directed reachability) is not in monadic NP, but they did not see how to 
prove this by using (c, r)-games. By considering the choice of Go and GI to be moves 
of the duplicator, rather than inputs to  the game, they were able to define a variation 
of (c, r)-games, in which the choice of GI by the duplicator is delayed until after the 
spoiler has colored Go. They successfully used the new game to prove the desired 
result (that directed reachability is not in monadic NP). Their new game, which is 
usually called the Ajtai-Fagin (c, r)-game (or, in our case, the Ajtai-Fagin (6, c, r)- 
game) is, on the face of it, easier for the duplicator to win. The rules of the new game 
are obtained from the rules of the (6, c, r)-game by reversing the order of the second 
and third moves. Thus, the rules of the Ajtai-Fagin (6, c,  r)-game are as follows. 

1. The duplicator selects a member of C to be Go. 
2. The spoiler colors the &tuples of points of Go with the c colors. 
3. The duplicator selects a member of to be GI.  
4. The duplicator colors the 6-tuples of points of GI with the c colors 
5. The spoiler and duplicator play an r-game on the colored Go, GI. 
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The winner is decided as before. Thus, in the Ajtai-Fagin (6,c,r)-game, the spoiler 
must commit himself to a coloring of Go before knowing what G1 is. In order to  
contrast it with the Ajtai-Fagin (6, c, r)-game, we may sometimes refer to the (6, c, r)- 
game as the original (6, c, r)-game (or the original 6-ary NP game). In spite of the fact 
that it seems to be harder for the spoiler to win the Ajtai-Fagin (6, c, r)-game than the 
original (6, c,  r)-game, we have the following analogue (which is a slight generalization 
of a theorem of [l]) to Theorem 3.3(b). 

T h e o r e m  3.4. Let C be a class of graphs, and let 6 be a positive integer. The 
class C is in 6-ary NP iff there are c ,  r such that the spoiler has a winning strategy in 
the Ajtai-Fagzn (6, c, r)-game over C .  

Thus, in the same sense as before, Theorem 3.4 says that Ajtai-Fagin (6, c, r)-games 
are sound and complete for proving that a class is not in 6-ary NP. 

The next theorem is an immediate consequence of Theorems 3.3(b) and 3.4: 
T h e o r e m  3.5. Let C be a class of graphs, and let 6 be a positive integer. The 

following are equivalent. 

(i) For every c, r ,  the duplicator has a winning strategy in the original (6 ,  c ,  r)-game 
ouer C .  
(ii) For every c’, r’, the duplicator has a winning strategy in the Ajtai-Fagin (6, c‘, r’)- 

game over C. 
Theorem 3.5 gives a precise sense in which the original 6-ary NP game and the 

Ajtai-Fagin 6-ary NP game are equivalent. Later, we shall see stronger versions of 
this equivalence. 

4 A game-theoretic tool 

In this section, we state and prove a useful result that is implicit in [6]. The derivations 
follow those in [6] .  

Let us define an r-sentence to be a first-order sentence of quantifier depth at  
most T ,  and a (6, c, r)-sentence to be a sentence of the form 3{B1, . . . , B,} +, where 
$ is an r-sentence, and where 3{B1,. . . , B,} is a 6-ary color quantifier. 

T h e  o r  e m  4.1. For each graph Go and each triple 6 ,  c ,  r of positive integers, there 
is a sentence u (GO,~ ,C ,T)  that is a conjunction of (6,c,r)-sentences, such that for 
each graph GI ,  the duplicator has a winning strategy in the ( 6 ,  c ,  r)-game over Go, G1 
iff G1 k u(G0,6,c,r) .  For each 6 , c , r ,  there are only a finite number of distinct 
inequivalent sentences u(Go,6, c, r ) .  

P r o o f .  Let 6, c, r be fixed. Let P be a binary relation symbol that represent the 
graph relation, and let B1,. . . , B, represent the c colors. The underlying graph of 
the colored graph is obtained by ignoring the coloring (that is, taking only the graph 
relation). 

For each integer m with 0 5 m 5 r ,  we define an m-type, by induction on m. 
Let v1, . . . , v,  be distinct individual variables, and define the atomic formulas over 
(v1,  . . . , v,.} to be all formulas of one of the following forms: 

1. vi = v j ,  where 15 i 5 r and 15 j 5 r; 
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2. Pviv j ,  where 1 5 i 5 r and 1 5 j 5 r ;  
3. B~V;, . . . v i 6 ,  where 1 5 l 5  c ,  and 1 5 ij 5 r for 1 5 j 5 6. 

Let a1,. . . , LY, be the distinct atomic formulas over {v l ,  . . .,or}. We start the induc- 
tion by defining a 0-type to be a formula of the form A . . . A ps, where each pi is 
either a; or 10;. Intuitively, a 0-type is a complete description of how the variables 
vl, . . . , v, relate to each other (in terms of which are equal, and which have edges 
between them in the graph relation) and which colors the &tuples of them have. We 
have not bothered to require that each 0-type be consistent: for example, a 0-type 
for 6 = 1 could have as conjuncts each of the formulas v1 = v2, B1v1, and YB1v2. Of 
course, it would be straightforward to make such a restriction. Note that a 0-type is 
of quantifier depth 0. 

For each set A of m-types (where 0 5 m < r), we inductively define the following 
formula to be an (m + 1)-type: 

/\{3vr-mP : CP E A }  A l\{Vvp-m’p : 9 $! A } .  
Assume that H is a colored graph, that al, . . . , Q, are points of H ,  and that ‘p 

is a formula with free variables v 1  , . . . , vm. We write H I= c p [ q  . . . 0, I (11 . . .a,] to 
mean that cp is satisfied in H when v; is interpreted by ai ,  for 1 5 i 5 m. It is easy 
to prove by induction on m that if 0 5 m 5 r ,  then 

1. each m-type is of quantifier depth m; 
2. each m-type has as free variables precisely 211,. . . , Vr-m; 

3. there is exactly one m-type ‘p such that H t= p[vl . . .v,-, I a1 . . .ar-,]; 
4. there are only finitely many distinct rn-types. 

It follows from the inductive assumptions (when m = r )  that each r-type is of 
quantifier depth r ,  and the number of r-types is finite, where the total number depends 
only on 6, c and r .  Let us denote by r ( H , r )  the r-type ‘p such that H I= cp. It is 
easy to  see that if H and H’ are colored graphs, then H -, H’ iff H !F r ( H , r ) :  the 
duplicator’s winning strategy is to make sure that after the mth move, if a l l  . . . , a ,  
(respectively, b l ,  . . . , b,) are the points that have been picked in H (respectively, H ’ ) ,  
then 

H I= $[v1 . . . v, I a1 . . . a,] iff H’ k $J[v1. . . v, I b l .  . . b,] 
for the same ( r  - “)-type $J. 

Let Go be a graph. Let 31 be the set of all colored graphs H where the underlying 
graph of H is GO. Since the number of r-types is finite and depends only on 5 ,  c 
and r ,  there is a set G C 31 such that the r-type of each member of 31 is the same 
as the r-type of some member of 0, and such that the cardinality of G is finite and 
depends only on 6, c and r .  (Note that the set 31 itself is finite, since there are 
only a finite number of ways to  color the &tuples of Go with c colors. However, the 
cardinality depends on the size of GO, and we need an upper bound that depends 
only on 6 ,  c and r . )  Define a(Go,6, c ,  r )  to be the conjunction over G of all (6, c, r)- 
sentences 3{B1,.  . . , B,}r(H, r ) ,  where H E G. It is easy to  see from what we have 
said that there are only a finite number of distinct inequivalent sentences of the form 
a(G0,6, c ,  r ) ,  and this number depends only on 6, c and r. It is straightforward to 
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verify that for each graph G1, the duplicator has a winning strategy in the (6,  c, r)- 
0 

The next theorem, that we shall find useful later, uses the notion of r-type as 

T h e o r e m  4.2. Each sentence u(G0,6,c, r )  is of the form A,E-3{B1,. . . ,  Bc}$i, 

game over Go, G1 iff G1 i= a(Go,6, c, r ) .  This proves the theorem. 

defined in the proof of Theorem 4.1. 

where each $i is an r-type. 

5 Inseparability 

In this section, we introduce a notion of inseparability. In this section and the next 
section, we use inseparability to  give stronger versions of the equivalence between 
the original 6-ary NP game and the Ajtai-Fagin 6-ary N P  game. This notion of 
inseparability allows us to make sense of the notion of “the graphs used in a game”, 
so that we can consider statements such as “the same family of graphs used in the 
Ajtai-Fagin 6-ary NP game can be used in the original 6-ary N P  game to prove that 
a problem is not in 6-ary NP” . 

We defined quantifier depth in Section 2. Quantifier depth is closely related to 
first-order games. We say that two structures Go and G1 are r-inseparable, written 
Go -r GI, if the duplicator has a winning strategy in the r-game over Go, GI.  If it is 
the spoiler who has a winning strategy, then we say that Go and G1 are r-separable. 
Since the game is finite, and there are no ties, the spoiler has a winning strategy 
iff the duplicator does not; therefore, Go and G1 are r-separable iff they are not 
r-inseparable. 

We say that the sentence y separates Go from G1 if Go I= y and G1 P y. The next 
theorem shows why r-separability is an important concept (and why we use the word 
“separability”). 

T h e o r  e m  5.1. Let r be a positive integer. The following are equivalent. 

(i) Go and GI are r-separable. 
(ii) There is an r-sentence that separates Go from GI. 

P r o o f .  The proof that (i) 3 (ii) follows as in the proof of Theorem 4.1. We can 

Let us now pass from the first-order case to the 6-ary Ci case. Similarly to before, 
we say that the graphs Go and G1 are (b,c,r)-inseparable if the duplicator has a 
winning strategy in the (6, c, r)-game over Go, GI.  The next result is analogous to 
Theorem 5.1. 

prove that (ii) * (i) by a fairly straightforward induction on r .  0 

T h e  o r e m  5.2. The following are equivalent. 

(i) Go and G1 are (6, c, r)-separable. 
(ii) There is a (6 ,  c, r)-sentence that separates Go from GI. 

P r o o f .  
(i)  3 (ii). Let a(Go,6, c, r )  be as in Theorem 4.1. Assume that (i) holds. By The- 

orem 4.1, it follows immediately that G1’P a(Go,6, c, r ) ,  and hence G1 Jf y for some 
conjunct y of a(Go,b, c, r ) .  Also, Theorem 4.1 implies easily that GO i= a(Go,6, c, r ) ,  
and so Go I= y. Since 7 is a (6, c, r)-sentence, this proves (ii). 
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(ii) j (i). Let 3{B1, . . . , B,} $J be a (6, c, r)-sentence such that 

and GO I= 3{B1, . . . , B,} $J GI F ~ { B I , .  . . , &} $J. 

Then there is a way to color the &tuples of Go with c colors to obtain a colored 
graph Gb so that Gb k 4, and no matter how the 6-tuples of G1 are colored with 
c colors to obtain Gi ,  necessarily G’, F 11. Since ?I, is an r-sentence, it follows from 
Theorem 5.1 that Gb and Gi  are r-separable. It follows easily that the spoiler has a 

0 

Although r-inseparability, which we considered in the first-order case, is an equiv- 
alence relation, (6, c, r)-inseparability is not an equivalence relation in general. It is 
easy to  see that (6,c,r)-inseparability is transitive and reflexive. However, it is not 
necessarily symmetric. The fact that (6, c, r)-inseparability is not symmetric is re- 
flected in the fact that unlike the situation in Theorem 5.1, the second condition of 
Theorem 5.2 is not symmetric in the roles of Go and GI .  It is possible for the second 
condition of Theorem 5.2 to hold, and yet for the analogous condition where the roles 
of Go and GI are reversed to  fail. 

To make precise the notion of “the graphs used in the game”, we need to  consider 
a notion of separability of classes GO and G1 of graphs. We begin by recalling the 
rules of the original (6, c, r)-game over C: 

1.  The duplicator selects a member of C to be Go. 
2. The duplicator selects a member of to be GI.  
3. The spoiler colors the &tuples of points of Go with the c colors. 
4. The duplicator colors the 6-tuples of points of G1 with the c colors. 
5. The spoiler and duplicator play an r-game. 

winning strategy in the (6, c, r)-game over Go, GI. Therefore, (i) holds. 

We now define a variation. Let GO and G1 be classes of graphs, and let c , r  be 
to  have the following positive integers. We define the orzginal(6, c, r)-game over Go, 

rules. 

1. The duplicator selects a member of 60 to be Go. 
2. The duplicator selects a member of G1 to be GI.  
3. The spoiler colors the &tuples of points of Go with the c colors. 
4. The duplicator colors the &tuples of points of G1 with the c colors. 
5. The spoiler and duplicator play an r-game. 

The winner is decided as before. Intuitively, GO and G1 correspond to the classes of 
graphs that are actually used in the games. For example, in the case of proving that 
connectivity is not in monadic NP, the class Go would contain only graphs that are 
cycles, and the class 61 would contain only graphs that are the disjoint union of two 
cycles. 

We say that Go, G1 are (6, c, r)-inseparable if the duplicator has a winning strategy 
in the original (6, c, r)-game over GO, GI. In particular, if the duplicator has a winning 
strategy in the original (6, c, r)-game over C, then C, are (6, c, r)-inseparable. As 
before, if it is the spoiler, rather than the duplicator, who has a winning strategy, 
then we say that GO, are (6,c,r)-separable. Further, as before, if 6 = 1, then we 
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refer simply to ( c ,  r)-inseparability and ( c ,  r)-separability. Note that if 40, G1 are 
(6, c ,  r)-inseparable, and C is an arbitrary class such that GO C_ C and 61 C_ c, then by 
Theorem 3.3(b), it follows that C is not in 6-ary NP. In particular, the same Go, GI can 
be used to  prove simultaneously that many classes are not in 6-ary NP. For example, 
consider the fact that for every c ,  r ,  there exists GO consisting only of graphs that are 
cycles, and consisting only of graphs that are the disjoint union of two cycles, such 
that Go, are ( c ,  r)-inseparable (see [S]). This fact implies that if C is an arbitrary 
class that contains every graph that is a cycle but no graph that is the disjoint union 
of two cycles, then C is not in monadic NP. Examples of such classes C are the class 
of connected graphs and the class of Hamiltonian graphs. 

Theorem 5.2 characterizes separability in the case of singleton sets GO and & .  We 
now give a characterization that holds in the general case. We say that the sentence 
y separates GO f rom if (a) GO I= y for every Go E GO, and (b) GI F y for every 
G1 E GI. A sentence is a positive Boolean combination of (6,c,r)-sentences if i t  is in 
the smallest class that contains every (6, c ,  r)-sentence and is closed under conjunction 
and disjunction. In the theorem below, a(Go,6, c ,  r )  is as in Theorem 4.1. 

T h e  o r e  m 5.3. The following are equivalent. 

(i) GO and 
(ii) There is a sentence that is a positive Boolean combination of ( 6 ,  c ,  r)-sentences 

(iii) There is a sentence that is a disjunction of conjunctions of ( 6 ,  c ,  r)-sentences 

(iv) The sentence VGoEBo a(Go, 6 ,  c, r )  separates GO f rom G I . ~ )  

are (6, c ,  r)-separable. 

that separates GO f rom GI. 

that separates GO from GI. 

P r o o f .  We shall prove that (iv) j (iii) j (ii) j (i) 3 (iv). 
(iv) j (iii). This is immediate, since the sentence VGOEGo a(Go,6, c ,  r )  is a dis- 

(iii) + (ii). This is immediate, since a disjunction of conjunctions is a positive 

(ii) + (i). Let y be a sentence that is a positive Boolean combination of (6, c ,  r ) -  
sentences that separates GO from GI .  Let Go be an arbitrary member of Go, and let 
G1 be an arbitrary member of GI.  Then Go i= y and G1 F y. Since y is a positive 
Boolean combination of (6, c ,  r)-sentences, it is not hard to  see that y is equivalent to 
a sentence 7’ of the form 

junction of conjunctions of (6, c ,  r)-sentences. 

Boolean combination. 

V i l E I l  A i o E I o  V i 3 E 1 3  ’ . ’  A i k - l € I k - l  V i k  € I k  $ i i 8 . - $ k  9 

where each $ i 1 , . . . , i k  is a (6, c ,  r)-sentence. Since Go I= y’, there is il E 11 such that 

(2) Go ’ A i z E 1 2  V i 3 E I 3  ’ ‘  ’ A i k - l E I k - l  V i k E I k  * i ~ , . . . , i k ’  

Since G1 F y’, it  follows that 

’)This is a finite disjunction, since by Theorem 4.1, for each fixed choice of 6, c ,  r ,  there are only 
a finite number of distinct inequivalent sentences of the form o(Go,6, c, r ) .  
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Intuitively, (2) and (3) tell us that we can find some choice of i l  E 11 so that we can 
“strip off the outer v”. 

From (3), we know that for some i2 E 1 2 ,  we have 

(4) GI ’ V i 3 E 1 3  . . . A.  t k - i E I k - 1  V i k E I k  $ i l l . . . , i k ‘  

From (2),  it follows that 

(5) ‘0 ’ V i 3 E 1 3  ’ ’ ’ A i k - - l  E I k - 1  V i k E I k  $ i l > . . . B i k  ’ 

Intuitively, (4) and (5) tell us that we can find some choice of il E I1 and 22 E 1 2  SO 

that we can “strip off the outer v A”. 
By continuing this process a total of k times, we find that for some i l l . .  . , Zk, 

the (6, c, r)-sentence $ i l , . , . , i k  separates Go from GI.  So from Theorem 5.2, it follows 
that Go and G1 are (6,c,r)-separable. That is, the spoiler has a winning strategy 
in the (6, c, r)-game over Go, GI. Since Go is an arbitrary member of 60, and G1 is 
an arbitrary member of Gl ,  it follows that the spoiler has a winning strategy in the 
original (6, c, r)-game over Go, GI.  So 60 and 

are (6, c, r)-separable. Let y be the formula 
VGoEGo u(GO,S,c,r). Let Go be an arbitrary member of GO, and let G1 be an arbi- 
trary member of GO. We must show that Go t= 7 and G1 F 7. By Theorem 4.1 ,  
it follows immediately that Go t= a(Go,6,c,r). Hence, Go t= 7 .  Assume now that 
GI t= y; we shall derive a contradiction. Since G1 I= 7, we have GI t= u(G;,c,r) 
for some G: E GO. The duplicator therefore has a winning strategy in the original 
(6,c,r)-game over Go, G I ,  as we now show. and 
G1 E GI .  Since G1 t= a(G6, c, r ) ,  it follows from Theorem 4.1 that the duplicator has 
a winning strategy in the (6, c, r)-game over GG, GI. So indeed, the duplicator has a 
winning strategy in the original (6, c, r)-game over GO, GI.  This contradiction shows 

0 

be classes of 
graphs, and let 6, c, r be positive integers. We define the Ajtai-Fagin (6, c, r)-game 
over GO, GI to have the following rules. 

are (6, c, r)-separable, as desired. 

(i) j (iv). Assume that 6 0  and 

The duplicator selects G; E 

that G1 F y, as desired. 

Let us now consider Ajtai-Fagin games. As before, let GO and 

1. The duplicator selects a member of Go to be Go. 
2. The spoiler colors the 6-tuples of points of Go with the c colors. 
3. The duplicator selects a member of 
4. The duplicator colors the &tuples of points of G1 with the c colors. 
5. The spoiler and duplicator play an r-game. 

to be GI. 

The winner is decided as before. As before, the difference between the original (6, c, r)-  
game and Ajtai-Fagin (6, c, r)-game is that in the Ajtai-Fagin game, the spoiler must 
commit himself to a coloring of Go before knowing which graph the duplicator selects 

In Section 6 ,  we shall prove Theorem 5.4 below, which is a strengthened version 

GI.  

of Theorem 3.5. In fact, we shall prove a result even stronger than Theorem 5.4.  
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T h e o r e m  5.4. Let GO, GI be classes of graphs, and let 6 be a positive integer. 
The following are equivalent. 

over GO,  GI. 

game  over GO, G1 . 

(i) For every c,  r ,  the duplicator has a winning strategy in the original (6, c, r)-game 

(ii) For every c', r', the duplicator has a winning strategy in the Ajtai-Fagin (6; c',  r')- 

are Ajtai-Fagin (6, c,  r)-inseparable (respectively Ajtai-Fagin 
( 6 ,  c,  r)-separable) if the duplicator (respectively the spoiler) has a winning strategy 
in the Ajtai-Fagin (6 ,c ,  r)-game over GO, G I .  As before, if 6 = 1, then we refer simply 
to Ajtai-Fagin (c, r)-inseparability and Ajtai-Fagin (c, r)-separability. 

We now give a theorem that characterizes Ajtai-Fagin separability, analogous to 
the characterization of separability in Theorem 5.3. 

T h e o r  e m 5.5. The following are equivalent. 

We say that GO, 

(i) GO and 
(ii) There is a sentence that is a disjunction of (6,c,r)-sentences that separates GO 

(iii) For each Go E Go, there is some (b,c,r)-sentence YG, that is a conjunct of 

are Ajtai-Fagin (6, c ,  r)-separable. 

from GI.  

a(Go,6, c,  r )  such that the sentence VGoEGo YG, separates GO from G I . ~ )  
We shall prove that (iii) 3 (ii) + (i) + (iii). 
(iii) 3 (ii). This is immediate, since YG, is a (6, c ,  r)-sentence. 

(ii) + (i). Let 71,. . .,-yk be (6,c,r)-sentences such that y1 V . . .  V 7k sepa- 
rates GO from GI.  We must show that the spoiler has a winning strategy in the 
Ajtai-Fagin (6,c,r)-game over Go7 G I .  Assume that the duplicator selects Go E GO. 
Since Go b y1 V . . .  V yk, we know that Go k 7i for some i. Now 7i is a (6, c , r ) -  
sentence 3{B1 , . . . , B,} 4. The spoiler now colors the &tuples of points of Go with 
the c colors so that the resulting colored graph Gb satisfies $ (this is possible, since 
Go b ~ { B I , .  . . , B,} $). For whatever GI E that the duplicator now selects, we 
know that GI F y1 V . . . V Yk. Hence, GI F */i, that is, GI F 3{ B1, . . . , B,} 4. There- 
fore, however the duplicator colors the &tuples of points of G I ,  the resulting colored 
graph Gi does not satisfy $. Since 11, is an r-sentence, it follows from Theorem 5.1 
that Gb and Gi are r-separable. That is, the spoiler has a winning strategy in the 
r-game over Gb, G;. It follows easily from what we have shown that GO and are 
Ajtai-Fagin (6, c, r)-separable. 

(i) + (iii). Assume that GO and GI are Ajtai-Fagin (b,c,r)-separable. Let Go 
be an arbitrary member of GO. By Theorem 4.2, we know that u(G0,6,c,r) is of 
the form AiEI 3{B1,. . . , B,} $ i ,  where each 11,i is an r-type. We see from the proof 
of Theorem 4.1 that each conjunct 3{B1,. . . , B,} $i of a(Go,6, c, r )  corresponds to 
a coloring of Go. Let YG, be the conjunct 3{B1,. . . , B,} qbi of a(Go,S, c, r )  that 
corresponds to the coloring of Go in a winning strategy of the spoiler in the Ajtai- 
Fagin (6, c, r)-game over GO, G1 when the duplicator selects GO E Go. Because of the 

6)As in Theorem 5.3, this is a finite disjunction, since for each fixed choice of 6, c, r ,  there are only 
a finite number of distinct inequivalent conjuncts of sentences u(Go, 6, c , ~ ) .  



446 Ronald Fagin 

choice of 7 G 0 ,  it follows that for every choice of GI E , and for every coloring by the 
duplicator of the &tuples of points of G1 with c colors, the resulting colored graph 
does not satisfy $ i .  Therefore, GI F 3{ B1, . . . , B e }  $ i ,  that is, GI Pr 7Go.  Since GO is 
an arbitrary member of Go and GI is an arbitrary. member of GI,  it follows that no 
member of satisfies VGoEBo 7 G 0 .  Since Go b 7 G o ,  it follows that every member of 

0 

It is not hard to verify that for most purposes, we could have restricted our 
attention in this paper to  cases where 60 is a singleton set. In this case, what do 
Theorems 5.3 and 5.5 tell us? 

Go satisfies VGoEGO 7 ~ ~ .  Hence, VGoEGo Y G ~  separates GO from G I ,  as desired. 

T h e o r e m  5.6. Let Go be a singleton set {Go}. The following are equivalent. 

(i) 40 and G1 are (6, c ,  r)-separable.  
(ii) There is a sentence that is a conjunction of (6, c,  r)-sentences that separates GO 

(iii) The  sentence u(Go,6, c ,  r )  separates GO from GI .  
from GI .  

P r o o f .  The fact that (i) and (iv) in the statement of Theorem 5.3 are equivalent 
implies immediately that (i) and (iii) are equivalent in the statement of Theorem 5.6. 
Clearly (iii) + (ii) in the statement of Theorem 5.6, since o(Go,6, c, r )  is a conjunction 
of (6, c, r)-sentences. Furthermore, (ii) j (i) in the statement of Theorem 5.6, since 

0 

T h e o r e m  5.7. Let GO be a singleton set  {Go}. The  following are equivalent. 
(iii) j (i) in the statement of Theorem 5.3. This concludes the proof. 

(i) GO and G1 are Ajtai-Fagin (6, c ,  r)-separable.  
(ii) There is  a (6, c ,  r)-sentence that separates 60 f r o m  GI. 
(iii) Some  conjunct of u(Go,6, c ,  r )  separates GO from GI. 

P r o o f .  This follows from Theorem 5.5 in the same way that Theorem 5.6 follows 
from Theorem 5.3. 0 

Intuitively, the fact that in the case of the Ajtai-Fagin (6, c, r)-game (Theorem 5.7) 
a single (6, c, r)-sentence separates GO = {Go} from reflects the fact that a single 
coloring of Go must simultaneously “work” against every member of GI.  On the other 
hand, in the case of the original (6, c, r)-game (Theorem 5.6), a conjunction of (6, c, r)- 
sentences is required, because different colorings of Go might be needed by the spoiler 
for different choices of members of GI.  

Note also another interesting difference between the separating sentences in the 
original (6, c ,  r)-game (Theorems 5.3 and 5.6) versus those in the Ajtai-Fagin (6, c, r)-  
game (Theorems 5.5 and 5.7). In the case of the original (6, c, r)-game, the separating 
sentence depends only on GO (that is, is independent of GI). By contrast, in the case of 
the Ajtai-Fagin (6, c, r)-game, this sentence is not independent of &.  This is because 
in the Ajtai-Fagin game, a single coloring of Go must simultaneously work against 
every member of G I ,  and which coloring this is depends on GI .  

The next proposition follows immediately from the definitions. It says, intuitively, 
that  if the duplicator has a winning strategy in the original 6-ary NP game, then 
he has a winning strategy in the Ajtai-Fagin 6-ary NP game, with the same choices 
of graphs. This is what we would expect, since intuitively, it is even easier for the 
duplicator to win the Ajtai-Fagin game than the original game. 

I 
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P r o p o s i t i o n  5.8. Let Go, G1 be classes of graphs. If Go, GI are (6, c,  r)-insepa- 
rable, then Go, 

As we shall see (Theorem 8.1), the converse is false. We are interested in comparing 
inseparability and Ajtai-Fagin inseparability to compare the graphs that can be used 
in a proof that a property is not in 6-ary N P  using Ajtai-Fagin 6-ary NP games and 
using the original 6-ary N P  games. An example of this reasoning appears in Section 7. 

are Ajtai-Fagin (6 ,  c,  r)-inseparable. 

6 Ajtai-Fagin games are no stronger 

The main theorem of this section (Theorem 6.2) is a strengthening of Theorem 5.4. 
It is partial converse to  Proposition 5.8. It tells us that for each 6, c,  r ,  there are 
c’, r’ such that if Go, are (6, c, r)-  
inseparable. In fact, we can let r’ = r .  As we shall see (Theorem 8.1), we cannot 
always let c’ = c. Hence, the converse of Proposition 5.8 is false, so we must settle 
for a partial converse. 

are Ajtai-Fagin (6, c’, r’)-inseparable, then GO, 

The next proposition is a useful tool in proving Theorem 6.2. 
P r o p o s i t i o n  6.1. The conjunction of a (6, c1, r)-sentence and a (6 ,  c2, r)-sen- 

tence is equivalent to a single (6, c1c2, r)-sentence. 
P r o o f .  We first consider the case where c1 and c2 are each powers of 2 (say 

c1 = 2’1 and c2 = 2kz). In this case, a (6, c1, r )  sentence is equivalent to a 6-ary C t  
sentence 3A1 ... 3Ak, $1, where $1 is an r-sentence. Similarly, a (6, c2, r )  sentence is 
then equivalent to  a 6-ary C: sentence 3A ’,... 3A;.$2, where $2 is an r-sentence. We 
can assume without loss of generality that no A ,  and A$ are the same. Then the 
conjunction of the two sentences is equivalent to the sentence 

3Ai ... 3AkI3A: ... 3A’,,($i A &), 

which in turn is equivalent to a (6, c1c2, r)-sentence. 
In the general case (where c1 and c2 are not necessarily powers of a),  we use for 

the conjunction clcz colors, each of which is thought of as a pair ( i , j )  of colors, where 
i is one of the c1 colors in the first sentence, and j is one of the c2 colors in the 
second sentence. The details, which are simple but notationally tedious, are left to 
the reader. 0 

We now give the main theorem of this section. 
T h e  o r  e m  6.2. Let 6, c,  r be positive integers. There is c’ such that for  every 

40, 
P r o o f .  It follows from the proof of Theorem 4.1 that up to equivalence, there 

are only a finite number k of possible r-types (that involve only the binary relation 
symbol that represents the graph, and the “color” 6-ary relation symbols B1, . . . , Bc).  
This number k depends only on 6, c and T (in Section 9,  we shall compute an upper 
bound on k, during the proof of Theorem 9.1). Therefore, up to equivalence, there are 
only k distinct (6, c,  r)-sentences of the form 3{B1, . . . , B,} $, where II, is an r-type. 
Let c‘ = ck. Assume that 40, are 
Ajtai-Fagin (6, c’, r)-separable. 

that are Ajtai-Fagin (6, c ’ ,  r)-inseparable, also GO, are (6, c,  r)-inseparable. 

are (6, c, r)-separable; we shall show that GO, 
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From the fact that (i) j (iv) in Theorem 5.3, the sentence VGoEqo a(Go,6, c, r )  
separates Go from &. By Theorem 4.2, each sentence u(G0,6,c,r)  1s of the form 
AiEr 3{B1,. . . , B,} $ i ,  where each $i is an r-type. Since, up to equivalence, there are 
at most Ic distinct r-types, it follows that each sentence u(Go,6, c, r )  is equivalent to 
the conjunction of at most k distinct (6, c, r)-sentences. Therefore, by Proposition 6.1 
applied repeatedly, u(G0,6, c, r )  is equivalent to a (6, c’, r)-sentence. Hence, a disjunc- 
tion of (6,c’,r)-sentences separates 6 0  from GI. So from the fact that (ii) j (i) in 
Theorem 5.5, where c’ plays the role of c, it follows that GO and are Ajtai-Fagin 

0 

We can now prove Theorem 5.4 from the previous section. 

P r o o f  of T h e o r e m  5.4. 

(6, c’, r)-separable, as desired. 

It follows immediately from Proposition 5.8 that 
(i) j (ii). We now show that (ii) 3 (i). Assume that (ii) holds, and let c , r  be 
given. We wish to show that the duplicator has a winning strategy in the original 
(6, c, r)-game over GO, GI.  Let c’ be as in Theorem 6.2. By assumption, the duplicator 
has a winning strategy in the Ajtai-Fagin (6, c’, r)-game over GO, GI. That is, GO,  GI 
are Ajtai-Fagin (6, c’, r)-inseparable. So by Theorem 6.2, it follows that 60, are 
(6, c, r)-inseparable. That is, the duplicator has a winning strategy in the original 

0 

Theorem 6.2 is rather powerful, since it guarantees the existence of a winning 
strategy for the duplicator in the original game (with a certain choice of parameters) 
given only the existence of a winning strategy for the duplicator in the Ajtai-Fagin 
game (with another choice of parameters). Intuitively, for a given choice of c, r ,  we 
use bigger graphs in the original (6, c, r)-game than in the Ajtai-Fagin (6, c, r)-game, 
since in the original game we use GO, 41 that correspond to the Ajtai-Fagin game with 
more colors. Note that the choice of c’ is uniform, over all possible choices of 40, G l .  
As we shall see by example in the next section, Theorem 6.2 tells us that the same 
families of graphs can be used in the original game as in the Ajtai-Fagin game (such 
as to  prove that a class is not in 6-ary NP). In the case of this example, we show how 
to extract from the proof of Theorem 6.2 a winning strategy for the duplicator in the 
original (6, c, r)-game over GO, GI, including a coloring strategy. 

(6, c, r)-game over GO, 61, as desired. 

7 Directed reachability 

As we noted earlier, AJTAI and the author introduced their variation of monadic 
NP games in order to prove that directed reachability is not in monadic NP. In this 
section, we discuss this approach, and in particular discuss various senses in which 
the original monadic N P  game is adequate and is not adequate to obtain this result. 

Let 6 = 1, and let c and r be given. AJTAI and the author constructed (by 
probabilistic methods) a finite directed graph Go with points s , t  where there is a 
directed path from s to t in Go. In fact, Go consists of a path from s to t (these edges 
in the path are called “forward edges”), along with certain backedges. Thus, Go is 
(s,t)-connected. Denote the graph that is obtained by deleting the edge e from Go 
by Go - e .  In particular, if e is a forward edge, then Go - e is not (s,t)-connected. 
AJTAI and the author showed that however the spoiler colors the points of Go with 
the c colors, there is a forward edge e of Go such that when GI = Go - e is colored 
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in precisely the same way, point for point, as Go was colored, then the duplicator 
has a winning strategy in the r-game played on Go and G1 (where, as before, the 
isomorphism must also respect color). Since Go is (s,t)-connected and G1 is not, it 
follows from Theorem 3.4 that directed reachability is not in monadic NP.7) 

Note that the duplicator does not commit himself to a choice of G1 until the 
spoiler has committed himself to a coloring of Go. This is the power of Ajtai-Fagin 
monadic NP games. 

It is interesting to see what would happen if we were to try to use these pairs 
Go, G1 in the original monadic NP game rather than the Ajtai-Fagin monadic NP 
game. Intuitively, in the original game, the spoiler knows what Go and G1 are before 
he colors Go. This would be disastrous for a duplicator whose coloring strategy is to 
color G1 by simply duplicating the coloring for Go: if the spoiler knew which edge 
e were deleted from Go to form GI = G - e ,  this might dramatically influence his 
coloring of Go (for example, the spoiler might color the endpoints of e with special 
colors). In the Ajtai-Fagin monadic NP game, the spoiler must commit himself to a 
coloring of Go before he knows which edge e is deleted. This makes it easier for the 
duplicator to win. 

In a proof that a problem is not in monadic NP using the original monadic NP 
game, we must give a coloring strategy for the duplicator, that tells the duplicator 
how to color G1 as a function of the spoiler’s coloring of Go. This may be rather 
complicated. For example, in the author’s original proof [6] that connectivity is not 
in monadic NP, it was shown, as we noted earlier, that given c and r ,  there is a 
graph Go that is a cycle, and a graph G1 that is the disjoint union of two cycles, such 
that the duplicator has a winning strategy in the ( c ,  r)-game over Go, GI. Perhaps 
the hardest part of the proof lies in describing the duplicator’s coloring strategy. By 
contrast, in AJTAI and the author’s proof (using Ajtai-Fagin games) that directed 
reachability is not in monadic NP, describing the duplicator’s coloring strategy is an 
easy step; the duplicator simply copies, point for point, the coloring of Go. By making 
easier the task of finding a coloring strategy for the duplicator, we simplify our task 
of proving that a problem is not in monadic NP. 

AJTAI and the author commented that they do not know how to prove their main 
result (that directed reachability is not in monadic NP) by using the original game. In 
such a proof, it would be necesssy, given c ,  r ,  to showAhe existence of a pair Go, G1 
of finite directed graphs where Go is ( s ,  t)-connected, G1 is not (s, t)-connected, and 
the duplicator has a winning strategy in the (c, r)-game over Go, GI. Since directed 
reachability is not in monadic NP (as AJTAI and the author showed), it follows from 
Theorem 3.2 that for each pair c,  r ,  there is such a pair Go, GI.  AJTAI and the author 
instead used Ajtai-Fagin monadic N P  games, and worked with pairs Go, GI where Go 
consists of a path from s to t ,  along with certain backedges, and where G1 is the result 
of deleting some forward edge from Go. ALTALand the author said that it is not clear 
that such a pair GO, GI could serve as GO, GI. We now s h o y t h g  it follows from 
Theorem 6.2 that indeed, such a pair GO, G1 could serve as Go, GI. This resolves 
AJTAI and the author’s question. 

A h  

A h  

h h  

7 ) A R o R A  and the author [Z] show how to simplify AJTAI and the author’s proof of this result. Both 
papers (AJTAI and FAGIN [l], and ARORA and FACIN [2]) use exactly the same graphs Go, GI .  
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T h e o r e m  7.1. For every  c , r ,  there is a graph Go that consists of a path from 
s to t ,  along with certain backedges, and a graph G1 that is the result of deleting 
some forward edge from Go, such that the duplicator has a winning strategy in the 
( c ,  r)-game over  Go, GI.  

P r o o f .  Assume that c, r are given. Let 6 = 1, and find c’ as in Theorem 6.2. We 
know from [l] that there is Go that is a path from s to t ,  along with certain backedies, 
such that if GO = {Go} and Q1 consists of all graphs obtained from Go by deleting 
a single forward edge, then Go and are Ajtai-Fagin ( c ’ ,  r)-inseparable. It follows 
from Theorem 6.2 that Go and are ( c ,  r)-inseparable. Therefore, there is C1 E G1 
such that the duplicator has a winning strategy in the (c, r)-game over Go, GI.  0 

It is important to note that we do not know a direct proof of Theorem 7.1, using 
only the original monadic NP game. There would be two phases in such a proof the 
description of a strategy for the duplicator, and a proof that it is a winning strategy. 
In the description phase, we need in particular to  describe how to select Go, how to 
select G1 (which differs from Go by having some forward edge deleted) and how the 
duplicator should color G1 as a function of the spoiler’s coloring of Go. 

It is perhaps instructive to see what our results tell us about how to select GO, 
how to select GI, and how the duplicator should color G1 as a function of the spoiler’s 
coloring of Go. Let 60, be as in the proof of Theorem 7.1. The choice of Go in the 
original (c, r)-game over Go, is of course determined as the unique member of the 
singleton set GO. We now discuss how to extract from the proof of Theorem 6.2 the 
way the duplicator should select GI ,  along with a winning coloring strategy for the 
duplicator in the (c ,  r)-game over Go, GI, in the case of directed reachability. 

Define a c-coloring function of a graph G to be a function associating with each 
of the nodes of G one of the c colors (for definiteness, we can think of the colors as 
being the numbers from 1 to c). Let C1 and C2 be c-coloring functions of Go. Let H1 
(respectively H2)  be the colored graph that is the result of coloring Go with C1 
(respectively C2). Let us say that the c-coloring functions C1 and C2 of Go are 
r-equzvalent over  Go if H1 -r Hz.  Intuitively, two c-coloring functions are r-equivalent 
over Go if the duplicator has a winning strategy in the r-game over the colored 
graphs that are the result of coloring Go with the two c-coloring functions. It follows 
from Theorem 4.1 that there are only a finite number of r-equivalence classes of 
c-coloring functions of Go, and that there is a finite upper bound on this number that 
is independent of the choice of GO. Let R be a finite set of representatives of these 
equivalence classes. Thus, every c-coloring function of Go is r-equivalent over Go to 
some member of R. The idea behind the proof of Theorem 6.2 is as follows. Let G1 be 
the graph that the duplicator would select in the Ajtai-Fagin (c ’ ,  r)-game over Go, 
if the spoiler were to color Go with the “hardest c’-coloring function of Go’’ , that is, a 
c’-coloring function of Go that encodes the simultaneous coloring of Go with each of 
the c-coloring functions of Go in R. In the case (which we are focusing on) of showing 
that directed reachability is not in monadic NP, this graph G1 is the result of deleting 
some forward edge from Go, and in particular has the same set of nodes as Go. We 
can now describe a winning coloring strategy for the duplicator in the ( c ,  r)-game 
over Go, GI. Assume that the spoiler colors Go with the c-coloring function Co. Let 
C1 be a member of R that is r-equivalent over Go to CO. Then the duplicator colors 
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G1 with the c-coloring function C1. Note that this coloring strategy is much more 
complicated than simply duplicating the coloring of Go on G1 (the coloring strategy 
of the duplicator in the Ajtai-Fagin monadic NP game). 

R e m a r k  7.2. We seem to need to  use Theorem 6.2, rather than the slightly 
weaker Theorem 5.4, to prove Theorem 7.1. What could we obtain by using only 
Theorem 5.4? Let GO consist of all graphs that are a path from s to  t ,  along with 
some backedges, and let G1 be the collection of all graphs that are the result of deleting 
an arbitrary forward edge from an arbitrary member of Go. We know from [l] that for 
every c’, r‘, the duplicator has a winning strategy in the Ajtai-Fagin (c’ ,  #)-game over 
GO, 41. It follows from Theorem 5.4 that for every c, r ,  the duplicator has a winning 
strategy in the original ( c ,  r)-game over Go, Gl. Therefore, for every c,  r ,  there are 
GO E 60 and G1 E 61 such that the duplicator has a winning strategy in the ( c ,  r)- 
game over Go, GI.  But this result is not as strong as Theorem 7.1, since GI might 
be the result of deleting some forward edge from some member of other than Go. 

8 Ajtai-Fagin games are stronger 

In this section, we show that inseparability and Ajtai-Fagin inseparability are differ- 
ent, even in the monadic case 6 = 1. Thus, the converse of Proposition 5.8 is false. 
This tells us that there are situations where the spoiler requires strictly more colors 
to  win the Ajtai-Fagin game than the original game. We discuss this more at the end 
of the section. 

T h e o r e m  8.1. There are classes 00 and of graphs, and constants c ,  r ,  such 
that 00 and G1 are ( c ,  r)-separable, but Go and are Ajtai-Fagin ( c ,  r)-inseparable.  

P r o o f .  Let C,, be an undirected cycle with exactly n nodes. For definiteness, 
assume that the nodes are { 1,. . . , n}, and that there is an undirected edge between i 
and i + 1 if 1 5 i 5 n - 1, there is an undirected edge between n and 1, and there are 
no other edges. We refer to  nodes with an edge between them as neighbors, and say 
that they are adjacent. Thus, each node has exactly two neighbors. Let GO = {C6}, 

and let = ((74, C g } .  We shall show that GO, 61 are (2,2)-separable but Ajtai-Fagin 
(2,2)-inseparable. 

When we say that GO, 6 1  are (2,2)-separable, we mean that if Go is c6, and G1 
is either C4 or C g ,  then the spoiler has a winning strategy in the (2,2)-game over 
Go, GI. Intuitively, if the spoiler knows what G1 is (that is, either the spoiler knows 
that G1 is C 4 ,  or the spoiler knows that G1 is Cg), then the spoiler can color Go in 
such a way as t o  guarantee a win. 

By contrast, in the Ajtai-Fagin game, the duplicator has the option of seeing how 
the spoiler colors (26 before deciding whether to continue the game by selecting Cq, or 
to continue the game by selecting C g .  In this case, as we shall show, it is the duplicator 
who has a winning strategy. That is, GO, G1 are Ajtai-Fagin (2,2)-inseparable. 

are (2,2)-separable. To show this, we need only show 
that (1) the spoiler has a winning strategy in the (2,2)-game over c6, C 4 ,  and (2) the 
spoiler has a winning strategy in the (2,2)-game over c 6 ,  C g .  

Let us assume for definiteness that the two colors are red and blue. To prove (2), 
we need only show that if Go is an even undirected cycle, and G1 is an odd undirected 

We first show that Go, 
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cycle, then the spoiler has a winning strategy in the (2,2)-game over Go, GI.  The 
spoiler colors Go by coloring even nodes red and odd nodes blue. Since G1 has an 
odd number of nodes, it is easy to see that however the duplicator colors GI,  there 
will be two adjacent nodes of G1 with the same color. In the 2-game that follows the 
coloring, the spoiler selects these two nodes of G1 in his two moves. Since there are no 
two adjacent nodes in Go with the same color, it is clear that however the duplicator 
moves, the spoiler will win. 

To prove (l) ,  we need only show that if Go is an arbitrary undirected cycle (such 
as CS) where the number of nodes is a multiple of 3, and if G1 is an arbitrary undi- 
rected cycle where the number of nodes is not a multiple of 3 (such as C4), then the 
spoiler has a winning strategy in the (2,2)-game over Go, GI. The spoiler colors Go 
by coloring the nodes red, red, blue, red, red, blue, red, red, blue, . . . , with some 
integral number of repetitions of the pattern red, red, blue. We now show that since 
the number of nodes in G1 is not a multiple of 3, however the duplicator colors G1 
the spoiler can win the remaining 2-game. 

To show this, we first show that for the duplicator to  have a chance to win, each 
node that is colored red in G1 must have exactly one red neighbor. If the duplicator 
does not color GI so that each node that is colored red in G1 has exactly one red 
neighbor, then there are two cases. 

C a s e  1. Some node 61 that is colored red in GI has no red neighbor. Then in the 
spoiler’s first move in the remaining 2-game, he selects 61 in GI. The duplicator must 
then select a red node a1 in Go to have a chance to win. The spoiler then selects a 
red neighbor of a1 in Go (this is guaranteed to  exist by the spoiler’s coloring of Go). 
The duplicator cannot then select a red neighbor of 61 in GI, so the duplicator loses. 

C a s e  2. Some node 61 that is colored red in G1 has two red neighbors. Then 
in the spoiler’s first move in the remaining 2-game, the spoiler selects 61 in GI. The 
duplicator must then select a red node 01 in Go to have a chance to win. The spoiler 
then selects a blue neighbor of al in Go (this is guaranteed to exist by the spoiler’s 
coloring of Go). The duplicator cannot then select a blue neighbor of 61 in GI, so the 
duplicator loses. 

We just showed that for the duplicator to have a chance to win, each node that is 
colored red in GI must have exactly one red neighbor. By a similar argument, each 
node that is colored blue in GI must have every neighbor be red. It is easy to see 
from these two facts that for the duplicator to have a chance to win, he must color G1 
starting at some node and going around the cycle with the colors red, red, blue, red, 
red, blue, red, red, blue, . . . , with some integral number of repetitions of the pattern 
red, red, blue. But this is impossible if the number of nodes in G1 is not a multiple 
of 3. 

We just showed that GO, are (2,2)-separable. We now show that GO, G1 are 
Ajtai-Fagin (2,2)-inseparable. We consider every possible way that the spoiler can 
color c6. There are three cases. 

C a s e  1. The spoiler colors c6 with the two colors alternating red, blue, red, blue, 
red, blue. Then the duplicator selects C, from G I ,  and colors C, with the two colors 
alternating red, blue, red, blue. It is straightforward to  verify that the duplicator can 
now win the remaining %game. 
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C a s e  2. The spoiler colors c 6  so that there are at least three consecutive nodes 
with the same color (three distinct nodes a ,  b , c  are consecutive if b has a and c as 
its neighbors). Say for definiteness that nodes 1,2,3 are each colored red. Then the 
duplicator selects C g  from GI, and colors Cs by coloring the nodes 1,2,3,4,5,6 in C g  

each red, and coloring the nodes 7,8,9 in C g  the same colors as the nodes 4,5,6, 
respectively, are colored in c 6 .  We leave to the reader the fairly easy verification 
that the duplicator then has a winning strategy in the remaining 2-game. The key 
point is that if the spoiler picks on his first move of the remaining 2-game any of the 
nodes 2,3,4,5 in Cg, then the duplicator picks node 2 in c 6  on his first move; if the 
spoiler picks on his first move of the remaining 2-game any of the nodes 1,6,7,8,9, 
respectively, in C g  on his first move, then the duplicator picks 1,3,4,5,6, respectively, 
in Cs on his first move of the 2-game. 

C a s e  3. The spoiler colors c 6  so that the maximal number of consecutive nodes 
with the same color is exactly two. Let us say for definiteness that nodes 1 and 2 are 
colored blue in c.5. Then nodes 3 and 6 must be colored red in c 6 ,  or else there would 
be three consecutive blue nodes in (26. There are now four subcases, depending on 
how nodes 4 and 5 are colored in c 6 .  

S u b c a s e  3a. Nodes 4 and 5 are both colored red in c 6 .  This is impossible, 
since nodes 3,4,5,6 would all be colored red, which contradicts the assumption that 
the maximal number of consecutive nodes with the same color is two. 

s u b c a s  e 3b. Node 4 is colored red in c 6 ,  and node 5 is colored blue in c 6 .  

Then the duplicator selects C g  from G I ,  and colors C g  by coloring the nodes 1, . . . , 9  
as blue, blue, red, red, blue, blue, red, blue, red. It is not hard to verify that the 
duplicator has a winning strategy in the remaining 2-game. For example, if on his 
first move in the remaining 2-game the spoiler selects a red node in one of the graphs, 
whose neighbors are both blue (respectively, red and blue), then the duplicator can 
do the same in the other graph, and then the duplicator can win no matter what 
the spoiler’s next move is. Similarly, if on his first move in the remaining 2-game 
the spoiler selects a blue node in one of the graphs, whose neighbors are both red 
(respectively, red and blue), then the duplicator can do the same in the other graph, 
and then the duplicator can win no matter what the spoiler’s next move is. 

s u b c as  e 3c. Node 4 is colored blue in c 6 ,  and node 5 is colored red in c 6 .  After 
we reverse the colors red and blue, the coloring of c 6  has the same pattern as in as 
Subcase 3b. 

s u b  c a s  e 3d. Nodes 4 and 5 are both colored blue in c 6 .  Thus, c 6  is colored 
blue, blue, red, blue, blue, red (that is, with the pattern blue, blue, red repeated 
twice). Then the duplicator selects C g  from GI, and colors C g  blue, blue, red, blue, 
blue, red, blue, blue, red (that is, with the pattern blue, blue, red repeated three 
times). It is easy to see that the duplicator has a winning strategy in the remaining 
2-game. 

are (2,2)-separable, but are Ajtai- 

in the proof of The- 
orem 8.1 are (2,2)-separable, there is c’ such that GO, & are Ajtai-Fagin (c’,2)- 
separable. The proof of Theorem 8.1 shows that c’ > 2. It is not hard to verify 

This concludes the demonstration that GO, 

The contrapositive of Theorem 6.2 tells us that since so, 
Fagin (2,2)-inseparable. 0 
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that in this case, we can take c’ = 3 (the spoiler colors Cs red, red, blue, blue, green, 
green). So in this example, 3 colors are required for the spoiler to  have a winning 
strategy in the Ajtai-Fagin game, but only 2 colors to  have a winning strategy in the 
original game. Hence, in this case, the Ajtai-Fagin game is harder for the spoiler to  
win (and therefore easier for the duplicator to win) than the original game. 

9 How many more colors are required ? 

The contrapositive of Theorem 6.2 says that for each choice of the arity 6,  the number c 
of colors and the number r of rounds, there is c’ such that whenever GO, are (6, c, r)-  
separable, then Go, are Ajtai-Fagin (6, c’, r)-separable. Let us denote the minimal 
such value of c’ by F(6,  c, r ) .  Intuitively, when the spoiler can win the original 6-ary 
N P  game with c colors and r rounds, then c’ = F(6 ,  c, r )  is the number of colors the 
spoiler needs to win the Ajtai-Fagin game. We saw in Theorem 8.1 that there are 
6, c, r where F(6,  c, r )  > c. This says that the spoiler requires strictly more colors 
to win the Ajtai-Fagin game than the original game. How many more colors are 
required ? That is, how much bigger does F(6,  c, r )  need to be than c ?  We now give 
an upper bound on F(6,  c, r ) .  Define f by letting 

f(0) = 2r2 + cr6 and f ( m  + 1) = 2f(m) for each m. 

T h e o r e m  9.1. F ( 6 , c , r )  5 c ~ ( ~ + ’ ) .  

P r o o f .  As we see from the proof of Theorem 4.1, there are 2r2 + cr6 atomic 
formulas, with r2 of the form vi = vj, with r2 of the form Pvivj,  and with cr* of 
the form &vi, . . . v i a .  It follows easily from the proof of Theorem 4.1 that for each 
m with 0 5 m 5 r ,  the number of m-types is at most f ( m  + 1) .  In particular, the 
number of r-types is at most f ( r  + 1). It then follows from the proof of Theorem 6.2 

0 

Note that the upper bound ~ f ( ~ + ’ )  in Theorem 9.1 contains a tower of r + 2 
exponents, where the top exponent is a polynomial in r ,  c, and r6 .  This represents a 
nonelementary growth rate. 

that we can take c’ to  be cf(.+l). Therefore, F(6,  c, r )  5 cf(“+l). 

10 Conclusions and open problems 

The original 6-ary N P  game and the Ajtai-Fagin 6-ary NP game are known to be 
equivalent in a “global” sense. Thus, given 6,  the duplicator has a winning strategy 
in the original game for each choice of the remaining parameters (number of colors 
and number of rounds) if and only if the duplicator has a winning strategy in the 
Ajtai-Fagin game for each choice of the remaining parameters. In this paper, we 
investigated the “local” aspects of this equivalence. First, we considered the families 
of graphs used in the games. We showed each family of graphs used in the Ajtai- 
Fagin game to prove that a problem is not in 6-ary NP can in principle be used in 
the original game to  prove the same result (where for a given choice of parameters, 
bigger graphs of the same type are used for the original game than for the Ajtai-Fagin 
game). To obtain this result, we obtained strengthened versions of the equivalence 
between the original game and the Ajtai-Fagin game. Second. we considered the 
number of colors required for the spoiler to win when the choices of graphs are fixed. 
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We showed that there are situations where the spoiler requires strictly more colors 
to  win the Ajtai-Fagin game than the original game. In this sense, the Ajtai-Fagin 
game is strictly stronger than the original game. Our analysis gives a nonelementary 
upper bound on the number of extra colors that are. required for the spoiler to win 
the Ajtai-Fagin game than the original game. 

There are a number of open problems concerning the behavior of F(6,  c, r ) ,  as 
defined in Section 9. It follows from Theorem 8.1 that there are 6 , c , r  such that 
F ( b , c , r )  > c, which corresponds to the fact that there are GO, &, r such that the 
spoiler requires strictly more colors to win the Ajtai-Fagin game over GO, than 
the original game. That is, the duplicator has a winning strategy in the Ajtai-Fagin 
(6, c, r)-game over Go, G I ,  but the spoiler has a winning strategy in the original (6, c, r)-  
game over Go, GI.  In fact, we showed that F(1 ,2 ,2)  > 2 (we note that it is easy to  
see that F ( l , c , r )  = c if c = 1 or r = 1, so this is a minimal example). We now list 
some open problems. 

. Is F ( 6 , c , r )  > c for every 6 , c , r  with 6 > 1, and with c > 2 and r > 2 ?  (We 
conjecture that the answer is “Yes”.) 

. What is the growth rate of F ( 6 , c , r ) ?  In particular, is there a nonelementary 
lower bound to go along with the nonelementary upper bound given in Theorem 9.1? 
(Again, we conjecture that the answer is “Yes”.) 

. How do the answers to these questions change if we restrict our attention to 
pairs Go, where for some class C ?  (We conjecture that the 
answers do not change.) 
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