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1. INTRODUCTION

An interesting and important problem in the theory of denumerable
Markov chains is to find a simple, easily computible canonical form for P,
the matrix of the n-step transition probabilities. Kemeny has found such a
representation for the class of “k-speading chains” [1]. A k-spreading chain
is a denumerable Markov chain with states the natural numbers, with all
states communicating, (that is, such that the process, starting in any state, can
eventually reach any other state), and with a positive integer & associated
with it, such that P, ;. , >0 for all 7, and P; =0 if j > ¢ 4+ k. Kemeny
finds a matrix R, depending on P, a matrix Q, which is a 2-sided inverse of R,
and a matrix S, such that P = QSR. All matrices are row-finite, and thus
associate. So, P* = QS"R. Since S is of such simple form that S” is easy
to find, the goal is accomplished.

In a generalization of Kemeny’s work, this paper develops such a
representation for what we will call n-dimensional k-spreading chains.*
These chains are indexed by the #-dimensional coordinates (with the natural
numbers as entries), and they are basically processes which, when projected
on the x;-axis and watched only when the x,-coordinate changes, look like
k-sprcading chains. This class of Markov chains includes (by a trivial
renumbering of the states) all #-dimensional random walks.

A key tool in this paper will be the establishment of criteria for the existence
and uniqueness of inverses for certain types of infinite matrices.

! Written in partial fulfillment of the degree of Bachelor of Arts at Dartmouth
College.

2 The preparation of this paper was supported in part by the National Science
Foundation, Grant No. GP-5260.

31 would like to express my sincere appreciation to Professor John Kemeny for
his help in the writing of this paper.

4 A further generalization of this representation is presented in Section 11.
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DerFINITION. Order the n-dimensional coordinates (that is, the n-dimen-
sional vectors with the natural numbers, 0, I, 2,... as entries) as follows:

(1 soery %) = (¥ 5000y V) iff X =9, i=1,.,n

(x], yeury xn) < (yl ’"-,yn) iff X <Y1
or

Xy =V ey X = Yy, %oy < Ys41, forsome s, 1<s<n

Denote each vector by a capital letter, and its coordinates by the corresponding
lower-case letter, with subscripts. Also, write the vector (a, xy, X5 ,..., %)
as (a, X). Thus X = (x;, X).

The n-dimensional coordinates do not have the order-type of the natural
numbers; thus, some elements have an infinite number of predecessors.
However, in the generality of such books as [2], we are going to consider
matrices indexed by the #n-dimensional coordinates as states.

Any matrix M which is indexed by the n-dimensional coordinates, can
be written in the following form:

Mro.0]  Afi0.a]  Jf10.2]
MiLel  Aiu1l o pgiel
Mi201 pplza] pgLzel . )

where M1%2] is that submatrix of M which is indexed down by all states of
form (i, X), and across by all states of form (7, ¥). Call such an M*41 a basic
submatrix of M.

Define a matrix T to be triangular if Tyy > 0 for each X and Tyy =0
when X < Y. If a triangular matrix T has Tyy =0 for X2 Y, call T
diagonal. All matrices in this paper are assumed to be finite-valued (f.v.), and
when necessary are proved to be f.v.

The following useful criteria for associativity and distributivity of infinite
matrices, which are proven for example in [2], will be used:

1. Nonnegative matrices associate under multiplication, and distribute.

2. If A, B, and C are f.v. matrices such that either A is row-finite or C
is column-finite, and if (4B)C and A(BC) are both well defined, then
(AB) C = A(BC). Note that if 4 and B are both row-finite, or if B and C
are both column-finite, then (4B) C and A(BC) are well defined, since only
finite sums are involved.

3. If AB, AC, and A(B + C) are all well defined, then

A(B 4+ C)= AB + AC,
and similarly for right distributivity.
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4. If 14 -"Bl-jC;<x, then (AB)C -— A(BC). If |4|-|B|
and | -, C oo, then A8 ~ C) - AB + AC, and similarly for right
distributivity. (By the absolute value of a matrix, 4., we mean a matrix
with centries (" A )y, =  Axy )

2. Row-FiniTE N-DimeNnsioNAL K-SPrReaDING CHAINS

DEFINITION.  An n-dimensional k-spreading chain (n-k-s chain) is a Markov
chain with states the n-dimensional coordinates, with a fixed integer 2 > 0
associated with it, and with transition probabilities as follows:

Pyy == 0 unless either y, < » + %k — 1, or y, = &, + k& and
(0, ¥) < (0, X). Further,

P, %), @ +6.8) > 0.

Note that the chain is essentially restricted to being k-spreading in only one
dimension—there is great freedom of movement in the other dimensions.

DEerINITION. Define the matrix R, which we will use in the representation
P = QS*R, inductively. Write

RI0.0]
RILOI R

R=1\peon geau geal:

where each RI%7]11is a basic submatrix, and where omitted basic submatrices
are 0. Call (RU-0IRE] ... RI3E10Q -} the “/th submatrix row.” Then
define Rl=/1 = 8,1, if i < k, and inductively define the ( + k)th submatrix
row as the ith submatrix row times P. Thus

Ryy=P{%y, i xm=mktr, O0<r<k

The ordering of the states has been defined in precisely such a way that R
is triangular: If x, < & — 1, then the (x, , X) row of R is certainly such as to
make R triangular, If x, >k — 1, write iy =mk +7, 0 <r <k, m>= 1.
Then

Ryy=P g:’,‘}?),(mkH‘.X) ’

= P4 2),6e4r.2) * Plesr.R), @h4r.2) " Plln1irr.®) (misr. ) > 0.
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Next consider Y > X. If y; > %, = mk -7, then
Ryy = P{™, =0
594 r.X). @, 7 y

since the first coordinate can increase by at most & on each step. If y; = %, ,
then since ¥ > X, (0, ¥) > (0, X), so

(m)
Ryy = PE 2y, (uier, ) = 0,

because the first coordinate must increase by k each time, and in so doing,
(0, X) can not increase.

Triangularity by itself is not sufficient to assure that a matrix have a two-
sided inverse. In fact, as we shall see in Section 12, there exist #-k-s chains
whose R matrix fails to have such an inverse. However, we shall temporarily
assume that P is row-finite, and we will see that no problem then arises.

Define S to be a matrix indexed by the same states as P, and with

Syy = 8(z1+k,X). Y-

Thus,

S =

o oo
O O~

0
0
0

(==l w]
[ R
~

Note that S is simple to find:

Sj\’Y = 8(21+1k.X),Y .
By definition of R, RP = SR,
Lemma 1. If M and N are matrices, M is triangular and fv., and N is
either a right or a left inverse of M (or both), then N is fv.

ProoF. Assume that both MN =1, and also some entry N, of N is
+ o0. Then

S5= Z M Nzp=MNyp+ Y MyzNyzp.
zZ Z#A

Since M4, > 0, the right side contains an infinite term, and thus can not
equal 8,5 . Likewise, any left inverse of M must be f.v.

We will often use this lemma tacitly: for example, we will search for right
inverses of a f.v. triangular matrix T by considerinig only f.v. candidates.

409(23/3-2
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Lemya 2. Lel T be any fe., row-finite triangular matrix indexed by the
n-dimensional coordinates. Then

I. T has a unique 2-sided inverse T".
2. T'is fx., triangular, and row-finite.
3. T’ is the unique right inverse of T.

4. T’ is the unique row-finite left incerse of T.

Note. Even if n — 1, T is not necessarily the only left inverse of T,
as Example 4 in Section 12 shows.

Proor. Let T<12.--4 be the submatrix of T indexed by all states X
with ¥, =— 4, , x, = £, ,..., x, =~ £, . To prove the lemma, we will use ‘‘back-
wards induction” (from 2 to 0) on the length of the superscript of T that is,
we will show that if each T<u.--- fulfills the conclusions of the lemma, then
so does each T¢i--u—1>  When the superscript reaches O length, then the
lemma is proven for T itself. Since each T<.--i> is a positive number, the
initial induction step is trivial.

Assume inductively that for each a =0, 1, 2,..., the matrix TG r—1.0>
fulfills the conclusions. Think of M == T“u.--#-1 ag being made up of
blocks of submatrices as follows (as a short-hand, write 7°¢1.---ér-1.2> a5 T'(@)):

T
BLO T

M=\ peon pen 1o

B.7} is indexed down by those states X with x; =1, ,..., ¥,y = 1,4, ¥, = 1,
and across by those states with x, =4, ,..., %,y =2, , &, = .

Since T is row-finite, so is T<i--i-1> and hence so is each B%# and
each 7@,

Define a triangular matric C, indexed by the same states as M, as follows:
write
C0.0)
co D
ceo cen cen |-

C=
Define the submatrix C'%9), i > j, recursively in 7, by
1. CU» =(TWY, the unique two-sided inverse of T, which exists,
and is row-finite and triangular, by induction hypothesis.
=1

2. CWi) = — (T8 (Z B(i.t)C(t.j)) . i
=1
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Each C%# is well-defined and row-finite, since : C?:9) certainly is. Given
inductively that Ct:9, CutLa  C4-L)) are, then so is C*/), since the
products and sums of row-finite matrices are row-finite.

We know that

1. TWCUD =]

i-1

2. —(TW)CwN =Y BEBCW),  i>j
[

by multiplying Eq. 1 on the left by T}, and Eq. 2 on the left by — T,
and associating by row-finiteness. But these are precisely the conditions for C
to be a right inverse of M.

C'is a matrix just like M, so we can identically construct a matrix C; which
is row-finite, and which is a right inverse of C.

Now M = M(CC,) = (MC) C; = Cy; the sccond equality follows from
row-finiteness of M and C. So, C is a two-sided inverse of M. Assume M has
another right inverse N. Then N =(CM)N = C(MN) =C.

Finally, assume M has another row-finite left inverse L, Then

L=LMC)=(LM)C =C;
the second equality follows from row-finiteness of L and M.
The induction is complete, and the lemma is proven.

THEOREM 1. Let P be an n-k-s chain, which is row-finite. Then

1. The matrix R associated with P has a unique two-sided inverse Q.

2. R and Q are fv., triangular, and row-finite.

3. Q is the unique right inverse of R, and R is the unique right inverse of Q.

4. Q is the unique row-finite left inverse of R, and R is the unique row-finite
left inverse of Q.

5. Pi=QSR, i=0,1,2,...

Proor. Each row of R is a row of some P Thus R is row-finite, and we
can apply Lemma 2. We can then apply Lemma 2 to Q.

Conclusion 5 follows from multiplying both sides of RP = SR on the left
by O, giving P = QSR, which implies P? := QS'R. Since P, Q, S, and R
are all row-finite, there is free associativity.

3. Basic QUANTITIES OBTAINABLE FROM THE REPRESENTATION

Several fundamental quantities associated with the Markov chain P can be
found from the matrices Q and R. In this section, we shall generalize some of
Kemeny’s formulas in [2] to cover row-finite #-k-s chains.
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If P has rows-sums unity, then so does R, and hence so does Q, since
Ol =0(R1) == (OR) 1 -- 1, where 1 is a column vector of all ones. If
Pl 5 1, then the row sum of the (x;, X) row of R, where x, = mk 4+ r,
0 <r < A, equals

Yy P((,’f'}g)_y = probability that the process, started in state (r, X),
Y

has not stopped with m steps.

As for the columns of R: the interesting quantity is not 17R, which gives
column sums, but V4R, where 1’4 is a row vector defined for each 4 = (r, A),
0 <r <k, a; arbitrary, i == 2, 3, 4,..., by

V), — gl, Y=(@+sk4d) s5s=0,12,..
(V)y = 0 otherwise.
For,

(V' Ry =Y Rywariry=Y PSy= Nay,

§=0 8=0

the mean number of times Y is eventually reached, starting in A. If all states
are transient, we can find all of N. Define

T" — z St, and T = lim T,
=0 "
Then
N = lim QT*"R

= Q lim(T*"R) since Q is row-finite
= Q(TR) by monotonicity.

Further, it is worth mentioning that (QT)R = Q(TR) = N. For, if
x, =mk 47, 0 <r <k, then

(TR)xy < (V" ®R)y = N, 2),y < Nyy.

So, by row-finiteness of Q, 1 O | TR is f.v. Let us note for later that each
column of TR is uniformly bounded.

4. Tue RecuLar Funcrions oF P

The set of all functions (column vectors indexed by the n-dimensional
coordinates) forms a vector space over the reals, where we even allow
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infinite sums of functions whenever the sum is well-defined and f.v. in each
entry. A countable set of functions { £} is then linearly independent whenever

«©

Y a;f;=0  impliesthateach  a;=0.

1=1

The set of all f.v. regular functions of a row-finite Markov chain forms a
vector subspace. For, assume

z fiis f.v., where each f; is regular.

Then
Pg:PZaifi:zainizzaifi=g’

with the second equality following since P is row-finite.
For each state A = (r, 4),0 <7 < k, of an n-k-5 chain P, define a column
vector E4 by

(EA)y — 30 X = (r + sk, 4), s=0,1,2,..

otherwise,

Thus E4 = (V4)T (see Section 3).

THEOREM 2. Let P be any row-finite n-k-s chain P. Then the vectors QE4
Sform a linearly independent set which spans (allowing infinite sums) the subspace
V of f.v. regular functions of P. In particular, if n > 1, then P has a countably
infinite number of linearly independent regular functions, and if n = 1, then the
subspace of f.v. regular functions is k-dimensional.

Proor. Each QE4 is well-defined, since Q is row-finite. Each QE4 is
regular, since from PQ = QS, we have PQE4 = QSE4 = QFA. Thus, the
space spanned by the {QE4} is contained in V.

The {QF4} are linearly independent: assume

Y a,0F4 = 0.
Then
0=RO0
=RY a,QF4
=Y a,ROE4 by row-finiteness
=Y a,k4,

and by the obvious linear independence of the {E4}, each a, = 0.
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Now assume f is f.v. and regular. Then Rf  RPf = SRf. Since ¢ = Rf
fultills g Sg, we know (Rf)x - (Rf),imr.z) > m =2 0. So,

B -kt whee  ay = (R
Then
[ ORf QY auh - Y a(EY).

T1-¢ Jast statcment of the theorem is now obvious by counting the number
of Es,

We now have a representation for f.v. regular functions of a row-finite
« - -5 chain. First, write each function

where gl*] is a basic subcolumn, indexed by all states X with x, = i. Then a
function f is regular if it is of form Qg, where g1 It sl*-1] are com-
pletely arbitrary, and gl*l = gl’]1 whenever i = j mod 4.

5. A SsORTCUT FOR OBTAINING Q)

At this stage, the only method we have for finding the matrix Q associated
with a given n-k-s chain P is to first find R, and then to find Q as the unique
two-sided inverse of R. However, it would be desirable to have a more direct
way of obtaining Q. The conclusion of the following theorem is completely
analogous to the fact that R is characterized by Ryy = 8yy for x; <%, and
RP = SR.

TueoreMm 3. The Q matrix for a row-finite n-k-s chain P is characterized
by Oxy = 8xy for x, < k, and PQ = QS.

Proor. First, the Q matrix for P obviously fulfills this. Assume some
other matrix Q, fulfills these conditions. Then PQ; = O, S tells us that O,
is indexed by thc same states as Q (and P and S). Let Pl»21, QU&J], ST%.7], and
QL1 be basic submatrices. Then for i < & and arbitrary j, Q1 = Q[éi1,
Assume inductively that Q{11 = Q9] { <y — 1 and all j, where r > k.
Then from PQ, = (,S,

T
Z P[r—k.m]Q%x.j] — Q[lr—k.j—k] —_ Q[r—k.j—k]’

@=0
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if we define the “basic” submatrix QI** = Q[**] = 0 when ¢ <( 0. So,

r—1

Plr-k11QIril = Qlr-ki-k1 — %" pPlr-k=lQ[=] by induction hypothesis
z 0

= Plr—krIQImJ]) since PO =0S. N

Now PUr—%r] can be considered as being indexed by the (# — 1)-dimensional
coordinates, and it then fulfills the hypothesis of Lemma 2. Multiply both
sides of (1) by (PI=*71)~1 on the left, and then QU1 = QU] completing
the induction.

Let us calculate R and Q for a given example, to demonstrate the usefulness
of Theorem 3. Assume P is a row-finite #-1-s chain (that is, an n-k-s chain
with & = 1) of form

plo.0]  poal

piol o pinzl

peol 0 0 P23l

psel 0 0 0 PB4

R can be found from its recusive definition :

I, 1' :j = 0
i—1
RU-LrIpIr0l i >4i=0
RU-LFIPL-L] §>7>0
0, ) <j.

Obviously it would be difficult to try to find Q as a two-sided inverse of R.
However, starting from Q%% = §, ,J and PQ == S, we easily find that for
i>1,

— (PU-i-Li=i)Pli-i=it1] ... Pli-1il)-1 Pli-120.0] > ]
QUiil = {(PIO.1IPIL2] ... Pli-141)-1, i=j
0 otherwise.

To verify that these equations correctly define O, we need only verify now,
according to Theorem 3, that PQ = QS, which is easy to check.
6. INFINITE-DIMENSIONAL K-SPREADING CHAINS

It is certainly natural to try to consider infinite-dimensional coordinates
(that is, vectors containing a countable number of natural numbers as entries)
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as a set of states. However, this set of vectors forms an uncountable collection,
and thus can not be considered as the states of a denumerable Markov
chain. One solution is to consider only thosc vectors which “terminate,”
that is, which have only zeroes as entrics from some point on, since these form
a countable collection.

DrriniTioN.  Call these vectors the infinite-dimensional terminating coordin-
ates, and order them as we did the finite-dimensional coordinates:

(1, % ,0) = (¥4, ¥2,0) M x, =1y, forall ¢

(1, % 00) < (P15 020-) M <y
or
Ky ==V gerey Ny = Vo Koy < Vou1 forsome s> 1.

Adopt the same conventions as before, e.g., X == (x; , X). Define now an
infinite-dimensional k-spreading chain (w-k-s chain) by carrying over exactly
the definition of an n-k-s chain (with the exception, of course, of the set
of statcs).

Assume now that each w-k-s chain P fulfills the following additional
restricticn: there is scme integer ¢ > 1 asscciated with P such that

P(TI,X).(xﬁk,l_/) =0
unless not only (0, ¥) < (0, X), but also
(0’ 0!"" 0) Xer1s Xeto i"') = (07 0:-") 07 y(‘+] ’ yc+2 :"')‘

Thus, when the process takes its maximum jump in the x;-direction, at most
¢ — 1 other components can change. Our last restriction can be weakened,
although we will not consider that here: for example, ¢ can be nonconstant,
but instead a function of &, . Let us show that if such a chain P is row-finite,
it is representable as P* = Q.S‘R.

LemMa 3. Let T be any f.o., row-finite matrix indexed by the infinite-
dimenstonal terminating coordinates. Suppose that T has associated with it a
constant d > 1, such that each submatrix T<'12-'a> (defined in the proof of
Lemma 2) is diagonal. Then T fulfills the conclusions of Lemma 2.

ProoF. The proof of Lemma 2 holds, if we only change the initial induc-
tion step: the backwards induction runs from d to 0, with each T'<f%a>,
being diagonal, fulfilling the conclusions of the lemma.

THEOREM 4. Let P be a row-finite w-k-s chatn, with the following additional
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restriction: There exists ¢ > 1 such that Py 2) o427y =0 unless not only
(0, ) < (0, X) but also

(0,0,..., 0, %411 Xepg seer) = (0, 04000y 0, Verq » Veqz see ks
Then P fulfills the conclusions of Theorems 1, 2, and 3.

Proor. Each R¢r-i is diagonal: it is obviously triangular, since it is
‘“on the diagonal” of R. Let s, =mk 4+ r,0 <r < k. If

(0, oey 0, %643 5 Xp9 5eer) 7= (04eeey 0, Verq s Verz seer)s
then
R(il

..... $or®ot1s%etane L lEpe 1ig Vel Vettoee 2

= Pg"fz,,....i,,.a:c“.mﬁg....).(mk+r.1',.....ic.ycﬂ.vc.,.,....) =0.
Thus Lemma 3 applies, and the conclusion to Theorem 1 holds.

The proof of Theorem 2 carries over word for word. The dimension of
the subspace of regular functions is then, of course, countably infinite, just
as in the case n > 1.

The only change necessary in the proof of Theorem 3 lies in showing that
Plr=%.r1 has a row-finite left inverse. There are 2 cases. If ¢ = 1, then Plr-%.r]
is diagonal, and the result follows; if ¢ > 1, then PI*—*.r1 can be considered as
being indexed by the infinite-dimensional terminating coordinates, and it then
fulfills the hypotheses of Lemma 3, with d = ¢ — 1.

We have shown that all w-k-s chains with a certain natural restriction are
representable (P? = QSR). Let us show (mainly as an interesting exercise
in the renumbering of states) that if we slightly modify the definition of
w-k-s chains, we can obtain the desirable result that all row-infinite w-k-s
chains (of the modified variety) are representable.

Define a new ordering on the infinite-dimensional terminating coordinates,
as follows:

(%1, % ,0) =", ¥25e0.) It x=1y, forall ¢
(%), X3 50.) <'(F15 Y2 5eer) iff gyt <Pt

where p; is the ith prime (p;, = 2, p, = 3, etc.).
Since the entries are all 0 from some point on, this is well-defined.

DEFINITION. A modified w-k-s chain is a Markov chain with states the
infinite-dimensional terminating coordinates, and with

Pyy = O unless either y, < % + %k — 1, or y, = %, + & and
(0, ) <’ (0, X). Further, Pg, 2). 45,2 > O.



512 FAGIN

Notc that this definition is identical to the definition of an w-k-s chain
with « " substituted for <. A modificd w-k-s chain is not merely a weakened
w-k-s chain, since for example in a modified w-k-s chain, the process can
move direetly from (1,1,1,0,0,0,0,...) to (1 + 4,2,0,0,0,...), which is

impossible in regular w-k-s chain.

THeOREM 5. A modified w-k-s chain which is row-finite is representable.

Proor. Wec will show that by renumbering the states of a modified
w-k-s chain, we get nothing other than an ordinary 2-k-s chain. Then the
result will follow immediately, since row-finite #-k-s chains are representable.

Define a 1-1 correspondence between the infinite-dimensional terminating
coordinates and the positive integers by

fi(a,, ay,0) = pUipe? .

Define a 1-1 correspondence between the positive integers and the 2-dimen-
sional coordinates by

g:2%2b + 1)~ (a, b).

Then the 1-1 correspondence gf maps (a, , @, ,...) onto (ay , (Pa2ps® *** — 1)/2).
Relabel states X of P as g(f(X)), and let

, T, “a..._] V2 1’3..._1
x1= 2 32 , y:P2P32 .

-

Then it is easy to check that the process is now simply a 2-k-s chain.

7. BLOCK-COLUMN-FINITE n-k-s CHAINS

We have proved that each row-finite #-k-s chain P has the property that
its R matrix has a two-sided inverse. We might naturally hope that this
would be true also of column-finite #-k-s chains. However, there is an imme-
diate stumbling block: even if an n-k-s chain P is column-finite, its R matrix
is not necessarily column-finite. In fact, it is easy to show that if any two
states 4 and B of P communicate (that is, P{} > 0 and P§} > O for some
7, 5), then R is not column-finite. However, as we will see later, the R matrix
for a column-finite #-k-s chain does have another property which is similar
to column-finiteness, a property we will call ‘“block-column-finiteness.”

DEFINITION. A matrix M which is indexed by the n-dimensional or
infinite-dimensional terminating coordinates is block-column-finite if each
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of its basic submatrices J{1%4] is column-finite. In particular, every column-
finite matrix indexed by multi-dimensional coordinates is block-column-
finite.

Unfortunately, not even all block-column-finite, triangular matrices have
a two-sided inverse. In fact, in Secction 12 we sce a counterexample, of a
column-finite, 2-1-s chain P whose R matrix does not have a right inverse.
So some further restriction is necessary to guarantee that the R matrix of a
column-finite 7-k-s chain P be invertible. A very natural restriction jis that
each Pl*+t] be diagonal—that is, that when the process takes its maximum
jump of & units in the first coordinate, then no other coordinate can change.
If we adopt this assumption, then we can prove cven more: that any such
block-column-finite n-k-s (or, in fact, w-k-s) chain P has a (unique) two-
sided inverse for its R matrix. This is quite significant, since then with a little
more work we can have a representation for a class of Markov chains which
need not be either row-finite or column-finite.

We begin with 4 lemmas.

LEmMA 4. Assume that a f.v. triangular matrix T is indexed by either the
n-dimensional or the infinite-dimensional terminating coordinates, and that
each TV s diagonal. Then if T has a right inverse C, C is triangular.

Proor. The proof is exactly like that for a finite triangular matrix, except
that matrix blocks are used instead of numbers. A diagonal submatrix
corresponds to a nonzero number, which always has a unique inverse.

LemMa 5. Let T be as in Lemma 4. Then T has at most one triangular left
inverse.

Proor. Assume LT =1, Then

LUAITES] — ]

1
LEATOA = — Y LT, <,

r=j+1

Denote the (unique), diagonal, two-sided inverse of the diagonal matrix
T2 by (TTé#1)~1, Then the above two equations give us

LU = (TIe47)-1

Lliil — _ ( y L[z:r]r[r-a‘]) TV, <,
=i+l
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These are recursion cquations in j, which determine first LI+¢) and then
LI (j < ) in terms of Lol Llne 11 CL1w7 11 Hence there is at most one
solution for I, which can only cxist if all matrix products and sums above are

well defined.

LemMMA 6. Let A and B be two nonnegative f.v. block-column-finite matrices,
both indexed by the n-dimensional, or the infinite-dimensional terminating
coordinates. Assume there exists r 4 such that Ayy = 0 whenever y;, > x; + 14,
and likewise for B. Then C - AB has the same properties : it is nonnegative, f.v.,
block-column-finite, and there exists re such that Cyy == 0 whenever
Y1 > % + re. Thus any product of a finite number of such matrices is again
such a matrix, and in particular is f.v.

Proor. Let C = AB. Then

i+ry4
Cliol _ Z AlimlBIm.i],

m-0

Since each Al¢™1 and each Bl™:/1is column-finite, so is Cl*-7]. Thus, C is f.v.
and block-column-finite.

Finally, if j>¢+7,+ 75, then for m=0,1,..,i 474, we have
Blm.il == (), so

2T 4
Clial = Y AlimIBimal = 0,

m=0

Thus r, + 75 can serve as 7¢.
We are now ready to prove:

LemMA 7. Let T be a f.v., block-column-finite triangular matrix, indexed
by either the n-dimensional or the infinite-dimensional terminating coordinates. If
each T114s diagonal, then

1. T has a unique two-sided inverse C.

2. Cis fu., triangular, and block-column-finite and each CU:+1 is diagonal.

3. C is the unique right inverse of T.

4. C is the only left inverse of T which is triangular.

Note. Even if n = 1, C is not necessarily the unique left inverse of 7,
as we see from counterexample 4 in Section 12. The given matrix is block-
column-finite, where a number serves as a block.

Proor. By Lemma 4, if T is to have a right inverse C, C must be trian-
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gular. Hence a necessary and sufficient condition for a matrix C to be a right
inverse of T is

Ctil =0, >
TUACH) = ]
-1
— TEAICHI = ¥ TWHCH, >,

i=j

Since each T'T%] is diagonal, an equivalent set of conditions is

Cldl = (), j>i
CUal = (Thuly

i-1
Cll = — (Tl 3, THACES, i >, @

t=3

Since condition (2) is a set of recursion equations in 7, we can get at most
one solution for C. Let us prove that we do indeed get a solution, that is,
that each CU%7] is well-defined; simultaneously let us show that each Cli/1
is column-finite. Certainly each C[*71 { <, is well-defined and column-
finite. Assume inductively that CU7-7), CDiL1 :C [-1.7]1 are well-defined
and column-finite. Then since products and finite sums of column-finite
matrices are column-finite, so is Cl+7],

Since the matrix C we have constructed fulfills the hypothesis of the lemma,
C, by an identical argument, has a unique right inverse C’, which is f.v.,
triangular, and block-column-finite. Now, by the final conclusion of Lemma 6,
|[T|-|C|-|C"|is fv. So, T =T(CC") = (TC)C' = C".

The final conclusion follows from Lemma 5.

THEOREM 6. Let P be any block-column-finite n-k-s or w-k-s chain, and
assume that each PU+%) is diagonal. Then:

1. The R matrix associated with P has a unique two-sided inverse Q.

2. R and Q are f.v., triangular, and block-column-finite.

3. Q is the unique right inverse of R, and R is the unique right inverse of Q.

4. Q is the only left inverse of R which is triangular, and R is the only left
tnverse of Q which is triangular.

5. Pi=QSiR, i=0,1,2,...

Proor. Let us show that R fulfills the hypothesis of Lemma 7. R is f.v.
and triangular. R is also block-column-finite: since P is block-column-finite,
so is each P™, m = 0, 1, 2,..., by the final conclusion of Lemma 6. And, it is
easy to show that for i > j, R = (P™)Ind) i =mk -7, 0 <7 < k.
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Each Ri¢11s diagonal: automatically (by triangularity), Ryy > 0. And, if
0,X)-2£ (0, V), and i = mk = r, 0 < r < k, then

( H)
Ruz.6.1 = Pex),tmesr.p) — 0.

To show conclusion 5, we nced only show that P, O, R, and $* (£ == 0)
all freely associate. This is satisfied if all finite products among themselves
of P, |Q ', R, and S are again f.v. But this holds by Lemma 6,
where 7p -z 75 =k, and rz = r|g = 0.

Note that Theorem 3 holds for this class of chains also: we can carry the
proof over completely, with only one change—PLl™*7] has an inverse since
it is diagonal.

Surprisingly, unlike the row-finite case it is not necessarily true that the
matrix A of mean number of visits is given bv N -— OTR. A counterexample
is given in Section 12.

8. ANOTHER CLASS OF REPRESENTABLE #n-k-s CHAINS

In the previous section, we saw that n-%-s chains P are representable when
1. Each Pl»*%] js diagonal

2. P is block-column-finite,

Neither condition alone is sufficient, as the counterexamples in Section 12
show. Since condition 1 is so natural—it says that when the process takes its
maximum jump of k steps in the first coordinate, no other coordinate
changes—we seek another class of #n-k-s chains which are representable
because of this condition along with some other conditions. One such addi-
tional condition is

2. There exists d > 0 such that P; g), (4 %) == d. We can weaken this
condition even further to:

2. There exists a set of positive scalars {d,} such that P(; g) ¢4r.0) = d; -
All of these condition 2’s together are not sufficient unless we include con-

dition 1, as counterexample 3 in Section 12 shows.
We begin with two lemmas.

Levima 8. Let A and B be two nonnegative, f.v. matrices, both indexed
by the n-dimensional or the infinite-dimensional terminating coordinates. Assume :

1. There exists a set of nonnegative scalars {a;} such that the row sum of the
(i, X) row of A is less than or equal to a, , uniformly in X.

2. There exists a constant v, such that Ayy -: 0 whenever y, > %, — 7 4.
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Assume B also has a set of scalars {6;} fulfilling hypothesis 1, and a constant
rp fulfilling hypothesis 2.

Then C — AB has the same properties: C is nonnegative, f.v., and has a
set of scalars {c;} fulfilling 1, and a constant 7 fulfilling 2. Thus, the product
of any finite number of such matrices is again such a matrix, and in particular
is f.v.

Proor. Let C = AB. Then

itrgq
Clial = Y AlimBimo),

m=0

As in Lemma 6, r, | r5 can serve as rc. So 2 holds for C.
To show 1 holds for C, we need only show that there exists a set of scalars
{c,,} such that C[*71] < ¢;;1, since then we can set

1414
C; = Z Ciy »
=0

This will also show, of course, that C is f.v. Now

T+74
CU-l] = ) AUmIBima]] by nonnegativity

m=0
i+r4
< Y Aump,l
m=0
i+r4
< max{b,} Y, Alml]
m=0
< a4 max{b,,l}l,

where the maximum is taken over 0 < m <7 4 r,. We can let
¢;; = a; max{b,,}.

Lemma 9. Assume T is any f.v., triangular matrix indexed by either the
n-dimensional or the infinite-dimensional terminating coordinates, and assume
also that:

A. There exists a set {a;} of scalars, such that the row sum of the (i, X) row
of | T'| is less than or equal to a, , uniformly in X.
B. Each T is diagonal.

C.  There exists a set of positive scalars {b;}, such that b; < | T4 |yy for
all X,



518 FAGIN

Then:

1. T has a unique two-sided inverse C.

2. Cis fo. and triangular, and fulfills each of A, B, and C.
3. C is the unique right inverse of T.

4. Cis the only left inverse of T which is triangular.

Note. Again, Section 12 shows that C is not necessarily the unique left
inverse of T.

Proor. Asin Lemma 7, necessary and sufficient conditions for a matrix C
to be a right inverse of 7 are

Cliil = 0, i<j
Cliv] = (TTi1)-1
i—1

Clitl = — (TUa1)1 Y TUACHS],  § >, 3)

t=3

Since these equations are recursion equations in 7, we can get at most one
solution. The matrix C, if it exists, certainly fulfills hypothesis B and C:
Clit] = (T0i0)-1) which is diagonal; and,

1

< T gy = | CU2 | xx

1

a

Let us prove that equations (3) give us a well-defined solution C (i.e., that

each Cl%7] is well defined), and simultaneously, let us show that the matrix C

fulfills hypothesis A. Fulfilling hypothesis 4 is equivalent to there being

{a};} such that | Cl:-71| < a;;1. Now Cli+il = (T'1991)1 is well defined, and

satisfies this condition, with a; == 1/b,. Assume inductively that CI[7-1]

CU+LiY,,, Cli-L7] are all well defined and satisfy | CI"71| 1 < aj,1 for some

a,, < oo, Then, first, each T1&-m1CI"-/1, m < 4, is well defined, since we need
only show each entry of | 71im1 | | Clm.i1| is finite, for m < i.

(| TEm1 || Clmadl )y = ¥ | TLom] |, | Clmil |5y
zZ
<Yl T |z ap,
zZ
= apy Y| T |y
V4

’
< A
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Thus the finite sum

i—1
Z TLe1CI41

=i
is well defined, and therefore so is

i-1
— (Tt Z TLAC]

t=3

since (T is diagonal. Thus each CI%1 js indeed well defined, and so C
is well defined. And,

-1
| Cldl | — {(T[i.il)—l Y THACH l 1

=)
i-1
< (S (reayry ey cea)
=)

So, to finish off this induction, we need only show that there exists some
constant ¢ = (i, t, §) such that

[(TE)-1) | T CIB 1 Lel, jF<E<A
Now

| (TR || 01| G | 1 = | (T2 || T | (| T84 1)
< alﬁ l (T[i.i])—l | ‘ T[i.t] ‘ 1

< aja; | (T

N

aa 1
% T
b;

The induction is complete, and we have proven that T has a unique right
inverse C. This matrix C we have constructed fulfills all the hypotheses of
the lemma, as we proved, so C has a unique right inverse C’, which also
fulfills the hypotheses. By the final conclusion of Lemma 8, | T'| - | C| - | C'|
is f.v. Thus C' =(TC)C' = T(CC') = T.

Lastly, conclusion 4 follows from Lemma 3.

THEOREM 7. Let P be any n-k-s or w-k-s chain P with the following two
properties:
1. Each Pt} is diagonal.

2. There exists a set of positive scalars {d;} such that P ), (2.2 = %5
uniformly.

409/23/3-3
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Then:

I. The matrix R assoctated with P has a unique two-sided inverse Q.

2. Qi fo., triangular, and there is a set { f,} of positive scalars, such that
the row sum of the (i, X) row of Q is less than or equal to f, , uniformly.

3. Qs the unique right inverse of R, and R is the unique right inverse of Q.

4. Qs the only left inverse of R which is triangular, and R is the only left
inzerse of Q which is triangular.

5. Pr=08R, i=01,2,...

Proor. To prove conclusions [-4, we need only show that R fulfills
hypotheses 4, B, and C of Lemma 9. Then we can apply the results of Lem-
ma 9 to O also.

A, Setag, =1
B. This follows, as in the proof of Theorem 6.
C. Ifi == mk 4 r, then it is easy to show that we can set

bi = dr dk+r d(m-—l)lr—r .

To prove conclusion 5, we need only show, as in Theorem 6, that P, | O |,
R, and S fulfill the hypotheses of Lemnma 8. The {a,} of part 1 exist for Q|
by conclusion 2 of this theorem, and a; — 1 for P, R, and S. As for part 2:
o —rg=—0,andrp —r¢==r

Theorem 3 applies to this class of chains, with the same modification in
the proof as in the previous section.

Finally, as in the row-finite case (but unlike the block-column-finite case),
the matrix 2\ is given by N = QTR. To show this, first note that cach column
of TR is uniformly bounded, as the last paragraph of Section 3 shows. Then,
Q! has finite row sums, we have

since
N —lmQT™R
n
= Q lim "R by dominated convergence and the above remarks
n

== Q(1'R) by monotonicity
= QTR since Q| TR is f.v., by the above remarks.

9. SuMs OF VLCTOR-VALUED INDEPENDENT RANDOM VARIABLES

By renumbering the states we can turn many Markov chains into repre-
sentable n-k-s chains. Various classes of sums of independent random
variables are of this tvpe. For example, wc can represent sums of #-dimen-
sional or infinite-dimensional vector-valued (with integral entries) independ-
ent random variables, with the following restrictions: in S, = X; + ++ - X;
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(where each X, is identically distributed), X, can only take on a finite number
of values in the first coordinate; when X, takes on its maximum a or its
minimum b in the first coordinate, all the other coordinates must be 0. 'T'he
valucs @ and b must not, of course, both be 0. And, in the infinite-dimensional
case, we must also add that each value of X, has 0’s in all but a finite number
of cntries. Then after renumbering the states, we will have an n-k-s or w-k-s
chain of the type in Section 8. The mcthod of renumbering, which is done
in [2], is as follows. If a >> 0 and b < 0, then let ¢ == — b, and renumber the
first coordinate of the statcs as follows:
ol,.,a—1,—1,—2,.,—¢aa+1,.,
2a —1,—c—1,—¢c—2,., — 2¢2a,2a + 1,....

Then & = a + ¢. If b > 0, do not renumber the first coordinate of the states;
then £ =a. If a <0, renumber the first coordinate of the states
0, — 1, —2,..;then 2 — | b | . And in all cases, renumber the other coordi-
nates 0,1, — 1,2, — 2,3, —3,....

The tnost famous such chains arc the n-dimensional random walks. By
other renumbcring schemes, we can represent reflecting random walks.

10. A SEMI-REPRESENTATION FOR THE MOST GENERAL DENUMERABLY
InFINrTE MARKOV CHAIN

Because of the great freedom which an #-k-s chain has in all but one
dimension, the reader may have already anticipated a thecorem of the type
we are about to prove.

By PF we mean the process which is obtained by watching a Markov chain
only when it enters a given set of states E. PZ is easily proven (in [1]) to be a
Markov chain in its own right.

TaeoreM 8. Any Markov chain A with a countably infinite number of
states is of form PE, where E == {(0, 0), (0, 1), (0, 2),...}, with P a representable
2-1-s chain of the type in Section 8.

Proor. Without loss of generality, let 4 be indexed by the natural
numbers.
Define

~

I
RSj DO K

'S
OO Or=
O

1
17

L O O K=

% A, 1, and 0 are being used as basic submatrices.
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P can be considered as being of form

‘ k E
ot )

by E we mean the set of all states excluding thosc in E. Thus M, is indexed
down by all states in E, and across by all states not in E, etc. It is proven in [1]
that PE then equals M, — M, (3 o (M,)") M, . So, in this case,

0 i]ZI m }A

=10 0 LI $ 4

E _. 1 2 2

PE=3A+@GI 0 0 ) mz=o 00 0 4 14
3 A
14
—3AFQI 3T 3 &1 )|

—34+iA+ A+ A+
= A.

Note that A4 is the process obtained by projecting P on the x,-axis and
watching the process only when it changes x,-values. After projection, the
process changes x,-values with probability one, since the probability that it
does not is equal to (§) (3} (3)(}) - =0.

Certain properties which have a simple formula for a representable P
can be used to give information about .4 == PE. For example, if 7,je E
then N,; is the same whether computed for A or for P. The same is true for
other quantities, such as “hitting probabilities.” So, if such a quantity is
obtainable from the representation in some way, then it can thus be obtained
for the most general Markov chain 4. It is, however, not clear whether this
is a useful technique.

11. Apvancing CHAINS

We can generalize row-finite n-k-s chans to get an even larger class of
representable chains. An n-dimensional advancing chain is a row-finite Markov
chain with states the n-dimensional coordinates, and which has associated
with it a function f defined on the states, with the following properties:

1. Py, >0 and Pgy =0 for ¥ > f(X). That is, f(X) tells the
largest state that the process can move to in one step from X.
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2. fis strictly monotone increasing. That is, X < Y implies f(X) < f(Y).
3. f(X) > X for every X.

Note that even when » = 1, this is still a generalization of 1-k-s chains.
Define the matrix S, which is indexed by the n-dimensional coordinates,
by Syy = 8y s(x) - Note that S? is still extremely simple to find:

Sf\'Y = SX,j(i)(X) s
where f @(X) = f(f(X)), etc.

Now let us define the matrix R, which is again indexed by the #-dimensional
coordinates. Denote the set of states by C. Set

Oxy, X ¢f(C)
Ry = Z RzwPwy, X = f(Z). )
w

Since 0 ¢ f(C), the Oth row of R is certainly well defined. If X = f(Z), then
Ryy is well defined, since X > Z, and so the Xth row of R is defined only in
terms of an earlier row.

By construction, RP = SR, since

(RP)ZY = Rf(z),Y = z SzwRwy = (SR)ZY .
W

Let us show that R is f.v., row-finite, and triangular. The Oth row of R
is all right (i.e., such as to make R f.v., row-finite, and triangular). Assume
inductively that for all U < X, the Uth row of R is all right. Then let us
show that the Xth row of R is all right. This is certainly the case if X ¢ f(C).
So assume X ¢ f(C). Write X = f(Z). For each Y, Ryy is finite, since Ryy
is defined in (4) as a finite sum of finite numbers by induction hypothesis,
since Z < X.

Let

Sy ={W | Rzw >0}
Sy, ={Y | Pyy > 0 for some W e S;}.

By induction hypothesis, S, is a finite set. Since P is row-finite, S, is also a
finite set. Then Ryy = O unless Y € S, , so the Xth row of R has a finite
number of nonzero entries.

We need now only show triangularity to complete the induction.
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RXX - Z R/.WPW,J(/)
W

- Z R,ywlw. sy by induction hypothests, since VRGN
W
“ Ry, since Pyizy -0 for .z

- {) by induction hypothesis.
Lastly, if ¥ > X == f(Z), then

RXY == Z RZWPWY - 0,
w z

since

Pyy=0 forall Y >f(Z)>f(W)

Lemma 2 now holds for R, and so P fulfills the conclusions of Theorem 1
and 3. In particular, for every i, P .- QS‘R.

12. Five COUNTEREXAMPLES

Before presenting the countcerexamples, let us first prove a lemma.

Lemma 10. If a f.o. triangular matrix T which is indexed by the n-dimen-
stonal coordinates has a right inverse Ty, T, is triangular. Further, the only
solutionto TA = 0is 4 .= 0.

Proor. By induction on n. The lemma is true for # =- 1: by Lemma 2,
T has a unique right inverse 73, which is triangular, and which is also a left
inverse of 7. And, T4 == 0 implies

0 = T(TA) = (T, T) 4 — A.

Assumc inductively that the lemma is true for dimension r — 1, where
n > 1. Then in terms of basic submatrices, 77T, -= I becomes

i
Z rl‘[z,s]Tlfe,J] = 8”1.
s—0

Each 7171 can be considered as being indexed by the (r — 1)-dimensional
coordinates. From 71T/ =3 I we have by induction hypothesis
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that 7% is triangular, and that 71’1 = 0 whenj >> 0. Thus all submatrices
TI%] are all right (i.e., such as to make T triangular). Assume inductively
that all submatrices 71", r =0, I,...,m — l and ¢ — 0, I, 2,... arc all right.
Then if y = m,

8y = Z T[nl,s]Tl(s.u] = T[m.m]TI[m.u]’

sim

since by induction hypothesis, T} = 0 for s < m < y. Thus by induction
hypothesis, cach T[™?! is all right.

Lastly, if T4 = 0, then T[0:0141%] —= 0, so A['?] = 0 for all 7. And, if
Alrtl = Oforallr < mand for all , then TTm-m1 4.4 = (), and so Al™-21 ._Q

for all 7.

CouNTEREXAMPLE [. A simple example of a triangular matrix indexed
by the 2-dimensional coordinates which has no right inverse.
Let

—
—
—

E=

e e
L e e T
Pt et
ot et ) p—

Then AB =1, and by Lemma 2, B is the unique right inverse of 4. Set

A

E 4
T=QyEFE E 4

F E E A

By Lemma 10, if T has a right inverse T, T} is triangular. So, the basic
submatrix in the upper left corner of T; would be B. But then T'T; involves
the product EB, which has all infinite entries, a contradiction.

COUNTEREXAMPLE 2. A 2-1-s chain P with each P[i+11 diagonal, but
whose R matrix does not have a right inverse.
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Define:
P(o,o) Yy = 3}’.(1,0)
5, Y =1(0,0)
Pug= (s O 720D
. 5 2 a! = {l,a
(a=1,2,3,..) 0 otherwise
1, Y=(,0)
Puo.y = {3 Y=(l,a, a=012,.
0 otherwise

P(a,b).Y = 8}',(a+1.b)

(a=1landb >=1,0ra > 2).
From our recursive definition of R, we easily find:

RI0.0] —
R[:1] js diagonal with (R[*:1]),; = (})

(REAT), = (1 — 8i)

(REAT, = (3. %)

Assume now R has a right inverse Q. Q is triangular, by Lemma 10. From
RO =1, we get:

Qroo) — g, R0L0IC10.0] L RILLQILO] — ()

RI2.0]Q10.0] - RI21]QI1.0] RI22]Q12.0] = ( (6)

From the first two of Egs. (6), — R[:01 = RIL1IQN0I, Since R[] is
triangular and row-finite, Q1101 = — (RI[}.1])-1 R[1.0L, So the third equation
becomes

RI2.0] _ RI21}(RIL1])-1 R(1.0)) 4 RI221Q[2.0] — 0, )

When we use Egs. (5) to obtain the entry in the Oth row and Oth column
of the matrix Eq. (7), an infinite entry appears, which is a contradiction.

COUNTEREXAMPLE 3. A 2-1-s chain P which is column-finite and which
fulﬁlls Pz, 2. (z41.2) = &, but whose R matrix does not have a right
inverse,
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Define

, Y = (0,0)

P(O.O)Y= %, Y=(1,0)
0 otherwise
3, Y= (0,0)
1 =] —_

P(O,a),Y == 2 ’ )I;:: S” Z) 1)

(@=123.) 0 otherwise

:12, > Y = (2, 0)

Py,0.y = {(B)°1, Y =(1, a), a=1,2,3,..
0 otherwise

Py, y = 8y, (at1.0) (a=1landbd=10ra>=2)

We easily find that:

R1.0] — %I
(R[z'll)o.i = (§)i+2
i, i=j=0
1 i+1=i>1
pay, — 3> I =
(R )zi %’ ]= : > 1
0 otherwise.

By Lemma 2, RI*11 has a unique two-sided inverse, which is triangular.
(RILA)0 = (— 1)f2#1, as we can easily show by induction on i.

Now assume that R has a right inverse Q. By Lemma 10, Q is triangular.
Equation (7) of the previous counterexample holds, just as before. But

RIZI((RIL)-1 RILO)) = 1 RIZAIRILI-L,
which is undefined in the upper left entry.
COUNTEREXAMPLE 4. A nonnegative triangular matrix indexed by the

natural numbers with more than one left inverse.
This example will also have row sums less than one.

Define
(%1, @ odd and b < a, or a even and b even and b < a
T = {(3)%, a even and b odd and b < a
0, b>a
— 2M-2)2
v, 2 R b even

P 20-bR b odd,
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Then T is triangular and of course row-finite, so it has a left inverse 75 by
Lemma 2. Tt 1s easy to check that F'7" = 0. llence 7 — 7 is a second left
inverse of 7.

COUNTEREXAMPLE 5. A representable transient 2-1-s chain for which
NZQITR.

We will show that N -~ Q(TR) and also N 34 (QT) R for this chain.

Define P as follows:

L= e, Y=(0q)
Pyao.r= ()", Y = (1, a)
(a=0,1,2,...) {0 otherwise
()2, Y =, a), a=1273,..
Pyoy= {3}, Y =(2,0)
0 otherwise

P(l,a).Y = 8(z,u).Y
(@==1,2,3,.)

ala + 2
:éiﬁg Y = (a +1,0)
Puoy = -0 Y <(a-}1,0) (This is obviously possi-
(a=2,34..)1" 0» a4 1.0) ble to bring about, and
—0 “ @t L0 it sy Py =1)
S b>a
P, = | o¥bbe -
B et (A et SU VRS
(b__1)2)3,-..) J2-, V- (0 O) and b<a
i Y otherwisc.

It is straightforward to check that P is a 2-1-s chain of the type in Section 7,
and with all row sums unity. One can also check that (0, 0) communicates
with every state, and so all states communicate. To show that all states of P
are transient, we need only to show that (0, 0) is transient, since all states
communicate. Now the chain, starting in (0, 0), can “drift off to infinity”
along the x;-axis: that is, from (0, 0) the process can move to (1, 0), and from
there to (2, 0), and from there to (3, 0), ctc., with probability

(2) (z) %=

'The infinite product is easily shown to converge to ¥ > 0,
p ¥ 3
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Now let us show that N # Q(TR) and N 52 (QT) R. The basic submatrix
(assuming it exists) (Q(TR))!?-*1 must equal

Ql2-0](TR)l0'0] - Ql2-1](TR){1‘01 + Q(Z‘Z](TR)[Z-OI_
So to show that the f.v. matrix N does not equal Q(T'R), we necd only show

that there is an infinite entry in

QRAYTRYLO - Ql2:1] (Z R[m]) )
k=1 /

Lét us now show that this condition is also sufficient to prove that

N#(QT)R. :
Assuming it exists, the basic submatrix ((QT) R)!2-%1 is easily shown to
equal

Q[2.0] + (Q[2,0] _I_Q[_Z.l]) R[I.O] + i ((Q[ZO] _!,_ Q[_2.1] _} Q[Z,E]) R[I.‘,O]).
k=2

Since each QI*7] and RI*’} is column-finite (by Theorem 6, conclusion 2),
we can distribute in the previous expression. Hence, we can reach our contra-
diction if we can show that

i Q[2-1]RUC-0] (8)
k=1

has an infinite entry. By “solving” RQ =: I, and freely associating and distri-
buting by column-finiteness of the basic submatrices, we get

= Q[2»1] = (R[2s2])—1 R[2-2J(R[1-1])—1 > 0.

So we can distribute in (8) by nonnegativity (the minus sign can be pulled
outside), and to show that NV 3= (QT) R, we now need only show that

Q21 i RIk0] )

k=1

contains an infinite entry. As promised, this is precisely the condition we
found as sufficient to prove that N =% Q(TR).
Index Q[21] and each RI*7] by the natural numbers. Then

(Q[Z'll)o.a = — ((R[2-2])*1 R[2-1](R[1-1])—1)0'u
= — ((RE21)1)g o (RB:H)g 5 (RT11)7), 4
= — (4) ((3)*+?) (29+1), as simple calculations show

:——2’

where the second equality follows since (R[2:21)~! and (R[(11)~1 are diagonal.
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Now

(k) - N
P(().a).((),o) = N (0.0),60,0) ™ 0. ¢y -

( 72 er-.o])

«,0 k=1

So, the entry in the Oth row and Oth column of (9) is

—2(No.o.00 — 1) —2 3 N.a. 6.0

a=X
0
= 2(N(o.o).(o,o) —1)— 2N(o.o).(o.o) Z H,0),(0.0)>
a-1
where Hyy is the probability that the process, starting in state X, eventually
reaches state Y. We are clearly through if we now show that

H.0).0.00 = 3, az3.

With probability one, the process moves from (0, @) to (1, 4) in a finite
number of steps, since the probability that it does not is the probability that it
remains at (0, @) at every stage, which is

R

From (1, a) the process moves deterministically to (2, ), from (2, a) deter-
ministically to (3, a),..., and then deterministically to (, &), and then to (0, 0)
on the next step with probability % . So H g 4),(0.0) = % » and we are through.
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