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WHAT IS AN INFERENCE RULE? 

RONALD FAGIN, JOSEPH Y. HALPERN, AND MOSHE Y. VARDl 

Abstract. What is an inference rule? This question does not have a unique ansu'er. One  usually finds two 
distinct standard answers in the literature: validity inference ( u  k> I+O if for every substitution T. the validity of 
T[U] entails the validity of ~ [ r p ] ) .  and truth inference lo  I-, rp i f  for every substitution T. the truth of ~ [ o ]  

entails the truth of ~ [ r p ] ) .  In this paper we introduce a general semantic framework that allows us to 
investigate the notion of inference more carefully. Validity inference and truth inference are in some sense the 
extremal points in our framework We investigate the relationship between various types of inference in our 
general framesork. and consider the complexity of deciding if an inference rule is sound. in the context of a 
number of logics of interest: classical propositional logic. a nonstandard propositional logic. various 
propositional modal logics. and first-order logic. 

$1. Introduction. What is logic? Quine implies that logic is a science of truths 
[QuiSO). Indeed, an approach sometimes taken to  defining a logic is to specify its 
set of theorems, or valid formulas. This was, for example, the original approach 
taken to defining various modal logics [ LL59]. However, logic originally started 
as the study of sound arguments. In fact, Hacking defines logic as a science of 
deduction [Hac79]. We would argue that in order t o  study the reasoning patterns 
appropriate to a logic, i t  is not sufficient to specify just the valid formulas. Indeed, 
there are well-known relevance logics CAB75 3, [Dun86], which were specifically 
designed to capture legitimate patterns of reasoning about implications, that have 
no valid formulas at all. 

In our view, it is the rules of inference of a logic that capture the patterns of 
reasoning that are appropriate for that logic. But this leads us to the next question: 
What is an inference rule? 

As Avron noted [Avr87], this question does not have a unique answer. One 
usually finds two distinct standard answers in the literature. Assume that we have 
a set 9 of formulas, a class Y of structures, and a notion of what it means for a 
formula in 9 to be true in a structure in 9 We write S 50 if cp is true in structure S.  
AS usual, we say that a formula cp is Galid in 9, written 9' + cp, if cp is true in every 
structure in 9' We write a t-" cp if for all substitution instances r[aJ of u, if r[a] is 
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valid in .44 then the corresponding substitution instance z[q] of cp is valid in T2j 
Note that this definition is language-sensitive, in the sense that it matters what 
the possible substitution instances are. This is one type of inference considered in 
the literature. In this paper, we call this validity inference (with respect to 9). 
Some standard rules such as universal generalization of first-order logic (cp t-, Vxcp) 
and necessitation in modal logic (cp t-,, Ucp) are validity inferences. 

Notice that in defining validity inference, we actually consider schematic rules, 
i.e., inference rule schemes, since we quantify over all substitution instances. The 
distinction between schematic and nonschematic inference rules is typically un- 
important when considering axioms. In all cases of which we are aware, a formula 
is valid iff all substitution instances of the formula are valid. However, when it 
comes to inference, this distinction is crucial. For example, if we did not consider 
substitution instances, then p F,, false would hold, where p is a primitive proposi- 
tion, since p is not valid.4 However, when viewed as an inference rule scheme, this 
is clearly not sound: we can substitute true for p to get an instance of the rule where 
the antecedent is valid, although the conclusion is not. Note that all the familiar 
inference rules, such as modus ponens, universal generalization in first-order logic, 
and necessitation in modal logic, are actually inference rule schemes. It is interest- 
ing to note that historically the notion of axiom schemes is quite modern; Church 
CChu56, p. 1581 says that it was von Neumann [vN27] who is responsible for the 
idea of using axiom schemes rather than axioms. In contrast, inference rules were 
always taken to be schematic. 

Another type of inference that has been considered is what we shall call truth 
inference (with respect to Y) ,  and has usually been called logical implication in the 
literature. We write o FI cp if, for all structures S E Y and all substitutions 7, if 
S + z[o] then S + z[q]. An axiom can be viewed as a special case of both a truth 
inference and a validity inference, namely, one with no antecedent (or equivalently, 
an antecedent that is vacuously true). If we restrict attention to axioms, then there 
is no difference between F,, and FI; it is easy to see that t-, cp holds iff t, cp h01ds.~ 
In classical propositional logic, validity inference and truth inference also coincide 
(see Proposition 3.1 below). However, in general, the two are different. While o F, q 
implies CT t-, cp, the converse does not always hold. For example, in first-order logic, 
universal generalization is a souqd validity inference rule, but not a sound truth 
inference rule. 

In this paper we introduce a general semantic framework that allows us to 
investigate more carefully the notion of an “appropriate pattern of reasoning”, and 

’We provide a formal definition of substitution instance later in the text. For a propositional logic, it 
simply means replacing each primitive proposition by an arbitrary formula in the language. 

3Throughout this paper we restrict attention to the case where there is only one formula o on the left 
side of Fv. Assuming that there is some notion of conjunction in ZF (as is the case in all the languages we 
consider), then a finite set can be replaced by the conjunction of its elements. We do not consider the case 
of an infinite set of formulas here, since the issues that will interest us here already arise with finite sets. 

4Throughout, it is convenient to take true to be an abbreviation for some tautology(such as p v i p  if 
we are working with propositional or modal logic). We define false to be i true. 

’We use I- cp to denote axiomhood, i.e., inference from the empty set of premises. 
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allows us to study the inference problem in more detail. As we will see, truth 
inference and validity inference are in some sense the extremal points in our 
framework. 

The basic idea underlying our framework is that in many logics of interest, the 
semantic objects in Y with respect to which truth is defined are typically broken 
up into several components, For example, in first-order logic truth is defined with 
respect to tuples (D, I, w), where D is a universe, I is an interpretation of the predi- 
cate and function symbols on the universe D, and w is a valuation of the variables 
(i.e., w associates a member of the domain D with each variable). In modal logic, 
truth is typically defined with respect to tuples (W, R, 7c, w), where W is a set of 
possible worlds, R is an accessibility relation between these worlds, n associates a 
truth assignment with each world in W, and w is a particular world in W. 

Even though truth is defined with respect to semantic tuples with several com- 
ponents, we typically view these tuples as pairs. For example, in first-order logic 
we view the tuple (D, I, w )  as a pair ( M ,  w), where M is a relational structure and w 
is a valuation. In modal logic, we view the tuple (W, R ,  7c, w )  as a pair ( M ,  w), where 
M is a Kripke structure and w is a world. Thus, in general, we have “structures” M 
that range over some set A, and for each M E A, we have a set W, of “worlds”. 
Let Y = { ( M ,  w )  I w E w,}. 

Considering pairs ( M ,  w) allows us to focus on what we call A inference (with 
respect to 9). We say that cp is valid in M, and write M i= cp, if (M, w )  i= cp for all 
w E W,. We then define (T FA cp to hold if M + .[a] implies M t= ~ [ c p ]  for all 
M E A and all substitutions 7. For example, defining truth in modal logic with 
respect to pairs ( M ,  w) consisting of a Kripke structure M and a world w yields a 
type of inference that we call structure inference. It is possible, however, to split the 
semantic tuple (W, R, n, w )  in other ways, which give us other useful types of A 
inference. We discuss this issue in depth in $5. 

A inference is a generalization of truth and validity inference; by appropri- 
ately partitioning the tuples in Y into pairs, we obtain both truth and validity 
inference as special cases of A inference. Essentially, if we take each W, to be 
degenerate, we recapture truth inference, while if we take A to be degenerate, we 
recapture validity inference. More formally, let E be the empty string, and let us 
identify ( M ,  E )  and ( E ,  M) with M .  It is easy to see that truth inference with respect 
to Y is identical to Y inference with respect to 9 Similarly, validity inference with 
respect to Y is identical to { E }  inference with respect to 9 

No matter how we choose the A according to which we partition the structures 
in Y into pairs, it is easy to check that truth inference is at least as strong as 
A inference, which in turn is at least as strong as validity inference. That is, r~ kt cp 
implies cr FA cp, and (T FA cp implies a F, cp. Thus, if we view F1, FA, and Fv as 
binary relations on formulas, we always have Fl G FA 5-: t-,. 

Which type of inference should be used depends on the application. Validity 
inference is right if the goal is to prove the validity of a given formula. It is the type of 
inference that allows the most inference rules. However, in order to deduce what is 
true in a particular situation given that other facts are true in that situation, truth 
inference is the appropriate type of inference. In other situations inference might 
be more appropriate, for a particular class A. For example, if we use tools of 
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reasoning about knowledge to analyze protocols in distributed computing systems 
[Ha187], then we identify a protocol with a certain type of Kripke structure. If we 
are interested in studying a class of protocols which are characterized by some 
properties (intuitively, these properties hold in each Kripke structure corresponding 
to a protocol in the class), then A! inference is the appropriate type of inference, 
where A! consists of all Kripke structures corresponding to protocols. 

Many of the inference rules that arise in practice are actually A’ rules for some 
natural choice of A. In fact, the way one typically checks that a validity inference 
rule is sound is to check that it is sound when viewed as an A’ inference rule. For 
example, the argument for showing that universal generalization is sound runs as 
follows: Fix a relational structure M .  If M k cp, that is, ( M ,  w )  b cp for all valuations 
w, then it must be the case that M k= Vxcp. The proof of soundness of necessitation in 
modal logic is analogous. 

There is a sense in which both validity inference and truth inference give us no 
more information about a logic than that which is already contained in the set of 
valid formulas of a logic. Thus, a validity inference (T t-, cp is sound iff, for every 
substitution T, either T[O] is not valid or ~ [ c p ]  is valid. In principle, this information 
can be obtained from looking at a list of all valid formulas. Similarly, in a logic with a 
notion of material implication, the truth inference rs I-, cp is sound iff the formula 
(T * cp is valid. Again, we have reduced truth inference to a question about validity. 
This last reduction depends on there being a notion of material implication in the 
logic. The use of material implication in this reduction is actually essential. This 
follows from the fact, noted earlier, that in the case of certain relevance logics 
[AB75], [Dun861 without the notion of material implication, there are no valid 
formulas, but there are nontrivial truth inference rules. 

Sometimes A inference also gives us no more information than that which is 
already contained in the set of valid formulas. If we consider first-order logic, where 
J Z  consists of all relational structures, then rs t-& cp iff rsv 3 cp’ is valid, where we 
define t,hv to be the universal closure of the first-order formula t,h. This phenomenon 
does not seem, however, to be the case in general for A’ inference. As we shall see, 
there are choices of A’ for which A inference tells us more about the patterns of 
reasoning in a logic than we can obtain by simply looking at the valid formulas of 
the logic. 

In this paper, we investigate the relationship between various types of inference in 
our general framework, and consider their complexity, in the context of a number of 
logics of interest: classical propositional logic, the nonstandard propositional logic 
NPL introduced in [FHV90], various propositional modal logics, and first-order 
logic. In some cases we have only partial results; some of the questions appear to be 
quite difficult. Nevertheless, we present some new techniques for answering these 
questions, and prove some surprising results. 

Some previous work has been done in considering some of these questions for 
particular logics. The difference between validity inference and truth inference has 
been well studied, particularly in the context of intuitionistic propositional logic 
(IPL) (see, for example, [Min76], [Tsi77], and [Ryb89]). Rybakov has written a 
series of papers ([Ryb87a], [Ryb87b], [Ryb89], [Ryb90a], [Ryb90b]) that analyze 
validity inference in various modal logics. In particular, Rybakov [Ryb89] showed 
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that soundness of validity inference rules for IPL is decidable, answering a question 
posed by Harvey Friedman [Fri75]. He did this by showing that soundness of 
validity inference rules is decidable for the modal logic S4, and exploiting Godel’s 
well-known translation from IPL to S4. 

Although we consider our notion of inference to be the most interesting one, there 
are two other important notions of inference that have been studied in the literature. 
The first notion, which we call axiomatic inference and denote by Fax, considers what 
can be inferred from a given set of axioms [Ben79]. It differs from our notion of 
inference in the order of quantification. For example, we define axiomatic validity 
inference, denoted t-p, by taking (T k-z’ cp to mean 

‘‘k s[a] for all substitutions 7’’ implies ‘‘I= s[q] for all substitutions T”. 

(This is somewhat related to Avron’s “extension method” [Avr87].) We can simi- 
larly define notions of axiomatic truth inference and axiomatic A inference. The 
choice of name comes from the observation that if n t-z cp, then if we take n as an 
axiom (that is, if we restrict our attention to structures in A where every substitu- 
tion instance of (T holds), then cp is a theorem (that is, every substitution instance of 
cp holds). It is easy to see that t, G t:”, and similarly for truth inference and .,4t 
inference. In general, the inclusion is proper: for example, in propositional logic it 
is easy to see that if p is a primitive proposition, then p k-:’ false is sound, whereas 
p k-, false is not sound. 

The second notion is that of nonschematic inference rules, i.e., rules where we do 
not consider substitution instances [Tho75a], [Tho75b], [ K a ~ 8 7 ] . ~  Thus, taking 
k-? to denote nonschematic validity inference, we have n +,“s cp if n implies q. 
As we mentioned above, nonschematic validity inference is quite different from 
validity inference. For example, in propositional logic, p k-,”” false is sound, although 
p t V  false is not. Another example (due to Frege [Fre79]) of a nonschematic 
validity inference rule is (for an arbitrary substitution z) the rule cp t,”s ~ [ c p ] .  A 
sound nonschematic validity inference rule can be viewed as corresponding to a 
specific instance of sound reasoning, rather than a general pattern. We can safely 
use a sound nonschematic validity inference rule in our reasoning, but we cannot 
use substitution instances of it. A powerful collection of nonschematic rules may 
allow us to shorten proofs. For example, it is possible that by adding Frege’s 
inference rule to a standard axiomatization of propositional logic, we may be able 
to shorten proofs in propositional logic. (See [CR79] for a discussion of these 
issues.) Interestingly, a notion that combines axiomatic and nonschematic inference 
appears in Meyer, Streett, and Mirkowska [MSM81]. We say more about their 
work in 97. 

The concept of inference rules, as well as related concepts such as that of 
consequence relations, has been fairly extensively studied by logicians (cf. [Gab761 
and [Gab81]). The focus of these studies is, however, usually on the algebraic 
properties of these inference rules (or consequence relations) rather than on their 

6More generally, of course, we can consider a situation where we have some variables for which we 
can substitute, and others for which we cannot. For simplicity, we do not consider this extension here. 
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relationship to a given semantics, which is the focus of this work. A more recent 
work on consequence relations is that of Avron CAv1-871.~ Avron’s main focus is also 
quite different from ours; his focus is on various syntactic methods for classifying 
and representing consequence relations, while our focus is semantical in nature. 

The rest of the paper is organized as follows. In $2, we give a brief introduction 
to complexity theory. In $93-6 we consider validity inference, truth inference, and 
A! inference in the context of classical propositional logic, the nonstandard prop- 
ositional logic NPL, modal logic, and first-order logic. In $7, we briefly consider 
the two other notions of inference (axiomatic and nonschematic) discussed above. 

$2. Definitions in complexity theory. This section is intended as a brief intro- 
duction to complexity theory, where we provide some of the basic definitions. 
Those readers who are familiar with complexity theory can skip it. For a more 
comprehensive introduction to complexity theory, we refer the reader to books by 
Hopcroft and Ullman [HU79] and by Garey and Johnson [GJ79], and a paper by 
Stockmeyer [Sto87]. 

Formally, we view everything in terms of the difficulty of determining mem- 
bership in a set. For example, the problem of deciding whether CJ t-” cp in propo- 
sitional logic is viewed as the problem of determining whether a given possible 
validity inference CJ t-, cp is a member of the set of all sound validity inferences in 
propositional logic. The difficulty of determining set membership is usually mea- 
sured by the amount of time and/or space (memory) required to do this, as a 
function of the input size. For example, in the case of validity inference, we define 
the size of a formula $, denoted I $ / ,  to be its length over an alphabet made up of 
the primitive propositions and the logical connectives, and the size of CJ t, cp to 
be 1 + 1 0 1  -t Jcp1. We will typically be interested in the difficulty of determining 
whether the possible validity inference CJ t, cp is sound, as a function of the size of 
r~ I-, cp. We are sometimes interested in deterministic computations, where at any 
point in a computation, the next step of the computation is uniquely determined. 
However, thinking in terms of nondeterministic computations-ones where the 
program may “guess” which of a finite number of steps to take-has been very 
helpful in classifying the intrinsic difficulty of a number of problems. The complex- 
ity classes we will be most concerned with here are P, PSPACE, EXPTIME, and 
NP: those sets such that determining whether a given element x is a member of the 
set can be done in deterministic polynomial time, deterministic polynomial space, 
deterministic exponential time, and nondeterministic polynomial time, respectively 
(as a function of the size of x). It is not hard to show that P E N P  c PSPACE E 
EXPTIME; it is also known that P # EXPTIME. While it is conjectured that 
all the other inclusions are strict, proving this remains elusive. The P = N P  prob- 
lem is currently considered the most important open problem in the field of 
computational complexity. It is perhaps worth mentioning that it is known 
[Sav70] that PSPACE = NPSPACE; that is, set membership can be determined in 

’We remark that Avron is somewhat inconsistent as to whether he considers schematic or non- 
schematic rules. He considers schematic rules in the case of propositional logic, and nonschematic rules 
for first-order logic and modal logic. 
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deterministic polynomial space if and only if it can be determined in nondeter- 
ministic polynomial space. Nondeterminism does not add any power at the level 
of polynomial space. 

Roughly speaking, a set A is said to be hard with respect to a complexity class 
$f? (e.g., NP-hard, PSPACE-hard, etc.) if every set in % can be “efficiently” reduced 
to A (where “efficiently” is defined with respect to the class %); i.e., for any set B 
in %, an algorithm deciding membership in B can be easily obtained from an algo- 
rithm for deciding membership in A.  A set is complete with respect to a complexity 
class %, or %-complete, if it is both in %? and %?-hard. 

A well-known result due to Cook [Coo71] shows that the problem of deter- 
mining whether a formula of propositional logic is satisfiable (i.e., the problem of 
determining whether a given propositional formula is in the set of satisfiable 
propositional formulas) is NP-complete. In particular, this means that if we could 
find a polynomial-time algorithm for deciding satisfiability for propositional logic, 
we would also have polynomial-time algorithms for all other N P  problems. This is 
considered highly unlikely. 

Given a complexity class %, the class co-% consists of all of the sets whose 
complement is a member of V. Notice that if we have a deterministic algorithm M 
for deciding membership in a set A,  then it is easy to convert it to an algorithm M ‘  
for deciding membership in the complement of A that runs in the same space and/or 
time bounds: M‘ accepts an input x iff M rejects. It follows that V = co-% must 
hold for every deterministic complexity class V. This is not necessarily the case for 
a nondeterministic algorithm, since in this case we say that the algorithm accepts 
an input if it accepts for some appropriate sequence of guesses. There is no obvious 
way to construct an algorithm M’ that will accept an element of the complement 
of A by an appropriate sequence of guesses. Thus, in particular, i t  is not known 
whether N P  = co-NP. Clearly, if P = NP, then it would immediately follow that 
N P  = co-NP; but it is conjectured that in fact N P  # co-NP. By way of contrast, 
since PSPACE = NPSPACE, it follows that NPSPACE = co-NPSPACE. 

53. Inference in propositional logic. Before we consider the notion of inference 
in propositional logic, we define the notion of substitution for arbitrary proposi- 
tional languages. Assume that we have a propositional language 9 with a count- 
able set {p l ,p  2,...} of primitive propositions. A substitution z is a function that 
associates with each primitive proposition a formula in 9. Given a formula cp, we 
write ~ [ c p ]  to indicate the result of replacing each primitive proposition pi that 
appears in cp by z( p i ) .  

It seems to be well known that in the context of propositional logic, truth in- 
ference and validity inference are identical. We give the proof here, partly because 
we could not find it in the literature, and partly because it illustrates some impor- 
tant ideas. 

PROPOSITION 3.1. In propositional logic, I-, = kV. 
PROOF. As we have noted, a Ft implies a Fv cp. For the converse, suppose 

crFv cp. Let w be a truth assignment such that w(a) = true. We want to show that 
w(p) = true. Let z be the substitution such that z ( p i )  = true if w ( p i )  = true and 
7 ( p i )  = false if w(p i )  = false. It is easy to see that for any formula I), the formula 
rf$] is valid iff w($)  = true. Since w(a) = true, it follows that z[a] is valid. Since 

I cr FV cp, we must have that ~ [ p ]  is valid. Hence w(p) = true, as desired. 
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COROLLARY 3.2. I n  propositional logic, the problem of deciding whether (T I-, cp 
(or equivalently CJ t-, cp) holds is co-NP-complete. 

PROOF. Since (T t-, cp holds iff (T t-, cp holds, and CJ t-, cp holds iff (T * cp is valid, the 
result follows from the co-NP-completeness of the validity problem for prop- 

Note that we do not need to consider any notion of A! inference in propositional 
logic, since by our general inclusions t, G t,A( G t,, and by Proposition 3.1 any 
such notion t-& would be equivalent to t-, and t-". 

The proof of Proposition 3.1 shows that we can simulate a truth assignment in 
propositional logic by an appropriate substitution. That is precisely why we get the 
equivalence between truth inference and validity inference in this case. In general, 
even for some quite simple propositional logics, we cannot find substitutions that 
completely simulate truth assignments in  this way. The logic NPL considered in 
the next section provides perhaps the simplest example of this phenomenon. In 
particular, t, and t-, do not coincide in NPL. 

ositional logic. I 

$4. Inference in NPL. NPL, a nonstandard propositional logic introduced in 
[FHV90], is somewhat akin to several well-known relevance logics. The major 
difference between NPL and classical propositional logic is in the treatment of 
negation. In NPL, it  is consistent that both p and i p  are true, and it is consistent 
that neither one is true. We consider NPL here, since it  provides a simple framework 
in which we can distinguish various types of inference. 

The syntax of NPL is just like that of propositional logic, except that we 
introduce one new binary connective 4,  which is meant to represent material 
implication. It turns out that cp * $, which we take to be an abbreviation for 
i c p  v $, does not represent material implication because of the nonstandard 
semantics of negation. An NPL structure consists of a pair (s, t) of classical truth 
assignments to the primitive propositions. It is sometimes convenient to refer to s 
and t as states of the NPL structure (s, t).  We take * to be a function that maps a truth 
assignment in a structure to the other truth assignment in that structure. Thus, if 
S = (s, t), then s* = t and t* = s. Truth in NPL is defined relative to a pair ( S ,  u) 
consisting of a structure S = (s, t) and a truth assignment u E {s, t } .  We define i c p  
to be true with respect to a pair ( S ,  u) if cp is not true at u*;  thus, we use the second 
truth assignment in order to define negation. (This technique for defining the seman- 
tics of negation was introduced in [RR72].) Very roughly, we can think of a state 
u as consisting of a pair (B,, BF) of knowledge bases; B, is the knowledge base 
of true facts, while BF is the knowledge base of false facts. The state u* should be 
thought as the adjunct pair (BF, B,), where B, is the complement of B,, and 6 
is the complement of BF. Continuing this intuition, to see if cp is true at u, we con- 
sult B,; to see if i c p  is true at u, i.e., if cp is false at u, we consult BF. Notice that 
cp E BF iff cp 6 &. Since %is the knowledge base of true facts at u*, we have an 
alternate way of checking if cp is false at u: we can check if cp is not true at u*. 
More formally, given a structure S = (s, t), and u E {s, t}, we define: 

_ _  

( S ,  u)  k p iff u ( p )  = true for a primitive proposition p ;  
(S, u) b cp A $ iff ( S ,  u) k cp and (S, u)  I= $; 
( S ,  u) k i cp iff (S ,  u * )  I# rp; 
(S ,u )  k cp c., $ iff ( S , u )  k $ whenever ( S , u )  k= cp. 

(That is, (S, u)  k cp 4 $ iff either ( S ,  u)  I# cp or (S, u) l= $.) 
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It is not hard to show [FHV90] that if we take NPL- to be the language without 
4,  then there are no valid formulas in NPL-. There are still some truth infer- 
ences that hold; for example, we have cp t, cp and cp A $ !-, cp. With 4 in the lan- 
guage, we do have valid formulas: an example is cp 4 cp. It is not hard to see that 
(S, u) k cp 4 false iff (S, u) !# cp. Thus, cp 4 false simulates classical negation. (All 
these results are discussed in [FHV90]; the interested reader is referred there for 
more intuition and detail.) 

If S = (s, t), then we write S /= cp, and say that cp is valid in S, if (S, s) /= cp and 
(S, t) cp. Let A be the set of all NPL structures. This gives rise to a natural notion 
of A inference in NPL. The A inference G FA cp holds in NPL if, for all structures S 
and all substitutions z, we have S != z[a] implies S I= z[cp]. 

Truth inference, validity inference, and A inference are all distinct in the context 
of NPL. As before, viewing t,, t,, and FA as binary relations on formulas, and 
taking c to denote proper containment, we have 

PROPOSITION 4.1. In NPL, k-, c FA c t-, . 
PROOF. We already know that t, c FA c t,. To see that t, # FA, notice 

that ( p  4 false) t t i p  does not hold. For example, if we take s and t to be 
truth assignments such that s ( p )  = true and t ( p )  = false, and take So = (s,t), then 
(So, t )  ’F ( p  4 false) and (So, t) l# i p .  On the other hand, it is easy to check that 
we do have ( p  4 false) t-”& i p :  if p 4 false is true at both truth assignments 
in a structure, then p cannot be true at either one, so i p  is true at both. (The infer- 
ence rule “from cp 4 false infer i c p ”  is the negation replacement rule for NPL in 
[FHV90].) 

In order to show that tA # t,, let cpo be the formula ( p  4 i p )  A ( i p  4 p ) .  For 
the structure So constructed above, it is easy to check that So I= cpo. Since So I# false, 
the A? inference cp,, tA false does not hold. However, we now show that cpo F, false 
does hold, so FA # t-”. We first show that no substitution instance of the formula cppo 
can be valid. Define a structure S to be standard if S = (s,s) for some truth 
assignments. Given an NPL formula cp, let c p f  be the classical formula that results by 
replacing all occurrences of 4 by *. A straightforward argument by induction on 
the structure of II, shows that if S = (s, s), then for each formula $, we have (S, s) I= $ 
iff s($‘) = true (using the standard semantics of propositional logic). Since (z[cpO])‘ 
is equivalent to false for any substitution z, it follows that r[cpo] is not valid in any 
standard structure S. Thus, no substitution instance of cpo can be valid. As a conse- 

I 
Despite the fact that the three types of inference are all distinct, as we now show, 

they have the same complexity. We describe the proofs of these results in some detail 
here, since the techniques used extend to other, more complicated, logics. We make 
use of the following result on the validity problem for NPL. 

PROPOSITION 4.2 [FHV90]. The oalidity problem for NPL is co-NP-complete. 
We now show that in NPL, each of the three types of inference have the same 

THEOREM 4.3. The problem of deciding whether o t, cp (and, likewise, CJ tA cp and 

PROOF. The lower bound follows in each case from Proposition 4.2, since we 

quence, the validity inference cpo t, false holds. 

complexity as the validity problem for NPL, namely, co-NP-complete. 

G k-, cp) holds for NPL is co-NP-complete. 

can encode the validity problem for NPL by taking CJ to be true. 
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The upper bound for t-, follows since cr t-, cp holds iff cr 4 cp is valid. Thus, the 
truth inference problem for NPL is co-NP-complete. 

In order to deal with t-,H, given a formula cp, let cp* be the formula i ( c p  4 false). 
It is easy to check that ( S ,  s) l= cp* iff (S, s*) cp. By using cp*, we have a way of 
saying that cp is valid in S, since S cp iff (S , s )  l= cp A cp*. It follows that CT FA cp 
holds iff (a A a*) 4 (cp A cp*) is valid. Thus, the A inference problem for NPL is co- 
NP-complete. 

It might seem that dealing with validity inference should be straightforward. To  
show that cr I-,, cp it seems to be enough to show that either cp is valid or that cr is not 
valid. This is not quite true, because we must consider substitution instances. For 
example, although p is not valid, it is not the case that the inference p k,, q holds. 
While having to deal with substitution instances may seem to complicate things (in 
that there are infinitely many substitution instances to consider), it turns out that 
being able to substitute gives us some control over the problem, and in fact, as we 
shall see, might make it easier. 

In dealing with validity inference, it is useful to consider the dual problem, which 
bears the same relationship to validity inference as satisfiability does to validity. We 
say that cp is compatible with o being valid if there is a substitution T such that ~[a] 
is valid and ~ [ c p ]  is satisfiable. Note that cp is compatible with cr being valid iff 
cr tf, (cp 4 false). Similarly, a Fv cp iff it is not the case that (cp 4 false) is compatible 
with cr being valid. 

We shall show that the compatibility problem (the problem of deciding whether 
cp is compatible with o being valid) for NPL is in NP. It then follows that the problem 
of deciding validity inference is in co-NP, since as we noted, cr tv cp iff it is not the 
case that (cp c, false) is compatible with a being valid. The proof technique that we 
shall use to prove that the compatibility problem for NPL is in N P  will be used again 
later for other logics. In each case, we shall show that cp is compatible with cr being 
valid precisely if (a) there is some structure where a is valid and where cp is satisfiable, 
and (b) CT is valid in some “small” set of “special” structures. In the case of NPL, 
“small” means of size one, and “special” means standard. In NPL it is immediate 
that (a) and (b) are in NP, so the compatibility problem is in NP. The reason that 
(a) and (b) imply that cp is compatible with cr being valid is that we define a substi- 
tution T which, intuitively, makes each structure behave as if i t  were one of the 
structures described in (a) and (b), so that, in particular, r[a] is valid and s[(p] 
is satisfiable. 

In order to make this intuition work, we need to be able to understand the effect 
of a substitution on the truth value of cp. Clearly, the effect of the substitution 
depends only on the truth values (at both states) of the formulas being substituted 
for the primitive propositions. This is made precise in Lemma 4.5 below. We define 
the truth status of a formula cp in state u of structure S to be T if ( S , u )  + cp, and F 
otherwise. More generally, we define the truth status of a vector (cpl,. . . , cp,) of 
formulas in state u of structure S to be the vector (Ll,.  . . , L,,), where Li is the truth 
status of ‘pi in state u of S .  The truth status of (cpl,. . . , cp,) in structure S = (s, t), 
written ts((cpl,. . . , cp,), S), is the pair (ul,  u2) ,  where u1 is the truth status in state s 
and u2 is the truth status in state t .  We say that a truth status ( u l , u 2 ) ,  is standard 
if u1 = u 2 .  Define TS(((p, ,..., cp,,)), the truth set of (cpl ,..., cp,), to be the set 
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consisting of {ts((pl,. . . , p,,), S)), as S ranges over all structures. Let TS,, be the set 
of all conceivable truth sets for vectors of length n, that is, all sets consisting of 
pairs ( u , ,  u 2 )  where u1 and u2 are (not necessarily distinct) vectors ( L , ,  . . . , L , )  of 
truth values T or F. We now investigate which members of TS, are actually attained 
as the truth set of some vector of formulas. 

To understand the issue, consider the case of one formula. For ease in nota- 
tion, here we write, say, TF for (( T ) ,  ( F ) ) .  In this case, it is easy to check that we 
have TS(true) = { T T ] ,  TS(fa1se) = { F F ) ,  TS((p 4 i p )  A ( i p  4 p ) )  = { TT, F F ) ,  
TS(p v i p )  = { T T ,  TF, FT} ,  TS(p)  = 
{ T T ,  TF, FT, F F ) .  Note that whenever TF appears in a truth set, so does FT. This 
is not an accident: this is because if ts((cp),(s, t)) is TF, then ts((p),(t,s)) is FT. Note 
also that we do not have an example of a formula cp such that TS(p)  = { TF, F T J .  
This is also not an accident. It is clear that the truth set of every formula must include 
at least one standard truth status, since if S is a standard structure, then ts (q,  S) must 
be standard. The next lemma says that these are the only restrictions we have on 
truth sets. 

LEMMA 4.4. Let A be a member of TS,, such that (1) whenever ( u l ,  u 2 )  E A,  then 
( u z , u l )  E A,  and (2) A contains at least one standard truth status. Then there exist 
formulas p,,. . ., p,, such that TS((cpl, . . ., cp,,)) = A.  

PROOF. Let p l , .  . . , p k  be primitive propositions. It is easy to see that if the number 
k of primitive propositions is picked to be sufficiently large, then there is a function f 
that associates with every structure (s, t),  where s and t are each truth assignments 
over p l , .  . . , P k ,  a member f (s, t) E A such that (1) if f (s, t) = (u l ,  u 2 ) ,  then f(t ,  s) = 
( u z ,  u,) ,  and (2) f is onto A ,  that is, for each ( u l ,  u 2 )  E A ,  there is (s, t )  such that 
f (s, t) = (u l ,  u z ) .  (The number k of primitive propositions must be sufficiently large 
to make condition (2) possible.) Note that condition (1) implies that for each 
standard structure (s, s) we must have f(s, s) be a standard truth status ( u l ,  ul). This 
is possible, since by assumption A contains at least one standard truth status. 

Define an atomic description to be a formula t,bl A ... A t,bk A y1 A ... A yk. where 
t,hi is either p i  or (pi 4 false), for 1 I i _< k,  and where yi is either i ( p i  4 false) 
or i p i ,  for 1 I i 5 k .  If S = (s, t) is a structure, then it is easy to see that (S,s) b a 
for exactly one atomic description ~ ( s ,  t), namely the atomic description 

T S ( p  A i p )  = {TF, FT, F F ] ,  and 

$1 A ... A $k A 71 A ... A Yk, 

where t,bi is p i  precisely if p i  is true under the truth assignment s, and where yi is 
i ( p i  4 false) precisely if p i  is true under the truth assignment t ,  for 1 i i I k. 

We are now ready to define the formulas q,, . . . , q,. We let 'pi (for 1 I i i n) be 
the disjunction of all atomic descriptions a(s,t) such that if f ( s , t )  = (u1 ,u2) ,  then 
the ith component of the vector u1 is T.  We now show that if S = (s,t), and if 
f(s,t) = ( u l , u z ) ,  then (S,s) b qi iff the ith component of the vector u1 is T. If 
(S,s) k 'pi, then a(s, t )  is a disjunct of (pi, so the ith component of the vector u1 
is T. Conversely, if the ith component of the vector u1 is T, then ~ ( s ,  t) is a disjunct 
of c p i ,  so (S,s) I= 'pi. From what we just showed, it follows that the truth status of 
(q l , .  . . , q,,) in state s of structure S is u l .  Since by construction f (t ,  s) = ( u 2 ,  uI), it 
follows identically that the truth status of (cpl,. . . , cp,,) in state t of structure (t ,s) 
is u 2 .  But this latter truth status is the same as the truth status in state t of struc- 
ture S = (s, t). So ts((cpl,. . . , cp,,),S) = (u l ,  u 2 ) .  Hence, TS((q l ,  . . . , p,)) is the range 
off,  that is, A.  I 
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The next lemma is straightforward, and the proof is left to the reader. 
LEMMA 4.5. Let tj be an NPL formula and S = (s, t )  an NPL structure. Assume 

that the substitution T replaces the primitive propositions p l , .  . . , p ,  by  ql, .  . . , cp,, and 
that the truth status of (cpl, .  . . , cp,) in S is (u l ,  u2). Let S‘ = (s’, t ’ )  be the structure 
where the truth status of ( p l , .  . . , p , )  in S’ is (u l ,  u2). If ( S ,  s) t= T[$], then (S’ ,  s’) I= $. 
Furthermore, if S is  standard, then so is S’.  

COROLLARY 4.6. Let $ be an NPL formula, and let T be a substitution. If T[$] is 
satisfiable, then so is $. Furthermore, if r[$] is satisfiable in a standard structure, then 
so is $. 

The next lemma is the key step in showing that compatibility problem is in NP. 
LEMMA 4.7. cp is compatible with a being valid zff (a) a A a* A cp is satisjiable and 

(b) a is satisfiable in some standard structure. 
PROOF. Let p l , .  . . , p ,  be the primitive propositions that appear in cp or a. Assume 

first that cp is compatible with a being valid. Then there is a substitution T such that 
t[o] is valid and z[cp] is satisfiable. Since z [ q ]  is satisfiable, there is a structure 
S = ( s , t )  such that (S,s) I= ~ [ c p ] .  Since z[a] is valid, we know that. (S,s) t= ~ [ a ]  
and ( S , t )  t= ~[o] ,  that is, (S,s) + (z[a])*. It is easy to see that (z[a])* equals z[a*], 
so (S,s) t= z[a A a* A cp]. Hence, T [ O  A a* A cp] is satisfiable. By Corollary 4.6, 
a A a* A cp is satisfiable. Therefore, (a) holds. Since .[a] is valid, it is certainly 
satisfiable in some standard structure. By Corollary 4.6, a is satisfiable in some 
standard structure. This proves (b). 

For the converse, assume that S = ( s ,  t )  is a structure and S’ = (s’, s’) is a standard 
structure such that (S,s) I= a A a* A cp, and (S’,s’) + a. Suppose that the truth 
status of ( p l ,  . . . , p , )  in S is ( u l ,  u 2 ) ,  and the truth status of ( p l , .  . . , p , )  in S’is (u ; ,  u;). 
Let A = { ( u l ,  u 2 ) ,  ( u 2 , u 1 ) ,  ( v ; ,  u ; ) } .  By Lemma 4.4, there exist formulas c p l , .  . .,q, 
such that TS((cp,, . . . , cp,)) = A.  Let z be the substitution that substitutes ql,. . . , q, 
for p 1  , .. . , p ,  respectively. Since CJ is true at ( S ,  s), ( S ,  t ) ,  and (S’, s’), it follows easily 
that T[O] is valid. We now show that z[q] is satisfiable. Since TS((cpl, . . . , cp,)) = A,  
there is a structure S” = (s”, t ” )  such that ts((cpl,.  . . , cp,), S ” )  = (ul ,  u 2 ) .  Since the 
truth status of ( p l , .  . . , p , )  in S is (u l , u2 ) ,  and since (S,s) I= cp, it follows easily that 
(S”,s”) + ~ [ c p ] .  So ~ [ q ]  is satisfiable. Since T[O] is valid and ~ [ c p ]  is satisfiable, 

I 
Using Lemma 4.7, it is easy to see that the compatibility problem for NPL is in 

NP: we simply have to guess the appropriate structures. Thus, the validity inference 
I 

it follows that cp is compatible with a being valid, as desired. 

problem for NPL is co-NP-complete. 

55. Inference in propositional modal logic. We assume that the reader is familiar 
with the basic semantics of propositional modal logic. We provide a brief review 
here, referring the reader to one of the standard modal logic texts (e.g., [ChesO] or 
[HC78]) for more details. 

A frame F is a pair (W, R) ,  where W is a set of worlds and R is a binary relation 
on W. A (Kripke) structure M is a triple (W, R,n), where (W, R )  is a frame and 7c 
is a mapping associating with each world w E W a truth assignment to the primi- 
tive propositions. We say that a structure M = (W, R ,  n) is based on the frame F 
if F = (W, R).  

The language for the modal logic consists of propositional logic augmented by 
one modal operator 0. Truth is defined relative to a structure M and world w of 
M. We take Oq to be true at a world w if cp is true at every world accessible from w. 
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We define Oq to be an abbreviation for i O i c p ;  thus, Oq is true at w exact!y if 
cp is true at some world accessible from w. 

( M ,  w) 
( M ,  W )  I= cp A t+b iff (M, w )  b q and ( M ,  w) I= rc/; 
(M,w) i=icp i f f  (M,w)#cp;  
(M, w) /= Ocp iff ( M ,  w’) + cp for all w’ such that (w, w’) E R. 

We write M cp for all worlds win M ,  and we write F k= cp if M I= cp 
for all structures M based on F. In the latter case, we say that cp is valid in the frame F. 

The modal logic just described is typically referred to  as the modal logic K. We 
can obtain various other modal logics by restricting to certain types of frames. We 
focus here on K and S5. To obtain the modal logic S5 ,  we allow only those frames 
(W, R )  where R is an equivalence relation. 

The complexity of the validity problem for modal logic has been well studied. We 
will need the following result: 

THEOREM 5.1 [Lad77]. The validity problem for  K is PSPACE-complete, while 
the validity problem for  S5 is co-NP-complete. 

Once we move to modal logics, there are several natural notions of inference. 
An individual world w of a specific Kripke structure (W, R,  n) can be thought of as a 
tuple (W, R, n, w). As we now describe, we can obtain different types of inference rules 
by holding fixed various parts of the tuple (W, R,  n, w). Thus, in truth inference we 
fix the whole tuple (W, R,n,  w), so that we are considering only one world of one 
structure. Intuitively, we care about truth inference when we are trying to decide 
whether a formula is true at a specijc world of a specijic Kripke structure. In validity 
inference, nothing is fixed, so that we are considering all worlds of all structures. 
Intuitively, we care about validity inference when we are trying to decide whether a 
formula is true at every world of every Kripke structure. A s  we now describe, there 
are other natural choices, each corresponding to a level of granularity at which 
we wish to reason. 

One choice, which we call structure inference and denote by ts, corresponds to 
fixing (W,  R, n) and varying w, so that we are considering all the worlds in one 
structure. Formally, (r cp is a sound structure inference rule precisely if M k r[o] 
implies M I= r [ q ]  for all structures M and substitutions T. Intuitively, we care about 
structure inference when we are trying to decide whether a formula is true at every 
world of a speciJic Kripke structure. 

Another choice, which we call frame inference and denote by tf, corresponds to 
fixing (W, R )  and varying z and w. Formally, CT tf cp is a sound frame inference rule 
precisely if F I= ~ [ a ]  implies that F b= z[q] for all frames F and substitutions z. 
Intuitively, we care about structure inference when we are trying to decide whether a 
formula is true at euery world of a specijic set of Kripke structures, namely those 
Kripke structures with a given frame. We remark that the notion of a sequent being 
valid in modal logic, as defined in [Avr87], corresponds to frame inference; there is 
no notion in [Avr87] corresponding to structure inference. 

It is easy to check that, when viewed as relations on formulas, we have kt G t-, 
kf E t,. As we shall see, in general the containments are proper. We remark that 

Humberstone [Hum861 has considered I-,, t,, and in the context of modal logic 
(calling them inferential consequence, model consequence, and frame consequence, 
respectively), as well as a fourth type of A inference, which he called point con- 

p iff n ( w ) ( p )  = true for a primitive proposition p ;  

cp if ( M ,  w) 



WHAT IS AN INFERENCE RULE? 103 1 

sequence, where .A' consists of pairs (F ,  w), where F is a frame and w is a world. He 
showed that inference rules provide a more general way of distinguishing be- 
tween modal logics than axiom systems. In particular, he showed that there are 
classes of frames that agree on the axioms that they satisfy, but not on the inference 
rules that they satisfy. 

5.1. Inference in K.  We start our investigation with the modal logic K. In K, the 
various types of inference are in fact distinct. 

THEOREM 5.2. In  the modal logic K, we have t, c t-, c t-, c t,. 
PROOF. To see that t-, # kS, notice that p ts Up holds, while p t-, Up does not. 
To see that I-, # t-,, we first show that n o  substitution instance of the formula 

Cp A O i p  can be valid in any frame. For  suppose F b Ocp A Oicp  for some 
frame F = (W, R).  Clearly there cannot be a world w in F such that no worlds w' are 
accessible from w, for then Ocp A C i  cp must surely be false at  w, no matter what 
truth assignment we choose. Thus, we can suppose that every world in F has some 
world accessible from it. Choose a mapping n that associates the same truth 
assignment with every world w in F. Now an  easy induction on the structure of 
formulas shows that every formula I) has the same truth value at  every world w in 
F under x. Thus, one of Ocp or E l i  cp must be valid in the structure M = (W,  R,  n). 
It follows that Ocp A 01 cp is not valid in F. Therefore, Op A 01 p t, false holds; 
however, it is easy to check that Op A C i p  ks false does not hold. 

Finally, to show that tf # t,, note that O p  t, p holds, but O p  tf p does not,* 
I 

Turning to complexity, since we can again reduce truth inference to validity, we 

THEOREM 5.3. The truth inference problem for K is PSPACE-complete. 
As we did with A inference for NPL, we would like to deal with structure in- 

ference for K by reducing the question of whether the structure inference o t, cp 
holds to  a question of the validity of a related formula. We cannot quite d o  this, 
since the language of K is too weak. Roughly speaking, we would like a formula 
cp* such that cp* is true at  a world s in structure M exactly if cp is true at  every 
world of M .  We cannot quite achieve this; we can come close by slightly extending 
K. Let R+ be the transitive closure of the binary relation R. Suppose we extend K 
by adding a new modal operator O+,  and define 

as we can see by considering a frame (W, R )  where R = @. 

can show 

( M ,  w) k O'cp iff (MI t )  + cp for all t such that (s, t )  E R + .  
The next lemma shows that structure inference can be reduced to  validity in the 

enriched language. The observation that such a reduction is possible was made first 
by Goranko and Passy [GP89]. 

PROPOSITION 5.4. o FS cp holds for K i f s  O+o * O+cp is valid for K. 
PROOF. Assume first that o tS cp holds for K, that M = (W, R,n) is a structure, 

and that ( M ,  w) b 0'0; we must show that ( M ,  w) b O+q. Let 

W' = { W' 1 (w, w') E R+}, 

let R' and 7c' be the restrictions of R and n, respectively, t o  W', and let M' = 
(W', R1,7c'). By a straightforward induction on the structure of formulas, it follows 

'We are indebted to Arnon Avron for pointing out this last example to us. 
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that for every formula $ and for every world s E W’, we have 

(1)  ( M , s )  k $ iff ( M ’ , s )  != $. 

Since ( M ,  w) O+a, we know that ( M ,  s) b a for every s E W’, so by (1) it follows 
that ( M ’ ,  s) k (T for every s E W‘. Since n ks cp, it follows that ( M ’ ,  s) I= q for every 
s E W‘. By (1) again, ( M ,  s) k cp for every s E W‘. Therefore, ( M ,  w )  I= O+q, as desired. 

Conversely, assume that 17’a * O’cp is valid for K; we must show that (T ks cp 
holds for K. Assume that M b ~[a] for some structure M = (W,  R,n) and sub- 
stitution r ;  we must show that M != ~ [ c p ] .  Define n’ on W by letting n’(s) be the 
truth assignment that makes the primitive proposition p true iff ( M , s )  k ~ [ p ] .  Let 
M ’  = (W,  R,  n’). By a straightforward induction on the structure of formulas, it 
follows that for every formula $ and for every world s E W, we have 

(2) ( M , s )  k z[$] iff ( M ’ , s )  k $. 

Since M + ~[o] ,  it follows from (2) that M’ a. Let a be a new world not in W, let 
W“ = W u {a ) ,  and let R“ = R u {(a, s) I s E W ) .  Intuitively, we are adding a new 
world that has an edge to every old world. Define x’’ by letting d ’ ( s )  = n’(s) if s E W, 
and letting n”(a) be an arbitrary truth assignment. Let M” = (W”, R“,n”). By a 
straightforward induction on the structure of formulas, it follows that for every 
formula $ and for every world s E W, we have 

(3) ( M ’ ,  s) i= $ iff ( M ” ,  s) l= $. 

Since M ‘  + a, it follows from (3) that ( M ” , s )  k (T for every s E W, so (M”,  a) l= O+a. 
Since O+a * O’cp is valid for K, it follows that (M”,a)  + O+q. So ( M ” , s )  + cp 

I 
Formulas of the form O+a => 0’9 can be viewed as a fragment of propositional 

dynamic logic (PDL). The fact that there is an exponential-time decision procedure 
for validity in PDL [Pra79] gives us an exponential-time decision procedure for 
validity of these formulas. Furthermore, the proof of [FL79] that the validity 
problem for PDL is exponential-time hard applies also to this fragment. Putting 
these results together, we see that the validity problem for formulas of the form 
O+O - Cl+cp is EXPTIME-complete. Therefore, from Proposition 5.4, we get 

THEOREM 5.5. The structure inference problem for K is EXPTIME-complete. 
Note that in this case the structure inference problem is harder than the truth 

inference problem (provided PSPACE # EXPTIME). Moreover, although we 
have reduced structure inference for K to a question of validity, it is validity in a 
more expressive logic than K. 

We do not know whether either the validity inference problem or the frame 
inference problem is decidable for K. We note that Rybakov [RybS9], who showed 
that the validity inference problem for S4 is decidable, left the validity inference 
problem for K as an open problem; it seems to be quite difficult. 

5.2. Inference in S5. The situation for S5 is quite different from that for K. For 
one thing, t-, and t-, turn out to be identical in S5. 

THEOREM 5.6. In the modal logic S5, we have kt c ks c t-, = t-,. 

for every s E W. By (3) again, M ‘  I= cp. By (2), M I= ~ [ q ] ,  as desired. 
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PROOF. Again, to see that t-, # Fs, note that p t-, U p  holds, while p t-, U p  does 
not. The proof that t, # t-, is essentially the same as that for K, again using the 
formula O p  A O i p .  We leave details to the reader. The fact that Ff = I-, follows 

I 
THEOREM 5.7. The problem of deciding whether (J t-, cp (resp. (J t-, cp, (T Ff cp, 

(T t-, cp) holds for S5 is co-NP-complete. 
PROOF. The lower bound follows from Theorem 5.1, since we can encode the 

validity problem for S5 in all cases by taking (T to be true. 
For the upper bound in the case of truth inference, note that (T t-, cp holds iff 

q + cp is valid in S5;  thus the result follows from Theorem 5.1. In the case of 
structure inference, it is easy to show that c FS cp iff Cia Ocp is valid in S5. Again, 
the desired co-NP-completeness now follows from Theorem 5.1. 

In the case of frame inference and validity inference, we need to use the tech- 
niques of the same flavor as those used in the validity inference case in the proof 
of Theorem 4.3. As in the NPL case earlier, we say that cp is compatible with (T being 
valid if there is a substitution z such that z[a] is valid and ~ [ c p ]  is satisfiable. 
Similarly to before, cp is compatible with (J being valid if (J w v i  cp, and (J k-, cp iff it 
is not the case that i cp is compatible with (J being valid. Similarly, we say that cp is 
frame compatible with (J being valid if there is a substitution z and a frame F such 
that ~ [ c J ]  is valid in the frame F and z[cp] is satisfiable in the frame F (by the latter, 
we mean that there is a structure M based on F and a world s of M such that 
( M ,  s) + z[cp]). As before, cp is frame compatible with (T being valid if (T t f , l  cp, and 
(J 

Similarly to before, we define the truth status of a formula cp in world s of Kripke 
structure M to be T if (M,s)  + cp, and F otherwise. More generally, we define the 
truth status of a vector (cpl, .  . . , q,,) of formulas in world s of structure M to be 
the vector ( L l , .  . . , L n ) ,  where L,  is the truth status of cp, in world s of M. We need 
analogs of Lemma 4.5 and Corollary 4.6. Again, the proofs are straightforward, 
and are left to the reader. 

LEMMA 5.8. Let $ be a formula and M = (W, R,  x) be a Kripke structure. Assume 
that the substitution z replaces the primitive propositions p l , .  . . , p n  by cpl,. . . , cpn, and 
that for each world t ,  the truth status of (cpl,. . . , cp,) in t is v , .  Let M’  = (W, R ,  x‘) be a 
Kripke structure with the same set W of worlds and the same accessibility relation R 
as M ,  but where fur each world t ,  the truth status of ( p l , .  . . , p , )  in world t is v,. lf 
(M,  s) I= t[$1, then ( M ’ ,  s) k $. 

COROLLARY 5.9. Let $ be a formula, and let z be a substitution. If z[$] is 
satisjiable, then so is $. Furthermore, ifz[$] is  satisjiable in frame, F, then so is $. 

We shall show that the (frame) compatibility problem, that is, the problem of 
deciding whether cp is (frame) compatible with (J being valid, is in NP. It then 
follows that the problem of deciding validity inference and frame inference is in 
co-NP, as before. We use a proof technique similar to the one we used to prove 
that the compatibility problem for NPL is in NP: we show that cp is (frame) com- 
patible with (T being valid precisely if (a) there is some structure where r~ is valid 
and where cp is satisfiable, and (b) (T is valid in some “special” structure. Here, 
“special” means a structure with only one world. Thus, we show the following 
lemma, somewhat analogous to Lemma 4.7. 

from the proof of Theorem 5.7 below. 

cp iff it is not the case that i cp is frame compatible with (J being valid. 
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LEMMA 5.10. The following are equivalent: 
(a) cp is compatible with a being valid. 
(b) cp is frame compatible with (T being valid. 
(c) (i) cp A Oa is satisjable, and (ii) a is satisjable in some structure with only 

one world. 
PROOF. (a) * (b). Let z be a substitution such that r[o] is valid and z[cp] is 

satisfiable. Let F be a frame in which r [ q ]  is satisfiable. Since .[a] is valid, it is 
certainly valid in the frame F. It then follows immediately from the definition that 
cp is frame compatible with u being valid. 

(b) * (c). Let T be a substitution and F a frame such that z[oJ is valid in the 
frame F and T [ V ]  is satisfiable in the frame F. Let M be a structure based on F 
and s a world of M such that ( M , s )  I= r[cp]. So (M,s )  + z[cpJ A Oz[o], that is, 
( M , s )  k ~ [ r p  A Ua]. So ~ [ c p  A OaJ is satisfiable. By Corollary 5.9, cp A O D  is 
satisfiable. 

Let M = (W,  R,  n) be a structure with the frame F as given above, such that, for 
every s E W, the truth assignment n(s) makes every primitive proposition true. Then 
M I= z[a], since z[a] is valid in the frame F. Now let M’ = (W‘, R‘,  n’) be a structure, 
where W‘ is a singleton set (s‘}, where R‘ = {(s’,~’)}, and where n’(s’) is a truth 
assignment that makes every primitive proposition true. By a simple induction on 
formulas, it follows that for each formula $, we have M k $ iff M‘ $. There- 
fore, M‘ I= ?[a]. Hence, z[o] is satisfiable in a structure with only one world. 
By Corollary 5.9, (T is satisfiable in a structure with only one world. 

(c) * (a). Assume that the primitive propositions are p l , .  . . , p k .  Similarly to 
before, let us define an atomic description to be a formula t+bl A ... A &, where Gi is 
either pi or i p i ,  for 1 I i I k. Let d be the set of all of the 2k atomic descriptions. 
If 9’ is a set of atomic descriptions, then define O ! Y  to be the formula 

/1ociA /1 0 1 N .  
U E  Y a c d - Y  

We now explain why we are interested in formulas of the form O!9 Let M 
= (W, R,n) be such that R is universal (that is, R = W x W).  If s E W, then 
(M,s) + O ! Y  precisely if the set {n(s’)I s’ E W }  of truth assignments comprises 
those described by members of 9 If the truth assignment n(s) is described by the 
atomic description ci, and if the set {n(s’) I s’ E W }  of truth assignments comprises 
those described by members of Y: then it is well known that the formula ci A O ! Y  
completely characterizes (M,s),  in the sense that if (M’ , s ’ )  I= ci A O ! Y  for some 
(M’ ,  s’), then for every formula 6 we have ( M ,  s) t= 6 iff (M’, s’) k 6. Intuitively, ci 

tells what the truth assignment is in the current world, and O ! Y  tells what all the 
truth assignments are in the worlds of the structure. It follows easily that in S5, 
every formula $ is equivalent to a disjunction of formulas of the form ci A Ci!z 
where ci E 9 Intuitively, this disjunction describes the situations where t,b is satis- 
fied. Without loss of generality, we can assume that cp and (T are both of this 
form. 

Since cp A 00 is satisfiable, it is straightforward to show that there is a non- 
empty set 9’ of atomic descriptions and some cx0 E Y such that cp has as a disjunct 
cq, A O!Sq and u has as disjuncts each of the formulas ci A O!% where c( E 9 Since 
0 is satisfiable in some structure with only one world, it follows easily that there is 
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a singleton set 28 consisting of a single atomic description p such that a has as a 
disjunct p A O!.% Assume that j is A ... A &, where t+hi is either p i  or i p i ,  for 
1 < i < k.  Let T be the substitution which substitutes p i  v i O ! Y  for p i  if $i is pi, 
and which substitutes p i  A O ! Y  for p i  if $i is i p i .  

We now show that T [ O ]  is valid and ~ [ c p ]  is satisfiable. This proves that cp is 
compatible with CJ being valid. 

Let M = (W, R ,  n) be an arbitrary structure. To show that ~ [ a ]  is valid, we must 
show that M != r[a]. It is well known that without loss of generality we can as- 
sume that R is universal. There are two cases, depending on whether M != i O ! Y  or 
M t =  0!3 

Case 1: M k i  U ! 9  Now r [ P ]  is T[$J A . . .  A T[$k]. If t+hi is p i ,  then T [ $ ~ ]  is 
p i  ~ i O ! % a n d i f $ ~ i i s i p , , t h e n ~ [ ~ ~ ] i s e q u i v a l e n t t o i p ~  v i O ! ~ f o r  1s i s  k.  
Since M t=iU!X it follows easily that M t= . r [p ] .  It is also the case that 
M t= r[O!&3]. Possibly the easiest way to see this is to note that O ! B  is equiva- 
lent to Og, and since M I= r[P], also M t= z[Up]. We have shown that MI= 
r [ P  A U!3?]. Since z [ P  A O ! g ]  is a disjunct of ~ [ o ] ,  it follows that M + z[a]. 

Case 2: M k U!3 Let CI be an arbitrary atomic description y1 A . . . A yk,  where 
yi is either pi or i p i ,  for 1 5 i 5 k .  It is easy to see that .[a] is y ;  A ... A y;, where 
7: is yi v i U ! 3  Since M + D!x it follows that (M,s )  k= ~ [ c I ]  iff (M,s )  != a. 
From this and the fact that M + U!Y, it is fairly straightforward to show that 
M i= T [ U ! Y ] .  Lets be a world of M ,  and let a E Y be the atomic description such 
that ( M , s )  b CI. From what was shown, it follows that ( M , s )  I= T [ M ]  A T [ O ! Y ] ,  
and so ( M ,  s) I= T [ C I  A O ! Y ] .  Since CJ has CI A O ! Y  as a disjunct, it follows that z[o] 
has as a disjunct T [ .  A O ! Y ] .  So ( M , s )  k= ~ [ c J ] .  Since s was arbitrary, M != ~[a] ,  
as desired. 

We have shown that r [ o ]  is valid. We must also show that ~ [ c p ]  is satisfiable. Let 
M be a structure that satisfies O!% as in Case 2 above. Since u0 A O ! Y  is a dis- 
junct of cp that is satisfiable in M ,  it follows from what was shown in the discussion 

I 
Co-NP-completeness (as well as the missing part of the proof of Theorem 5.6) 

follows from Lemma 5.10. This is because the problem of deciding if cp A O a  is in 
NP, by Theorem 5.1, and the problem of deciding if a is satisfiable in some struc- 
ture with only one world is in NP, since we need only guess the structure and verify 
that it satisfies 0. I 

of Case 2 that z[ao A O ! Y ] ,  and hence ~ [ c p ] ,  is satisfiable in M .  

56. Inference in first-order logic. We now discuss the situation for inference in 
first-order logic. We begin with some definitions. Our definitions are somewhat 
informal; see, for example, Enderton [End721 for a careful development, 

We assume for convenience that there are no function or constant symbols in the 
language, but only predicate symbols. At the end of this section, we consider the 
situation when function and constant symbols are allowed. Recall that if cp is a first- 
order formula, with free variables xl,. . . , x,, then the universal closure of cp, written 
cp', is the formula Vxl . . .VX , (P .~  When we say that the first-order formulas cp and $ 
are equiualent, we mean that the formula (cp o $)' is valid. 

9To make the universal closure unique, we might assume that x l r . .  . ,x, are written in some fixed 
order, such as lexicographical order. 



1036 RONALD FAGIN, JOSEPH Y. HALPERN, AND MOSHE Y. VARDI 

We have to slightly modify the notion of substitution in the first-order case; a 
substitution z is now a mapping that maps a predicate symbol P of arity n to a 
sequence (i+hP, x l , .  . . , x , ) ,  where $p is a formula whose free variables are among 
x , , .  . .,x,. We take T [ V ]  to be the result of replacing each occurrence of an atomic 
formula P(tl , .  . . , t , )  in cp by t j P [ x l / t l , .  . . , x,,/t,], where the latter is the result of 
substituting ti for the free variable x i ,  for 1 5 i 2 n. We might loosely say that z 
replaces P x ,  " ' x ,  by $p(xl,. . . ,xJ. 

As we discussed earlier, in the case of first-order logic, for A inference we let 
A consist of all relational structures, and we consider pairs ( M ,  w), where M is a 
relational structure and w is a valuation. Then M k= cp iff ( M ,  w )  b cp for every 
valuation w (and thus for every assignment to the free variables of cp) iff M b cp', 
where, as before, cp" is the universal closure of cp. 

The next proposition is analogous to Proposition 5.4. It reduces A! inference to 
validity of a certain formula. Unlike the case of Proposition 5.4, this formula is 
within our language. 

PROPOSITION 6.1. rs tA 
PROOF. By definition, at-, cp holds iff M p ~[a] implies M I= ~ [ c p ]  for every 

structure M and every substitution z. Now if $ is B or cp, we have M I= T [ $ ]  iff (by 
our comments just before this proposition) M I= (z[$])" iff M b z[$'] (since 
(T[$]) '  equals T [ $ " ] ) .  So rs t,, cp holds iff M I= ~ [ r s ' ]  implies M I= z[cp'] for every 
structure M and every substitution T ,  that is, M 'F z[rs'] * z[cp'] for every structure 
M and every substitution T.  This holds iff ~ [ r s " ]  * ~ [ c p ' ]  is valid for every 
substitution T ,  which holds iff T[O' * cp'] is valid for every substitution T ,  which 
holds iff B' * cp' is valid (since it is not hard to see that a formula $ is valid in first- 

I 
PROPOSITION 6.2. For $first-order logic, t-, c t-& c F,,. 
PROOF. We already know that t-, E t-, E t-,,. To see that I-, # FA, note that 

cp FA cp' (universal generalization) is a sound A inference rule, but cp t-, cp' is not a 
sound truth inference rule (for example, it is easy to see that a counterexample occurs 
when cp is Px, where P is a unary relation symbol). 

To see that FA # Fv, note that (VxVy(x = y))t-, false is a sound validity 
inference rule, since z[VxVy(x = y ) ]  is simply VxVy(x = y ) ,  which is not valid. 
However, it is false that (VxVy(x = y ) )  FA false is a sound A inference rule, since 
VxVy(x = y )  can certainly hold for some structure. I 

Since the valid formulas are r.e. (recursively enumerable) in first-order logic 
(this is Church's Theorem [End72]), we know that truth inference is r.e. By 
Proposition 6.1, it follows that A inference is also r.e. for first-order logic. In fact, 
truth inference and A inference for first-order logic are both r.e.-hard, since the 
special case of deciding if true t-, cp (resp. true FA cp), that is, if cp is valid, is r.e.-hard. 
We do not know the precise complexity of validity inference. By the same argument 
as for truth inference and A inference, we see that validity inference is r.e.-hard. 
Furthermore, it is straightforward to show lo that validity inference is in @. (This 

holds in jirst-order logic ifs rs' =j q' is valid. 

order logic iff T [ $ ]  is valid for every substitution T).  

"We thank Martin Abadi for pointing this out to us. 
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follows from the fact that B I-, cp iff Vz((3 proof of ‘s[o]) = (3 proof of ~[cp])). The 
claim then follows by arithmetization.) It would be interesting to close this gap. 

Let us now consider first-order logic interpreted over finite structures (that is, 
structures where the universe is finite; see [Fag901 for a survey of finite-model 
theory). We first see that we have the following analog to Proposition 6.2. 

PROPOSITION 6.3. For first-order logic over Jinite structures, I-, c FA c F,. 
I 

What about the complexity of deciding whether an inference rule is sound? 
THEOREM 6.4. The problem of deciding whether B I-, cp (resp. B FA cp, B I-” cp) holds 

for jirst-order logic over jinite structures is co-r.e.-complete. 
PROOF. In showing this, the only real difficulty lies in proving that validity 

inference is co-r.e. To show that validity inference over finite structures is co-r.e., we 
shall prove a lemma analogous to Lemmas 4.7 and 5.10. As before, we say that cp is 
compatible with B being valid over finite structures if there is a substitution‘s such that 
~[a] is valid over finite structures and 7[q] is satisfiable in some finite structure. 

We need a few more definitions. Let (a l , .  . . , ak)  and (bl , .  . . , bk)  be tuples of the 
same arity k. We say that these tuples have the same equality pattern if for each i 
and jwi th  I s i l k a n d  l s j s k ,  weliaveai=ajiff b i = b j . L e t V = ( U ; R l ,  ..., R,) 
be a finite structure, where U is the finite universe and where the R:s are relations 
over the universe. We say that V is uniform if for each of the relations Ri,  whenever 
(a l , .  . . , ak)  and (b l , .  . . , bk)  are tuples of members of U that have the same equality 
pattern, then (a l , .  . . ,ak)  E Ri  iff (h i , .  . . , bk) E Ri .  It is straightforward to verify that 
a structure is uniform precisely if every permutation of the universe is an auto- 
morphism of the structure. 

We shall make use of the following simple lemma, which is analogous to 
Lemmas 4.5 and 5.8, and whose proof is left to the reader. 

LEMMA 6.5. Let t,b be a first-order sentence and V a structure. Assume that the 
substitution T replaces the atomic formula P x ,  . . . xk by t ,bp(xI,. . . , xk) ,  for each 
predicate symbol P. Let %?’ be a structure with the same universe as V, but where the 
interpretation P“ of P in V’ is the interpretation of t,bp in %?. If V satisfies .r[t,b], then 
V‘ satisfies $I. Furthermore, if W is uniform, then so is V’. 

COROLLARY 6.6. Let $I be a first-order sentence, and let 7 bea substitution. I f  z[t,b] 
is satisjiable in a jinite structure, then so is $I. Furthermore, i f  z[9] is satisfiable in a 
uniform Jinite structure with universe of cardinality m, then so is t,b. 

To show that validity inference over finite structures is co-r.e., we use a similar 
approach to that we used for NPL and S5, but where “r.e.” is used in place of “ N P .  
We shall show that the compatibility problem (that is, the problem of deciding 
whether cp is compatible with o being valid) is r.e. It then follows that the problem 
of deciding validity inference is co-r.e. Analogously to before, we show that cp is 
compatible with B being valid precisely if (a) there is some structure where B is valid 
and where cp is satisfiable, and (b) CJ is valid in some set of “special” structures. Here, 
“special” means uniform and with the size of the universe being comparable to the 
size of B. Thus, we show the following lemma, analogous to Lemmas 4.7 and 5.10. 

LEMMA 6.7. Let cp and CJ be first-order formulas. Then cp is compatible with B being 
valid over jinite structures i f f  (a) ov A cp is satisfiable in some finite structure, and 

PROOF. This has exactly the same proof as Proposition 6.2. 
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(b) if r is the number of quantijiers that appear in ov, then gv is satisfiable in some uni- 
form structure with universe of cardinality m, for each m with 1 I m I r. 

PROOF. Assume first that cp is compatible with CT being valid over finite structures. 
Then there is a substitution 7 such that ~ [ a ]  is valid over finite structures and z[cp] is 
satisfiable in some finite structure. Let W be a finite structure that satisfies ~[cp]. Then 
%‘ satisfies z[ov A cp], since 7[oV] is valid over finite structures. Since z[ov A cp] is 
satisfiable in some finite structure, it follows by Corollary 6.6 that d‘ A cp is sat- 
isfiable in some finite structure. 

For each m, let Vm be an arbitrary uniform structure with universe of cardinal- 
ity m. Since z[av] is valid over finite structures, it follows that %$, satisfies z[ov]. 
By Corollary 6.6 it follows that ov is satisfiable in a uniform structure with universe 
of cardinality m. But m was arbitrary. This proves the “only if” direction. 

We now prove the “if” direction. Assume that (a) and (b) in the statement of the 
lemma hold. Let d be a finite structure that satisfies d A cp. It is well known (see 
[Fag901 for a discussion) that there is a first-order sentence ld that characterizes 
d up to isomorphism (that is, an arbitrary structure 9!l over the same language is 
isomorphic to d iff 49 I= ld). It is also easy to see that for each positive integer i, 
there is a first-order sentence (which we denote by xri) that says “There are at least 
i points.” For example, we can take x2 to be 

Let us denote the sentence x Z i  A i x Z i +  by x+. Thus, xZi says “There are exactly 
i points.” 

Let Wi be a uniform structure with universe of cardinality i that satisfies a‘, for 
1 I i I r. For each predicate symbol P and each i with 1 I i I r,  if P is k-ary, then 
let , IR i  be a formula that describes the equality pattern among tuples (xl,. . . , xk) 
such that (xl,. . . , xk) is in Pvl (the interpretation of P in Vi). For example, if P is 
3-ary, and if a tuple ( a l , a 2 , a 3 )  of members of the universe of Vi is in Pv&‘ precisely 
if either a1,a2 ,a3  are all distinct or else a, = a, and a, # a 3 ,  then we would take 
lei to be the formula 

For each i with i > r, define %‘; to be a uniform structure with universe of cardi- 
nality i ,  where for each predicate P, we define P‘* by letting the equality pattern 
of the tuples in the universe of Wi that satisfy Psi be precisely the same as the 
equality pattern of the tuples in the universe of gr that satisfy PVr. It follows easily 
by an Ehrenfeucht-FraissC game argument CEhr61, Fra541 that each Wi with i > r 
agrees with Wr on each sentence with at most r quantifiers. That is, each such 
sentence is true in Wi with i > r precisely if it is true in gr. In particular, since W, 
satisfies ov, so does each Wi with i > r. 

We are now ready to define a substitution z which shows that cp is compatible 
with o heing valid over finite structures (that is, we will show that T[O] is valid over 
finite structures and 7[cp] is satisfiable in some finite structure). The substitution 
T replaces the atomic formula Pxl...xk by the conjunction of the following 
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formulas: 
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Since d satisfies cp, it is easy to see that d satisfies z[cp]. So z[cp] is satisfiable in 
some finite structure. We now show that ?[a] is valid over finite structures. Since 
d satisfies o’, it is easy to see that d satisfies z[o’]. If 98 is a finite structure not 
isomorphic to d with universe of cardinality i, where i is arbitrary, then from the 
fact that Wi satisfies o’, it is straightforward to verify that 98 satisfies ~ [ c T ’ ] .  There- 
fore, every finite structure satisfies ~ [ o ’ ] ,  so ~[o] is valid over finite structures, as 
desired. I 

To show that validity inference over finite structures is co-r.e., we need only 
show that (a) and (b) of Lemma 6.7 are r.e. As for (a), it is well known that deciding 
if a formula is satisfiable in some finite structure is r.e. This is because to find 
out whether $ is satisfiable, it is possible to consider systematically every finite 
structure d over the language of $ to see whether $ is satisfiable in d. This makes 
it possible to list all the formulas that are satisfiable. Finally, it is easy to see that 

I 
Throughout this section, we have assumed that there are no function or con- 

stant symbols in the language, but only predicate symbols. While this is typically 
an innocuous assumption (since a function of arity k can be encoded by a pred- 
icate of arity k + l), here the assumption seems to make a difference, because 
of the effects of substitutions. If we have function symbols in the language, then 
we can define a substitution z to be a mapping that not only maps each atomic 
predicate P of arity n to a sequence ( $ p ,  xl,. . . , x,), where $p is a formula whose 
free variables are among xl,. . . , x, (as before), but also maps each function symbol 
f of arity n to a sequence (sf, xl,. . . , x,), where sf is a term whose free variables 
are among xl,. . . , x, (we treat a constant symbol as a function symbol of arity 0). 
Given a substitution z, we first define z [ t ]  for an arbitrary term t inductively: 
z[x] = x for a variable x and if z ( f )  = (sf,xl ,..., x,), then s [ f ( t ,  ,..., t,)] = 
sf(xl/z[tl], . . . , x,/z[t,]). We now take z[cp] to be the result of replacing each 
occurrence of an atomic formula P( t l , .  . . , t.) by $p(~l/z[tl], . . . , x , / z [ t , ] ) .  

We remark that in the presence of function and constant symbols, we do  not 
know whether validity inference over finite structures is still co-r.e. The proof of 
Lemma 6.7 breaks down, because in the presence of function symbols, we can no 
longer define “conditional” substitutions (“if condition 1 holds, then do this sub- 
stitution, but if condition 2 holds, then do  that substitution”) as we did in defining 
the substitution z in the proof of Lemma 6.7. 

The main reason why we are interested in considering the effect of allowing 
function and constant symbols is that they arise in Skolemization. We close this 
section by considering how Skolemization fits into our framework. See Enderton 

the condition (b) is not only r.e., but even recursive. 
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[End721 for a more detailed discussion of Skolemization. A first-order formula is 
in prenex normal form if it is of the form Q l x l  ... Qrx,y ,  where each Qi is a quan- 
tifier (either V or 3), each x i  is a variable, and y is quantifier-free. Thus, a formula 
is in prenex normal form if “all quantifiers are in front”. There is a well-known 
mechanical procedure for converting a formula into an equivalent formula in 
prenex normal form. A formula is existential if it is in prenex normal form and all 
of the quantifiers are existential (3). Skolemization is the process of converting 
a prenex normal form formula cp in’to an existential formula (in an expanded lan- 
guage, that contains additional constant and function symbols) that is valid iff 
cp is valid. For example, let cp be the formula 3~3yVzy(z) ,  where y(z) is a quantifier- 
free formula whose free variables include z .  The Skolemization is the formula 
3x3yy ( f ( x ,  y)), where f is a new binary function symbol. As another example, let cp 
be the formula 

VY 13X13X2VY 2 3X,VY3Y(Y 1 2  Y 2  > Y 317 

where y(  y, ,  y ,  , y 3 )  is a quantifier-free formula whose free variables include y ,  , y ,  , 
y,. The Skolemization is the formula 

1 j X 2  l x 3  y (c ,  f (x 1 3 x2 )> g(x 1 3 x2  9 x3 ))> 

where c is a new constant symbol, f is a new binary function symbol, and g is a 
new ternary function symbol. Intuitively, the Skolemization of a prenex formula is 
obtained by replacing each universally quantified variable by a function of the 
previous existentially quantified variables. 

It is straightforward to verify that the Skolemization is an existential formula 
that is valid iff the original formula is valid (this is perhaps easiest to see by taking 
negations, and showing that the negation of the Skolemization is satisfiable iff the 
negation of the original formula is satisfiable). Let us denote the Skolemization of 
a formula cp by cps .  Thus, cp is valid iff cps is valid. 

It is easy to see that cp k, c p s  is a sound truth inference rule, so cp t-, cps is a 
sound validity inference rule (since t-, E E,). However, cps t-” cp is not a sound 
validity inference rule (and all the more so, c p s  t-, cp is not a sound truth inference 
rule). The problem is the effect of substitutions. For example, let cp be VxPx, so 
that qs is Pc for a constant symbol c. Let z be the substitution that replaces P x  by 
x = c. Then z[cps] is simply c = c, which is valid, but ~ [ c p ]  is Vx(x = c), which is 
not valid. This shows that cps  t-, cp is not a sound validity inference rule. However, 
if we were to restrict the substitutions 7 by not allowing them to make use of the 
constant and function symbols that arise by Skolemization, then cps t-, cp would 
become sound. 

What does our Skolemization example tell us? Throughout this paper, we have 
chosen for simplicity to allow arbitrary substitutions. However, as we just saw, if 
we want the Skolemization rule cp’t-, cp to be sound, then we must restrict our 
substitutions by side conditions. This suggests that there are some subtleties that 
must be dealt with when considering substitutions in first-order logic. Since the 
issues involved are somewhat orthogonal to the main thrust of this paper, we have 
chosen to ignore them here. 
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57. Other notions of inference. As we mentioned in the Introduction, there has 
been work in the literature on two other notions of inference: axiomatic inference 
and nonschematic inference. 

Consider first nonschematic A inference. We say that cr Fs cp holds iff M i= cr 
implies MI= cp for all M E A. Thus, we do not consider substitutions. A sound 
nonschematic validity inference rule can be viewed as corresponding to a specific 
instance of sound reasoning, rather than a general pattern. As we discussed earlier, 
a powerful collection of nonschematic rules may allow us to shorten proofs. It is 
easy to see that FM G Fs. However, FA and t-s may be distinct: as an example, 
we already saw that in propositional logic, p t-:s false holds while p I-, false does 
not. There are some cases where EM and t-2 coincide. For example, in proposi- 
tional logic, as well as all the other logics we consider, F, and t-;” are identical; we 
have o t, cp iff cr t:’ cp. As another example, it is easy to see that t-’ and FtS are the 
same. Just as with schematic inference rules, we have I-:’ c F% c t-:’; in modal 
logic we also have I-,”’ c I-;’. In propositional logic, we saw (Proposition 3.1) that 
FV = F,. However, Fy # F:’, since, we just saw, t-, # F;’, whereas t-, = FT’. 

We now turn our attention to axiomatic A inference. We say that oI-5 cp 
holds iff for all M E A, whenever we have that M I= z[o] for all substitutions 7, 
we also have that M k= ~ [ c p ]  for all substitutions 7. Thus, in axiomatic inference, 
we change the order of quantification. Intuitively, we are restricting our attention 
to structures where (every substitution instance of) o holds, and asking whether 
(every substitution instance of) cp holds. This corresponds to asking whether 
taking o as an axiom implies that cp is a theorem. For example, in the modal logic 
K, we have 

( lap  * 0 7 O p )  A ( U p  * p )  t-f“” (up * amp). 
Intuitively, taking i O p  * O i O p  and Up p as axioms implies that Up 
* O O p  is a theorem. 

It is easy to see that !-& c I-:;. However, t-& and I-; may be distinct: as an 
example that we noted earlier, in propositional logic, if p is a primitive proposi- 
tion, then pt-;’ false holds, whereas p t - ,  false does not. There are some cases 
where EM and Fs coincide. For example, in propositional logic, as well as all the 
other logics we consider, I-, and I-:” are identical. Again we have t-:” _c t-% _C t-t”. 
It is easy to show that in the case of propositional logic we have t-:” = tt, just as 
we had f-, = Fv. Similarly to before, in modal logic we have I-,”” c F;”. A result 
of van Benthem [Ben791 (see also [HC84, p. 571) implies that t-:” and t-;” are 
distinct in the modal logic K. 

There is an interesting connection between axiomatic and nonschematic infer- 
ence. Recall that Frege’s inference rule is (for an arbitrary substitution z) the rule 
cp F% o[cp]. Axiomatic A inference is equivalent to nonschematic A inference as 
long as Frege’s inference rule is sound. That is: 

PROPOSITION 7.1. Assume cp ~ [ c p ]  for every formula cp and every substitution 
o. Then axiomatic A inference is equivaient to nonschematic A? inference. 

PROOF. We first show that cr Fs cp implies cr I-% cp. Assume that cr l-2 cp, and 
M k cr for some M E A. By Frege’s inference rule, M + o[a] for every substitution 
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z. So, since CJ t-% cp, it follows that M I== ~ [ c p ]  for every substitution 5.  In particular, 
M t= cp. So CJFS cp. 

We now show that CJ !--s cp implies CJ l-2 cp. Assume that CJ t-2 cp, and M k ~ [ c J ]  
for every substitution z. In particular, M + CJ. So, since CJ I-2 cp, it follows that 
M b cp. By Frege’s inference rule, M + z [ q ]  for every substitution z. So CJ Fz cp. 

I 
There are several interesting cases where Frege’s inference rule holds for validity 

(that is, cp F,”” z[cp] is sound, for every substitution z), and hence, Proposition 7.1 
is applicable. For each of the logics considered in this paper (propositional logic, 
NPL, modal logic, and first-order logic), we have cp F,”” z[cpJ, for every substitution 
z. For these logics, we therefore obtain from Proposition 7.1 the following corollary: 

COROLLARY 7.2. Axiomatic validity inference is equivalent to nonschematic valid- 
ity inference. 

Furthermore, for modal logic, Frege’s inference rule is sound for frame inference. 
Hence: 

COROLLARY 7.3. Axiomatic frame inference is equivalent to nonschematic frame 
inference. 

For modal logic, Frege’s inference rule is not sound for structure inference (and 
hence it is not sound for truth inference, since Frs c 1;’). As an example, let p be 
a primitive proposition, and let z be a substitution that replaces p by false; it is easy 
to see that we do not have p tF z[p]. Furthermore, the same counterexample 
shows that the conclusion of Proposition 7.1 fails in the case of structure inference, 
since p 

We briefly comment on complexity issues. In Proposition 3.2, we saw that in 
propositional logic, the problem of deciding whether CJ I-,, cp (or equivalently CJ t, cp) 
holds is co-NP-complete. Since t-r’ = Ft, it of course follows that the problem of 
deciding whether CJ t F s  cp holds is co-NP-complete. However, the situation is dif- 
ferent for validity inference. We can encode both satisfiability and validity using 
t-F: cp is valid iff true k-:’ cp, and cp is satisfiable iff i c p t , ” ”  false. Thus, the 
problem of deciding if CJ F,”s cp is both NP-hard and co-NP-hard. In fact, it is 
easily seen to be complete for co-DP, the set of all problems that can be expressed 
as the union of an N P  and co-NP problem [PY82] (the problem of deciding if 
CJ FYS cp is in co-DP, since 0 l -YS cp holds iff either CJ is not valid (an N P  problem) or 
cp is valid (a co-NP problem)). If N P  # co-NP (which is widely believed to be the 
case), then co-DP is a complexity class that is “higher” than N P  and co-NP, and in 
this sense, deciding if CJ I-,”” cp is “harder” than deciding if cr I-,, cp. This is what we 
meant in 94 when we said that “being able to substitute gives us some control over 
the problem, and in fact might make it easier”. 

The situation for NPL and S5 is somewhat similar to that for propositional 
logic, but for the logic K the situation is drastically different. It is not hard to 
show that the nonschematic versions of all four types of inference we considered 
for K are distinct. As expected, the PSPACE-completeness result for truth infer- 
ence carries over to the nonschematic case, as does the EXPTIME-completeness 
result for structure inference, since we can reduce structure inference to validity. In 
the case of validity inference, it is not hard to show using Theorem 5.1 that the 
problem is PSPACE-complete. However, it follows from results of Thomason 

false holds, but p I--:’ false does not. 
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[Tho75a], [Tho75b] that the second-order theory of a binary relation can be 
reduced to nonschematic frame inference. This tells us that the complexity of non- 
schematic frame inference is at least as high as that of full type theory. This means 
that the complexity is higher than any level of the arithmetic or analytic hierarchy 
[Rog67]. Further, because of the equivalence between axiomatic frame inference 
and nonschematic frame inference (Corollary 7.3), axiomatic frame inference has 
this same enormously high complexity. 

We also note that Meyer, Streett, and Mirkowska [MSM81] considered a 
notion of inference that combines axiomatic and nonschematic inference in the 
context of PDL. They showed that their notion is undecidable (in fact, ni- 
complete, where l7: is the first level of the analytic hierarchy). 

58. Conclusions. The notion of inference is one that seems to have been taken 
largely for granted by logicians. Issues such as the precise definition and complex- 
ity have not received the attention that it seems to us they deserve. We have tried 
to raise a number of issues regarding inference that we believe to be important. 
We hope that this paper provides the impetus for further study of these issues. 
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