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Abstract. Mappings between different representations of data are the
essential building blocks for many information integration tasks. A schema
mapping is a high-level specification of the relationship between two
schemas, and represents a useful abstraction that specifies how the data
from a source format can be transformed into a target format. The de-
velopment of schema mappings is laborious and time-consuming, even
in the presence of tools that facilitate this development. At the same
time, schema evolution inevitably causes the invalidation of the exist-
ing schema mappings (since their schemas change). Providing tools and
methods that can facilitate the adaptation and reuse of the existing
schema mappings in the context of the new schemas is an important
research problem.
In this chapter, we show how two fundamental operators on schema
mappings, namely composition and inversion, can be used to address the
mapping adaptation problem in the context of schema evolution. We il-
lustrate the applicability of the two operators in various concrete schema
evolution scenarios, and we survey the most important developments on
the semantics, algorithms and implementation of composition and inver-
sion. We also discuss the main research questions that still remain to be
addressed.

1 Introduction

Schemas and schema mappings are two fundamental metadata components that
are at the core of heterogeneous data management. Schemas describe the struc-
ture of the various databases, while schema mappings describe the relationships
between them. Schema mappings can be used either to transform data between
two different schemas (a process typically called data exchange (Fagin et al,
2005a) or data translation (Shu et al, 1977)) or to support processing of queries
formulated over one schema when the data is physically stored under some other
schemas (a process typically encountered in data integration (Lenzerini, 2002)
and also in schema evolution (Curino et al, 2008)).
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Fig. 1. Application of composition and inversion in schema evolution.

A schema mapping is typically formalized as a triple (S,T, Σ) where S is a
source schema, T is a target schema, and Σ is a set of dependencies (or con-
straints) that specify the relationship between the source schema and the target
schema. Schema mappings are necessarily dependent on the schemas they relate.
Once schemas change (and this inevitably happens over time), the mappings be-
come invalid. A typical solution is to regenerate the mappings; however, this
process can be expensive in terms of human effort and expertise, especially for
complex schemas. Moreover, there is no guarantee that the regenerated map-
pings will reflect the original semantics of the mappings. A better solution is to
provide principled solutions that reuse the original mappings and adapt them to
the new schemas, while still incorporating the original semantics. This general
process was first described in (Velegrakis et al, 2003), which called it mapping
adaptation and also provided a solution that applied when schemas evolve in
small, incremental changes. In this paper, we describe a more general formaliza-
tion of the mapping adaptation problem where schema evolution can be specified
by an arbitrary schema mapping. Under this formalization, which is in the spirit
of model management (Bernstein, 2003), the new, adapted mapping is obtained
from the original mapping through the use of schema mapping operators.

The two operators on schema mappings that we need to consider are com-
position (Bernstein et al, 2008; Fagin et al, 2005b; Madhavan and Halevy, 2003;
Nash et al, 2005) and inversion (Arenas et al, 2008; Fagin, 2007; Fagin et al,
2008b, 2009b). These operators turn out to be quite fundamental, with many ap-
plications in metadata management (Bernstein, 2003) and for schema evolution.
In particular, the two operators of composition and inversion provide a princi-
pled way to solving the problem of adapting a schema mapping when schemas
evolve. We will use Figure 1 to describe, at a high-level, the operators of com-
position and inversion, and their application in the context of schema evolution.
First, assume that we are given a schema mapping M (the “original” schema
mapping) that describes a relationship or a transformation from a source schema
S to a target schema T. In order to “reuse” the original schema mapping M
when schemas evolve, we need to handle changes in either the target schema or
the source schema.
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Target schema evolution. Assume that the target schema evolves to a
new target schema T′, and that we model this evolution as a schema mapping
M′ from T to T′. Intuitively, M′ is a new data transformation that converts
instances of T to instances of T′. Note that generating such M′ is an instance
of the general schema mapping creation problem and can be done manually or
with the help of tools such as Clio, described elsewhere (Fagin et al, 2009a).
Based on M and M′, we can then obtain a new mapping from S to T′ by
applying the composition operator. Composition operates, in general, on two
consecutive schema mappings M and M′, where the target schema of M is the
source schema of M′. The result is a schema mapping M ◦ M′ that has the
same effect as applying first M and then M′. For our schema evolution context,
M ◦ M′ combines the original transformation M with the evolution mapping
M′.

Source schema evolution. Assume now that the source schema evolves to
a new source schema S′′, and that we model this evolution as a schema mapping
M′′ from S to S′′. Intuitively, M′′ represents a data transformation that converts
instances of S to instances of S′′. We need to obtain a new schema mapping that
reflects the original schema mapping M (or rather M◦M′ after target schema
evolution) but uses S′′ as the source schema. Note that in this case we cannot
directly combine M′′ with M◦M′ via composition, since M′′ and M◦M′ are
not consecutive. In order to be able to apply composition, we need first to apply
the inversion operator and obtain a schema mapping M† that “undoes” the
effect of M′′. Once we obtain a suitable M†, we can then apply the composition
operator to produce M† ◦M◦M′. The resulting schema mapping, which is now
from S′′ to T′, is an adaptation of the original schema mapping M that works
on the evolved schemas.

While the composition of two schema mappings (under a fairly natural se-
mantics (Fagin et al, 2004; Melnik, 2004)) always exists and it is “only” a matter
of expressing the composition in a suitable language for schema mappings, the
situation is worse for inversion. In general, a schema mapping may lose informa-
tion and, as a result, it may not be possible to revert the transformation in a way
that recovers the original data. Hence, an exact inverse (Fagin, 2007) may not
exist, and one needs to look beyond such exact inverses. As a result, there are sev-
eral notions of “approximations” of inverses that have recently been developed:
quasi-inverses (Fagin et al, 2008b), maximum recoveries (Arenas et al, 2008),
maximum extended recoveries (Fagin et al, 2009b). In this paper, motivated by
the applications to schema evolution, we take a more pragmatic approach to the
treatment of the various notions of inverse and emphasize the operational aspect
behind them. In particular, we focus on two types of inverses, which were first
introduced in (Fagin et al, 2009b) and which have a clear operational semantics
based on the notion of chase that makes them attractive from a practical point of
view. The first type of such operational inverses, which are called chase-inverses,
can be used to recover the original data (without loss) via the chase. In general,
this recovery is up to homomorphic equivalence due to the presence of nulls;
in the ideal case when the original source instance is recovered exactly, we call
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the chase-inverse an exact chase-inverse. The second type of operational inverses,
which we call relaxed chase-inverses3, are relaxations of chase-inverses that work
in situations where there is information loss and, hence, chase-inverses do not
exist. Intuitively, a relaxed chase-inverse recovers the original source data as well
as possible.

In this chapter, we use various concrete examples of schema evolution to
illustrate the main developments and challenges behind composition and inver-
sion and their applications to schema evolution. We note that we are focused
here on composition and inversion; a companion book chapter (Hartung et al,
2010) will give a separate overview of the schema evolution area in general. In
our survey, we illustrate the concept of composition, and then discuss the two
flavors of operational inverses mentioned above. At the same time, we discuss
the languages in which such composition and inversion can be expressed. In the
context of the schema evolution scenarios that we consider, these languages vary
in complexity from GAV schema mappings to LAV and GLAV schema mappings
(the latter are also known as source-to-target tuple-generating dependencies, or
s-t tgds (Fagin et al, 2005a)) and then to mappings specified by second-order
(SO) tgds (Fagin et al, 2005b). During the exposition, we will proceed from
simpler, easier scenarios of schema evolution to more challenging scenarios, and
illustrate how composition and inversion techniques can be put together into a
framework that deals with schema evolution problems.

In a separate section, we examine in detail two systems that implement one
or both of the above schema mapping operators in order to deal with aspects
of schema evolution. The first one is an implementation of mapping composi-
tion (Yu and Popa, 2005) that is part of the Clio system, is based on the second-
order tgds introduced in (Fagin et al, 2005b) and is specifically targeted at the
problem of mapping adaptation in the context of schema evolution. The second
system is the PRISM workbench (Curino et al, 2008) for query migration in the
presence of schema evolution. This system is based on query rewriting under
constraints and in particular on the chase and backchase framework (Deutsch
et al, 1999). However, before it can apply such query rewriting, the PRISM sys-
tem needs to implement both mapping composition and inversion. The notion
chosen here for inversion is based on quasi-inverses (Fagin et al, 2008b).

We end the paper with a discussion of the main open research questions that
still remain to be solved. Perhaps the most important open issue here is to find
a unifying schema-mapping language that is closed under both composition and
the various flavors of inverses, and, additionally, has good algorithmic properties.

3 These were introduced in (Fagin et al, 2009b) under a different name: universal-

faithful inverses. However, the term relaxed chase-inverses, which we use in this
paper, is a more suggestive term that also reflects the relationship with the chase-
inverses.
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2 Preliminaries

A schema R is a finite sequence 〈R1, . . . , Rk〉 of relation symbols, where each
Ri has a fixed arity. An instance I over R is a sequence (RI

1, . . . , R
I
k), where

each RI
i is a finite relation of the same arity as Ri. We shall often use Ri to

denote both the relation symbol and the relation RI
i that instantiates it. We

assume that we have a countably infinite set Const of constants and a countably
infinite set Var of labeled nulls that is disjoint from Const. A fact of an instance
I (over R) is an expression RI

i (v1, . . . , vm) (or simply Ri(v1, . . . , vm)), where Ri

is a relation symbol of R and v1, . . . , vm are constants or labeled nulls such that
(v1, . . . , vm) ∈ RI

i . The expression (v1, . . . , vm) is also sometimes referred to as
a tuple of Ri. An instance is often identified with its set of facts.

A ground instance over some schema is an instance such that all values
occurring in its relations are constants. In general, however, instances over a
schema may have individual values from Const ∪ Var; thus, some of the values
in the instances may be nulls representing unknown information. Such (non-
ground) instances naturally arise in data integration, data exchange and also
schema evolution. We will see examples of instances with nulls all throughout
this paper.

Next, we define the concepts of homomorphism and homomorphic equiva-
lence, which we use frequently throughout this paper. Let I1 and I2 be instances
over a schema R. A function h from Const ∪ Var to Const ∪ Var is a homomor-
phism from I1 to I2 if for every c in Const, we have that h(c) = c, and for
every relation symbol R in R and every tuple (a1, . . . , an) ∈ RI1 , we have that
(h(a1), . . . , h(an)) ∈ RI2 . We use the notation I1 → I2 to denote that there is a
homomorphism from I1 to I2. We say that I1 is homomorphically equivalent to
I2 if I1 → I2 and I2 → I1, and we write this as I1 ↔ I2.

Schema mappings A schema mapping is a triple M = (S,T, Σ), where S is
a source schema, T is a target schema, and Σ is a set of constraints (typically,
formulas in some logic) that describe the relationship between S and T. We
say that M is syntactically specified by, or, expressed by Σ. Furthermore, M is
semantically identified with the binary relation:

Inst(M) = {(I, J) | I is an S-instance, J is a T-instance, (I, J) |= Σ}.

We will use the notation (I, J) ∈ M to denote that the ordered pair (I, J)
satisfies the constraints of M; furthermore, we will sometimes define schema
mappings by simply defining the set of ordered pairs (I, J) that constitute M
(instead of giving a set of constraints that specify M). If (I, J) ∈ M, we say
that J is a solution of I (with respect to M).

In general, the constraints in Σ are formulas in some logical formalism. In
this chapter, we will focus on schema mappings specified by source-to-target
tuple-generating dependencies.

An atom is an expression of the form R(x1, ..., xn), where R is a relation
symbol and x1, . . . , xn are variables that are not necessarily distinct. A source-
to-target tuple-generating dependency (s-t tgd) is a first-order sentence ϕ of the
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form

∀x(ϕ(x) → ∃yψ(x,y)),

where ϕ(x) is a conjunction of atoms over S, each variable in x occurs in at
least one atom in ϕ(x), and ψ(x,y) is a conjunction of atoms over T with
variables in x and y. For simplicity, we will often suppress writing the universal
quantifiers ∀x in the above formula. Another name for s-t tgds is global-and-
local-as-view (GLAV) constraints (see (Lenzerini, 2002)). They contain GAV
and LAV constraints, which we now define, as important special cases.

A GAV (global-as-view) constraint is an s-t tgd in which the right-hand side
is a single atom with no existentially quantified variables, that is, it is of the
form

∀x(ϕ(x) → P (x)),

where P (x) is an atom over the target schema. A LAV (local-as-view) constraint
is an s-t tgd in which the left-hand side is a single atom, that is, it is of the form

∀x(Q(x) → ∃yψ(x,y)),

where Q(x) is an atom over the source schema4.

We often write a LAV schema mapping to mean a schema mapping speci-
fied entirely by LAV s-t tgds. A strict LAV schema mapping is a LAV schema
mapping where it is specified entirely by strict LAV s-t tgds. Similarly, a GAV
schema mapping (respectively, GLAV schema mapping) is a schema mapping
specified entirely by GAV s-t tgds (respectively, GLAV s-t tgds).

Chase The chase procedure has been used in a number of settings over the years.
Close to our area of interest, the chase procedure has been used in (Fagin et al,
2005a) to give a natural, operational semantics for data exchange. Specifically,
in data exchange, if M is a fixed schema mapping specified by s-t tgds, then
the chase procedure can be used to compute, given a source instance I, a tar-
get instance chaseM(I) for I that has a number of desirable properties. First,
chaseM(I) is a universal solution (Fagin et al, 2005a) of I with respect to the
schema mapping M. Universal solutions are the most general solutions that one
can obtain for a given source instance I with respect to M in the sense that a
universal solution has homomorphisms into every solution of I with respect to
M. Second, chaseM(I) is computed in time bounded by a polynomial in the size
of I.

There are several variants of the chase procedure. Here, we will consider the
variant of chase described in (Fagin et al, 2005a). The chase on I with a schema
mapping M produces a target instance, denoted as chaseM(I), as follows: For
every s-t tgd

∀x(ϕ(x) → ∃yψ(x,y))

4 A stricter version of LAV s-t tgds, where no repeated variables in the left-hand side
Q(x) are allowed and all variables in x appear in the right-hand side, is also used in
literature. We refer to this type of LAV s-t tgds as strict LAV s-t tgds.
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in Σ and for every tuple a of constants from the active domain of I, such that
I |= ϕ(a), if there does not exists a tuple b of constants or labeled nulls, such that
ψ(a,b) exists in chaseM(I), then we add to chaseM(I) all facts in ψ(a,N) where
N is a tuple of new, distinct labeled nulls interpreting the existential quantified
variables y. We sometimes say that M has been applied to I to produce chaseM(I)
to mean that I has been chased with M to produce chaseM(I).

We end this section by giving two examples of the chase in action. Variations
of the schemas and the mappings used in these examples will appear throughout
the paper. First, let M1 be a LAV schema mapping specified by:

Takes(n,m, co) → ∃s(Student(s, n,m) ∧ Enrolled(s, co))

Here, we assume that the source schema has a ternary relation symbol Takes
and the target schema has two binary relation symbols, Student and Enrolled.
The mapping takes input tuples of the form (n,m, co) in Takes, where n repre-
sents a student name, m represents a major for the student and co represents a
course that the student takes. For each such input tuple, the mapping asserts the
existence of two target tuples: a tuple (s, n,m) in Student, and a tuple (s, co)
in Enrolled. These tuples are related by the fact that the same student id s

occurs in both.
Let I be the source instance consisting of the following two facts:

Takes(John,CS,CS101),
Takes(Ann,Math,MATH203).

The chase of I with M1 will then produce a target instance J that consists of
the following four facts:

Student(N1, John,CS), Enrolled(N1, CS101),
Student(N2, Ann,Math), Enrolled(N2,MATH203).

In the above instance,N1 andN2 are nulls (representing student ids for John and
Ann, respectively). The chase of I with M1 works by exhaustively determining
facts in the source instance that can “trigger” the s-t tgd in M1 to generate new
target facts. The first fact in I, namely, Takes(John,CS,CS101), triggers the s-t
tgd in M1, resulting in the addition of two target facts: Student(N1, John,CS)
and Enrolled(N1, CS101). Observe that this chase step instantiates the exis-
tentially quantified variable s in the tgd with the null N1, which effectively
associates the newly created Student and Enrolled facts together. Similarly,
the second source fact also triggers the s-t tgd in M1 to generate two target
facts: Student(N2, Ann,Math) and Enrolled(N2,MATH203). After this, no
other source facts could trigger the s-t tgd in M1 to generate new target facts.
Hence, the chase terminates with the target instance that consists of the above
four facts.

As another example, let M2 be a GAV schema mapping specified by:

Student(s, n,m) ∧ Enrolled(s, co) → Takes′(s, n, co)
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This schema mapping combines information in Student and Enrolled into the
Takes′ relation. Observe that Takes′ contains information about student ids,
name, and courses (as opposed to name, major, and course in Takes). Suppose
I consists of the following facts:

Student(111, John,CS), Enrolled(111, CS101),
Student(111, John,Math), Enrolled(111,MATH101).

The chase of I with M2 will produce the following target instance:

Takes′(111, John,CS101),
Takes′(111, John,MATH101).

The source facts Student(111, John,CS) and Enrolled(111, CS101) together
trigger the s-t tgd in M2 to produce Takes′(111, John,CS101). In addition, the
source facts Student(111, John,Math) and Enrolled(111,MATH101) trigger
the s-t tgd in M2 to produce Takes′(111, John,MATH101) in the target. After
this, even though the source facts Student(111, John,CS) and Enrolled (111,
MATH101) also trigger the s-t tgd in M2, this chase step is not taken since the
target fact Takes (111, John, MATH101) already exists in the target instance.
It is easy to observe that no other source facts would trigger the s-t tgd in
M2, and hence J is the result of the chase. Also note that, as opposed to the
previous example, there is no need to generate nulls in the target, since M2 has
no existentially quantified variables (i.e., it is a GAV mapping).

3 An Ideal Scenario of Evolution

We start our exposition of the application of composition and inversion to schema
evolution, by considering first a relatively “simple” example of schema evolution.
For this section, we will refer to the schema evolution scenario that is graphically
illustrated in Figure 2.

We first assume the existence of a schema mapping M from a source schema
S, consisting of one relation Takes, to a target schema T, consisting of two
relations Student and Enrolled. The Takes relation contains tuples relating
student ids with their majors and the courses they take. According to the map-
ping M, each tuple of Takes is split into two tuples, one in Student and the
other in Enrolled, that share the same sid value. Formally, the schema mapping
is given by the following two assertions:

M : Takes(s,m, co) → Student(s,m)

Takes(s,m, co) → Enrolled(s, co)

Note that M is an example of both a GAV mapping and a (strict) LAV map-
ping. Also note that in this example we have a variation of the earlier M1

(in Section 2); in this variation, the sid value in the target is not existentially
quantified, but instead it is copied directly from the source relation Takes.

We next address the issues of schema evolution, starting with the target
schema first.
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Fig. 2. Our first scenario of schema evolution.

3.1 Target Evolution: GAV-GLAV Composition

Let us assume that the target schema evolves to a new schema T′ consisting
of one relation Takes′ that combines all the attributes in T (i.e., sid, major,
course) and further includes an extra grade attribute. Moreover, assume that
the evolution mapping from T to T′ is:

M′ : Student(s,m) ∧ Enrolled(s, co) → ∃G Takes′(s,m, co,G)

In contrast to the original mapping M, the above M′ is an example of a more
general GLAV mapping: it is neither LAV (since there is more than one atom
on the left-hand side) nor GAV (since there is an existential quantifier on the
right-hand side).

Before we can show how to adapt the mapping M to the new target schema,
we formally state what composition means.

Definition 1. (Composition of Schema Mappings (Fagin et al, 2005b))
Let M12 = (S1, S2, Σ12) and M23 = (S2,S3, Σ23) be schema mappings such
that the schemas S1, S2, and S3 have no relation symbol in common pairwise. A
schema mapping M13 = (S1,S3, Σ13) is a composition of M12 and M23 (written
M13 = M12 ◦M23) if M13 = {(I1, I3) | there exists I2 such that (I1, I2) ∈ M12

and (I2, I3) ∈ M23}.

The important computational problem associated to mapping composition is
the following: Given two schema mappings M12 and M23 how do we compute,
and in what language can we express, a set Σ13 of constraints that specifies the
composition M13 of M12 and M23? The answer to the above question very much
depends on the language in which the input schema mappings are specified.

For our running example, to adapt the above mapping M to the new target
schema, we must compose M with the evolution mapping M′. As it turns out,
we are in an “easy” case where we can express the result of this composition as
a GLAV mapping. This is essentially due to the fact that the first mapping is
GAV. (The second mapping M′ is a GLAV mapping.) We shall see that in cases
where M is LAV or GLAV the composition need not be first-order and we need
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a more powerful language to express the composition. For the scenario in this
section, the fact that the composition is a GLAV mapping follows from the next
theorem.

Theorem 1 ((Fagin et al, 2005b)). Let M1 and M2 be two consecutive
schema mappings. The following hold:

1. If M1 and M2 are GAV mappings then M1 ◦ M2 can be expressed as a
GAV mapping.

2. If M1 is a GAV mapping and M2 is a GLAV mapping then M1 ◦M2 can
be expressed as a GLAV mapping.

As a more general result, we obtain the following corollary that applies to a
chain of GAV mappings followed by a GLAV mapping.

Corollary 1. Let M1, . . . ,Mk+1,Mk be consecutive schema mappings. If M1,
. . ., Mk are GAV mappings and Mk+1 is a GLAV mapping then the composition
M1 ◦ . . . ◦Mk ◦Mk+1 can be expressed as a GLAV mapping.

Concretely, for our scenario, it can be verified that the following GLAV map-
ping is the composition of M and M′:

M◦M′ : Takes(s,m, co) ∧ Takes(s,m′, co′) → ∃G Takes′(s,m, co′, G)

Observe that the self-join on Takes in the above composition is needed. This
can be traced to the fact that students can have multiple majors, in general. At
the same time, the Takes relation need not list all combinations of major and
course for a given sid. However, the evolution mapping M′ requires all such
combinations. The composition M ◦M′ correctly accounts for all these subtle
semantic aspects.

To see a concrete example, consider the following instance of Takes:

Takes(007,Math,MA201)
Takes(007, CS,CS101)

In the above instance, 007 identifies a student (say, Ann) who has a double
major (in Math and CS) and takes two courses. Given the above instance, the
composition M ◦ M′ requires the existence of the following four Takes′ facts,
to account for all the combinations between Ann’s majors and the courses that
Ann took.

Takes′(007,Math,MA201, G1)
Takes′(007,Math, CS101, G2)
Takes′(007, CS,MA201, G3)
Takes′(007, CS,CS101, G4)

In practice, we would also have an additional target constraint (a functional
dependency) on Takes′ specifying that sid together with course functionally
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determines grade. This functional dependency would then force the equality of
G1 and G3, and also the equality of G2 and G4 in the above instance.

Composition Algorithm Next, we explain on our example how the composi-
tion algorithm of (Fagin et al, 2005b) arrives at the formula that specifies M◦M′.
We give an intuitive explanation of the algorithm rather than a complete and
formal one. Recall that M is specified by the following GAV s-t tgds

M : Takes(s,m, co) → Student(s,m)

Takes(s,m, co) → Enrolled(s, co)

and that M′ is specified by the following GLAV s-t tgd

M′ : Student(s,m) ∧ Enrolled(s, co) → ∃G Takes′(s,m, co,G).

Intuitively, the composition algorithm will replace each relation symbol from
T in M′ by relation symbols from S using the GAV s-t tgds of M. In this case,
the fact Student(s,m) that occurs on the left-hand side of M′ can be replaced
by a Takes fact, according to the first GAV s-t tgd of M. Hence, we arrive at
an intermediate tgd shown below:

Takes(s,m, co′) ∧ Enrolled(s, co) → ∃G Takes′(s,m, co,G)

Observe that a new variable co′ in Takes is used instead of co. This avoids an
otherwise unintended join with Enrolled, which also contains the variable co.
(This is accomplished in the algorithm by a variable renaming step.)

Next, the composition algorithm will replace Enrolled(s, co) with a Takes

fact, based on the second GAV s-t tgd of M. We then obtain the following
GLAV s-t tgd from the source schema S to the new target schema T′. This tgd5

specifies the composition M◦M′.

Takes(s,m, co′) ∧ Takes(s,m′, co) → ∃G Takes′(s,m, co,G)

3.2 Source Evolution: The Case of a Lossless Mapping

Let us now assume that the source schema evolves to a new schema S′′ consisting
of the two relations Takes′′ and Course shown in Figure 2. Thus, in the new
schema, courses are stored in a separate relation and are assigned ids (cid). The
relation Takes′′ is similar to Takes except that course is replaced by cid. Let
us assume that the source evolution is described by the following LAV mapping:

M′′ : Takes(s,m, co) → ∃C (Takes′′(s,m,C) ∧ Course(C, co))

Note first that in the figure the direction of M′′ is the reverse of the direction
of the original mapping M. Intuitively, the assertions of M′′ imply a data flow

5 Note that it is logically equivalent to the earlier way we expressed M ◦ M
′, and

where the roles of co and co′ were switched.
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from the schema S to the schema S′′, where facts over S′′ are required to exist
based on facts over S. In order to enable the application of the same composition
techniques as we used for target evolution, we first need to invert the mapping
M′′. After inversion, we can then combine the result, via composition, with the
previously obtained M◦M′.

From a practical point of view, the important (and ideal) requirement that
we need from an inverse is to be able to recover the original source instance.
Concretely, if we apply the mapping M′′ on some source instance I and then
we apply the candidate inverse on the result of M′′, we would like to obtain the
original source instance I. Here, applying a schema mapping M to an instance
I means generating the instance chaseM(I). The next definition captures the
requirements of such an inverse.

Definition 2 (Exact chase-inverse). Let M be a GLAV schema mapping
from a schema S1 to a schema S2. We say that M∗ is an exact chase-inverse of
M if M∗ is a GLAV schema mapping from S2 to S1 with the following property:
for every instance I over S1, we have that I = chaseM∗(chaseM(I)).

For our example, consider the following candidate inverse of M′′:

M† : Takes′′(s,m, c) ∧ Course(c, co) → Takes(s,m, co)

As it turns out, this candidate inverse satisfies the above requirement of being
able to recover, exactly, the source instance. Indeed, it can be immediately veri-
fied that for every source instance I over S, we have that chaseM†(chaseM′′(I))
equals I. Thus, M† is an exact chase-inverse of M′′.

Since M† is a GAV mapping, we can now apply Corollary 1 and compose
M† with M◦M′ to obtain a schema mapping from S′′ to T′. The result of this
composition is the following (GLAV) schema mapping:

M† ◦M ◦M′ : Takes′′(s,m, c) ∧ Course(c, co) ∧

Takes′′(s,m′, c′) ∧ Course(c′, co′)

→ ∃G Takes′(s,m′, co,G)

3.3 A More General Notion of Chase-Inverses

The schema mapping M† used in Section 3.2 is an exact chase-inverse in the
sense that it can recover the original source instance I exactly. In general, how-
ever, equality with I is too strong of a requirement, and all we need is a more
relaxed form of equivalence of instances, where intuitively the equivalence is
modulo nulls. In this section, we start with a concrete example to show the need
for such relaxation. We then give the general definition of a chase-inverse (Fa-
gin et al, 2009b) and discuss its properties and its application in the context of
schema evolution.

We observe that the schema mapping M′′ in Section 3.2 is similar to the
following general pattern:

P (x, y) → ∃z (Q(x, z) ∧Q′(z, y))
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Here, for simplicity, we focus on schema mappings on binary relations. (In par-
ticular, M′′ can be forced into this pattern if we ignore the major field in the two
relations Takes and Takes′′.) The important point about this type of mappings
is that they always have an exact chase-inverse. Consider now a variation on the
above pattern, where Q′ is the same as Q. Thus, let M be the following schema
mapping:

M : P (x, y) → ∃z (Q(x, z) ∧Q(z, y)).

The following schema mapping M∗ is a natural candidate inverse of M:

M∗ : Q(x, z) ∧Q(z, y) → P (x, y).

Consider now the source instance I = {P (1, 2), P (2, 3)}. Then the result of
applying M to I is

chaseM(I) = {Q(1, n1), Q(n1, 2), Q(2, n2), Q(n2, 3)},

where n1 and n2 are two nulls introduced by the chase (for the existentially
quantified variable z). Furthermore, the result of applying M∗ to the previous
instance is

chaseM∗(chaseM(I)) = {P (1, 2), P (2, 3), P (n1, n2)}.

Thus, we recovered the two original facts of I but also the additional fact
P (n1, n2) (via joining Q(n1, 2) and Q(2, n2)). Therefore, M∗ is not an exact
chase-inverse of M. Nevertheless, since n1 and n2 are nulls, the extra fact
P (n1, n2) does not add any new information that is not subsumed by the other
two facts. Intuitively, the last instance is equivalent (although not equal) to the
original source instance I.

The above type of equivalence between instances with nulls is captured, in
general, by the notion of homomorphic equivalence. Recall that two instances
I1 and I2 are homomorphically equivalent, with notation I1 ↔ I2, if there exist
homomorphisms in both directions between I1 and I2.

We are now ready for the main definition in this section.

Definition 3 (Chase-inverse). Let M be a GLAV schema mapping from a
schema S1 to a schema S2. We say that M∗ is a chase-inverse of M if M∗ is
a GLAV schema mapping from S2 to S1 with the following property: for every
instance I over S1, we have that I ↔ chaseM∗(chaseM(I)).

Intuitively, the above definition uses homomorphic equivalence as a replace-
ment for the usual equality between instances. This is consistent with the fact
that, in the presence of nulls, the notion of homomorphism itself becomes a re-
placement for the usual containment between instances. Note that when I1 and
I2 are ground, I1 → I2 is the same as I1 ⊆ I2. However, when I1 has nulls, these
nulls are allowed to be homomorphically mapped to other values (constants or
nulls) inside I2. This reflects the fact that nulls represent unknown information.
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The existence of a chase-inverse for M implies that M has no information
loss, since we can recover an instance that is the same modulo homomorphic
equivalence as the original source instance. At the same time, a chase-inverse
is a relaxation of the notion of an exact chase-inverse; hence, it may exist even
when an exact chase-inverse does not exist.

Both examples of chase-inverses that we have given, namely M† in Section 3.2
and M∗ in this section, are GAV mappings. This is not by accident. As the
following theorem shows, we do not need the full power of GLAV mappings
to express a chase-inverse: whenever there is a chase-inverse, there is a GAV
chase-inverse. The main benefit of this theorem is that it may keep composition
simpler. In particular, we may still be able to apply Corollary 1 as opposed to
the more complex composition techniques of Section 4.

Theorem 2 ((Fagin et al, 2010)). Let M be a GLAV schema mapping. If
M has a chase-inverse, then M has a GAV chase-inverse.

We remark that other, more general notions of inverses exist that are not
based on the chase. The first notion of an “exact” inverse, capturing the case of
no loss of information, was introduced by Fagin (Fagin, 2007). An exact inverse
M∗ of M is a schema mapping M∗ satisfying the equation M◦M∗ = Id where Id
is the “identity” GLAV schema mapping that maps each relation in a schema to
a copy of it. Subsequently, extended inverses (Fagin et al, 2009b) were introduced
as an extension of exact inverses that is able to handle instances with nulls (i.e.,
non-ground instances). Without giving the exact definition of extended inverses
here, we point out that chase-inverses coincide with the extended inverses that
are specified by GLAV constraints. Thus, from a practical point of view, chase-
inverses are important special cases of extended inverses, with good algorithmic
properties.

We conclude this section with a corollary that summarizes the applications
of chase-inverses together with the earlier Corollary 1 to our schema evolution
context.

Corollary 2. Let M, M′ and M′′ be schema mappings as in Figure 1 such
that M is a GAV mapping and M′ and M′′ are GLAV mappings. Assume that
M′′ has a chase-inverse, and let M† be a GAV chase-inverse of M′′. Then the
mapping M† ◦M ◦M′ can be expressed as a GLAV mapping.

We note that a chase-inverse may not exist in general, since a schema mapping
may lose information and hence it may not be possible to find a chase-inverse.
The above corollary depends on the fact that the schema mapping M′′ has a
chase-inverse. In Section 5 we shall address the more general case where M′′ has
no chase-inverse.

The other important restriction in the above corollary is that the original
schema mapping M must be GAV and not GLAV. We shall lift this restriction
in the next section.
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Fig. 3. A target evolution scenario that needs SO tgds.

4 Composition: The Need For Second-order TGDs

In this section, we discuss a more general schema mapping language as well
as a more general composition result that enables us, in particular, to handle
the general case of composing GLAV mappings. In particular, in our schema
evolution context, we show how to handle the case where M is a GLAV mapping
instead of a GAV mapping. We start by showing first that the composition
M◦M′ becomes challenging in such a case. We then illustrate the necessity of
second-order tgds (SO tgds) (Fagin et al, 2005b) as a more powerful language
needed to express such a composition.

For this section, we shall consider a very simple scenario (Fagin et al, 2005b)
that is graphically illustrated in Figure 3. In this scenario, the source schema S
consists of one relation Emp with a single attribute for employee id (eid). The
target schema T consists of one relation Reports that associates each employee
with his/her manager. In the target relation, mgr is itself an employee id (the
employee id of the manager). Assume that we have the following schema mapping
that describes the relationship between a database over S and a database over
T:

M : Emp(e) → ∃M Reports(s,M)

Note that the above mapping is a very simple example of a LAV mapping that
is not a GAV mapping.

Let us assume that the target schema evolves to a new schema T′ consisting
of the two relations Manager and SelfMgr shown in Figure 3. Moreover, assume
that the evolution mapping from T to T′ is given by:

M′ : Reports(e,m) → Manager(e,m)

Reports(e, e) → SelfMgr(e)

Thus, in the new schema, the relation Manager of T′ is intended to be a copy
of the relation Reports of T, while the relation SelfMgr is intended to contain
all employees that are their own managers, that is, employees for which the eid

field equals the mgr field in the relation Reports of T. Note that the evolution
mapping M′ is a GAV mapping.
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In order to express the composition M◦M′ for this example, it turns out that
we cannot use GLAV constraints. It is shown in (Fagin et al, 2005b) that there
is no (finite or infinite) set of GLAV constraints that specifies M◦M′. However,
the following second-order tgd (SO tgd) specifies the composition M◦M′:

∃f( ∀e(Emp(e) → Manager(e, f(e)))
∧ ∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e)))

We will formally define SO tgds shortly. For now, we note that SO tgds strictly
include GLAV constraints and make essential use of function symbols. In par-
ticular, the above SO tgd uses a function symbol f and an equality e = f(e).
The use of both equalities and function symbols is, in general, necessary. As it
can be seen, the above SO tgd consists of two inner implications, ∀e(Emp(e) →
Manager(e, f(e))) and ∀e(Emp(e) ∧ (e = f(e)) → SelfMgr(e)), which share a
universally-quantified unary function symbol f . Intuitively, the first part of the
SO tgd states that every employee in Emp has a manager who is given by the
value f(e). The second part of the SO tgd states that if an employee e in Emp

has a manager equal to itself (i.e., e = f(e)), then this employee must appear in
the SelfMgr relation in the target.

Next, we provide the precise definition of an SO tgd and give an informal
description of the composition algorithm of (Fagin et al, 2005b) that derives SO
tgds such as the above one. The definition of an SO tgd makes use of the concept
of a term, which we define first.

Given a collection x of variables and a collection f of function symbols, a
term (based on x and f) is defined inductively as follows:

1. Every variable in x is a term.
2. If f is a k-ary function symbol in f and t1, ..., tk are terms, then f(t1, ..., tk)

is a term.

Definition 4. (Second-Order Tuple Generating Dependencies (Fagin et al, 2005b))
Let S be a source schema and T a target schema. A second-order tuple-generating
dependency (SO tgd) is a formula of the form:

∃f((∀x1(φ1 → ψ1) ∧ . . . ∧ ∀xn(φn → ψn)))

where

1. Each member of f is a function symbol.
2. Each φi is a conjunction of

– atomic formulas of the form S(y1, ..., yk), where S is a k-ary relation
symbol of schema S and y1, ..., yk are variables in xi, not necessarily
distinct, and

– equalities of the form t = t′ where t and t′ are terms based on xi and f .

3. Each ψi is a conjunction of atomic formulas T (t1, ..., tl), where T is an l-ary
relation symbol of schema T and t1, ..., tl are terms based on xi and f .

4. Each variable in xi appears in some atomic formula of φi.
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Composition Algorithm for SO tgds We now illustrate the steps of the
composition algorithm using the schema mappings M and M′ in this section.
For the complete details of the algorithm, we refer the reader to (Fagin et al,
2005b). The first step of the algorithm is to transform M and M′ into schema
mappings that are specified by SO tgds (if they are not already given as SO tgds).
Each GLAV constraint can be transformed into an SO tgd by skolemization, that
is, by replacing each existentially quantified variable by a Skolem term. For our
example, we transform M into a schema mapping specified by the following SO
tgd:

∃f(∀e(Emp(e) → Reports(e, f(e)))).

Here, f is an existentially quantified function and the term f(e) replaces the
earlier existentially quantified variable M . The second mapping M′ needs no
skolemization since there are no existentially quantified variables. The corre-
sponding SO tgd for M′ is simply one with no existentially quantified functions
and consisting of the conjunction of the two constraints that specify M′.

After this, we initialize two sets, S and S′, to consist of all the implications
of the SO tgds in M and, respectively, M′.

S : Emp(e0) → Reports(e0, f(e0))
S′ : Reports(e,m) → Manager(e,m), Reports(e, e) → SelfMgr(e)

Observe that the existential quantifiers of function symbols as well as the uni-
versal quantifiers in front of the implications are omitted, for convenience. Ad-
ditionally, we have renamed the variables in S so that they are disjoint from the
variables used in S′.

Next, for each implication in S′, we consider each relational atom on the left-
hand side of the implication and replace that atom based on all the implications
in S whose right-hand side have an atom with the same relation symbol. For our
example, we will replace Reports(e,m) of the first implication in S′ using the sole
implication in S, whose right-hand side also has a Reports atom. Replacement
proceeds by equating the terms in corresponding positions of Reports(e0, f(e0))
and Reports(e,m), and then adding the left-hand side of the implication in S.
In this case, we obtain the equalities e0 = e and f(e0) = m and we add the
relational atom Emp(e0). Hence, the first implication of S′ becomes:

χ1 : Emp(e0) ∧ (e0 = e) ∧ (f(e0) = m) → Manager(e,m).

Similarly, the second implication of S23 becomes:

χ2 : Emp(e0) ∧ (e0 = e) ∧ (f(e0) = e) → SelfMgr(e).

The implications χ1 and χ2 can be simplified by replacing every occurrence
of e0 with e (according to the equality e0 = e). In addition, χ1 can be further
simplified by replacing m with f(e). We obtain:

χ1: Emp(e) → Manager(e, f(e))
χ2: Emp(e) ∧ (f(e) = e) → SelfMgr(e)
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At this point, the resulting implications describe a relationship between rela-
tion symbols of S and relation symbols of T′. The final SO tgd that describes the
composition M◦M′ is obtained by adding all the needed universal quantifiers
in front of each implication and then by adding in all the existentially quantified
functions (at the beginning of the formula). For our example, we obtain:

∃f(∀e χ1 ∧ ∀e χ2).

The following theorem states that SO tgds suffice for composition of GLAV
mappings. Moreover, SO tgds are closed under composition. Thus, we do not
need to go beyond SO tgds for purposes of composition.

Theorem 3 ((Fagin et al, 2005b)). Let M and M′ be two consecutive schema
mappings.

1. If M and M′ are GLAV, then M◦M′ can be expressed by an SO tgd.
2. If M and M′ are SO tgds, then M◦M′ can be expressed by an SO tgd.

Moreover, it is shown in (Fagin et al, 2005b) that SO tgds form a minimal
language for the composition of GLAV mappings, in the sense that every schema
mapping specified by an SO tgd is the composition of a finite number of GLAV
schema mappings.

The above theorem has an immediate consequence in the context of target
schema evolution. As long as the original schema mapping M is GLAV or given
by an SO tgd, and as long as we represent the target evolution M′ by a similar
type of mapping, then the new adapted mapping can be obtained by composition
and can be expressed as an SO tgd.

Additionally, the above theorem also applies in the context of source schema
evolution, provided that the source evolution mapping M′′ has a chase-inverse.
We summarize the applicability of Theorem 3 to the context of schema evolution
as follows.

Corollary 3. Let M, M′ and M′′ be schema mappings as in Figure 1 such
that M and M′ are SO tgds (or, in particular GLAV mappings) and M′′ is a
GLAV mapping. If M′′ has a chase-inverse M†, then the mapping M† ◦M◦M′

can be expressed as an SO tgd.

The important remaining restriction in the above corollary is that the source
evolution mapping M′′ must have a chase-inverse and, in particular, that M′′

is a lossless mapping. We address next the case where M′′ is lossy and, hence,
a chase-inverse does not exist.

5 The Case of Lossy Mappings

We have seen earlier that chase-inverses, when they exist, can be used to re-
cover the original source data either exactly, in the case of exact chase-inverses,
or modulo homomorphic equivalence, in general. However, chase-inverses do not
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Fig. 4. (a) A case where M
′′ is a lossy mapping. (b) Recovery of an instance U such

that U ↔M′′ I .

always exist. Intuitively, a schema mapping may drop some of the source infor-
mation, by either projecting or filtering the data, and hence it is not possible to
recover the same amount of information. In this section, we look at relaxations
of chase-inverses, which we call relaxed chase-inverses (Fagin et al, 2009b), and
which are intended for situations where there is information loss. Intuitively, a
relaxed chase-inverse recovers the original source data as well as possible.

5.1 Relaxed Chase-Inverses

We consider a variation of the scenario described in Figure 2. In this variation,
the evolved source schema S′′ is changed so that it no longer contains the major

field. The new source evolution scenario is illustrated graphically in Figure 4(a).
The source evolution mapping M′′ is now given as:

M′′ : Takes(s,m, co) → ∃C (Takes′′(s, C) ∧ Course(C, co))

The natural “inverse” that one would expect here is the following mapping:

M† : Takes′′(s, c) ∧ Course(c, co) → ∃M Takes(s,M, co)

First of all, it can be verified that M† is not a chase-inverse for M′′. In particular,
if we start with a source instance I for Takes where the source tuples contain
some constant values for the major field, and then apply the chase with M′′ and
then the reverse chase with M†, we obtain another source instance U for Takes
where the tuples have nulls in the major position. Consequently, the resulting
source instance U cannot be homomorphically equivalent to the original source
instance I. To give a concrete example, consider the source instance I over the
schema S that is shown in Figure 4(b). If we apply the chase with M′′ on I we
obtain the instance J shown in the same figure. Here, c1 is a null that is assigned
as the course id for CS101. If we now apply M† to J we obtain another source
instance U , where a null X is used in place of a major.

As it can be seen, the recovered source instance U is not homomorphically
equivalent to the original source instance: there is a homomorphism from U to
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I, but no homomorphism can map the constant CS in I to the null X in U .
Intuitively, there is information loss in the evolution mapping M′′, which does
not export the major field. Later on, in Section 5.2, we will show that in fact
M′′ has no chase-inverse; thus, we cannot recover a homomorphically equivalent
source instance.

At the same time, it can be argued, intuitively, that the source instance U
that is recovered by M† in this example is the “best” source instance that can be
recovered, given the circumstances. We will make this notion precise in the next
paragraphs, leading to the definition of a relaxed chase-inverse. In particular, we
will show that M† is a relaxed chase-inverse.

Data Exchange Equivalence. First, we observe that the source instance U
that is recovered by M† contains all the information that has been present in
the original source instance I and has been exported by M′′. Indeed, if we now
apply the mapping M′′ on U , we obtain via the chase an instance that is the
same as J modulo null renaming (i.e., the chase may generate a different null c2
instead of c1). Thus, the following holds:

chaseM′′(U) ↔ chaseM′′(I),

where recall that ↔ denotes homomorphic equivalence of instances. Intuitively,
the above equivalence says that U is as good as I from the point of view of
the data they export via M′′. Thus, intuitively, U and I are also equivalent,
although in a weaker sense. This weaker notion of equivalence is captured by the
following definition, which was first given in (Fagin et al, 2008b).

Definition 5. Let M be a GLAV schema mapping from S1 to S2. Let I and
I ′ be two instances over S1. We say that I and I ′ are data exchange equivalent
with respect to M if chaseM(I) ↔ chaseM(I ′). We also write in such case that
I ↔M I ′.

For our example, we have that U ↔M′′ I. At this point, we could take such
a condition (i.e., the recovery of an instance U that is data exchange equivalent
to I) to be the requirement for a relaxation of a chase-inverse. Such relaxation
would be consistent with the earlier notion of chase-inverse and lead into a
natural hierarchy of inverses. More precisely, if M is a GLAV schema mapping,
then we could have three types of chase-based inverses M∗, that increasingly
relax the equivalence requirement between I and chaseM∗(chaseM(I)):

1. I = chaseM∗(chaseM(I)) (exact chase-inverse)
2. I ↔ chaseM∗(chaseM(I)) (chase-inverse)
3. I ↔M chaseM∗(chaseM(I))

Somewhat surprisingly, having just the third condition is too loose of a re-
quirement for a good notion of a relaxation of a chase-inverse. As we show next,
we need to add an additional requirement of homomorphic containment.

Relaxed Chase-Inverse: Stronger Requirement. We illustrate the need for
the extra condition by using our example. Refer again to the schema mapping
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M′′ in Figure 4(a) and the natural candidate inverse M† introduced earlier. As
shown in Figure 4(b), given the source instance I, the mapping M† recovers an
instance U such that U and I are data exchange equivalent with respect to M′′.
However, there can be many other instances that are data exchange equivalent
to I but intuitively are incorrect. Consider, for example, the following instance:

U ′ = {Takes(007, 007, CS101)}

Like U , the instance U ′ is data exchange equivalent to I with respect to M′′.
(The only difference from U is in the major field, which is not used by the
chase with M′′.) Furthermore, such instance U ′ would be obtained if we use the
following “inverse” instead of M†:

M†
1 : Takes′′(s, c) ∧ Course(c, co) → Takes(s, s, co)

Intuitively, the instance U ′ and the mapping M†
1 are not what we would ex-

pect from a natural inverse. In the instance U ′, the sid value 007 is artificially
copied into the major field, and the resulting Takes fact represents extra infor-
mation that did not appear in the original source instance I. We can rule out
bad “inverses” such as M†

1 by requiring any recovered instance to also have a
homomorphism into I. Intuitively, this is a soundness condition saying that the
recovered instance does not have extra facts that were not present in I. Note
that the earlier instance U does have a homomorphism into I.

Putting it all together, we now formally capture the two desiderata discussed
above (data exchange equivalence and homomorphic containment) into the fol-
lowing definition of a relaxed chase-inverse.

Definition 6 (Relaxed Chase-Inverse). Let M be a GLAV schema map-
ping from a schema S1 to a schema S2. We say that M∗ is a relaxed chase-
inverse of M if M∗ is a GLAV schema mapping from S2 to S1 such that,
for every instance I over S1, the following properties hold for the instance
U = chaseM∗(chaseM(I)):

(a) U ↔M I (data exchange equivalence w.r.t. M),
(b) U → I (homomorphic containment).

The notion of relaxed chase-inverse originated in (Fagin et al, 2009b), under
the name of universal-faithful inverse. The definition given in (Fagin et al, 2009b)
had, however, a third condition called universality, which turned out to be re-
dundant (and equivalent to homomorphic containment). Thus, the formulation
given here for a relaxed chase-inverse is simpler.

Coming back to our example, it can be verified that the aboveM† satisfies the
conditions of being a relaxed chase-inverse of M′′, thus reflecting the intuition
that M† is a good “approximation” of an inverse in our scenario.

Since M† is a GLAV mapping, we can now apply the composition of M†

with M◦M′, to obtain an SO tgd that specifies M† ◦M ◦M′. This SO tgd is
the result of adapting the original schema mapping M to the new schemas S′′

and T′. We leave the full details to the reader.
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5.2 More on Relaxed Chase-Inverses

It is fairly straightforward to see that every chase-inverse is also a relaxed chase-
inverse. This follows from a well-known property of the chase that implies that
whenever U ↔ I we also have that U ↔M I. Thus, the notion of relaxed chase-
inverse is a generalization of the notion of chase-inverse; in fact, it is a strict
generalization, since the schema mapping M† in Section 5.1 is a relaxed chase-
inverse of M′′ but not a chase-inverse of M′′. However, for schema mappings
that have a chase-inverse, the notions of a chase-inverse and of a relaxed chase-
inverse coincide, as stated in the following theorem, which can be derived from
results in (Fagin et al, 2009b).

Theorem 4. Let M be a GLAV schema mapping from a schema S1 to a schema
S2 that has a chase-inverse. Then the following statements are equivalent for
every GLAV schema mapping M∗ from S2 to S1:

(i) M∗ is a chase-inverse of M.
(ii) M∗ is a relaxed chase-inverse of M.

As an immediate application of the preceding theorem, we conclude that
the schema mapping M′′ in Section 5.1 has no chase-inverse, because M† is a
relaxed chase-inverse of M′′ but not a chase-inverse of M′′.

In Section 3.3, we pointed out that chase-inverses coincide with the extended
inverses that are specified by GLAV constraints. For schema mappings that have
no extended inverses, a further relaxation of the concept of an extended inverse
has been considered, namely, the concept of a maximum extended recovery (Fagin
et al, 2009b). It follows from results established in (Fagin et al, 2009b) that
relaxed chase-inverses coincide with the maximum extended recoveries that are
specified by GLAV constraints.

6 Implementations and Systems

In this section we examine systems that implement composition and inversion
and apply them to the context of schema evolution. We do not attempt to give
here a complete survey of all the existing systems and implementations but
rather focus on two systems that are directly related to the concepts described
earlier and also targeted at schema evolution.

The first system that we will discuss is an implementation of mapping com-
position that is reported in (Yu and Popa, 2005) and is targeted at the mapping
adaptation problem in the context of schema evolution. This implementation is
part of the Clio system (Fagin et al, 2009a) and builds on the schema mapping
framework of Clio. In particular, it is focused on schema mappings that are ex-
pressed as second-order tgds (Fagin et al, 2005b). A different implementation
of mapping composition that is worth noting, but which we do not discuss in
detail in here, is the one reported in (Bernstein et al, 2008). This system allows
a schema mapping to contain not only source-to-target constraints, but also
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Fig. 5. Using composition (only) in schema evolution.

target constraints, source constraints and target-to-source constraints. Further-
more, the focus is on expressing the composition as a first-order formula (when
possible). In this approach, a significant effort is spent on eliminating second-
order features (via deskolemization). As a result, the composition algorithm is
inherently complex and may not always succeed in finding a first-order formula,
even when one exists.

The second system that we will discuss in this section is a more recent one,
reported in (Curino et al, 2008), and includes both composition and inversion as
part of a framework for schema evolution. This system is focused on the query
migration (or adaptation) problem in the context of schema evolution.

6.1 Mapping Composition and Evolution in Clio

The system described in (Yu and Popa, 2005) is part of the larger Clio sys-
tem (Fagin et al, 2009a) and is the first reported implementation of mapping
composition in the context of schema evolution. In this system, both source
schema evolution and target schema evolution are described through mappings,
which are given in the same language as the original schema mapping (that is to
be adapted). However, differently from the earlier diagram shown in Figure 1,
the source evolution is required to be given as a schema mapping from S′′ to S,
and not from S to S′′. (The latter would, intuitively, be a more natural way to
describe an evolution of S into S′′.) The main reason for this requirement is that
the system described in (Yu and Popa, 2005) preceded the work on mapping
inversion. Thus, the only way to apply mapping composition techniques was to
require that all mappings form a chain, as seen in Figure 5.

In the system implemented in (Yu and Popa, 2005), the schema mapping
language that is used to specify the input mappings (i.e., the original mapping
M and the evolution mappings M′ and M′′) are based on second-order (SO)
tgds (Fagin et al, 2005b). One reason for this choice is that, as discussed ear-
lier, GLAV mappings are not closed under composition, while SO tgds form a
more expressive language that includes GLAV mappings and, moreover, is closed
under composition. Another reason is that SO tgds, independently of mapping
composition, include features that are desirable for any schema mapping lan-
guage. In particular, the Skolem terms that can be used in SO tgds enable a
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Fig. 6. Example to illustrate SO tgd-based composition and minimization.

much finer control over the creation of new data values (e.g., ids) in the process
of data exchange. We shall give such example shortly. A related point is that the
language used in (Yu and Popa, 2005) (and also in the larger Clio system), is
actually a nested relational extension of SO tgds that can handle XML schemas
and can be compiled into XQuery and XSLT. We will not elaborate on the XML
aspect here and refer the interested readers to either (Haas et al, 2005) or (Yu
and Popa, 2005).

Another main ingredient of the system described in (Yu and Popa, 2005)
is the use of an operational semantics of mapping composition that is based
on the chase. Under this semantics, the composition algorithm needs to find
an expression that is chase-equivalent only, rather than logically equivalent, to
the composition of the two input mappings. (We define shortly what chase-
equivalence means.) In turn, the use of this chase-based semantics of composition
enables syntactic minimization of the outcome of mapping composition. For
schema evolution, such minimization is shown to be essential in making the
outcome of mapping adaptation intuitive (and presentable) from a user point of
view. This is especially true for the larger schemas that arise in practice, where
the outcome of mapping composition (under the general semantics) is complex,
contains many self-joins and it is generally hard to understand.

To make the above ideas more concrete, consider the following schema evo-
lution scenario depicted in Figure 6. This scenario is a variation on the earlier
schema evolution scenario described in Figure 2. In the new scenario, we focus
on the target schema evolution alone. Furthermore, there are several changes
in the schemas as well as the mappings. We assume that the source schema S
consists of one relation Takes where instead of a student id (sid) we are given
a student name (name). However, the target schema T, consisting of the two
relations Student and Enrolled, still requires a student id that must relate the
two relations. The schema mapping that relates the two schemas is now given
as the following SO tgd:

M : ∃f( Takes(n,m, co) → Student(f(n), n,m)

∧ Takes(n,m, co) → Enrolled(f(n), co) )
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In the above SO tgd, f is an existentially quantified Skolem function and, for
each student name n, the Skolem term f(n) represents the associated student
id that is used to populate both Student and Enrolled tuples. The use of such
Skolem terms offer fine control over the creation of target values. By changing
the parameters given to the Skolem function, one can change how the target
values are populated. For example, if we know that a student name does not
uniquely identify a student, but the student name together with the major does,
then we can change f(n) to f(n,m) to reflect such dependency.

Assume now that the target schema evolves to a new schema T′ that consists
of a single relation Takes′ that keeps the association between sid, name and
course, while dropping the major. The target evolution can be described by the
following mapping:

M′ : Student(s, n,m) ∧ Enrolled(s, co) → Takes′(s, n, co)

It can be verified that the composition of M and M′ is expressed by the following
SO tgd:

σ : ∃f( Takes(n,m, co) ∧ Takes(n′,m′, co′) ∧ (f(n) = f(n′))

→ Takes′(f(n′), n′, co) )

This mapping is surprisingly complex, but still correct (i.e., σ expresses M◦M′).
It accounts for the fact that, given a source instance I over S and a target
instance J over T, two different student names n and n′ occuring in different
tuples of I may relate to the same sid in J . In other words, the function f that
is existentially quantified by the original mapping M may have the property
that f(n) = f(n′) for some distinct names n and n′. In order to account for
such possibility, the composition σ includes a self-join on Takes and the test
f(n) = f(n′).
Minimization of SO tgds under chase-equivalence. If we now take the
operational view behind schema mappings, the above σ can be drastically sim-
plified. Under the operational view, a mapping M does not describe an arbi-
trary relationship between instances I and J over two schemas but rather a
transformation which, given a source instance I, generates the target instance
J = chaseM(I). We refer the reader to (Fagin et al, 2005b) for the definition of
the chase with SO tgds. Here, we point out that an important property of this
chase is that it always generates different values (nulls) for different arguments
to the Skolem functions. Hence, for our example, the equality f(n) = f(n′) can
happen only if n = n′. As a result, the above σ reduces to the following SO tgd:

σ0 : ∃f( Takes(n,m, co) → Takes′(f(n), n, co) )

The above SO tgd is much simpler and more intuitive than the earlier σ. Just
by looking at the diagram in Figure 6, one would expect the overall adapted
mapping from S to T′ to be as close as possible to an identity schema mapping.
The SO tgd σ0 accomplishes this desideratum while still incorporating the id
generation behavior via f(n) that is given in the original mapping M.
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The reduction algorithm implemented in (Yu and Popa, 2005) systematically
replaces every equality between two Skolem terms with the same function sym-
bol by the equalities of their arguments, until all equalities that involve such
Skolem terms are eliminated. The algorithm also eliminates every implication
where the left-hand side contains an equality between two Skolem terms that
use different Skolem functions. Intuitively, such equalities cannot be satisfied
during the chase; hence, the implications that contain them can be dropped.
Finally, the algorithm uses conjunctive-query minimization (Chandra and Mer-
lin, 1977) type of techniques to eliminate any redundant relational atoms in the
resulting mappings. For example, in the above σ, once we replace f(n) = f(n′)
with n = n′, the second Takes atom becomes Takes(n,m′, co′); it can then be
eliminated, since it is subsumed by the first Takes atom, and neither m′ nor co′

are used in the right-hand side of the implication.
The main observation behind this reduction algorithm is that its output SO

tgd (e.g., σ0) is chase-equivalent to the input SO tgd (e.g., σ).

Definition 7. Let M1 and M2 be two schema mappings from S to T that
are specified by SO tgds (or in particular by GLAV mappings). We say that
M1 and M2 are chase-equivalent if for every source instance I, we have that
chaseM1

(I) ↔ chaseM2
(I).

Theorem 5 ((Yu and Popa, 2005)). Every SO tgd σ is chase-equivalent to
its reduced form σ0.

We note that the above σ0 is not logically equivalent to the input σ. In general,
the notion of chase-equivalence is a relaxation of the concept of logical equiva-
lence. A systematic study of relaxed notions of equivalence of schema mappings
appeared later in (Fagin et al, 2008a). For schema mappings specified by GLAV
mappings or, more generally, by SO tgds, the above notion of chase-equivalence
turns out to be the same as the notion of CQ-equivalence of schema mappings
studied in (Fagin et al, 2008a). There, two schema mappings M1 and M2 are
CQ-equivalent if for every source instance I, the certain answers of a conjunc-
tive query q are the same under both M1 and M2. For our example, the CQ-
equivalence of σ0 and σ is another argument of why we can use σ0 instead of
σ.

We also note that σ0 represents a relaxation of the composition M ◦ M′

(since σ0 is chase-equivalent but not logically equivalent to σ, which expresses
M◦M′). Such relaxation of composition appears early in the work of Madhavan
and Halevy (Madhavan and Halevy, 2003).6 The concept used there is based,
implicitly, on CQ-equivalence; however, their results are limited to GLAV map-
pings, which, in general, are not powerful enough to express composition (even
under the relaxed form) (Fagin et al, 2005b).

Since schemas can be quite large in practice, mapping composition as well as
mapping reduction can be expensive. Therefore, a great deal of the work in (Yu
and Popa, 2005) is spent on developing pruning techniques that identify the parts

6 In fact, that is how Madhavan and Halevy defined composition of schema mappings.
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Fig. 7. Schema evolution and query rewriting in PRISM.

of a schema mapping that are not affected by the changes in the schemas, and
hence do not need to be involved in the process of composition and reduction.
We refer the interested reader to (Yu and Popa, 2005) for more details on this.

6.2 The PRISM Workbench: Query Adaptation

The PRISM project, described in (Curino et al, 2008), has the overall goal of
automating as much as possible the database administration work that is needed
when schemas evolve. Under this general umbrella, one of the main concrete
goals in PRISM is to support migration (or adaptation) of queries from old
(legacy) schemas to the new evolved schemas. Similar to the Clio-based schema
evolution system in (Yu and Popa, 2005), PRISM also uses schema mappings
(although, in a restricted form) to describe the evolution of schemas. However,
differently from the Clio-based system, the focus in PRISM is not on mapping
adaptation but on query adaptation. More concretely, in the Clio-based system,
we are given a schema mapping from S to T and the goal is to adapt it when
either S or T changes, while in PRISM we are given a query q over a schema
S and the goal is to adapt it when S changes. Because it is targeted at queries,
PRISM makes prominent use of query rewriting. In particular, it applies the
chase and backchase algorithm introduced in (Deutsch et al, 1999) for query
rewriting under constraints. Additionally, PRISM also makes use of the schema
mapping operations that we described earlier (i.e., composition and inversion),
in order to enable the application of the query rewriting algorithm and in order
to optimize its application.

We use Figure 7 to illustrate the type of functionality that PRISM aims to
achieve. There, schema S represents an initial (legacy) schema that goes through
several steps of change, forming a schema evolution chain: from S to S1, then
to S2, and so on. Each of the evolution steps can be described by a mapping.
However, these mappings are not arbitrary and must correspond to a set of
predefined Schema Modification Operations that allow only for certain type of
schema modifications. Examples of such modifications are: copying of a table,
renaming of a table or of a column, taking the union of two tables into one,
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decomposing a table into two, and others. These operations are chosen carefully
so that they represent the most common forms of schema evolution that arise in
practice, but also to allow for invertibility. More precisely, each of the evolution
mappings that are allowed in PRISM is guaranteed to have a quasi-inverse (Fagin
et al, 2008b). Thus, in Figure 7, M′

1 is a quasi-inverse of M1, and M′
2 is a quasi-

inverse of M2. The main reason for why each evolution mapping must have a
reverse mapping is that the presence of mappings in both directions (i.e., from S
to S1, and from S1 to S) is essential for the application of query reformulation
algorithms, as we explain next.

More concretely, query reformulation in PRISM can be phrased as follows.
We are given a query q over the original schema S. We assume one step of
evolution, with mapping M1 from S to S1 and reverse mapping M′

1 from S1

to S. The problem is to find a query q1 over the schema S1 such that q1 is
equivalent to q, where equivalence is interpreted over the union S ∪ S1 of the
two schemas and where M1 and M′

1 form constraints on the larger schema.
In other words, we are looking for a query q1 to satisfy q(K) = q1(K), for
every instance K over S ∪ S1 such that K satisfies the union of the constraints
in M1 and M′

1. In turn this is an instance of the general problem of query
reformulation under constraints (Deutsch et al, 2006), which can be solved by
the chase and backchase method (Deutsch et al, 1999). The application of the
chase and backchase method in this context consists of, first, applying the chase
on q with the constraints in M1, and then on applying the (back) chase with
the reverse constraints in M′

1, in order to find equivalent rewritings of q.

Before we concretely illustrate on an example the application of the chase
and backchase in the PRISM context, we need to point out that for multiple
evolution steps, the query reformulation problem needs to take into account all
the direct and reverse mappings alongs the chain (e.g., M1, M2, M

′
1 and M′

2

for two evolution steps). Thus, as the evolution chain becomes longer, the num-
ber of constraints involved in query reformulation becomes larger. To reduce
the number of constraints needed for rewriting, PRISM makes repeated use of
composition to replace two consecutive schema mappings by one schema map-
ping. Since PRISM restricts mappings such as M1 and M2 to always be GAV
schema mappings, the composition M1 ◦ M2 can also be expressed as a GAV
mapping (see our earlier Theorem 1, part 1). The same cannot be done for the
reverse schema mappings (e.g., M′

1 and M′
2), which are quasi-inverses of the

direct mappings, and require in general a more complex language that includes
disjunction (see (Fagin et al, 2008b)). The exact language in which to express
composition of such schema mappings (i.e., with disjunction) is an open research
problem.

To make the above ideas more concrete, consider the following schema evo-
lution example shown in Figure 8. This example is based on two of our earlier
schemas (see S and T in Figure 2). Here, the schema S represents the “old”
schema, which then evolves into a “new” schema S1. The evolution step from S
to S1 can be described by one of the Schema Modification Operations (SMOs)
that the PRISM workbench allows. In particular, this evolution step is an appli-
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Fig. 8. Example of schema evolution with a query to be rewritten.

cation of the Decompose operator where the table Takes is split into two tables
Student and Enrolled that share the common attribute sid. The application of
the Decompose operator in this case can be represented by the following GAV
mapping (this is the same as the earlier M in Section 3):

M1 : Takes(s,m, co) → Student(s,m)

Takes(s,m, co) → Enrolled(s, co)

Assume now that we have a legacy query q that is formulated in terms of the
old schema. This query, shown in Figure 8, retrieves all pairs of student id and
course where the major is “CS”. The goal is to adapt, via query rewriting, the
query q into a new query q1 that is formulated in terms of the new schema S1

and is equivalent to q.
The first step is to retrieve a quasi-inverse M′

1 of M1. As mentioned earlier,
each evolution step in PRISM is an instance of one of the predetermined Schema
Modification Operations. Thus, a quasi-inverse always exists and can be chosen
by the system or by the user. In this case, the following is a quasi-inverse of M1:

M′
1 : Student(s,m) ∧ Enrolled(s, co) → Takes(s,m, co)

The next step is to apply the chase and backchase algorithm to find rewritings
of q that are equivalent given the union of the constraints in M1 and M′

1.
The following query over schema S1 is such an equivalent rewriting and will be
returned by the chase and backchase algorithm.

q1(s, c) : − Student(s, “CS”) ∧ Enrolled(s, c)

The above quasi-inverseM′
1 also happens to be a chase-inverse of M1. In general,

however, quasi-inverses differ from chase-inverses (or relaxed chase-inverses), and
one may find quasi-inverses with non-intuitive behavior (e.g., a quasi-inverse
that is not a chase-inverse, even when a chase-inverse exists). We note that
the PRISM development preceded the development of chase-inverses or relaxed
chase-inverses.

We also remark that the language needed to express quasi-inverses requires
disjunction. As a result, PRISM uses an extension of the chase and backchase
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algorithm that is able to handle disjunctive dependencies; this extension was
developed as part of MARS (Deutsch and Tannen, 2003). Finally, we note that
we may not always succeed in finding equivalent reformulations, depending on
the input query, the evolution mappings and also on the the quasi-inverses that
are chosen. Hence, PRISM must still rely on a human DBA to solve exceptions.

7 Other Related Work

We have emphasized in this paper the operational view of schema evolution,
where a schema mapping M is viewed as a transformation, which given an in-
stance I produces chaseM(I). Under this view, we have emphasized two types
of operational inverses: the chase-inverse (with its exact variation), which corre-
sponds to the absence of information loss, and the relaxed chase-inverse, which
is designed for the case of information loss. However, there is quite a lot of
additional (and related) work on mapping inversion that studies more general,
non-operational notions of inverses. These notions can be categorized into three
main notions: inverses (Fagin, 2007), quasi-inverses (Fagin et al, 2008b) and
maximum recoveries (Arenas et al, 2008).

Most of the technical development on inverses, quasi-inverses, and maximum
recoveries was originally focused on the case when the source instances were as-
sumed to contain no nulls, that is, they were assumed to be ground. However,
in practice, such an assumption is not realistic, since an instance with nulls can
easily arise as the result of another schema mapping. This is especially true in
schema evolution scenarios, where we can have chains of mappings describing the
various evolution steps. To uniformly deal with the case where instances can have
nulls, the notions of inverses and of maximum recoveries were extended in (Fagin
et al, 2009b) by systematically making use of the notion of homomorphism be-
tween instances with nulls as a replacement for the more standard containment
of instances. In addition to their benefit in dealing with non-ground instances,
it turns out that the two extended notions, namely extended inverses and maxi-
mum extended recoveries, have the operational counterpart that we want. More
concretely, when M is a GLAV mapping, we have that: (1) extended inverses
that are also expressed as GLAV mappings coincide with chase-inverses, and (2)
maximum extended recoveries that are also expressed as GLAV mappings co-
incide with relaxed chase-inverses. (Note that extended inverses and maximum
extended recoveries, or any of the other semantic notions of inverses, need not be
expressible as GLAV mappings, in general). This correspondence between two
very general semantic notions, on one hand, and two procedural and practical
notions of inverses, on the other hand, is interesting in itself.

Finally, we note that there are certain limitations to what composition and
inversion can achieve in the context of schema evolution. For example, if we
refer back to Figure 1, it is conceivable that the composition M ◦ M′ does
not always give the “complete” mapping from S to T′. Instead, the “complete”
mapping from S to T′ may require merging the schema mapping M◦M′ with
an additional mapping that relates directly S to T′. Such additional mapping
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may be defined separately by a user to account for, say, a schema element that
occurs in both S and T′ but does not occur in T. The operation of merging two
schema mappings appears in the model management framework (Melnik et al,
2005) under the term Confluence; a more refined version of merge, together with
an algorithm for it, appears in (Alexe et al, 2010).

8 Concluding Remarks

In this chapter, we illustrated how the composition operator and the inverse op-
erator on schema mappings can be applied to schema evolution. The techniques
presented here rely on the existence of chase-inverses or relaxed chase-inverses,
which, in particular, are required to be specified by GLAV constraints. Much
more remains to be done in the study of schema mappings for which no relaxed
chase-inverse exists. In this direction, research issues include: (1) What is the
exact language for expressing maximum extended recoveries? (2) How does this
language compose with SO tgds? (3) What do inverses of SO tgds look like?
More broadly, is there a unifying schema-mapping language that is closed under
both composition and the various flavors of inverses, and, additionally, has good
algorithmic properties?
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