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THE THEORY OF DATA DEPENDENCIES -
A SURVEY

Ronald Fagin and Moshe Y. Vardi

Abstract: The language of database dependencies can be seen as
a language for specifying the semantics of databases. Dependen-
cy theory studies the properies of this language and its use in
database management systems. We survey here three aspects
of dependency theory: the implication problem, the universal
relation model, and acyclicity of database schemes.

1. Introduction

In the relational database model, conceived by Codd in the late 60’s
[Col], one views the database as a collection of relations, where each
relation is a set of tuples over some domain of values. One notable feature
of this model is its being almost devoid of semantics. A tuple in a relation
represents a relationship between certain values, but from the mere syntac-
tic definition of the relation one knows nothing about the nature of this
relationship, not even if it is a one-to-one or one-to-many relationship.

One approach to remedy this deficiency is to devise means to specify
the missing semantics. These semantic specifications are often called
semantic or integrity constraints, since they specify which databases are
meaningful for the application and which are meaningless. Of particular
interest are the constraints called data dependencies, or dependencies for
short.
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The study of dependencies began in 1972 with the introduction by
Codd [Co2] of the functional dependencies. Alter the introduction, inde-
pendently by Fagin and Zaniolo [Fal,Za] in 1976, of multivalued
dependencies, the field became chaotic for a few years in which researchers
introduced many new classes of dependencies. The situation has stabilized
since 1980 with the introduction, again independently by various research-
ers, of embedded implicational dependencies (EIDs). Essentially, EIDs are
sentences in first-order logic stating that if some tuples, fulfilling certain
equalities, exist in the database then either some other tuples must also
exist in the database or some values in the given tuples must be equal. The
class of EIDs seems to contain most previously studied classes of dependen-
cies. (Recently, De Bra and Paredaens [DP]} considered afunctional
dependencies, which are not EIDs.) We give basic definitions and historical
perspective in Section 2.

Most of the papers in dependency theory deal exclusively with various
_aspects of the implication problem, i.e., “Ye problem of deciding for a given
set of dependencies Z and a dependency whether X lcgically implies 7.
The reason for the prominence of this problem is that an algorithm for
testing implication of dependéncies enables us to test whether two given
sets of dependencies are equivalent or whether a given set of dependencies
is redundant. A solution for the last two problems seems a significant step
towards automated database schema design, which some researchers see as
the ultimate goal for research in dependency theory [BBG]. We deal with
the implication problem in Section 3.

An emerging application for the theory of dependencies is the universal
relation model. This model aims at achieving dafa independence, which was
the original motivation for the relational model. In the universal relation
model the user views the data as if it is stored in one big relation. The
data, however, is not available in this form but rather in several smaller
relations. It is the role of the database management system to provide the
interface between the users’ view and the actual data, and it is the role of
the database designer to specify this interface. There have been different
approaches to the question of what this interface should be like. We
describe one approach, the weak universal relation approach, in Section 4.

One of the the major contributions of theoretical computer science is
delineate the line between the computationally feasible and the infeasible.
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The plethora of unsolvability and intractability results forces researchers to
lower their aims, and to restrict themselves to ‘“real-world” problems.
That is, rather than trying to solve problems in their full generality, they
try solve the cases that most often arise in practice. Research on acycli'city
of database schemes falls in this vein. The idea is to view database
schemes as hypergraphs. It turns out the acyclicity properties for hyper-
graphs translate into highly desirable database properties. Many problems
that are intractable for general database schemes can be solved quite
efficiently for acyclic schemes. Furthermore, there are arguments that
many applications can be represented by acyclic schemes. We discuss
acyclicity in Section 5.

A survey like ours of a rich theory necessarily has to be selective. The
selection naturally reflects our tastes and biases. A more comprehensive,
though less up to date, coverage can be found in the books [Ma,Ul].

2. Definitions and historical perspective

We begin with some fundamental definitions about relations. We are
given a fixed finite set U of distinct symbols, called attributes, which are
column names. From now on, whenever we speak of a set of attributes,
we mean a subset of U. Let R be a set of attributes. An R-tuple (or simply
a ruple, if R is understood) is a function with domain R. Thus, a tuple is a
mapping that associates a value with each attribute in R. Note that under
this definition, the “order of the columns’ does not matter. If.S is a subset
of R, and if ¢ is an R-tuple, then 7S] denotes the S-tuple obtained by.
restricting the mapping to S. An R-relation (or a relation over R, or simply a
relation, if R is understood), is a set of R-tuples. In database theory, we
are most interested in finite relations, which are finite sets of tuples
(although it is sometimes convenient to consider infinite relations). If I is
an R-relation, and if § is a subset of R, then by I[S], the projection of I
onto §, we mean the set of all tuples 1[S], where ¢ is in I. A darabase is a
finite collection of relations.

Conventions: Upper-case letters 4,8,C, ... from the start of the alphabet
represent single attributes; upper-case letters R, S,...,Z from the end of the
alphabet represent sets of attributes; upper-case letters IJ,... from the
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middle of the alphabet represent relations; and lower-case letters r.s.f,...
from the end of the alphabet represent tuples.

Assume that relations I,,....1I, are over attribute sets R;.....R, respec-
tively. “The Join of the relations [ 1r--dpy Which is written either
M {1,,...1,} or Iy M ... M 1, is the set of all tuples r over the attribute set
R, U...R,, such that f{R] is in I; for each i. (Our notation exploits the fact
that the join is associative and commutative.)

Certain sentences about relations are of special practical and/or
theoretical interest for relational databases. For historical reasons, such
sentences are usually called dependencies. The first dependency introduced
and studied was the functional dependency (or FD), due to Codd [Co2]. As
an example, consider the relation in Figure 2.1, with three columns: EMP
(which represents employees), DEPT (which represents departments), and
MGR (which represents managers). The relation in Figure 2.1 obeys the
FD “DEPT-MGR?”, which is read “DEPT determines MGR"”. This means
that whenever two tuples (that is, rows) agree in the DEPT column, then
they necessarily agree also in the MGR column. The relation in Figure 2.2
does not obey this FD, since, for example, the first and fourth tuples agree
in the DEPT column but not in the MGR column. We now give the formal
definition. Let X and Y be subsets of the set U of attributes. The FD XY
is said to hold for a relation I if every pair of tuples of I that agree on each
of the attributes in X also agree in the attributes in Y.

The original motivation for introducing FDs (and some of the other
dependencies we discuss) was to describe database normalization. Before
giving an example of normalization, we need to define the notion of a
relation scheme. A relation scheme is simply a set R of attributes. Usually,
there is also an associated set T of sentences about relations over R. A
relation is an instance of the relation scheme if it is over R and obeys the
sentences in . Thus, the sentences I can be thought of as ‘“‘constraints’,
that every “valid instance” must obey. Although we do not do so, we note
that it is common to define a relation scheme to be a pair <R, 2>, where
the constraints = are explicitly included.

We now consider an example of normalization. Assume that the
attributes are {EMP,DEPT,MGR}, and that the only constraint is the FD
DEPT-+MGR. So, in every instance of this scheme, two employees in the
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same department necessarily have the same manager. It might be better to
store the data not in one relation, as in Figure 2.1, but rather in two
relations, as in Figure 2.3: one relation that relates employees to depart-
ments, and one relation that relates departments to managers. We Shall
come back to normalization in Section 4.

It is easy to see that FDs can be represented as sentences in first-order
logic [Ni1]. Assume, for example, that we are dealing with a 4-ary rela-
tion, where the first, second, third, and fourth columns are called, respec-
tively, 4, B, C, and D. Then the FD AB -~ C is represented by the following
sentence:

Here (Vabclczdldz) is shorthand for VaVbVc,Vc,Vd;Vd,, that is, each
variable is universally quantified. Unlike Nicolas, we have used individual
variables rather than tuple variables. Incidentally, we think of P in 2.1)
as a relation symbol, which should not be confused with an instance (that is,
a relation) I, for which (2.1) can hold.

Let X and Y be sets of attributes (subsets of U), and let Z be U-XY (by
XY, we mean XuY). Thus, Z is the set of attributes not in Xor Y. As we
saw by example above (where X, Y, and Z are, respectively, the singleton
sets {DEPT}, {EMP}, and {MGR}), the FD X-+Y is a sufficient condition
for a “lossless decomposition” of a relation with attributes U iuto two
relations, with attributes XY and XZ respectively. This means that if I is a
relation with attributes XYZ that obeys the FD X-Y, then I can be ob-
tained from its projections I{XY] and I[XZ], by joining them together.
Thus, there is no loss of information in replacing relation I by the two
relations I; and J,. We note that this fact, which is known as Heath's
Theorem [Hel], is historically one of the first theorems of database theory.

It may be instructive to give an example of a decomposition that does
lose information. Let I be the relation in Figure 2.4, with attributes
STORE, ITEM, and PRICE. Let I; and I, be two projections of I, onto
{STORE, ITEM} and {ITEM, PRICE}, respectively, as in Figure 2.5.
These projections contain less information than the original relation 1.
Thus, we see from relation I; that Macy’s sells toasters; further, we see
from relation 7, that someone sells toasters for 20 dollars, and that some-
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one sells toasters for 15 dollars. However, there is no way to tell from
relations I} and I, how much Macy'’s sells toasters for.

The next dependency to be introduced was the multivalued dependency,
or MVD, which was defined, independently by Fagin [Fal] and Zaniolo
[Za]. It was introduced because of the perception that the functional
dependency provided too limited a notion of “‘depends on”. As we shall
see, multivalued dependencies provide a necessary and sufficient condition
for lossless decomposition of a relation into two of its projections. Before
we give the formal definition, we present a few examples. Consider the
relation in Figure 2.6, with attributes EMP, SALARY, and CHILD. It
obeys the functional dependency EMP—+SALARY, that is, each employee
has exactly one salary. The relation does nor obey the FD EMP-CHILD,
since an employee can have more than one child. However, it is clear that
in some sense an employee ‘‘determines” his set of children. Thus, the
employee’s set of children is “determined by”’ the employee and by nothing
else, just as his salary is. Indeed, as we shall see, the multivalued depen-
dency EMP-+CHILD (read “employee multidetermines child’’) holds for
this relation. As another example, consider the relation in Figure 2.7, with
attributes EMP, CHILD, and SKILL. A tuple (e,c,5s) appears in this rela-
tion if and only if ¢ is an employee, ¢ is one of e's children, and s is one of
e's skills. This relation obeys no nontrivial (nontautologous) functional
dependencies. However, it turns out to obey the multivalued dependencies
EMP-—CHILD and EMP—+-SKILL. Intuitively, the MVD EMP--CHILD
means that the set of names of the employee's children depends only on the
employee, and is “orthogonal” to the information about his skills.

We are now ready to formally define multivalued dependencies. Let I
be a relation over U. As before, let X and Y be subsets of U, and let Z be
U-XY. The multivalued dependency X——Y holds for relation I if for each
pair r, s of tuples of I for which r{X] = s{X], there is a tuple ¢ in I where (1)
HX1 = AX] = sX], (2) Y] =.AY], and (3) {Z] = s[Z]. Of course, if this
multivalued dependency holds for I, then it follows by symmetry that
there is also a tuple u in I where (1) ulX] = AX] = s{X], (2) u[Y] = s{Y],
and (3) u[Z] = AZ].

Multivalued dependencies obey a number of useful properties. For
example, if U is the disjoint union of X, Y, Z, and W, and if I is a relation
over U that obeys the MVDs X-—+Y and Y-+—=Z, then it follows that I obeys



THEORY OF DATA DEPENDENCIES 25

the MVD X-—+Z [Fall. So, MVDs obey a law of transitivity. We shall
discuss more properties of MVDs in Section 3, where we give a complete

axiomatization for MVDs.
h ]

Note that MVDs, like FDs, can be expressed in first-order logic. For
example, assume that U={4,B,C,D,E}. Then the MVD AB -—CD holds for
a relation over U if the following sentence holds, where P plays the role of
the relation symbol:

(Vabcycodydaege,) ((Pabeydyey A Pabegdaey) = Pabeodaey). 2.2)

Embedded dependencies were introduced (Fagin [Fal]) as dependencies
that hold in a projection of a relation (although, as we shall see, for certain
classes of dependencies they are defined a little more generally). We shall
simply give an example of an embedded MVD; the general case is obvious
from the example. Assume that we are dealing with 4-ary relations, where
we call the four columns ABCD. We say that such a 4-ary relation I obeys
the embedded MVD (or EMVD) A-—B | C if the projection of R onto ABC
obeys the MVD A-+B . Thus, the EMVD A~++B|C can be written as
follows:

As a concrete example, assume that the relation of Figure 2.7, with attrib-
utes EMP, CHILD, and SKILL, had an additional attribute BIRTHDATE,
which tells the date of birth of the child. Then this 4-ary relation I would
obey the embedded MVD EMP--CHILD|SKILL. Note that / need not
obey the MVD EMP--CHILD (although it does obey the MVD
EMP-—{CHILD,BIRTHDATE}).

Several dependencies were defined within a few years after the multi-
valued dependency was introduced; we shall mention these other depen-
dencies later in this section. Of these, the most important are the join
dependency, or JD [ABU,Ri2]), and the inclusion dependency, or IND [Fa2].
Assume that X={X,, ..., X;} is a collection of subsets of U, where X; v ... v
X, = U. The relation I, over U, is said to obey the join dependency N [X;,
«s X; ], denoted also M [X], if I is the join of its projections 11X, ),... LX)
It follows that this join dependency holds for the relation 7 if and only if [
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contains each tuple ¢ for which there are tuples wy, ..., w, of I (not neces-
sarily distinct) such that w X;] = ([X,] for each i (1<ign). Asan example,
consider the relation I in Figure 2.8 below.

(=}
N
w
»

Figure 2.8

This relation violates the join dependency M [4B, ACD, BC]. For, let wy,

wy, w3 be, respectively, the tuples (0,1,0,0), (0,2,3,4), and (5.1,3,0) of I;let .

X1, X,, X5 be, respectively, 4B, ACD, and BC; and let ¢ be the tuple
(0,1,3,4); then wiX;] = {X;] for each i (1<i<n), although ¢ is not a tuple in
the relation I. However, it is straightforward to verify that the same
relation I obeys, for example, the join dependency M [4BC, BCD, ABD].

Let us say that the join dependency M [X|, ..., X +] has k components.
Join dependencies are generalizations of multivalued dependencies; thus,
each multivalued dependency is equivalent to a join dependency with two
components, and crnversely. Assume now that Xy u..vuX <€ U, and
denote X; U ... U A, by X. A relation / with attributes U is said to obey
the embedded join dependency ™M [Xy. ..., X, ] if its projection I[X] obeys the
join dependency M [Xy, ..., X;). We shall see soon that join dependencies
can be written in first-order logic. Embedded join dependencies, too, can
be so written, but they require existential quantifiers, just as embedded
multivalued dependencies do. Note that our notation, the set U of attrib-
utes does not appear, and so the same syntactical object M (X1, oo X3) is
used to represent a join dependency over X and an embedded join depen-
dency over U. However, the two would be written in distinct ways in
first-order logic. This is actually a nice convenience, especially in the case
of functional dependencies, where a similar comment applies.

The intuitive semantics of multivalued dependencies were fairly well
understood at the time they were first defined. However, it was not until
several years after join dependencies were defined that their semantics was
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adequately explained (by Fagin et al. [FMU]}). Let us consider an example
(from [FMU]). Assume that the attributes are C(ourse), T(eacher),
R(oom), H(our), S(tudent), and G(rade). The informal meaning of these
attributes is that teacher T teaches course C, course C meets in room R at
hour H, and that student S is getting grade G in course C. If we were to
define a single “universal” relation over these attributes, it would be

{(c.t,r.h,5,8): 1 “teaches” ¢; ¢ “meets in” r “at hour” h; and s “ is

getting” g “in” c}.
This relation is of the form
{(ct,r,hsg): Pytc A Pycrh A Pysgel, (2.4) B

for certain predicates Py, P,, and P;. The fact that a relation with attrib-
utes c,t,,h,5,g is of the form (2.4) for for some predicétes P,, Py, and Py is
a severe constraint. In fact [FMU], this constraint is precisely equivaient
to the join dependency M [TC,CRH,SGC]. The obvious generalization of
this observation to arbitrary join dependencies explains their semantics.
Before we leave join dependencies, let us note, as promised, they, too, can
be written as sentences in first-order logic. For example, if we are dealing
with relations with attributes otrhsg, then the join dependency
M [TC,CRH,SGC] can be written as
(Vestytyrryryhh hyssys,88,8,)

((Pctrlhlslgl/\Pct1rh.rzgz/\Pctzrzhzsg)=>Pctrhsg) (2.5)

So far, each of the dependencies we have discussed has two properties:
(1) each is uni-relational, that is, deals with a single relation at a time,
rather than with inter-relationships among several relations, and (2) each
is typed. By typed, we mean that no variable appears in two distinct
columns. For example, the sentence (Vxy)((PxyAPyz)=>Pxz), which says
that a relation is transitive, is nor typed, since the variable y appear in both
the first and second columns of P in the sentence. The next dependency
that we shall discuss violates both (1) and (2) above, that is, is neither
uni-relational nor typed. This dependency is the inclusion dependency, or
IND [CFP]. As an example, an IND can say that every MANAGER entry
of the P relation appears as an EMPLOYEE entry of the Q relation. In
general, an IND is of the form
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Pl4,..4,1<0[B,...B,], (2.6)

where P and Q are relation names (possibly the same), and where the 4;'s
and B/'s are attributes. If I is the P relation and J is the Q relation, then
the IND (2.6) holds if for each tuple s of I, there is a tuple ¢ of J such that
si4,..4,] = t[Bl...Bm]. Hence, INDs are valuable for database design, since
they permit us to selectively define what data must be duplicated in what
relations. INDs are commonly known in Artificial Intelligence applications
as ISA relationships (cf. Beeri and Korth [BK]). Not surprisingly, the
inclusion dependency, too, can be written in first-order logic. For exam-
ple, if the P relation has attributes ABC, and the Q relation has attributes
CDE, then the IND P[AB]<cQ[CE] can be written

(Vabc)(Pabe>>3dQadb). 2.7

After multivalued dependencies were defined, there was a period
where a large number of other dependencies were defined. We have
already discussed the classes of join dependencies, embedded join depen-
dencies, and inclusion dependencies. Others (many of which were intro-
duced before join dependencies) include Nicolas’s mutual dependencies [Nil},
which say that a relation is the join of three of its projections, Mendelzon
and Maier’s generalized mutual dependencies [MM), Paredaens’ transitive
dependencies [Pa], which generalize both FDs and MVDs, Ginsburg and
Zaiddan's implied dependencies [GZ], which generalize FDs, Sagiv and
Walecka's subset dependencies [SW], which generalize embedded MVDs,
Sadri and Ullman’s and Beeri and Vardi's template dependencies ([SU],
[BV4]) which generalize embedded join dependencies, and Parker and
Parsaye-Ghomi’s extended transitive dependencies [PP], which generalize both
mutual dependencies and transitive dependencies. We remark that the last
3 kinds of dependencies mentioned were introduced to deal with the issue
of a complete axiomatization (see Section 3): subset dependencies were
introduced to show the difficulty of completely axiomatizing embedded
multivalued dependencies; extended transitive dependencies were intro-
duced to show the difficulty of completely axiomatizing transitive depen-
dencies; while template dependencies were introduced to provide a class of
dependencies that include join dependencies and that can be completely
axiomatized. Inclusion dependencies, which had been used informally for
databases by many practitioners, were not seriously studied until relatively
late [CFP].



THEORY OF DATA DEPENDENCIES 29

Various researchers finally realized that all of these different types of
dependencies can be united into a single class, which we shall call simply
dependencies. Before we can define them formally, we need a few prelimi-
nary concepts. We assume that we are given a set of individual variables
(which represent entries in a relation of a database). The atomic formulas
are those that are either of the form Pz;..z; (where P is the name of a
d-ary relation, and where the z;’s are individual variables), or else of the
form x=y (where x and y are individual variables). Atomic formulas
Pzy..z; we call relational formulas, and atomic formulas x=y we call equali-
ties. A dependency is a first-order sentence

(Vx, ...xm)((A1/\.../\/4")=>3yl ...y,(BlA...AB:)), (2.8) ..

where each 4, is a relational formula and where each B; is atomic (either a
relational formula or an equality). We assume also that each of the x;'s
appears in at least one of the 4,’s, and that n>1, that is, that there is at
least one 4;. We assume that ->0 (if r=0 then there are no existential
quantifiers), and that s>1 (that is, there must be at least one B,.) Note that
because of all these assumptions, each dependency is obeyed by an empty
database with no tuples. Furthermore, our assumptions guarantee that we
can tell if a dependency holds for a relation by simply considering the
collection of tuples of the relation, and ignoring any underlying ‘““domains
of attributes”. Intuitively, in considering whether a dependency holds for
a relation, the quantifiers can be assumed to range over the elements that
appear in the relation, and not over any larger domain. This property is
called domain independence. See Fagin {Fa4] for a much more complete
discussion of domain independence.

If each of the formulas B, on the right-hand side of (2.8) is a relational
formula, then we call the dependency a tuple-generating dependency; if all of
these formulas are equalities, then we call the dependency an equality-
generating dependency. Of the dependencies we have focused on above, the
(embedded) multivalued dependency, the (embedded) join dependency,
and the inclusion dependency are each tuple-generating dependencies; thus,
each of the first-order sentences (2.2), (2.3), (2.5), and (2.7) above repre-
sent tuple-generating dependencies. Tuple-generating dependencies say
that if a certain pattern of entries appears, then another pattern must
appear. Functional dependencies, as we see by example in the sentence
(2.1) above, are equality-generating dependencies. [Equality-generating
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dependencies say that if a certain pattern of entries appears, then a certain
equality must hold. A full dependency is one in which r=0 and s=1 in
(2.8), that is, one in which there are no existential quantifiers and in which
there is only one atomic formula B; on the right-hand side. Thus, a full
dependency is of the form

(V21 X, ) (4, A A4,)>B), | (2.9)

where each 4, is a relational formula, where B is atomic. Functional,
multivalued, and join dependencies are all full dependencies. We may refer
to a dependency (2.8) as an embedded dependency, to emphasize that we are
allowing (but not requiring) existential quantifiers. Note that in the case
of full dependencies, we would not gain anything by allowing the possibili-
ty of having several atomic formulas on the right-hand side, since such a
sentence is equivalent to a finite set of full dependencies as we have de-
fined them.

The class of dependencies was defined independently by a number of
authors, who usually focussed on the uni-relational case. {Note that the
only special case of a dependency that we have mentioned so far that is not
uni-relational is the inclusion dependency.) Beeri and Vardi [BV7] refer to
this class as the class of all tuple-generating and equality-generating dependen-
cies. Fagin [Fad] focused on the typed, uni-relatiohal case, which he called
embedded implicational dependencies (with the full dependencies being called
implicational dependencies). Yannakakis and Papadimitriou [YP] defined
algebraic dependencies, which are built out of expressions involving projec-
tion and join, and which, on the surface, look very different from our
first-order definition. It is somewhat surprising that their class (which is
typed) turns out [YP] to be identical to our typed, uni-relational dependen-
cies. Paredaens and Janssens {PJ] defined general dependencies, which are
full, typed, uni-relational dependencies. Also, Grant and Jacobs [GJ]
defined generalized dependency constraints, which are full dependencies.

An often heard claim is that in the “real world” one rarely encounters
dependencies in their most general form. According to this claim FDs,
INDs, maybe MVDs are the only kinds of dependencies that earn the title
“real world dependencies”. We have two answers to this claim. First, we
believe that there are real-world situations that do require the more gener-
al dependencies. Even when the database itself can be specified by FDs,
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user views of this database may not be specifiable by FDs [Fad4, GZ].
Furthermore, even if only simple dependencies arise in practice, the more
general dependencies are very useful theoretically. For example, state-
ments about equivalence of queries can be expressed by dependencies [YP].
We refer the reader to [Hu, Va3, Va5] for more examples of the latter

argument.

3. The Implication Problem
3.1. Implication and finite implication

Logical implication is a fundamental notion in logic. Let Z be a set of -
sentences, and let 7 be a single sentence. We say that Z implies r, denoted
3 k1, if every model of 2 is also a model of 7. In our context, Z 7 if
every database that satisfies all dependencies in X satisfies also r. For
example {4+B,B+C} £ A-C.

The relevance of implication to database theory became apparent in
Bernstein's work on synthesis of database schemes using FDs [Ber]. Let Z
and Z, be sets of dependencies. We say that Z, is equivalent to Z,, denoted
Z,=3,, if every database that satisfies all dependencies in Z, also satisfies
all dependencies in X, and vice versa. We say that Z, is redundant if
3,cZ%, and %;=3,. (We use < to denote containment and < to denote
proper containment.) Clearly, £ is redundant if there is some 7¢Z such
that £—{r} k. Since Bernstein’s synthesis algorithm requires eliminating
redundant FDs , and since the problem of eliminating redundant dependen-
cies can be reduced to the problem of testing implication of dependencies,
the notion of implication became a central notion to dependency theory.
The significance of implication was reconfirmed in later works, e.g.,
[BMSU,Ri2).

In database theory we often like to restrict our attention to finite
databases, since in practice databases are finite. We say that I finirely
implies v, denoted Z v, if every finite database that satisfies 2 satisfies
also 7. Clearly, if Z |1 holds then Z =+ also holds. But it is possible that
Z ¢7 holds while Z 7 does not. That is, it is possible that every finite
database that satisfies = satisfies also 7, but there is an infinite database
that satisfies = but not . Implication and finite implication lead to two
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decision problems. The implication problem is to deéide, for a given set 2 of
dependencies and a single dependency r, whether X 7. The finite implica-
tion problem is to decide, for a given set £ of dependencies and a single

dependency 7, whether Z ¢,

Let 2 = {oy,...0,}. Then 27 (2 (1) if and only if o;A...Ac, A7 is
(finitely) unsatisfiable. (A sentence is (finitely) satisfiable if it has a
(finite) model. It is (finitely) unsatisfiable if it has no (finite) model.)
Since unsatisfiability is known to be recursively enumerable (Gédel's
Completeness Theorem), and finite satisfiability is clearly recursively
enumerable, it follows that the relationships [ and ¢ are recursively
enumerable. Suppose now that for some class of dependencies | and ¢
are the same. Then [ and ; complement each other and they are both
recursively enumerable. It follows that they are both recursive [Ro].
Indeed, the standard technique for proving solvability of the implication
problem is to show that implication and finite implication coincide.

Dependencies are ¥V*3* sentences, i.e., they are equivalent to sentences
whose quantifier prefix consists of a string of universal quantifiers followed
by a string of existential quantifiers. Thus, o;A...Ao,A~7 is a I*V*3*
sentence. When X, however, consists of full dependencies, then
ojA...Ag, A~7 is an 3*V* sentence. Thus, the (finite) implication problem
for full dependencies is reducible to the (finite) satisfiability ~roblem for
3*v* sentences. This class of sentences is known as the initially extended
Bernays-Schonfinkel class. For this class, satisfiability and finite satisfiabili-
ty coincide, and therefore both are recursive [DG]. Thus, for full depen-
dencies, implication and finite implication coincide, and are recursive.
Unfortunately, the satisfiability problem for the Bernays-Schonfinkel class
require nondeterministic exponential time {Le], and hence is highly intract-
able. Since the class of full dependencies is a proper subset of the class of
universal sentences, one may hope that the implication problem for full
dependencies is not that hard. We study this problem in Section 3.2.

For simplicity we restrict ourselves in the sequel to uni-relational
dependencies, i.e., dependencies that refer to a single relation.

3.2. The implication problem for full dependencies
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Since for full dependencies implication and finite implication coincide,
everything we say in this section about implication holds, of course, for
finite implication as well.

. A ]

Even though the significance of implication was not yet clear in 1974,
it was studied by Armstrong [Arm], apparently just out of mathematical
interest. Armstrong characterized implication of FDs using an axiom system.
An axiom system consists of axiom schemes and inference rules. A derivation
of a dependency + from a set I of dependencies is a sequence 7y,7,...,7,,
where 7, is T and each 7; is either an instance of an axiom scheme or
follows from preceding dependencies in the sequence by one of the infer-
ence rules. I |-r denotes that there is a derivation of r from Z. An axiom
system is sound if X |7 entails 2 |7, and it is complete if Z |57 entails fr.
Armstrong’s system, denoted 9, consists of one axiom and three infer-

ence rules:

FDO (reflexivity axiom): FX-X.

FDI1 (transitivity): X=Y, Y-=Z |- X-+Z.

FD2 (augmentation and projection): X-+Y |} W-Z ,if XcW and Y2Z.
FD3 (union): X-Y, Z-+W |- XZ-+-YW.

Theorem 3.2.1. [Arm] The system F@ is sound and complete for implica-
tion of FDs. J

(In fact, Armstrong proved a somewhat stronger result, which we shall not
discuss here. See [Fa3}.)

Armstrong did not consider the algorithmic aspects- of his axiom
system. This was done by Beeri and Bernstein {BB], who were motivated
by the fact that one of the steps in Bernstein's synthesis algorithm [Ber] is
a test for implication. They were the first to phrase the implication prob-
lem. (Beeri and Bernstein called it the membership problem. In some papers
it is also called the inference problem.)

Let X be a set of dependencies, and let X be a set of attributes. The
closure of X with respect to X is the set of all attributes functionally deter-
mined by X, that is, {4: = FX—+A4}. Clearly, once we know the closure of X
with respect to =, we can find out easily whether Z FX-+A4. Beeri and
Bernstein showed that the system $9P can be used to construct closures
very fast.



34 Ronald Fagin and Moshe Y. Vardi

Theorem 3.2.2. [BB] The implication problem for FDs can be solved in
time O(n), where n is the length of the input.

A large part of dependency theory since 1976 was devoted to studying
these two aspects of implication, i.e., axiomatization and complexity of the
implication problem. For example, shortly after the introduction of MVDs
in 1976, they were axiomatized by Beeri et al. [BFH], and Beeri proved
that implication problem is solvable [Bee]. Both works tried to get results
analogous to the results for FDs. :

The axiom system %D consists of one axiom and three inference

rules:

MYVDO (reflexivity axiom): -X-—7V, if Y<X.

MYVD1 (transitivity): X—=Y, Yo+Z | X-sZ-Y.

MVD2 (augmentation): X—+= Y| XW-=YZ if ZSW.

MVD3 (complementation): XY | X—=Z, if XYZ = U and YnZ<cX.

Theorem 3.2.3. [BFH] The system ¥ is sound and complete for implica-
tion of MVDs. [J

We note that Beeri et al. [BFH] also present a sound and complete
axiomatization for FDs and MVDs taken together. This axiomatization
contains all of the axiom schemes and inference rules for FDs and MVDs
separately that we have already seen, along with two “mixed” rules, that
account for the interaction of FDs and MVDs.

The analogue of closure of an attribute set X is now not an attribute
set but rather a collection of attribute sets: rhsg(X) = {Y: ZEX-Y].
Now rhsg(X) can contain exponentially many sets, and hence is not very
useful algorithmically. However, using the system ¥@ it is not hard to
verify that rhss(X) is a Boolean algebra. Furthermore, since it is a field of
finite sets, it is an aromic Boolean algebra, and every every element is the
union of the atoms it contains. The set of atoms of this Boolean algebra is
called the dependency basis of X with respect to =, denoted deps(X). Thus
deps(X) = {Y: Y#0, TEX—+Y, and if ZEX++2Z, Z<Y, and Z#0, then
Z =Y}
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Lemma 3.2.4. [BFH] depy(X) is a partition of U. Furthermore, = XY if
and only if there are sets Wy,....W,, in deps(X) such that ¥ = Wiu..uWw

Beeri [Bee] has shown how deps(X) can be constructed efficiently
using the system 4«7 D,

Theorem 3.2.5. [Bee] The implication problem for MVDs can be solved in
time 0(n4), where n is the length of the input. [J

Beeri's algorithm was improved by Hagihara et al. [HITK], Sagiv [Sagl],
and finally by Galil [Ga]. Galil's algorithm runs in time O(n log n). These
papers and [Bee,BFH] discuss also the interaction of FDs and MVDs.

It is easy to see that Lemma 3.2.4 does not depend on X being a set of
MVDs. Thus, testing whether an MVD X-—Y is implied by a set = of
dependencies can be done efficiently as long as deps(X) can be constructed
efficiently. This was shown in [MSY,Vad4] to be the case when X is a set of
JDs and FDs, and in {Val] for the case when X is a set of typed full depen-
dencies.

Theorem 3.2.6. [Va1l] Testing whether an MVD or an FD is implied by a set
of typed full dependencies can be done in time O(nz), where n is the length
of the input. O '

Let us refer now to implication of JDs. Aho et al. [ABU] described an
algorithm, called later the chase, to test implication of JDs by FDs.

Theorem 3.2.7. [ABU] Testing whether a JD is implied by a set of FDs can -
be done in time 0(n4), where n is the length of the input. [J

More efficient implementations of the chase were described by Liu and
Demers [LD] and by Downey et al. [DST]. The latter algorithm runs in
time O(n® log 2n).

The ideas in [ABU] were generalized by Maier et al. [MMS] to deal
with arbitrary implication of FDs and JDs.

Theorem 3.2.8. [MMS] The implication problem for FDs and JDs is solvable
in time O(n"), where n is the length of the input. [J '
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The question then arose whether the exponential upper bound of the
above theorem can be improved. Unfortunately, Theorems 3.2.6 and 3.2.7
probably describe the most general case for which an efficient decision
procedure exists. Recall that a problem is NP-hard if it is as hard as any
problem that can be solved in nondeterministic polynomial time. A prob-
lem is NP-complete if it is NP-hard and it can be solved in nondeterminis-
tic polynomial time. It is believed that NP-hard problems can not be
solved efficiently, i.e., in polynomial time. ([GJ] is a good textbook on the
theory of NP-completeness.) Thus, proving that a problem is NP-hard is a
strong indication that the problem is computationally intractable.

Theorem 3.2.9.
1) [FT] Testing whether a set of MVDs implies a JD is NP-hard.
2) [BV3] Testing whether a JD and an FD imply a JD is NP-complete. [J

Thus, we know how to test implication of FDs and JDs in exponential
time, and we know that the problem is NP-hard. We do not knov., howev-
er, how to pinpoint the complexity of this problem. We do not know for
example whether testing implication of a JD by a set of MVDs can be done
in nondeterministic polynomial time. One approach to the problem was to
try to find a axiom system for FDs and JDs. Surprisingly, even for JDs
alone finding a axiom system is extremely difficult (see {BV1,BV5,Sc3]).

NP-completeness strongly suggests, rather than proves, that a problem
is intractable (i.e., it proves intractability under the assumption that there
are problems that can be solved in nondeterministic polynomial time but
not in deterministic polynomial time). In contrast, EXPTIME-
completeness is a proof that a problem is intractable. A problem is
EXPTIME-complete if it can be solved in exponential time and it is also as
hard as any problem that can be solved in exponential time. Since it is
known that there are problems that can be solved in exponential time and
in fact do require exponential time, it follows that EXPTIME-complete
problems require exponential time.

Theorem 3.2.10. [CLM2] The implication problem for typed full dependen-
cies is EXPTIME-complete. [J

Interestingly, Beeri and Vardi presented an elegant axiom system for typed
full dependencies [BV4)]. This demonstrates that there is no clear relation-
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ship between having an axiom system for a class of dependencies and the
complexity of the implication problem for that class.

In conclusion of this section, the reader should keep in mind thatsthe
above lower bounds describe a worst-case behavior of the problems. It is
not clear at all that this worst-case behavior indeed arise in practice. We
shall return to this point in Section 5.

3.3. The implication problem for embedded dependencies

While for full dependencies the implication problem is clearly solvable
and the questions to answer involve upper and lower bounds, this is not so
with embedded dependencies, since satisfiability and finite satisfiability do o
not coincide for the class of 3*V*3* sentences, and the corresponding
problems are both unsolvable [DG]. Thus, we have to deal here with both
implication and finite implication and their corresponding decision prob-
lem. Since the class of dependencies is a L. oper subset of the class of V*3*
sentences, one may hope that the (finite) implication problem for embed-
ded dependencies is solvable.

The first disappointing observation is that implication and finite
implication do not coincide for embedded dependencies.

Theorem 3.3.1. [CFP,JK] There is a set £ of FDs and INDs and a single
IND 7 such that X |47, but Z K.

Proof: (a) Let = be {4-+B, AcB}, and let 7 be BE4. We first show that
2 ¢r. Let [ be a finite relation satisfying 2. We now show that I satisfies
r, that is, I{[B]cI[4]. Since I satisfies 4B it follows that } 1[B]) < | ITA]|.
Since I[4]<I{B], it follows that |I[4]]| <11(B]1l. Thus, { I{4A]} = { I{B]I.
But since I[4]€[B] and since both I{4) and I[B] are finite, we than have
I[B} = I[A], so I[B]<I[A]. This was to be shown.

To show that = £ 7, we need only exhibit a relation (necessarily infi-
nite) that satisfies = but not . Let I be the relation with tuples {(i+1.1):
i>0}. It is obvious that I satisfies Z but not v. [J

One may think that this behavior is the result of the interaction between
tuple-generating dependencies and equality-generating dependencies, but
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an example in [BV7] shows that even for tuple-generating dependencies the
two notions of implication and finite implication differ.

The simplest instance of embedded dependencies are the EMVDs. The
(finite) implication problem for EMVDs has resisted efforts of many
researchers, and is one of the most outstanding open problems in depen-
dency theory. A significant part of the research in this area has been
motivated by this problem. For example, underlying the search for bigger
and bigger classes of dependencies was the hope that for the larger class a
decision procedure would be apparent, while the specialization of the
algorithm to EMVDs was too murky to be visible. Also, underlying the
work on axiomatization was the hope that an axiom system may lead to a
decision procédure just as the axiom systems for FDs and MVDs led to
decision procedures for these classes of dependencies.

Maier et. al [MMS] suggested an extension of the chase to deal with
EJDs, and this was further generalized by Beeri and Vardi [BV2] to arbi-
trary dependencies. Unfortunately, the chase may not terminate for
embedded dependencies. It was shown, however, that the chase is a proof
procedure for implication. That is, given Z and 7, the chase will give a
positive answer if 2 1, but will not terminate if 2 ¥ +. Furthermore, Beeri
and Vardi [BV4] also presented a sound and complete axiom system for
typed dependencies. Nevertheless, all these did not seem to lead to a
decision procedure for implication. In 1980 researchers started suspecting
that the (finite) implication problem for embedded dependencies was
unsolvable, and the first result in this direction were announced in June
1980 by two independent teams.

Theorem 3.3.2. [BV6,CLM1] The implication and the finite implication
problem for tuple-generating dependencies are unsolvable. [

This result is disappointing especially with regard to finite implication,
which is the more interesting notion. As we recall, ¥ is recursively
enumerable. Thus, if k¢ is not recursive, then it is not even recursively
enumerable. That means that there is no sound and complete axiom

system for finite implication.

Both proofs of Theorem 3.3.2 seem to use untypedness in a very strong
way, and do not carry over to the typed case. Shortly later, however, both
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teams succeeded in ingeniously encoding untyped dependencies by typed
dependencies.

Theorem 3.3.3. [BY7,CLM2] The implication and the finite implication
problem for typed tuple-generating dependencies are unsolvable. []

As dependencies, EMVDs have four important properties (see for
example (2.3)):

(1) they are tuple-generating,
(2) they are typed,
(3) they have a single atomic formula on the right-hand side
of the implication, and
(4) they have two atomic formulas on the left-hand side of—-
the implication.

Dependencies that satisfy properties (1), (2), and (3) above are called
templc'ite dependencies, or TDs [SU]). Thus, EMVDs and EJDs are in particu-
lar TDs. Since Theorem 3.3.2 covers properties (1) and (2), the next step
was to extend unsolvability to TDs.

Theorem 3.3.4. {GL,Va2] The implication and finite implication problems
for TDs are unsolvable. ] .

In fact, Vardi [Va2] proved a stronger result: the unsolvability for the class
of projected join dependencies. A projected join dependency (PJD) is of the
form M [X},...X;]x, where X<X,u...uX, cU. It is obeyed by a relation I if
IIX]= M {IX;)....7(X,]}[X]. For an application of PJDs see {MUV].
PJDs extend slightly JDs, since if X =X, U...uX;, then the PJD
M [Xi,....X;]x is equivalent to the JD N [X1,....X;]. Thus the class of PJDs
lies strictly between the classes of EJDs and TDs. The implication and
finite implication problems for EJDs are, however, still wide open.

Even though the existence of an axiom system for a certain class of
dependencies does not guarantee solvability of the implication problem,
finding such a system seems to be a valuable goal. In particular attention
was given to k-ary systems. In a k-ary axiom systems, all inference rules
are of the form 7,...,7, | 7, where n<k. It is easy to verify, for example,
that the systems 9 and 4 ¥D in Section 3.3 are 2-ary.
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Theorem 3.3.5. [PP,SW] For all k>0, there is no sound and complete k-ary
axiom system for implication and finite implication of EMVDs. []

We refer the reader to {[BV4,Va2] for a discussion regar;iing the existence
of a non-k-ary axiom system for EMVDs.

Let us refer now to what some people believe are the only “practical”
dependencies, FDs and INDs.

Recall that FDs are full dependencies, so implication and finite impli-
cation coincide and both are solvable (and by Theorem 3.2.1, quite effi-
ciently). INDs, on the other hand, are embedded dependencies, so a
straightforward application of the chase does not yield a decision proce-
dure. A more careful analysis, however, shows that the chase can be
forced to terminate.

Theorem 3.3.6. [CFP] The implication and finite implication problem for
INDs are equivalent and are PSPACE-complete. [

(PSPACE-complete problems are problems that can be solved using only
polynomial space and are hard as any problem that can be solved using
polynomial space. It is believed that this problems can not be solved in
polynomial time [GJ].)

Let us consider now implication of arbitrary dependencies by IND-.
Since containment of tableaux [ASU] can be expressed by dependencies
(YP], a test for implication of dependencies by INDs is also a test for
containment of conjunctive queries under INDs. We do not know whether
implication and finite implication coincide in this case. We have, however,
a positive result for implication. ‘

Theorem 3.3.7. [JK] Testing implication of dependencies by INDs is
PSPACE-complete. [] '

The finite implication problem for this case is still open.

Casanova et al. [CFP] investigated the interaction of FDs and INDs,
and they discovered that things get more complicated when both kinds of
dependencies are put together. First, they showed that implication and
finite implication are different (Theorem 3.3.1). In addition they showed
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that there is no sound and complete k-ary axiom system for implication
and finite implication of FDs and INDs. (Mitchell [Mil], however, has
shown that in a more general sense there is a k-ary axiom system for
implication of FDs and INDs.) In view of their results, it did not come ds a
surprise when Chandra and Vardi and, independently, Mitchell proved
unsolvability.

Theorem 3.3.8. [CV,Mi2] The implication and the finite implication prob-
lems for FDs and INDs are unsolvable. []

Some people claim is that in practice we encounter only INDs that
have a single attribute on each side of the containment, e.g.,
MANAGERSEMPLOYEE, Such INDs are called unary INDs (UINDs).
Reviewing the proof of Theorem 3.3.1, we realize that even for FDs and
UINDs implication and finite implication differ. Considering our experi-
ence with dependencies, this looks like a sure sign that the problems are
unsolvable. The next result by Kannelakis et al. comes therefore as a
refreshing surprise.

Theorem 3.3.9. [KCV] The implication and the finite implication problem
for FDs and UINDs are both solvable in polynomial time. []

For other positive results for INDs see [KCV,JK,LMG].

In conclusion to this topic, we would like to meution an argument
against the relevance of all the above unsolvability results. The assumption
underlying these results is that the input is an arbitrary set = of dependen-
cies and a dependency 7. The argument is that the given set X is supposed
to describe some “real life” application, and in practice it is not going to be
arbitrary. Thus, even if we concede that TDs arise in practice, still not
every set of TDs arises in practice. The emphasis of this argument is on
“real world sets of dependencies’”, rather than on “real world
dependencies”. For further study of this argﬁment see [Sc1,5c2]. While
we agree with the essence of this argument, we believe that the results
described above are useful in delineating the boundaries between the
computationally feasible and infeasible. This is especially important, since
we do not yet have robust definitions of real world sets of dependencies.

4. The Universal Relation Model
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4.1. Motivation

A primary justification given by Codd for the introduction of the
relational model was his view that earlicr models were not adequate to the
task of boosting the productivity of programmers [Co1,Co03]). One of his
stated motivations was to free the application programmer and the end
user from the need to specify access paths (the so-called ““navigation
problem™). A second motivation was to eliminate the need for program
modification to accommodate changes in the database structure, i.e., to
eliminate access path dependence in programs.

After a few years of experience with relational database management
systems, it was realized [CK] that, though being a significant step forward,
the relational model by itself fails to achieve complete freedom from
user-supplied navigation and from access path dependence. The relational
model was successful in removing the need for Pphysical navigation; no access
paths need to be specified within the storage structure of a single relation.
Nevertheless, the relational model has not yet provided independence from
logical navigation, since access paths among several relations must still be
satisfied.

For example, consider a database that has relations ED(Employee,
Department) and DM(Department, Manager). If we are interested in the
relationship between employees and managers through departments, then
we have to tell the system to take the ,oin of the ED and DM relations and
to project it on the attributes EM. This is of course an access path specifi-
cation, and if the database were to be reorganized to have a single relation
EDM, then any programs using this access path would have to be modified
accordingly.

The universal relation model aims at achieving complete access path
independence by letting us ask the system in an appropriate language “tell
us about employees and their managers”, expecting the system to figure
out the intended access path for itself. Of course, we cannot expect the
system to always select the intended relationship between employees and
managers automatically, because the user migﬁt have something other than
the simplest relationship, the one through departments, in mind, e.g., the
manager of the manager of the employee. We shall, in a universal relation
system, have to settle for eliminating the need for logical navigation along
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certain paths, those selected by the designer, while allowing the user to
navigate explicitly in more convoluted ways.

Unlike the relational model, the universal relation model was ot
introduced as a single clearly defined model, but rather evolved during the
1970’s through the work of several researchers. As a result, there have
been a significant confusion with regard to the assumptions underlying the
model, the so-called “universal relation assumptions”. We refer the reader
to [MUV], where an attempt is made to clarify the situation.

In this and the next section we restrict ourselves to finite databases.
4.2. Decomposition

The simplest way to implement the universal relation model is to have
the database consist a universal relation, i.e., a single relation over the set U
of all attributes. There are two problems with this approach. First, it
assumes that for each tuple in the database we always can supply values
for all the attributes, e.g., it assumes that we have full biographic informa-
tion on all employees. Secondly, storing all the information in one univer-
sal relation causes problems when this information needs to be updated.
These problems, called update anomalies, were identified by Codd [Co2].
The solution to these problems is to have a conceptual database that
consists of the universal relation, while the actual database consists of
relations over smaller .ets of attributes. That is, the database scheme
consists of a collection R = {R;,...,R;} of attributes sets whose union is U,
and the database consists of relations Iy,...,I;, over Ry,....R o+ Tespectively.

A principal activity in relational database design is the decomposition
of the universal relation scheme into a database scheme that has certain
nice properties, traditionally called normal forms. (We shall not go here
into normalization theory, which is the study of these normal forms, and the
interested reader is referred to [Ma,Ul].) More precisely, starting with the
universal scheme U and a set of dependencies =, we wish to replace the
universal scheme by a database scheme R = {Rl,....Rk}. The idea is to
replace the universal relation by its projection on R,,...,R,. That is, instead
of storing a relation I over U, we decompose it into [, = IR(L, ... I
= I[R;], and store the result of this decomposition. The map Ap defined
by Ag(J) = {I[R,]..... ][R, ]} is called the decomposition map.
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Clearly, a decokmposition cannot be useful unless no loss of informa-
tion is incurred by decomposing the universal relation. (This is called in
[BBG] the representation principle.) That is, we must be able to reconstruct /
from 'Il,...,Ik. More precisely, the decomposition map has to be injective.
For our purposes it suffices that the decomposition map is injective for
relations that satisfy the given set 2 of dependencies. In this case we say
that it is injective with respect to . When the decomposition map is
injective it has a left inverse, called the reconstruction map. The basic
problems of decomposition theory are to formulate necessary and sufficient
conditions for injectiveness and to find out about the reconstruction map. -

The natural candidate for the reconstruction map is the join, i.e.,
I=1; M. .. M I;. The naturalness of the join led many researchers to the
belief that if the reconstruction map exists then it is necessarily the join.
This belief was refuted by Vardi [Va3}, who constructed an example where
the decomposition map is injective, but the reconstruction map is not the
join. It is also shown in [Va3] how to express injectiveness as a statement
about implication of dependencies. Unfortunately, even when Z consists of
full dependencies, that statement involves also inclusion dependencies. It is
not known whether there is an effective test for injectiveness.

If we insist that the join be the reconstruction map, then we can get a

stronger result.

Theorem 4.2.1. [BR,MMSU] Let = be a set of dependencies, and let R be a
database scheme. Ap is injective with respect to Z with the join as the
reconstruction map if and only if ZF M [R]. O

Thus, if = consists of full dependencies then we can effectively test wheth-
er the decomposition map is injective with respect to Z.

Another desirable property of decompositions is independence [Ril].
Intuitively, independence means that the relations of the database can be
updated independently from each other. For further investigation of the
relationship between injectiveness and independence see [BH, BR, MMSU,
Va3 .

A point that should be brought up is that decomposition may have
some disadvantages. Essentially, decomposition may make it easier to
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update the database, but it clearly makes it harder to query it. Since the
join operation can be quite expensive computationally, reconstructing the
universal relation may not be easy even when the reconstruction map is
the join. In fact, even testing whether the relations of the database can'be
joined without losing tuples is NP-complete, and hence, probably computa-
tionally intractable. Let the database consists of relations I1,,...1I over
attribute sets R,,...,R; We say that the database is join consistent if there is
a universal relation I such that Ij = I[Rj], for 1<j<k. (Rissanen [Ril] calls
a join consistent set of relations joinable. A join consistent database is also
called globally consistent [BEMY], join compatible [BR], valid [Ri3], consistent
[Fa6], or decomposed [Va3].) It is easy to verify that the database is join
consistent if I=N {11....,Ik}[Rj], for 1<j<k.

Theorem 4.2.2. [HLY] Testing whether a database is join consistent is
NP-complete. ]

Thus there is a trade-off between the ease of up:’1ting the database
and the ease of querying it. The smaller the relation schemes, the easier it
is to update the database and the harder it is to query it. Recognizing this
trade-ofl, Schkolnick and Sorenson investigated what they called denormali-
zation [SS]. The idea is to decompose the universal scheme with both the
ease of updating and the ease of querying in mind. The result of the
decomposition depends in this approach on the predicted use of the data-
base.

4.3. The Universal Relation Interface

Suppose now that decomposition has been achieved. That is, assume
that, starting with the universal scheme U and a set = of dependencies, we
have designed a database scheme R = {Rl,....Rk}, and we now have a
database I = {J 1~} over R. Two questions have now to be resolved: how
to determine whether the database is semantically meaningful, i.e., satisfies
the given dependencies, and how to respond to the users’ queries that refer
to the universal relation. If the database is join consistent, then we can
construct the universal relation 7 such that Ap(l) = 1. But if the database
is not join consistent, then there is no corresponding universal relation.

We outline here one approach to the problem, called the weak univer-
sal relation approach. (This approach was suggested by Honeyman [Ho]
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and further developed in [GM,GMV,MUV]. For other approaches and
their relationship to the weak universal relation approach see
{[GM,GMV ,MRW ,MUV].) According to this approach, a universal relation
exists at least in principle, even though it may not be known. The data-
base is seen, from this viewpoint, as a partial specification of the universal
relation. More precisely, the relations I,,....I, are partial descriptions of
the projection of the universal relation I on the relation schemes Rl""'er
Thus a universal relation I is considered to be a weak universal relation for I
with respect to X if it satisfies I and IjSI[Rj]. for 1<i<k. I is consistens
with X i.e., semantically meaningful, if it has a weak universal relation
with respect to X.

The above definition is existential in nature and does not lend itself to
an effective test. The consistency problem is to decide, for a given set T of
dependencies and a database 1 over a database scheme R, whether I is
consistent with 3.

Theorem 4.3.1.

1) [GMV] The consistency problem for embedded dependencies is unsolva-
ble. '

2) [GMV] The consistency problem for full dependencies is EXPTIME-
complete.

3) [Ho) The consistency problem for FDs is solvable in polynomial time.

a

Thus, for embedded dependencies there is no effective test for consistency,
for full dependencies there is an effective though intractable test, and the
good news is that for FDs there is a polynomial time test for consistency.
We note that the presence of the independence property, mentioned is
Section 4.2, may make it easier to test for consistency. We refer the
reader to [CM,Gr2,GY,Sa] for the study of independence in the context of
the weak universal relation approach.

We now refer to the issue of query answering. For simplicity we
restrict ourselves to queries of the form “give me the relationship between
employees and managers™. More precisely, the query is a set X of attrib-
utes, and the desired answer is the so-called basic relationship on X. If we
had a unique universal relation I, then answer would undoubtedly be I{X].
But in our case we have only weak universal relations, and we clearly have
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infinitely many of those. Since we cannot know which of the possible
universal relations actually represent the “real world"” at a given moment,
we assume that the only facts that can be deduced about the universal
relation from the database are those that hold is all weak universal rela-
tions. This motivated researchers ([MUV,Ya] following [Sa]) to adopt the
following definition. Let weak(1,2) be the set of all weak universal rela-
tions of I with respect to =. We can see this set as the embodiment of the
information represented by the database [Me]. The answer to the query X,
denoted I[X], is therefore taken to be N {I{X] : Ieweak(1,Z)}. Note that the
answer is with respect to Z.

The above definition does not seem to lead to an effective procedure

for computing I[X].

Theorem 4.3.2.,

1) [GMV] Computing answers with respect to embedded dependencies is
unsolvable,

2) [GMV] Computing answers with respect to full dependencies is
EXPTIME-complete. :

3) [Ho] Computing answers with respect to FDs can be done in polynomial
time. ]

We refer the reader to [Gr3,MRW,MUV,Sag2,Sag3,Ya] for further study of
query answering.

We conclude this section by considering again the questions raised in
the previous section. There we started with a universal relation I and
applied the decomposition map Ap, to get the database
Ap(I) = {I[R],...,J[R;]}. Suppose now that we pose the query U to this
database. In this case we would expect our query answering mechanism to
be the desired reconstruction map, i.e., we would expect I = A, (/)[U].

Theorem 4.3.3, [MUV] The following two conditions are equivalent:
1) 2k N [R].
2) I = Ag(D)[U}, for every universal relation I that satisfies =. [J

In other words, if our query answering mechanism happens to be the
reconstruction map, then for join consistent databases it is actually the

join.
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5. Acyclic database schemes

In the last few years, acyclic database schemes have been introduced
and studied [BFMMUY]. The idea is to view database schemes as hyper-
graphs. A hypergraph is a pair (, &), where o is a finite set of nodes, and
& is a set of edges (or hyperedges), which are arbitrary nonempty subsets of
«¥. An ordinary undirected graph (without self-loops) is, of course, a
hypergraph where every edge has exactly two nodes. We shall identify a
hypergraph by only mentioning its edges, and tacitly assume that the nodes
are precisely those that appear in some edge. We can then view a database
scheme as a hypergraph where the relation schemes are the edges. The
hypergraph of Figure 5.2 corresponds to the database scheme of Figure 5.1.
The correspondence should be clear: for example, there is a
{SUPPLIER,PART,COST} edge in the hypergraph of Figure 5.2 because of
the {SUPPLIER,PART,COST} relation scheme in Figure 5.1, and so on.

Unlike the situation for ordinary undirected graphs, there are a
number of inequivalent, natural definitions of acyclicity for hypergraphs.
The type of acyclicity (due to [BFMMUY]) which we shall focus on in this
section can be defined by a generalization of one of the usual definitions of
acyclicity for ordinary undirected graphs. In particular, an ordinary
undirected graph is acyclic in the usual sense if and only if, when consid-
ered as a hypergraph, it is acyclic under our definition.

A number of basic, desirable properties of relational database
schemes turn out to be equivalent to acyclicity. These properties were
defined and studied by a number of researchers, in quite different con-
texts. It is somewhat remarkable that all of these properties are equiva-
lent. We describe here only a few of these properties. For a more com-
plete survey, see [BFMY, FaS, Fa6]. Furthermore, there are arguments
that the class of acyclic database schemes are natural from a semantic
point of view [Li, Sci1].

There is a simple, efficient algorithm for determining acyclicity. For
this paper, we shall simply take this algorithm as defining acyclicity. The
algorithm is called Graham's algorithm, in honor of Marc Graham, who
showed [Gr1] that if a hypergraph was accepted by his algorithm, then this
was sufficient to imply a certain nice database property. Graham's algor-
ithm was also defined, independently, by Yu and Ozsoyoglu [YO].
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The algorithm proceeds by applying the following operations repeat-
edly, in any order, until none can be applied:

(a) if a node is isolated (that is, if it belongs to precisely ,one
edge), then delete that node;

(b) if an edge is a subset of another edge, then delete the first
edge.

The algorithm clearly terminates. If the end result is the empty set, then
the original hypergraph is acyclic; otherwise, it is cyclic.

As an example, let us apply this algorithm to the hypergraph of Figure 5.3.
Somewhat surprisingly, it turns out that this hypergraph is acyclic, even ™"
though it seems to contain a “cycle”; we shall come back to this point

later.
We begin the algorithm by writing the edges, one underneath the
other:
A B C
C D E
A E F
A C E

(For convenience, we have put common vertices in the same columau.)

We begin by deleting the isolated nodes B, D, and F. We are Jeft with:

A C

C E
A E
A C E

Since the first (4C) row is contained in the last (41CE) row, we now delete

the first row:

by
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We now delete the new first and second rows, since each is contained in
the new third row. We are left with a single row:

A C E

We now delete the isolated nodes A, C, and E. We are then left with the
empty set. Since the algorithm terminates with the empty set, the hyper-
graph of Figure 5.3 is acyclic.

It is instructive to see an example in which the hypergraph is cyclic.
This time, we apply the algorithm to the hypergraph of Figure 5.4. This
hypergraph contains three of the four edges of the hypergraph of Figure
5.3. The algorithm begins with

A B C
C D E
A E F

After deleting the isolated nodes B, D, and F, , we are left with:

A C
C E
A E

The algorithm now halts, since no node is isolated and no row is a subset
of another row. Since what is left is not the empty set, the hypergraph is
cyclic.

Note that the acyclic hypergraph of Figure 5.3 has a cyclic subhyper-
graph, namely, the hypergraph of Figure 5.4. (A subhypergraph of a hyper-
graph is simply the hypergraph consisting of a subset of the edges.} This
counterintuitive phenomenon does not happen with ordinary graphs: that
is, it is not possible for a subgraph of an ordinary acyclic graph to be
cyclic. Later, we shall mention another type of acyclicity for hypergraphs,
where this counterintuitive phenomenon does not occur.

A simple analysis of a natural implementation of Graham’s algorithm
shows that it can made to run in cubic time. We remark that Tarjan and
Yannakakis [TY] have recently obtained a a linear time algorithm for
determining acyclicity.
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We now discuss a particular desirable property of database schemes
that is equivalent to acyclicity. Recall that a database is join consistent if
there is a single universal relation such that each relation in the database is
the appropriate projection of U. .

We say that a pair of relations is join consistent if the database
consisting only of these two relations is join consistent. Let us say that the
two relations are J;, with attributes Ry, and I,, with attributes R,. Let
X=RynR,. Thus, X is the set of attributes that I, and I, have in common.
It is easy to see that I and I, are join consistent precisely if [ 1[X] = L[X],
that is if they agree on their common part. Let us say that a database is
pairwise consistent if each pair of relations is join consistent. It is clear
every join consistent database is pairwise consistent. It would be very nice
if the converse were true, since then there would be a simple test for join
consistency, namely, pairwise consistency. Unfortunately, however, the
converse does not hold. For, it is easy to verify that the database of Figure
5.5 is pairwise consistent; however, it is not hard to see that it is not join
consistent. In fact, we already knew that there could be no simple test for
join consistency, since, as we noted earlier, determining join consistency is
an NP-complete problem [HLY].

However, in the acyclic case our desired converse holds, that is,

pairwise consistency and join consistency are equivalent.

Theorem 5.1. [BEMY] If the scneme is acyclic, then a database is join
consistent if and only if it is pairwise consistent. (J

Can there be any cyclic schemes for which join consistency and
pairwise consistency are equivalent? The answer is no.

Theorem 5.2. [BEMY] If the scheme is cyclic, then there is a database that
is pairwise consistent but not join consistent. []

Putting Theorems 5.1 and 5.2 together, we see that a scheme is
acyclic if and only if every pairwise consistent database is join consistent.
Therefore (using also the fact that join consistency implies pairwise con-
sistency), it follows that a scheme is acyclic if and only if checking pair-
wise consistency is an algorithm for testing join consistency. This is an
example of a desirable database property that is equivalent to acyclicity.
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There is one viewpoint on what we have just discussed that should be
emphasized. In the unrestricted case (where we do not assume acyclicity),
_testing join consistency is an NP-complete problem. However, in the
acyclic case, there is a polynomial-time algorithm for testing join consisten-
cy (namely, testing pairwise consistency). This gives us an example of an
NP-hard problem that has a polynomial-time algorithm if the scheme is
acyclic. We shall mention another such example soon.

We now consider another condition which is equivalent to acyclicity
of a hypergraph. The join dependency M [Xj, ..., X;] is said to be acyclic
precisely if the hypergraph with edges X 1+ ---» X, is acyclic.

Theorem 5.3. [FMU] A join dependency is acyclic if and only if it is equiva-
lent to a set of multivalued dependencies. [J

It is known [BFMY] that an acyclic join dependency M [Ry, ... R,]
is in fact equivalent to a set of at most n-1 multivalued dependencies
{where n is the number of R;s). Further, the constructions in [BEMY]
show that there is a polynomial-time algorithm for finding such a set of n-1
multivalued dependencies. As an example, the acyclic join dependency
M [4BC, CDE, EFA, ACE], which corresponds to the acyclic hypergraph of
Figure 5.3, is equivalent to the set {AC—++DEF, CE-++ABF, AE-~+BCD} of
multivalued dependencies.

Beeri et al. [BFMY] and Goodman and Tay {GT] consider the con-
verse question, of when a given set of MVDs is equivalent to some JD. In
particular, Goodman and Tay give a polynomial-time algorithm for an-
swering this question.

We can now give another example of an NP-hard problem which
acyclicity rends tractable. The problem of deciding whether a set of typed
full dependencies implies a JD is NP-hard; in fact, as noted in Theorem
3.2.9 above, this is even true if all of the typed full dependencies are
MVDs. However, if the join dependency is acyclic, then there is a
polynomial-time algorithm.

Theorem 5.4. Testing whether a set of typed full dependencies implies an
acyclic JD can be done in polynomial time.
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Proof: As noted above, there is a polynomial-time procedure for finding a
set of n-1 MVDs which are equivalent to the given JD M [Ry, ..., R,]. By
Theorem 3.2.8, there is a polynomial-time algorithm for deciding whether
the set = of typed full dependencies implies each of the multivalued depen-
dencies. Clearly, = implies the acyclic JD if and only if it impliés all of
these MVDs. O

We note that Yannakakis [Ya] has found other problems involving
JDs that are NP-hard in general, but which have polynomial-time algor-
ithms if the JDs are acyclic.

Our final example for the desirability of acyclicity involves the
property of injectiveness discussed in Section 4.2. We noted there that -
injectiveness of a decomposition map does not guarantee that the recon-
struction map is the join. The situation is different if the decomposition is

acyclic.

Theorem 5.5. [BV8] Let = be a set of full dependencies, and let R be an
acyclic database scheme. If Ay is injective with respect to X, then the
reconstruction map is the join. [J

Note that combining Theorems 4.2.1, 5.4, and 5.5, we get a polynomial
time test for the injectiveness of an acyclic decomposition with respect to
typed full dependencies.

The idea of acyclicity has turned out to be a powerful unifying
concept. We refer the reader to [BC, BG, GS] for applications to query
processing, which we do not discuss here. We note that Sacca [Sa] and
Laver et al. [LMG] deal with the effect of FDs on acyclicity. Further,
Biskup and Briiggemann [BiBr] study the effect of FDs on the design
process of acyclic database schemes.

Fagin [Fa6)] has introduced even more restrictive types of acyclicity,
which correspond to database schemes that enjoy even nicer properties.
We now focus on one such type of acyclicity, called y-acyclicity. For
convenience, let us refer (as Fagin does in [Fa6]) to the type of acyclicity
we have been discussing as a-acyclicity. As we noted earlier, the definition
of a-acyclicity has the counterintuitive property that a subhypergraph of
an a-acyclic hypergraph may be a-cyclic. As an example, the a-acyclic
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hypergraph of Figure 5.3 has the a-cyclic subhypergraph of Figure 5.4. It
turns out that for y-acyclicity, this counterintuitive phenomenon does not
occur; thus, every subhypergraph of a v-acyclic hypergraph is y-acyclic.

There are various graph-theoretic definitions of y-acyclicity [Fa6].
For the purposes of this paper, we simply give an algorithm for determining
r-acyclicity, This algorithm is due to D'Atri and Moscarini [DM], and was
proven correct by Fagin [Fa6]. It is very similar in spirit to Graham's
algorithm for a-acyclicity, which we presented earlier. We then apply the
following operations repeatedly, in any order, until none can be applied:

(a) if a node is isolated (that is, if it belongs to precisely one
edge), then delete that node:
(b) if an edge is a singleton (that is, if it contains exactly one

node), then delete that edge (but do not delete the node from
other edges that might contain it):

(c) if an edge is empty, then delete it;

(d) if two edges contain precisely the same nodes, then delete one
of these edges;

(e) if two nodes are edge-equivalent, then delete one of them
from every edge that contains it. (We say that two nodes are
edge-equivalent if they are in precisely the same edges.)

The algorithm clearly terminates. If the end result is the empty set of
edges, then the original hypergraph is y-acyclic; otherwise, it is y-cyclic.

As an example, let us apply this algorithm to the hypergraph of Figure 5.6.
As in the previous example, we begin by by writing the edges, one under-
neath the other. The edges are:

B C D E F
A B C D
C
C D
E F

Node 4 is isolated, and edge {C} is a singleton, so both are deleted, by
rules (a) and (b). This leaves us with
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B E F
B

a0 0
Do b

E F o

Nodes E and F are edge-equivalent, and so, by rule (e), we delete F from
both edges that contain it. Similarly, nodes C and D are edge-equivalent,
and so we delete D from all three edges that contain it. We are left with

B E
B

ana 60

E

The third and fourth edges above are singletons, and so they are eliminat-

ed. This leaves

B C E
B C

Node E is isolated; after it is deleted, we are left with

B C
B C

These edges are identical, so we delete one by rule (d). We are left with

B C

Both nodes are now isolated, and so they are deleted. We are left with a
single empty edge, which is deleted by rule (c). The end result is the
empty set of edges, and so the original hypergraph is y-acyclic.

Fagin [Fa6] presents a number of desirable database properties, each
which is equivalent to the scheme being y-acyclic. We mention only one
property, which involves dependencies. We first need to define the con-
cept of connectedness for hypergraphs; it is the obvious generalization of
the definition of connectedness for graphs. A parh from node s to node ¢ is
a sequence of k21 edges E;,....E; such that
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(i) sisinE,,

(ii) risin E;, and

(iii) E;nE;,, is nonempty if 1<i<k.
A hypergraph is connected if for each pair of nodes, there is a path from one
to the other,

Theorem 5.5. [Fa6] Let R be a database scheme. Then the following are
equivalent:

(1) Ris y-acyclic.
(2) For every connected subset SSR, we have M [R] = M [S]. (]

Note that M [S] can be an embedded JD. Thus statement (2) of
Theorem 5.5 above says that for every connected subset S of R, and for
every join consistent database I over R, if J<I is the subdatabase over S,
ther M Jis a projection of P I.

As an example, consider the database scheme of Figure 5.1, which is
y-cyclic. The join of the {SUPPLIER,PROJECT,DATE] relation with the
{PROJECT,PART,COUNT] relation might introduce a SUPPLIER, PART,
PROJECT triple that does not appear in the SUPPLIER, PART, PROJECT
relation (the “connection trap™ [Col].)

‘We note also that the various notions of acyclicity turn out to be very
useful for the design of universal relation interfaces. We refer the reader
to [Fa6, MU, Ya].
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