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REACHABILITY IS HARDER FOR DIRECTED 
THAN FOR UNDIRECTED FINITE GRAPHS 

MIKLOS AJTAI AND RONALD FAGIN 

Abstract. Although it is known that reachability in undirected finite graphs can be 
expressed by an existential monadic second-order sentence, our main result is that this is not 
the case for directed finite graphs (even in the presence of certain “built-in” relations, such as 
the successor relation). The proof makes use of Ehrenfeucht-Frai’sse games, along with 
probabilistic arguments. However, we show that for directed finite graphs with degree at most 
k ,  reachability is expressible by an existential monadic second-order sentence. 

$1. Introduction. If s and t denote distinguished points in a directed (resp. 
undirected) graph, then we say that a graph is (s, t)-connected if there is a directed 
(undirected) path from s to t. We sometimes refer to the problem of deciding whether 
a given directed (undirected) graph with two given points sand t is (s, t)-connected as 
the directed (undirected) reachability problem. 

Consider the undirected graphs in Figures 1 and 2. It is easy to tell at a glance that 
the graph in Figure 1 is (s,t)-connected (since s and t are in the same connected 
component), and that the graph in Figure 2 is not (s, t)-connected (since s and t are in 
different connected components). Consider now the directed graphs in Figures 3 
and 4. As the reader can verify, the graph in Figure 3 is (s, t)-connected, and the graph 
in Figure 4 is not. However, in the case of Figures 3 and 4, it is no longer possible to 
tell at a glance. 

Of course, “tell at a glance” is hardly a precise technical notion. As we shall discuss 
in $2, researchers in computational complexity have struggled, so far unsuccessfully, 
to prove that on general-purpose models of computation (such as Turing machines), 
the reachability problem is harder for directed graphs than for undirected graphs. 
We prove that, in a certain precise sense, the directed case is indeed harder than the 
undirected case. The distinction we make is in terms of expressibility, as we now 
explain. 

We begin with a few conventions. Since we are concerned only with jn i te  graphs, 
whenever we say “graph”, we mean “finite graph”. Also, since a theme of this paper is 
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FIGURE 4 FIGURE 3 

to contrast the situation for directed versus undirected graphs, whenever we say 
simply “graph”, we mean either directed or undirected graph; when it is important to 
distinguish whether the graph is directed or undirected, we shall do so. For 
convenience, we consider only irreflexive graphs, that is, graphs where there is no 
edge from some point to itself. If G is a graph and cp is a sentence, then we use the 
usual Tarskian truth semantics to define what it means for cp to be true or satisjed in 
G, written G I= cp. 

A C: sentence is a sentence of the form 3A,...3Ak$, where I+9 is first-order and 
where the A:s are relation symbols. As an example, we now construct a C: sentence 
that says that a graph (with edge relation denoted by P )  is 3-colorable. In this 
sentence, the three colors are represented by A , ,  A , ,  and A,.  Let say “Each point 
has exactly one color”. Thus, $1 is 

V x ( ( A , x  A i A z x  A i A 3 x )  v ( i A , x  A Azx A 1 A 3 x )  
V ( l A 1 X  A 1 A z X  A A3X)). 

Let & say “No two points with the same color are connected by an edge”. Thus, t,b, is 

V X t / y ( ( A l X  A AlJ’ => 1 P X Y )  A ( A z X  A A,y => 1 P X Y )  
A ( A 3 X  A A3J’ => 1 P X Y ) ) .  

The following sentence, which is C:, then says “The graph is 3-colorable”: 

3 A 1 3A z 3,4 3 ($1 A $2 ). 

A C: sentence 3A, ... 3A,$, where I+9 is first-order, is said to be monadic if each of 
the A:s is unary. A class V of graphs is said to be (monadic) C i  if it is the class of all 
graphs that obey some fixed (monadic) C: sentence. A (monadic) C: class is also 
called a (monadic) generalized spectrum. As we have just seen, the class of 3- 
colorable graphs is monadic C:. 
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As another example, we now show that the class of graphs that are not connected 
is monadic C: (this demonstration is from [Fa2]). Let $l say “The set A is nonempty 
and its complement is nonempty”, that is, 

3Xjy(AX A 1 A y ) .  

Let $2 say “There is no edge between A and its complement”, that is, 

VXvJ’(AX A 1 A y  1 P X Y ) .  

It is clear that the monadic Ci sentence 3A(t,hl A &) characterizes the class of 
undirected graphs that are not connected. (A directed graph is said to be connected if 
the undirected version, where we ignore the directions on the edges, is connected; we 
can then show that the class of nonconnected directed graphs is monadic Ci by 
replacing i Pxy in $z by i Pxy  v i Pyx.) 

Let us define a class to be (monadic) H i  if its complement is (monadic) C:. Fagin 
[Fal l  showed that, in a precise sense, C: is the same as N P  (the class of languages 
recognizable nondeterministically in polynomial time [GJ]). In particular, the 
question as to whether Ci = I7i (which would imply, for example, that 3- 
colorability is H i )  is equivalent to the famous problem of whether N P  = co-NP. 
Furthermore, it follows from the theory of NP-completeness [GJ] and from the 
equivalence of C: and N P  that Ci = H i  if and only if 3-colorability is I7: [Fall .  
(We can replace “3-colorability” in the previous statement by any other NP- 
complete problem on graphs, such as Hamiltonicity.) Although it is an open 
problem as to whether Ci = H i ,  Fagin [Fa21 showed that monadic Ct is different 
from monadic H i .  In particular, he showed that Connectivity (i.e., the class of 
connected graphs) is not monadic C:, although it is monadic H i  (since, as we saw 
above, nonconnectivity is monadic C;). This is true whether we consider directed or 
undirected graphs. This result was generalized by de Rougemont [Ro], by showing 
that it holds even if there is a built-in successor relation. 

Since undirected connectivity is not monadic C:, it came as somewhat of a 
surprise when Kanellakis ([Kal]; see also [BKBR]) observed that undirected 
reachability is monadic C: (if we were to allow also infinite graphs, then this result 
would be false, as we can see by an easy compactness argument). To see that 
undirected reachability is monadic C:, let be As A At ,  that is, “The set A contains 
both s and t”; let t,bz be 

jXVy((Ay A PSy) 0 X = y), 

that is, “s has an edge to exactly one member of A”; let $3 be 

3Xt/J’((Ay A Pty) 0 X = J’), 

that is, “t has an edge to exactly one member of A”; and let &, be 

vx ( (Ax  A ( X  # S )  A ( X  # t))  
3 f y Z  A Vz((Az A Pxz)  * ( z  = y 1  v = Y ~ ) ) ) ) ) ,  

that is, “Every member of A except for s and t has an edge to precisely two members 
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of A”. If $ is taken to be A $* A $3 A $4, then, as we now show, the C: sentence 
3A$ says that the graph is (s, t)-connected. For, if the graph is (s, t)-connected, and if 
A is taken to consist of those vertices on a shortest path from s to t ,  then $ holds. 
Conversely, if (I, holds, then there is a path starting at s that passes through only 
vertices in A.  The path must end somewhere, since the graph is finite; however, the 
only place it can end is at t .  So the graph is (s, t)-connected. 

We have just seen that undirected reachability is monadic C:. Why can’t a 
sentence in this spirit be used to show that directed reachability is C:? The problem 
lies in “backedges”. For example, consider a directed graph where the shortest 
(directed) path from s to t is on a path from s to a to b to c to t. Assume also that there 
is an edge (a “backedge”) from c to a. Then the natural directed analogue of 
Kanellakis’ C: sentence 3A$ above fails, since if A were taken to be the set 
(s, a, b, c, t ) ,  then in addition to the outgoing edge from a to b, there are two (not one) 
incoming edges to a from members of A .  

Kanellakis posed as an open problem [Kal] the question of whether directed 
reachability is monadic 1:. We show that it is not. However, interestingly enough, 
we show that for each positive integer k,  the class of directed (s, t)-connected graphs 
where the indegree and outdegree of each vertex is at most k is monadic C:. 

In fact, we prove even stronger results. We show that our result that directed 
reachability is not monadic C: still holds, even in the presence of built-in relations 
from a large class, which includes the successor relation. In $3, we explain what it 
means for built-in relations to be present, and tell why it is of interest. 

As we shall discuss in detail shortly, the nonexpressibility results of [Fa21 and 
[Ro] are obtained by considering Ehrenfeucht-Fraisse-type games, and showing 
that one player (“the duplicator”) has a winning strategy.’ The graphs used in [Fa21 
and [Ro] are explicitly described (in fact, the graphs in [Fa21 are just disjoint unions 
of cycles). Our approach has several novel features, two of which we now mention. 
First, the construction of the graphs we use is probabilistic, rather than determin- 
istic. Second, we introduce a new game which, on the face of it, is easier for the 
duplicator to win, and prove that with high probability the duplicator does indeed 
have a winning strategy. This is sufficient to conclude our nonexpressibility results. 

We consider our proof techniques to be of independent interest. It follows from 
Theorem 1 of [Fa21 that if Ci is not closed under complement, then this can be 
proven by using an Ehrenfeucht-Frai’ssir-type game argument. Hence, our new proof 
techniques may be a step on the road towards showing that C: is not closed under 
complement (or equivalently, by [Fa 11, that NP is not closed under complement). 

We now state explicitly our main theorem. For ease in description, we defer until 
later the statement as to how we can extend our main theorem by allowing certain 
built-in relations, such as the successor relation. 

THEOREM 1 . l .  Directed reachability is not monadic C :. 
The structure of our proof of Theorem 1.1 is as follows. Let cp be a monadic 

C: sentence 3A, ... 3A,$ (Al , .  . . , A k )  that allegedly characterizes directed (s, t)-  
connectivity (where we have suppressed mention of s, t, and the graph predicate P in  

‘Following Joel Spencer, we shall refer to the two players in an Ehrenfeucht-Frayst game as “the 
spoiler” and “the duplicator”, rather than the more usual but less suggestive “player I” and “player 11”. 
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i+b for convenience). We construct (by probabilistic methods) a directed graph G with 
points s, t where there is a directed path from s to t in G. Thus, G is (s, t)-connected, so 
G satisfies cp. Hence, there are subsets A,, . . . , A, of the vertices of G such that G 
satisfies $(Al , .  . . , Ak). Let us denote the graph that is obtained by deleting the edge e 
from G by G - e. We show that there is an edge e of G such that (a) there is no 
directed path from s to t in G - e,  and (b) G - e satisfies $ ( A , ,  . . . , Ak). This is a 
contradiction, since G - e then satisfies cp, but is not (s, t)-connected. 

In fact, since it is easy to see that reachability is monadic I7: in both the directed 
and undirected cases (by almost the same argument as we gave earlier that 
connectivity is monadic IZ i), it follows that undirected reachability is monadic 
Ci n ni, while directed reachability is monadic IZ: but not monadic C:. 

The next theorem says that for bounded degree graphs, directed reachability is 
monadic Ci. The proof of this theorem is in 95. 

THEOREM 1.2. Let k be a positive integer. The class of directed (s,t)-connected 
graphs where the indegree and outdegree of each vertex is at most k is monadic Ci. 

We note that the monadic C: sentence that we use to prove Theorem 1.2 has O ( k 2 )  
existentially quantified monadic relation symbols. 

We now describe the organization of the paper. In 92, we consider differences (and 
possible differences) in the computational complexity of problems on directed 
versus undirected graphs. In particular, we discuss the body of empirical evidence 
that in general-purpose models of computation, reachability is harder for directed 
graphs than for undirected graphs. In 93, we explain the meaning and significance of 
allowing built-in relations. In 94, we explain Ehrenfeucht-Fraisse-type games that 
others have used, and tell how we modify the approach. We also give the result 
(Theorem 4.6) from which our nonexpressibility results are obtained. In 95, we prove 
that directed reachability is monadic C: if we restrict our attention to bounded- 
degree graphs. In $6, we show that a natural modification of the construction used to 
prove nonexpressibility does not work. In 97, we give a variation, that we shall 
utilize, of the well-known result that the probability that the number of successful 
independent trials differs from the mean by more than a constant times the mean is 
exponentially small. In 98, we give the proof of Theorem 4.6, which, as we noted, 
implies our nonexpressibility results. 

52. Computational complexity issues. In this section, we discuss differences (and 
possible differences) between the computational complexity of problems on directed 
versus undirected graphs. In particular, our main focus is reachability. 

There are various cases where a problem is in some sense “harder” for directed 
graphs than for undirected graphs. For example, consider the kernel problem 
(problem GT57 in Garey and Johnson [GJ]). An independent set in a graph is a set 
of points with no edges between them. A kernel of a graph is an independent set S of 
vertices such that for every point y not in S there is a member x of S where there is an 
edge from x to y .  Chvatal [Chv] shows that the kernel problem (the problem of 
deciding whether a given graph has a kernel) is NP-complete for directed graphs. 
However, for undirected graphs, the problem is trivial: the answer is always “yes” 
(since in an undirected graph, a kernel is just a maximal independent set). 

There are other problems where the directed case is provably harder than the 
undirected case, including VLSI area bounds for doing on-line depth-first search 
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(where there is an Q ( n 2 )  lower bound in the directed case [HMS], and an O(n5I3)  
upper bound in the undirected case [An]). Further, there are problems where the 
undirected case seems to be (but has never been proven to be) harder, including 
parallel ear decomposition [Lo] and parallel depth-first search [AA]. 

We now turn to another example of the latter phenomenon, which is of greatest 
interest for this paper, namely reachability. Savitch [Sa] shows that directed 
reachability is nondeterministic log-space complete with respect to log-space 
reductions. However, it is unknown whether the same is true for undirected 
reachability. As another possible difference, Aleliunas et al. [AKLLR] show that 
there is an O(1og n) space nonuniform algorithm for undirected reachability (with a 
polynomial in n amount of “advice” on the tape). However, the best that is known 
for directed reachability is O(logz n) space (this follows from Savitch’s theorem 
[Sa]). Further, Aleliunas et al. show that undirected reachability can be solved by a 
probabilistic Turing machine (with small probability of error) in space O(1og n) and 
polynomial expected time. This was recently improved by Borodin et al. [BCDRT] 
into an errorless probabilistic algorithm with the same space and time bounds. 
Again, it is not known whether there is such a probabilistic algorithm (even allowing 
a small probability of error) for directed reachability. Recently, Karchmer and 
Wigderson [KW] proved an Q(log2 n/log log n) lower bound on the depth of a 
monotone circuit that tests reachability on n-vertex graphs. Their lower bound 
applies in both the directed and undirected cases. 

There are also apparent (but again unproven) differences between directed and 
undirected reachability when we consider parallel computation. A major problem in 
parallel complexity (which is referred to by Ullman [Ul]) is that there is no known 
NC algorithm for directed reachability that uses fewer than roughly nu processors, 
where c( is the exponent for the time to multiply matrices (by [CW], we know that 
2 5 ci < 2.376). The best N C  algorithm (in terms of number of processors) that is 
known for directed reachability is by Pan and Reif [PR]; their algorithm uses 
essentially nu processors and runs in O(log2 n)  time. By contrast, Cole and Vishkin 
[CV] show that undirected reachability can be solved in log n time with 
n log*n/log n processors. Resolving the parallel complexity of directed reachability 
is an important theoretical problem for parallel logic programming [BKBR], 
[Ka2]. 

Although it has never been proven that directed reachability is harder than 
undirected reachability in any general-purpose model of computation, there are 
certain proven distinctions between the directed and undirected cases. For example, 
starting at a given vertex in an undirected graph with n vertices, the expected time to 
visit all of the vertices is O ( n 3 )  [AKLLR]. In fact, this is the basis of the algorithm of 
[AKLLR] mentioned earlier for determining (s, t)-connectivity by a probabilistic 
Turing machine with small probability of error in space O(1og n) and polynomial 
expected time: a random walk is started at s and continued for O(n3)  steps, and we 
see whether or not t is ever reached. However, as noted in [AKLLR], there are 
directed graphs where the expected time to visit all of the vertices is exponential. 
Another distinction between directed and undirected reachability has been proven 
on special-purpose machines called JAG’S (Jumping Automata for Graphs). A JAG 
can move pebbles from a limited supply along the edges of a graph under finite-state 
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control; the machine can detect when two pebbles coincide, and can cause one peb- 
ble to jump to another. Cook and Rackoff [CR] prove that directed reachability 
on a JAG requires space 52(log2 n/log log n). This result was extended to RJAG’s 
(randomized JAG’S) by Berman and Simon [BS], if the RJAG is required to be both 
reliable (probability of acceptance bounded away from 1/2) and fast (polynomial 
time). However, the result of [AKKLR] on random walks mentioned above implies 
that such RJAGs can determine undirected reachability in space O(1og n). 

Our results show that in terms of expressibility, directed reachability is harder 
than undirected reachability: undirected reachability is monadic C t, but directed 
reachability is not. In fact, as we noted earlier, undirected reachability is monadic 
C j  n Z7:, while directed reachability is monadic Z7: but not monadic Ci. 

Unfortunately, our nonexpressibility result does not seem to translate into a lower 
bound on computational complexity. Thus, our results do not give us a proof that 
directed reachability is harder in some computational complexity sense than 
undirected reachability. There are two reasons for this, which we now discuss. 

In terms of computational complexity, the “hard” graph problems in N P  are the 
NP-complete problems. In terms of expressibility (at least as far as this paper is 
concerned), the “hard” graph problems in NP (i.e., the hard graph problems in Z:) 
are those that are not monadic Ci. However, these notions of “hardness” are 
orthogonal. Thus, there are NP-complete problems (such as 3-colorability) that are 
monadic C:, whereas there are problems such as directed reachability that are easy 
in terms of computational complexity but that are not monadic C: .  

The second reason that our results do not translate into lower bounds on 
computational complexity is that, except for the issue of the number of processors 
required by an NC algorithm for directed reachability, the computational 
complexity of directed reachability in each of the senses we have discussed is 
reducible to the computational complexity of directed reachability for graphs of 
indegree and outdegree at most two. This is because if, for example, the vertex u has 
outdegree bigger than two, and if S is the set of vertices u such that (u,  u )  is an edge, 
then we can interpolate a tree with root u and with S as its set of leaves. So for 
reachability, many natural computational complexity measures do not distinguish 
between directed graphs of bounded and unbounded degree. However, as we show 
in this paper, bounded degree directed reachability is monadic C :, whereas 
unbounded degree directed reachability is not. 

$3. Allowing built-in relations. As we mentioned in the Introduction, we prove 
that directed reachability is not monadic C:, even in the presence of “built-in” 
relations from a large class, which includes the successor relation. We now explain 
the meaning and significance of allowing built-in relations. 

If V = { u l , .  . . , u,} is a set of points, then a successor relation (over V )  is a binary 
relation S with universe (set of vertices) V such that there is an ordering u1 < u2 
< ... < u, of V where S = { ( u l , u z ) ,  ( u , , ~ , )  ,..., ( I I - ~ , ~ , ) } .  Other minor varia- 
tions on this definition are sometimes used. The following theorem shows that our 
main result can be extended to allowing a built-in successor relation. 

THEOREM 3.1. Directed reachability is not monadic Ci, euen in the presence of a 
built-in successor relation. 
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A built-in successor relation is a successor relation that is “attached to” each 
universe V. Thus, having a built-in successor relation means that there is a fixed 
“successor assignment function” ŝ  that associates with each universe V a successor 
relation s^(V) over V.2 So Theorem 3.1 says that there is no monadic C: sentence 
cp(P, s, t, S) and successor assignment function ŝ  such that a graph G = (v P, s, t )  
(with universe V, binary relation P over V, representing the edges, and distinguished 
points s and t )  is (s, t)-connected iff ( V ,  P, s, t ,  s^(V)) I= cp. For notational con- 
venience, we shall not distinguish between, say, a binary relation symbol P and the 
binary relation which is the interpretation of P. It is important to notice that the 
successor relation !?( V )  depends only on the universe V, and not on the whole graph 
G = ( V ,  P, s, t ) ;  otherwise, it is easy to see that Theorem 3.1 would be false (since the 
successor relation could “encode the information” in a trivial way as to whether or 
not the graph is (s, t)-connected). 

There is another notion of “in the presence of a built-in successor relation”. Using 
this notion, “directed reachability is monadic C: in the presence of a built-in 
successor relation” would mean that there is a monadic C: sentence cp(P, s, t, S )  such 
that if ( V ,  P, s, t, S) is a graph as before, with a successor relation, then (V ,  P, s, t )  is 
(s, t)-connected iff ( V ,  P ,  s, t, S) + cp. It is not hard to verify that these notions of “in 
the presence of a built-in successor relation” are equivalent (the proof depends on 
the fact that all successor relations over V are isomorphic). We have chosen our 
formulation for reasons that will be apparent shortly. 

We now comment on why it is of interest to allow a built-in successor relation. It is 
very natural in computer science to allow a built-in successor relation, since actual 
data as stored in a computer always has an implicit ordering (such as lexicographic 
ordering), based on the computer representation. Allowing a built-in successor 
relation can sometimes make a big difference. For example, Immerman [Im2] and 
Vardi [Val independently show that a property is polynomial-time recognizable iff it 
can be expressed by a fixpoint sentence with successor. Allowing successor is crucial 
in this case, since Chandra and Hare1 [CHI show that without successor, there is no 
fixpoint sentence for evenness (“the number of points is even”). It follows from 
results of de Rougemont [Ro] and Immerman [Iml] that Hamiltonicity is not 
expressible by a fixpoint sentence. If this result could be extended to show that 
Hamiltonicity is not expressible by a fixpoint sentence with successor, then by 
Immerman and Vardi’s characterization, this is equivalent to showing that P # NP! 

As another example, Kolaitis and Vardi [KV] consider a class called “strict C:”, 
which are properties describable by C: sentences where the first-order part has a 
certain restricted quantifier structure. Kolaitis and Vardi prove that strict Ci is not 
closed under complement. It follows easily from the construction in [Fal l  that strict 
C:  with successor is, in a precise sense, equal to NP (such a result is stated explicitly 
by Leivant [Le]). Thus, if Kolaitis and Vardi’s result could be extended to show that 

’Technically, ŝ  is not a function, since its domain is not a set. If this bothers us, we can restrict our 
attention to universes that are, say, sets of natural numbers. Or, as is commonly done, we could assume 
that if the universe is of size n, then the universe is {0,1,. . . , n - 1). 
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strict Ci with successor is not closed under complement, then this is equivalent to 
showing that N P  is not closed under complement! 

We now mention how we extend our results to allow more general built-in 
relations than successor, and comment as to why this is of interest. Intuitively, we 
allow built-in relations with no short cycles (when we ignore the directions of edges) 
and with small indegree and outdegree for each vertex. We assume that 1 (the number 
of built-in relations) is fixed, and we let gi (for i = 1 , .  . . , I )  be functions with domain 
the collection of possible universes of directed graphs, and range the collection of 
binary relations, such that the universe of the binary relation & ( V )  is V. We let 
r( V )  be the undirected graph with universe V where if u and w are distinct vertices, 
then (v, w) is an edge of r( V )  iff (u ,  w )  E ii ( V )  or ( w ,  u)  E Bi( V )  for some i (where 
1 5 i 5 I ) .  Note that we are using the convention that (u ,  w )  represents a directed 
edge, and (u, w) an undirected edge. We denote the cardinality of V by I V1. 

THEOREM 3.2. Let 1 (the number of built-in relations) be fixed. Assume that ( (n )  
+ 00 and o(n> -+ 0 as n + 00 (where o(n) > 0 for every n). Assume also that T ( V )  
contains no cycle of length less than t( I Vl), and the degree of each point in r( V )  is at 
most I V Then directed reachability is not monadic C: , euen in the presence of the 
built-in relations. 

Thus, Theorem 3.2 says that there is no monadic C: sentence cp(P, s, t ,  B,, . . . , Bf) 
and functions &, . . . , &,with the restrictions given, such that G = ( V, P, s, t )  is (s, t)- 
connected iff ( V ,  P, s, t ,  B,(V), . . . , & V ) )  k cp. 

Similarly to before, we can consider an alternate notion of “in the presence of 
the built-in relations”. Using this notion, “directed reachability is monadic C: 
in the presence of the built-in relations” would mean that there is a monadic 
C: sentence q ( P ,  s, t ,  B , ,  . . . , B,) such that if ( V ,  P,s ,  t ,  B,, , . . , B,) is a graph along 
with B,, . . . , Bf that are restricted as above, then { V, P, s, t )  is (s, t)-connected iff 
( V ,  P, s, t ,  B,, . . . , B,) I= cp. Unlike the situation with successor alone, this notion is 
not equivalent to our notion. However, under our notion, the nonexpressibility 
result is stronger (that is, implies the nonexpressibility result under the alternate 
notion). This alternate notion does not seem very interesting. But our notion is 
interesting, since B1,. . . , B, can be specially chosen to be as useful as possible. We 
note that our notion of “built-in relations” is much like similar notions in [BoSi] 
and [Im3], where functions analogous to our assignment functions hi are used that 
take as their argument the size of the universe, rather than the universe itself (these 
papers have the convention that if the universe is of size n, then the universe is 
0,1,. . . , n - 1, and so there is only one universe of each size). The notion of “built-in 
relations” in [Aj] is the same as ours; there, universes are restricted to be sets of 
natural numbers. 

Now in the successor relation, there are no cycles at all, and the degree of each 
point is at most two. Hence, Theorem 3.1 is a special case of Theorem 3.2, where 
(a) 1 = 1, (b) & ( V )  is an arbitrary successor relation over V, (c) ( (n)  = n, and 
(d) o(n) = log, 2. 

There is another reason (besides our interest in successor relations) to allow built- 
in relations. Proving that a class is not, say, monadic 1; shows that the class cannot 
be captured in a certain uniform way, where we think of a (fixed, finite length) 
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monadic C: sentence as a uniform description. Proving that a class is not monadic 
C: even in the presence of certain built-in relations shows that the class cannot even 
be captured in certain nonuniform ways (since the built-in relations vary from 
universe to universe). So allowing built-in relations makes our nonexpressibility 
result that much more powerful. 

We do not know whether our restriction on the built-in relations as given in the 
statement of Theorem 3.2 is essential: we consider it possible that directed 
reachability is not monadic Ci , even in the presence of arbitrary built-in relations of 
arbitrary arity (sometimes called “a polynomial amount of advice”). For that 
matter, we also consider it possible that connectivity (directed or undirected) is not 
monadic C:, even in the presence of arbitrary built-in relations of arbitrary arity. In 
particular, it is an interesting open problem as to whether either directed or 
undirected connectivity or directed reachability is monadic C: in the presence of a 
built-in linear order (in the case of connectivity, this problem was originally posed 
by de Rougemont [Ro]). Note that Theorem 3.2 does not apply, since the undirected 
version of a linear order on at least three points has a cycle of length three. Another 
interesting special case would be when addition is built-in as in [Ly] (this is the 
ternary relation on the universe (0,. . . , n - 1 )  consisting of tuples ( i , j ,  k )  where 
i + j = k).  We note that Lynch’s results in [Ly] on monadic Ci in the presence of 
a built-in addition relation do not apply, since Lynch encodes graphs as binary 
strings; hence, a unary relation for him over a graph with n vertices would have n 2  
“bits”, and so would correspond to a binary relation for us. Yet another interesting 
special case would be with Immerman’s BIT relation built-in [Im4], consisting of 
tuples (i,j) where the ith bit in the binary expansion of j is a one. 

54. Games. In this section, we consider Ehrenfeucht-Fraisst-type games [Eh], 
[Fr], describe how they have been used before to prove nonexpressibility results, 
and conclude by discussing the novel way we make use of them to prove our main 
result and its extensions. 

We begin with an informal definition of an r-round Ehrenfeucht-Fraisst game 
(where r is a positive integer). There are two players, called the spoiler and the 
duplicator, and two graphs, Go and GI .  In the first round, the spoiler selects a point in 
one of the two graphs, and the duplicator selects a point in the other graph. Let a ,  be 
the point selected in Go, and let b,  be the point selected in G,. Then the second round 
begins, and again, the spoiler selects a point in one of the two graphs, and the 
duplicator selects a point in the other graph. Let a2 be the point selected in Go, and 
let b2 be the point selected in G, . This continues for r rounds. The duplicator wins if 
the subgraph of Go induced by ( a , ,  ..., a , )  is isomorphic to the subgraph of G, 
induced by (b, , .  . . , b,) (under the function that maps a, onto bi for 1 i i i r). That 
is, for the duplicator to win, there must be an edge between a,  and aj in Go iff there is 
an edge between b, and bj in G,, for each i, j .  Otherwise, the spoiler wins. We say that 
the spoiler or the duplicator has a winning strategy if he can guarantee that he will 
win, no matter how the other player plays. 

We shall sometimes refer to an r-round Ehrenfeucht-Fraissk game as a Jirst- 
order game. The following important theorem (from [Eh] and [Fr]) shows why 
these games are of interest. 
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THEOREM 4.1. A class 9’ of graphs is first-order definable i f f  there is r such that 
whenever Go E 9’ and G, $ then the spoiler has a winning strategy in the first-order 
game with parameters Go, G,, r. 

We now explain why the “only if” direction of Theorem 4.1 holds. Let cp be a first- 
order sentence which, when written in prenex normal form, is of the form 
Q l x l  . . . Q  rx,$, where Qi is either V or 3 for each i ,  and where $ is quantifier-free. 
Thus, when written in prenex normal form, cp has I quantifiers. Assume that Y is the 
class of all graphs that satisfy cp. Assume also that Go E 9’ (so Go I= cp), and G, 4 Y 
(so G, # cp). We now show, by example, why the spoiler has a winningstrategy in the 
first-order game with parameters Go, G,, r. Assume that, say, cp is Vx,3x2$(x ,y ) ,  
where $ is quantifier-free. So 3 x , V x 2 i  $(x ,  y) is true about G,. On the first round, 
the spoiler selects a point b ,  in G, such that V x 2 i  $ ( b l , x 2 )  is true about G,. Thus, 
intuitively, the spoiler makes “the existential move”. Let a, be the duplicator’s 
selection in Go. Since Vx,3x2$(x , y )  is true about Go, it follows that 3 x 2 $ ( a l , y )  is 
true about Go. On the second round, the spoiler selects a point a, in Go such that 
$(al, u2)  is true about Go. Thus again, the spoiler “makes the existential move”. Let 
b2 be the duplicator’s selection in G,. So i $(bl, b,) is true about G,. Since $(a,, a,) 
is true about Go and i $(b , ,  b,) is true about G, ,  and since 11, is quantifier-free, it 
follows easily that the subgraph of Go induced by (a,,a,) is not isomorphic to the 
subgraph of G, induced by ( b l , b 2 ) .  So indeed, the spoiler has won. 

The converse to Theorem 4.1 tells us that if 9’ is not first-order definable, then, in 
principle, this can be proven by a game-theoretic argument (by showing that for 
every r, there are Go E 9’ and G, 6 9’ such that the duplicator has a winning strategy 
in the first-order game with parameters Go, G,, r). 

In addition to considering first-order games where the parameters are graphs Go 
and G, and a positive integer r,  it is also convenient to consider first-order games 
where the parameters are a class along with r. The rules of this game are as 
follows. The duplicator begins by selecting a member of Y to be Go, and a mem- 
ber of 9 (the complement of 9’) to be G,. The players then play an r-round 
Ehrenfeucht-Fraisse game. The duplicator wins precisely if he wins the r-round 
Ehrenfeucht-Fraisse game. The next theorem follows easily from Theorem 4.1. 

THEOREM 4.2. 9’ is jirst-order definable i f f  there is r such that the spoiler has a 
winning strategy in the jirst-order game with parameters Sq r. 

We now show how first-order games can be used to prove that evenness (“the 
number of points is even”) is not expressible in first-order logic. Let Y be the class of 
graphs with an even number of points, and let r be arbitrary. By Theorem 4.2, we 
need only show that the duplicator has a winning strategy in the first-order game 
with parameters r. The duplicator begins by selecting Go to be a graph with 2r 
points and no edges, and G, to be a graph with 2r + 1 points and no edges. In the r- 
round Ehrenfeucht-Fraisse game that follows, the duplicator’s strategy is simple. If 
on round i the spoiler selects a point that has not previously been selected by either 
player, then on round i the duplicator does the same in the other graph; if instead, 
the spoiler selects a point aj (resp. bj) that was previously selected by either player, 
then the duplicator selects bj (resp. aj). 

We now discuss a modification of first-order games, called monadic C: games, 
introduced in [Fa21 to prove that connectivity is not monadic Zt (although, as we 
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saw, connectivity is monadic Ii’i). The inputs are graphs Go and G,, and positive 
integers c and r. Let C be a set of c distinct colors. The spoiler first colors each of the 
points of Go, using the colors in C, and then the duplicator colors each of the points 
of G,, using the colors in C. Note that there is an asymmetry in the two graphs in the 
rules of the game, in that the spoiler must color the points of Go, not G,. The game 
then concludes with an r-round Ehrenfeucht-Frai’sst game. The duplicator now wins 
if the subgraph of Go induced by ( a l , .  . . , a , )  is isomorphic to the subgraph of G, 
induced by (b l , ,  . . , b,) (under the function that maps a, onto b, for 1 I i I r),  as 
before, and if in addition, the colors assigned to a, and b, are identical, for 1 I i I r. 
That is, the isomorphism must also respect color. 

As an example of such a game, assume that c = r = 2, that Go is the disjoint union 
of two cycles, and GI is a single cycle. We now show that the spoiler has a winning 
strategy (this corresponds to the fact that nonconnectivity is monadic Zt). Let us call 
the two colors red and blue. The spoiler’s winning strategy is as follows. The spoiler 
colors all of the points in one cycle of Go red, and all of the points in the other cycle 
of Go blue. If the duplicator does not color some point of the single cycle G, red, then 
the spoiler can guarantee a win in round 1 by selecting a red point in Go. So to have a 
chance to win, the duplicator must color some point of G, red, and similarly, the 
duplicator must color some point of GI blue. There is therefore some adjacent pair in 
G, with distinct colors; the spoiler selects these points in rounds 1 and 2 of the (first- 
order) Ehrenfeucht-Fraisse game. The duplicator is forced to try to find an adjacent 
pair in Go with distinct colors, which is impossible. 

The following theorem (from [Fa2]) is analogous to Theorem 4.1. 
THEOREM 4.3. A class Y of graphs is monadic C: iff there are c and r such that 

whenever Go E Y and G, $ Lf then the spoiler has a winning strategy in the jirst-order 
game with parameters Go, G,, c,  and r. 

The “only if” direction of this theorem follows similarly to before. Thus, assume 
that cp is a monadic Ci sentence 3A, ... 3A,$, that Go is a graph that satisfies cp, and 
that G, is a graph that does not satisfy cp. Let c = 2k,  and let r be the number of 
quantifiers of the prenex normal form of I). As before, it is straightforward to show 
that “making the existential move” gives the spoiler a winning strategy in the 
monadic C: game with parameters Go, G,, c, r (the 2k  colors represent the various 
possibilities as to which of the sets corresponding to A , ,  . . . , A ,  a point is a member 
of). 

Similarly to before, we wish to consider monadic Ci games where the parameters 
are a class X along with positive integers c and r .  The rules of this game are as 
follows. 

1. The duplicator selects a member of Y to be Go. 
2. The duplicator selects a member of to be G, . 
3. The spoiler colors Go with the c colors. 
4. The duplicator colors G, with the c colors. 
5 .  The spoiler and duplicator play an r-round Ehrenfeucht-Frakse game. 
The winner is decided as before. The next theorem follows easily from 

THEOREM 4.4. Y is monadic C: i f f  there are c and r such that the spoiler has a 
Theorem 4.3. 

winning strategy in the monadic C i game with parameters 9, c,  r. 
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In [Fa21 it is shown that, given c and r, there is a graph Go that is a large cycle, and 
a graph G, that is the disjoint union of two large cycles, such that the duplicator has 
a winning strategy in the monadic C j  game with parameters Go, G,, c, r. Since Go is 
connected and G, is not, it follows (from Theorem 4.3 or Theorem 4.4) that 
connectivity is not monadic C:. It is interesting to note that, as our example above 
showed, if we were to exchange Go for G ,  and vice-versa (so that Go were the disjoint 
union of two cycles, and G, the single cycle), then it would be the spoiler, rather than 
the duplicator, who has the winning strategy (provided c and r a re  at least 2). 

The way that de Rougemont [Ro] extends [Fa21 to prove that connectivity is not 
monadic C:, even in the presence of a built-in successor relation, is to define for each 
pair c, r a pair Go, G, of graphs (that are substantially more complicated than 
disjoint unions of cycles, but still of bounded degree), define a successor relation for 
each, and then show that the duplicator has a winning strategy in the monadic 2: 
game with parameters Go, G,, c, r, where the isomorphism must respect not only the 
graph relations and the coloring, but also the successor relations. 

We do not see how to use Theorem 4.4 to prove our main result that directed 
reachability is not monadic C:. Thus, when Y is the class of directed graphs that are 
(s, t)-connected, and given c and r, we do not know opening moves for the duplicator 
(how to select Go and C,)  in a winning strategy for the monadic C: game. We 
thereforeconsider another game, the new monadic C: game, which, on the face of it, is 
easier for the duplicator to win. The inputs are a class Y: along with positive integers 
c and r. The rules of the new game are obtained from the rules of the monadic C: 
game by reversing the order of two of the moves. Specifically, the rules of the new 
monadic C: game are as follows. 

1 .  The duplicator selects a member of Y to be Go. 
2. The spoiler colors Go with the c colors. 
3. The duplicator selects a member of to be GI. 
4. The duplicator colors G, with the c colors. 
5. The spoiler and duplicator play an r-round Ehrenfeucht-Frakse game. 
The winner is decided as before. Thus, in the new game, the spoiler must commit 

himself to a coloring of Go with the c colors before knowing what G ,  is. In order to 
contrast it with the new monadic C: game, we may sometimes refer to the monadic 
C: game as the old monadic C:  game. In spite of the fact that it seems to be harder for 
the spoiler to win the new monadic 1: game than the old monadic Z i  game, we have 
the following analogue to Theorem 4.4. 

THEOREM 4.5. Y is monadic C: if there are c and r such that the spoiler has a 
winning strategy in the new monadic Ci game with parameters 9, c, r. 

The reason that Theorem 4.5 follows from Theorem 4.4 is that if Y is monadic C;, 
then the spoiler does not need to know what G, is before coloring G,, since the 
coloring of Go is determined completely by “making the existential moves” as given 
by the monadic Ci sentence that defines 3 The simple details are left to the reader. 

There does not seem to be a new monadic C:  game with parameters Go, GI,  c, r 
that corresponds to the new monadic Ci game with parameters 9, c, r in the same 
way as the old monadic C: game with parameters Go, G,, c, r corresponds to the old 
monadic C:  game with parameters Y: c, r .  Intuitively, this is because once we fix Go 
and G,, it does not make sense to consider the notion that the spoiler must color Go 
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without knowing what G ,  is. In fact, the reason that we bothered to introduce the 
first-order game and the old monadic C: game with 9’ rather than Go and G, as 
(some of the) parameters is to contrast them with the new monadic C i  game, which 
requires Y as a parameter. 

Unfortunately, even in the new monadic Ci  game, we do not know opening moves 
for the duplicator (how to select Go and G,) in a winning strategy. However, we can 
prove that such moves exist! We do so by working in the spirit of the well-known 
probabilistic approach, where to prove that some object obeys property $ we define 
a probability distribution on the set of objects, and show that nearly all objects 
(under this probability distribution) obey property 9 Of course, all that is needed is 
that the probability of property 9 is positive, but it is often convenient to prove that 
the probability of property 9 is nearly 1 .  

Let c and r be given. We construct (by probabilistic methods) a directed graph G 
with points s, t where there is a directed path from s to t in G. Thus, G is (s,t)- 
connected. As before, denote the graph that is obtained by deleting the edge e from G 
by G - e. We show that however the spoiler colors G with the c colors, there is an 
edge e of G (randomly selected from the set of edges of a certain type) such that (a) 
there is no directed path from s to t in G - e, and (b) when G - e is colored in 
precisely the same way, vertex for vertex, as G was colored, then with positive 
probability (in fact, with high probability), the duplicator has a winning strategy in 
the r-round Ehrenfeucht-Fraisse game played on G and G - e (where, as before, the 
isomorphism must also respect color). Thus, in the new monadic C: game, the 
duplicator first selects G as Go, then the spoiler colors Go, then the duplicator selects 
G, as G,, then the duplicator colors G ,  by mimicking the coloring of Go, and finally 
the duplicator wins the r-round Ehrenfeucht-Fraissk game played on Go and G,. It 
follows from Theorem 4.5 that directed connectivity is not monadic Ci .  

There are several ways that this “game argument” differs from usual 
Ehrenfeucht-Fraisse game arguments. 

(1) The first difference corresponds to the difference between the old and new 
versions of the monadic C: game. In the old game, graphs Go and G ,  are specified 
before the spoiler colors Go. Intuitively, the spoiler “knows” what Go and G, are 
before he colors Go. In our case, this might be devastating for the duplicator: if the 
spoiler knew which edge e were deleted from Go = G to form G, = G - e, this might 
dramatically influence his coloring of Go (for example, the spoiler might color the 
endpoints of e with special colors). In our game, the spoiler must commit himself to a 
coloring of Go before he knows which edge e is deleted. This makes it easier for the 
duplicator to win. 

(2) Another difference is that in the old monadic Ci game, the “hard part” of the 
duplicator’s strategy is to find a coloring for G,, once the duplicator knows how the 
spoiler has colored Go. In this case, this is the easy part: the duplicator simply copies, 
vertex for vertex, the coloring of Go. 

(3) Our construction is probabilistic, rather than deterministic. In fact, as we 
noted, we do not know how to specify explicitly graphs Go and G, where our 
arguments work; we simply prove, by probabilistic arguments, that they exist. We 
come back to related issues at the end of this section. 

We now describe in detail our construction of G and G - e. Assume that I/ is a 
finite set with n points. (There may also be built-in binary relations B,, . . . , B, with 



REACHABILITY IN DIRECTED FINITE GRAPHS 127 

universe V.)  Let p be a real number between 0 and 1. We now define a random 
directed graph QZ, on I/. We refer to this graph as a random path with random 
backedges. Let < be a random strict linear ordering of V with uniform distribution 
on the set of all strict linear orderings. If w is the immediate successor of u in the 
linear ordering <, then ( u ,  w) is a forward edge. For each pair u < w of distinct 
points, there is a backedge (w, u )  with probability p. Each choice of backedges is 
made independently. Note that the presence of a backedge involving u and w (that is, 
a backedge ( u ,  w) or (w, u ) ,  as appropriate) is independent of the choice of random 
linear order. The edges of QZ, are precisely the forward edges and the backedges. The 
least element of the ordering < is s and the greatest is t. Clearly sand tare connected 
by a directed path in QZ,. Also, if we delete a forward edge e of the graph, then there is 
no longer a directed path from s to t, since the backedges all go from larger points in 
the linear ordering to smaller points. Thus, QZ, - e is not (s, t)-connected. 

Let L be a language containing I + 1 binary relation symbols (to represent the 
binary relation Q; and the built-in binary relations B,, . . . , Bl), and constant symbols 
to represent s and t. Let B,, . . . , B, be binary relations with universe V. Define an 
undirected graph r as in 93: if u and ware distinct vertices, let (u, w) be an edge of riff  
( u ,  w) E B, or (w, u )  E B, for some i (where 1 I i 5 I ) .  We say that ( B , , .  . . , B l )  is a 
successor-like family (with parameters 4 and 0) if r contains no cycle of length less 
than 4 ,  and the degree of each point in 

To show that (s, t)-connectivity is not monadic C : ,  it is enough to show that for 
each monadic C: sentence cp, if E > 0 and if n is sufficiently large, then, for a suitable 
p ,  with probability at least 1 - E the following holds: there is a forward edge e in Q% 
so that if QZ, != cp then (QZ, - e) I= cp. In fact, we even allow a successor-like family of 
built-in relations. Let A! be the structure (or L-structure) ( V ,  QF, s, t, B,, . . . , B,), and 
let A!e be the result of replacing QZ, in A’ by QZ, - e. We show that under certain 
assumptions, if cp is a monadic C i  L-sentence (that is, cp is allowed to refer also to the 
built-in relations B,, . . . , BI)  and if ( B , ,  . . . , BJ is a successor-like family, then with 
high probability there is a forward edge e in QZ, so that if A != cp then Me != cp. As we 
noted, to prove our nonexpressibility results, we do not need “with high 
probability”; we could get by with “with positive probability”. But we do prove the 
stronger result. Specifically, we prove the following theorem. 

THEOREM 4.6. Let r and 1 be positive integers, and let E > 0. Assume that t is 
suficiently large with respect to E, that 6 is suflciently large with respect to r,  1, and E, 

that G > 0 is suficiently small with respect to 5, and that n is suficiently large with 
respect to r, 1, E, 5,  and G. Suppose that V is a set with n elements, and that ( B , ,  . . . , B1) is 
a successor-like family with parameters 4 and G. Assume that %In < p < n“/n, that Q; 
is a random path on V with random backedges, and that e is a random forward edge 
(with uniform distribution on the set of all forward edges). Then for each monadic C: 
sentence cp of the language L and of length at most r, the probability is at least 1 - E 

(where the probability is taken ouer the choices of QZ and the deleted forward edge e 
together) that if A I= cp then Me + q. 

Note 1. Instead of saying “of length at most r”, we could just as well have said 
“where the number of quantifiers in the prenex normal form of the first-order part of 
cp is at most r”, but we phrased it as we did for ease in description. 

Note 2. We cannot replace “if A k cp then Ae I= cp” in the conclusion of 
Theorem 4.6 by “A I= cp iff Me I= cp”. This is because, as we noted, there is a monadic 

is at most JVI“. 
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Ci sentence that says “The graph is not (s, t)-connected”. Then Ae + cp for every e, 
but A’ I# cp. 

Note 3. It is interesting that the probability p in the random construction for Q; 
cannot be too small or too large. If e = (x, y )  is the deleted forward edge, we need p 
to be large enough that there are enough backedges from x to “play the role” of the 
missing edge e. On the other hand, we need p to be small enough that the expected 
degree of each vertex in Q; is small (just as we want the degree of each vertex in r to 
be small), so that with high probability, the number of points in short cycles (when 
we ignore the directions of edges) is small (this turns out to be important in our proof 
that with high probability, the duplicator has a winning strategy). In fact, we 
originally tried to prove our result by taking p = 1/2; instead we proved, to our 
surprise, that if p is constant, then even if there are no built-in relations, with high 
probability it is the spoiler, rather than the duplicator, who has the winning strategy! 
We prove this in 96. Thus, if p is too small (such as p = 0 or p very near 0 as a 
function of the size n of the universe) or too large (such asp  a positive constant) then 
with high probability the spoiler has a winning strategy; if p is in an intermediate 
range, then with high probability the duplicator has a winning strategy. 

The proof of Theorem 4.6 appears in $8. If we ignore the built-in relations 
B,, . . . , B,, then Theorem 4.6 implies our main result that directed reachability is not 
monadic C : .  For, assume that cp were a C:  sentence that characterizes directed 
reachability. By Theorem 4.6, there are A and Ae such that if A’ i= cp then Ae b cp. 
But this is impossible, since A is (s, t)-connected although Ae is not. If we consider 
the built-in relations, then Theorem 4.6 implies Theorem 3.2 above, as we now show. 
Assume that cp were a C: sentence of length r that characterizes directed reachability 
in the presence of the I built-in relations. By Theorem 4.6, we can find to, a,, and n, 
so that if n 2 no, then for each successor-like family ( B , ,  . . . , BJ with parameters to 
and a,, there is (with universe of size n) that satisfies cp. Find n, 2 no so that 
((n) > 5, and 0 < a(n) < a, whenever n 2 n,. Let V be a universe of size n,. Then 
(b,( V ) ,  . . . , E l (  V ) )  is a successor-like family with parameters [(n,) and a(nl). Since 
t ( n l )  > to and a(n l )  < a,, it follows that ( & ( V ) , . .  . , & V ) )  is a successor-like 
family with parameters 5, and a,. Hence, Ae satisfies cp, a contradiction, since Me is 
not (s, t)-connected. 

We close this section by giving an interesting twist on the point made above that 
we do not know opening moves for the duplicator in a winning strategy for the old 
monadic C: game. That is, given c and r,  we do not know how to construct a pair 
Gb, G’, of directed graphs where Gb is (s, t)-connected, G’, is not (s, t)-connected, and 
the duplicator has a winning strategy in the monadic C: game with parameters 
Gb, G’,, c, r. Since directed reachability is not monadic Z;, i t  follows from Theo- 
rem 4.4 that for each pair c, r,  there is such a pair Gb, C’,. In our proof of non- 
expressibility, we work with pairs Go, G, where Go consists of a path from s to t ,  
along with certain backedges, and where G, is the result of removing some forward 
edge from Go. The interesting point is that it is not clear that such a pair Go, G, could 
serve as Gb, G; ! From Theorem 1.2, we do know that as c and r grow, the indegree or 
outdegree of Gb or G‘, must grow arbitrarily large. In particular, graphs of the type 
used in [Fa21 and [Ro] are inadequate, since they have bounded degree. 

55. The bounded-degree case. In this section, we give a proof of the following 
result : 
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THEOREM 5.1. Let k be a positive integer. The class of directed (s, t)-connected 
graphs where the indegree and outdegree of each vertex is at most k is monadic C:. 

PROOF. Let cp be the Zi sentence 3AlBlA2B2~~~AZk2-1B2kZ-l$, where the Ai’s 
and 4 ’ s  are unary relation symbols, and where $ is a first-order formula that we now 
describe informally. 

Assume that G is the graph in question, and V ( C )  (resp. E(G))  is its set of vertices 
(edges). If A i  and B, are subsets of V(G), then we may define a subset Di of E ( G )  by 
saying (x, y )  E Di iff x E A i A y E Bi A (x, y )  E E(G). Let D = u;2:- Di. Then t+h is 
a first-order formula that “says” that the indegree and outdegree of each vertex is at 
most k, along with the following conditions: 

1. s is the tail of exactly one edge in D, and s is not the head of any edge in 
2. t is the head of exactly one edge in D ,  and t is not the tail of any edge in D. 
3. If x E A ,  or x E B,, and if x # sand x # t, then x is the head of exactly one edge 

in D and x is the tail of exactly one edge in D. 
First we prove that cp implies (s, t)-connectivity. Indeed, if cp holds then we start a 

path from s consisting of edges in D. Our conditions imply that this path cannot go 
through a vertex twice, and cannot end anywhere else than t. 

To show that (s, t)-connectivity (along with the indegree and outdegree of each 
vertex being at most k )  implies cp, it is sufficient to show that there are subsets A ,  and 
B,, for 1 5 i 5 2kZ - 1, so that if we define the set D in the way just described, it 
satisfies the three conditions. 

Let s = sl,. . . , sI = t be a minimal path from s to t, and let X be the edge ( s j ,  s j+  1) ,  

for 1 I j < 1. We will define the sets A ,  and Bi (for 1 I i I 2kZ - 1) so that D will be 
precisely the set of edges A, for 1 I j I 1 - 1. Clearly this implies the three 
conditions. 

First we define an undirected graph H whose vertices consist of the set E ( G )  of 
edgesof G.Ifel  = (x l ,y l )  ~ E ( G ) a n d e ,  = (x,,y,) ~E(G),then(e,,e,)isanedge 
of H preciselyif el  # e2 andeither (xl ,y2)  E E(G)or(x,,y,) E E(G).Thus,(e,,e,) 
is an edge of H ,  where el # e, precisely if there is an edge e with the same tail as one 
of e, or e, and with the same head as the other of e, or e2. Because indegrees and 
outdegrees in G are at most k, it is straightforward to verify that the degree of each 
vertex of H is at most 2(k2 - 1). This implies that H can be colored with 2(kZ - 1) 
+ 1 = 2k2 - 1 colors so that neighboring points in H are of different colors (we 
simply use a greedy coloring algorithm). For 1 < i < 2k2 - 1, let C, be the set of 
points in H with the ith color, and let Ai(resp. B,) be the set of all x E V ( C )  such that x 
is the tail (the head) of some edge J as defined above, where h E Ci. 

As we noted, the proof is complete if we show that D consists precisely of the edges 
4 (for 1 I j I 1 - 1). Clearly, each h is in D. Assume now that e = (x, y )  E D. Then 
there is an i so that the tail of e is in Ai  and the head of e is in Bi. The definitions of A ,  
and Bi imply that x = sj and y = s, for some j and m. Since sj E A i ,  this implies that 
J E C,. Similarly, since s, E B,, this implies that f ,  E Ci. Since e is an edge with the 
same tail as J and the same head as f,, it follows that either = f ,  or else ( J , f m )  is 
an edge of H. But (h,f,) cannot be an edge of H,  since and f ,  have the same color 
(namely, the ith color). Soh = f,. Since e has the same tail as hand  the same head as 
f;,  = h, it follows that e = J ,  as desired. W 

3The tail of an edge (u.  w )  is u, and the head is w. 
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$6. Constant probability of a backedge. In this section, we show that if the 
probability p of a backedge (as defined in $4) is constant (independent of n), then it is 
the spoiler, rather than the duplicator, who has the winning strategy with high 
probability. We begin by considering the simplest cases, namely, p = 0 and p = 1. 

If p = 0 (that is, if there are no backedges), then the spoiler has a winning strategy 
with probability 1 in the 2-round Ehrenfeucht-Fraisse game, even with no colors at  
all. This is because in Q: there is only one point (namely, the minimal point s) with 
indegree 0, but in Q2, - e there are two such points, namely s and the head of the 
deleted forward edge e. 

If p = 1 (that is, if every possible backedge appears), then we now show that the 
spoiler has a winning strategy with probability 1 in the 4-round Ehrenfeucht-Fraisse 
game, again with no colors at  all. Throughout this section, whenever we speak of the 
distance d(u, u )  between two vertices u and u, we mean the distance with respect to the 
linear ordering < (that is, the distance in Q2, where the backedges are completely 
ignored). Let e = (b , ,b , )  be the deleted forward edge. On the spoiler’s first two 
moves, he picks b,  and b, in Q: - e. Let a ,  and a, be the corresponding points 
selected by the duplicator in Q:. Since (b , ,  b , )  is an edge of QI, - e but ( b , ,  b,) is 
not, we know that (a , ,  a , )  must be an edge of QI, and ( a , ,  a,) must not be, or else 
the spoiler can guarantee a win after round 2. Hence a, < a,, and d(a,, a z )  2 2 (that 
is, a, is not the immediate successor of a,). There are three cases. 

(a) Assume first that d(a,, a,) = 2. Then on round 3 the spoiler selects the point a, 
in Q: that is the immediate successor of a, (and the immediate predecessor of a,). 
Then ( a , , ~ , ) ,  ( a , , ~ , ) ,  ( u 3 ,  a,), (a , ,a , )  are all edges of Qi .  But there is no point 
b,inQZ,-esuch that ( b l , b 3 ) , ( b 3 , b l ) ,  (b,,b,),(b,,b,)arealledgesof Q;-e. 
So the spoiler has guaranteed a win after round 3. 

(b) Assume now that d(a,, a,) = 3. Then on round 3 the spoiler selects the points 
a3,a4 in Q: such that a ,  is the immediate successor of a ,  and such that a4 is the 
immediate successor of a, (and the immediate predecessor of a,). Then (al ,  a,), 
( a , , ~ , ) ,  (a,,a4), (a4,a,), (a4,a2), (a,,a4) are all edges of Q2,. But there are no 

(b , ,  b4) are all edges of Q2, - e. So the spoiler has guaranteed a win after round 4. 
(c) Assume finally that d(a,, a,) 2 4. Then on round 3 the spoiler selects the point 

a, in Q; such that a, is the immediate successor of the immediate successor of a,. So 
a, < a, < a,, and also d(a,,a,) 2 2 and d(a,,a,) 2 2. So (u,,a,) and ( u 3 , a l )  
are edges of Q;, but (a , ,  a,) and (al ,  a,) are not. But there is no  point b, in Q2, - e 
such that (b2 ,b3 )  and (b3 ,b l )  are edges of QI, - e, and (b,,b,) and ( b l , b 3 )  are 
not. So the spoiler has guaranteed a win after round 3. 

Points b37b4 in Q i - e  such that < b 1 > b 3 ) >  < b 3 , b l ) ,  (b31b4), <b4,b3),  (b4 ,b2) ,  

We now consider the more complicated case where 0 < p < 1. 
THEOREM 6.1. Assume that E > 0, that p is constant (0 < p < l), and that n is 

suficiently large with respect to E and p .  Then, with probability at least 1 - E, there is a 
vertex coloring of Q2, (where the number of colors depends on p )  such that i f  G is the 
resulting colored graph and e is a random forward edge (with uniform distribution on 
the set of all forward edges), then the spoiler has a winning strategy in the 6-round 
Ehrenfeucht-FraYssQ game played on G and G - e (where isomorphisms must respect 
colors). 

PROOF. Let M 2 2 and N 2 2 be positive integers that we shall select later to be 
sufficiently large with respect to p .  We now define a coloring with 3 M N  colors 
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Q,, . . . , Q,,,. Let m = L(log n)/M]. (For definiteness, let us take all logarithms to the 
base 2.) Let Li be the ith interval of Q; of size m, for 1 5 i 2 Lnlm]. Thus, L, contains 
the first m points in the linear order, L, contains the next m points in the linear order, 
and so on. If m does not divide n, then define a final interval Llnim, to contain the 
remaining points (this interval will contain less than rn points). Each point in L, has 
color Q,, where 1 2 j 5 3 M N  and j = i mod 3 M N .  In particular, if u and v have the 
same color, then either u and u are in the same interval L,  for some i, or else 

d(u,u) > ( 3 M N  - l)m = ( 3 M N  - l)L(logn)/MJ, 

which is greater than 2 N  log n if n is sufficiently large with respect to N. 
Call L, and L,  + , adjacent intervals. Also, call the colors Q, and Qi+ adjacent 

colors (where we take the subscript mod 3 M N ) .  Thus, 0, and Q, are adjacent colors, 
as are 52, and Q3MN. We define a ternary relation T over the universe V of Q;, by 
letting Tuwu hold iff the color of w is not the same as nor adjacent to either the color 
of u or the color of u, and if ( u ,  w) and (w, u )  are edges of Q;. Because of the 
constraint on the color of w, it is clear that Tuwu implies that ( u ,  w) and (w, u )  are 
both backedges. In particular, Tuwu implies that u < w < u, and u and v are not in 
the same or even adjacent intervals. Let R be the ternary relation where Ruwv holds 
iff either Tuwu or Tuwu. In particular, Ruwu implies that u and v are not in the same 
or even adjacent intervals. 

We now show that if N is sufficiently large with respect top, and if n is sufficiently 
large with respect to E ,  then, with probability at least 1 - ~ / 4 ,  for every pair u, v of 
vertices where d(u,  u )  2 N log n, there is w such that Ruwv. Assume for now that 
u and u are fixed, that u < u, and that d(u, u )  2 N log n. Call w a u, v-candidate if 
(a) u < w < u and (b) the color of w is not the same as nor adjacent to either the 
color of u or the color of u. Call w a u, u-winner if w is a u, v-candidate and if (v, w) 
and (w, u )  are both backedges. In particular, if w is a u, v-winner, then Ruwv holds. 
It is easy to see that if N is sufficiently large, then there are at least ( N  log n)/2 distinct 
u, u-candidates. For each u, u-candidate w, the probability that w is a u, v-winner is 
p’, independently of the probability that other u, u-candidates are winners. Hence, 
the probability that there is no u, u-winner is at most 

(1 - p2)O”wn)/2 = n(N/Z)log(l  -p2) 

So the probability that there is some u, v where u < v and d(u, v) 2 N log n and there 
is no u, u-winner is less than n2n(N/2)10g(1 - p 2 ) .  Assume that N is sufficiently large that 
(N/2)log(l - p ’ )  < - 3 (of course, log(1 - p’)  is negative). Then this probability is 
less than l/n, which is less than 4 4  if n is sufficiently large with respect to E. A similar 
result holds if v < u and d(u, v) 2 N log n. So assume that whenever d(u, v) 2 N log n, 
there is w such that Ruwu. 

Assume now that e = (x, y) is a randomly deleted forward edge. With probability 
l / m  = 1/L(log n)/MJ, it happens that x and y are in distinct intervals Li (that is, the 
edge e “straddles the border”). By taking n sufficiently large with respect to E and M ,  
this probability is less than 44.  So assume that x and y are in the same interval Li. 
Let Li be [b,, b,] (that is, the left endpoint is b,, and the right endpoint is b2). With 
probability at most 

(rn1/21 + rn)/(n - 1) = (rnl/’l+ L(1og n)/kf])/(n - I), 



132 MIKLOS AJTAI AND RONALD FAGIN 

it happens that b ,  is among the final [n’l2l  points in the linear order. By taking n 
sufficiently large with respect to E,  this probability is less than 44.  So assume that b2 
is not among the final [n’ / ’ l  points in the linear order. 

Let q = min{p, 1 - p } .  The probability that there is no point b, > b,  such that 
there is a backedge from b, to every member of [b,, x ] ,  but no backedge from b, to 
any member of r y ,  b,l, is at most 

) = (1 - .(logq)/M n”2 1 ‘  (1 - q ( l o g n ) / M  n1 I2  

We now select M to be sufficiently large that (logq)/M > - 1/4. This probability is 
then less than (1 - n-1/4)n”2. If n is sufficiently large with respect to E,  then this 
probability is less than e / 4  (we can prove this by, say, 1’Hospital’s rule). So assume 
that there is a point b ,  > b, such that there is a backedge from b, to every member of 
[b , , x ] ,  but no backedge from b, to any member of [y,b,]. 

We now describe the spoiler’s winning strategy. On rounds 1 and 2, the spoiler 
selects b , ,  b,, b ,  in G - e. Let a,, a 2 ,  a, be the corresponding points selected by the 
duplicator in G. Let us refer to the color of b ,  and b ,  as red. Then a, and a ,  are also 
red (or else the spoiler has guaranteed a win). We now show that if a, and a2 are not 
in the same interval L, for some j ,  then the spoiler can guarantee a win after round 4. 
For, assume that a,  and a2 are not in the same interval Ljfor somej. Since a, and a, 
have the same color, we have shown that d(a,, a 2 )  > 2N log n. Hence, there is w such 
that Ra,wa2. The spoiler could then select a, = w from G in round 4, and the 
duplicator would need to select b, from G - e so that Rb,b,b,. But this is 
impossible, since, as we showed, Ruwu implies that u and u are not in the same 
interval. So we can assume that a,  and a, are in the same interval Lj  for some j .  

We now show that if it is not the case that a, and a, are the left and right endpoints 
of this interval L, (that is, if L, # [a , ,  a,]), then the spoiler can guarantee a win after 
round 5. Assume that a, is not the right endpoint of the interval Lj (a similar 
argument works if a, is not the left endpoint of L,). Let z be the immediate successor 
(under the linear ordering) of b,. The spoiler could select z in  G - e as his move b, on 
round 4. Let the color of z be blue (it is different from red, the color of b,, since b, is 
the right endpoint of its interval). In order to avoid losing, the duplicator must then 
select a blue point a, in G such that there is an edge ( a 2 ,  a,). Since a, is not the right 
endpoint of its interval, this edge (a , ,  a,) would be a backedge. Since red and blue 
are adjacent colors, it follows that d(a,, a4) 2 N log n. So there would be a5 such that 
Ra,a,a4. The spoiler could select a, in G on round 5, and the duplicator would then 
be forced to select b, in G - e such that Rb,b,b,. This is impossible, since, as we 
noted, Ruwu implies that u and u are not in adjacent intervals. So L j  = [a,, a 2 ] .  

Let us refer to each point u where (b , ,u)  is an edge of G - e as a fbpoint ;  
otherwise, we refer to u as a --,point. Similarly, let us refer to each point u where 
( a 3 ,  u) is an edge of G as a +. point; otherwise, we refer to u as a point. Since 6 ,  is 
a +-,point and b,  is a --, point, it follows that a, must be a +. point and a, a 
-,point, or else the spoiler has guaranteed a win after round 3. Since there is a 
forward edge in G from each point to its successor in the linear ordering, it follows 
that there is some pair a,, a, in [a, ,  a,] such that a4 is a +,point, a, is a -,point, 
and there is an edge (a,, a,) in G. On rounds 4 and 5, the spoiler selects a, and a5 in 
G. Let b, and b ,  be the duplicator’s corresponding moves in G - e. Then b, is a 
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+b point and b ,  is a -, point, or else the spoiler has guaranteed a win after round 5. 
[b, ,  b,], then the spoiler has guaranteed a win after 

round 6. For, a, is red, since a, E [a,,a,]. Hence, b, is red, or else the spoiler has 
guaranteed a win. If b, # [b,, b 2 ] ,  then d(b,, b,) > 2N log n, so there is w such that 
Rb, wb,. The spoiler could select win  G - e as b6 on round 6, and win as before, since 
there is no a6 such that Ra,a,a,, because a, and a, are in the same interval. Hence, 
b, E [b, ,  b,]. Similarly, b, E [b, ,  b,]. If the spoiler has not guaranteed a win after 
round 5, then (b,, b 5 )  is an edge of G - e, since (a,,a,) is an edge of G. But then 
there is an edge in G - e from a +,point in [b,, b2]  to a --,point in [b l ,b2] .  
However, this is impossible, by construction. 

97. Large deviation theorem. In this section, we give a result that we shall need to 
make use of several times. We begin with a theorem that is one variation of the well- 
known result that the probability that the number of successful independent trials 
differs from the mean by more than a constant times the mean is exponentially small. 
In this theorem “Pr” refers to the probability. The version of this theorem that we 
now state appears in [Bo, p. 131 (see also [Che]). 

THEOREM 7.1 (Large Deviation Theorem). Assume that there are n independent 
trials, each with probability p of success. Assume that 0 < p I 1/2, that 0 < c i 1/12, 
and that cp( 1 - p)n 2 12. Let S, be the number of successful trials, and let M = pn be 
the expected number of successful trials. Then 

We now show that if b, 

H 

Pr{lS, - MI 2 c M )  i ( c ~ M ) - ~ ~ ~ ~ - ~ ~ ~ ~ ~ .  

We shall make use several times of the following corollary to Theorem 7.1. 
COROLLARY 7.2. There are positive constants c1 and c2 such that the following 

holds. Let A , ,  . . . , A, be 0, 1-valued random variables, and let S, be the cardinality of 
{iI Ai  = l } .  Assume that 0 < p 5 1/2, and that M = pn 2 c,. 

1. Assume that for all i and for all 0, 1-sequences jl,. . . ) ji- the conditional prob- 
ability Pr{A j  = 11.4, = j l , . . . , A , - ,  = j , - , }  is at most p (that is, the conditional 
probability that A ,  = 1, given an arbitrary condition about A, ,  . . . , Ai-  ,, is at most p) .  
Then Pr{S, 2 13M/12) < e-CZM. 

2. Assume that for all i and for all 0, 1-sequences j , ,  . . . , j i -  ,, the conditional prob- 
abili tyPr{A,= l I A ,  = j 1 , . . . , A i - ,  = j j _ , ) i s a t l e a s t p . T h e n P r { S , ~  l l M / 1 2 )  < 

PROOF. We just prove ( l ) ,  since the proof of (2) is similar. We shall define 
independent random variables B,, . . .)  B, such that, for each i (with 1 I i I n), 
(a) Pr{Bj = 1) = p ,  and (b) if A j  = 1 then Bi = 1.  The result then follows from Theo- 
rem 7.1, where we let c = 1/12, c1 = 288, and c2 = 1/432. 

For technical convenience, we assume that for each 0, 1-sequence j ,  , . . . , j , ,  we 
have Pri.4, = j , ,  . . . ,A ,  = j,> > 0. If this is not the case, then we slightly modify the 
probabilities so that this is the case (by replacing each probability of 0 by a 
probability of E,  and appropriately lowering other probabilities slightly), prove the 
result, and then pass to the limit as E + 0 to prove the result in the original case where 
some joint probabilities may be 0. 

Define q,, . . . , q, to be new random variables, all independent and independent of 
A,, . . . , A,, and each uniformly distributed over [0,1]. For each i with 1 I i 5 n and 

e-c2M 
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each 0, 1-sequence j ,  ,..., j i - , ,  define p ( j l  ...,, j , - l )  to be Pr{Ai = 1 ] A ,  =j l  ,..., 
Ai-1 = j i - , } -  BY assumption, p ( j l  ,___, j , - l >  < - p I 112. 

For 1 < i < n, define the new 0, I-valued random variable Bi via 

B i =  1 iff Ai = 1 or 

Clearly, if Ai  = 1 then Bi = 1. Before we show that the 4 ' s  are independent, and 
that Pr { Bi = 1 } = p ,  we first consider Pr{Bi = 1 I A ,  = j , ,  . . . , A i -  = j i -  ,}. Denote 
( j , , .  . . , ji-,) by j .  Define q; to  be Pr(A, = j , , .  . . , A i -  , = j i - , ) .  By assumption, 
q; > 0. We have 

Pr{B, = 1, A ,  = j ,  ,..., A , - ,  = j i - , }  
Pr{A, = jl , .  .., A , _ ,  = ji-,> Pr{Bi = 1 I A ,  = j l , .  . , , A , -  = ji-,} = 

q .  , + qi(l - p i ) ( P - P ; ) / ( l - P J  
- ; p;  - 

41 

= p .  
Thus, Bi = 1 with probability p ,  independent of A l , .  . ., A i -  Since Bl,. . . , Bi- are 
defined in terms of A , ,  . . . , A i _  ,, q,,. . . , vi-  and since the ylj's are independent of 
everything else, it follows that Bi = 1 with probability p ,  independent of B , ,  . . . , Bi- 1, 

But then the B,'s are all independent, since 
Pr{B, = j , ,  ..., B n = j n }  

=Pr{B, =j,}Pr{B,=j,IB, = j l} . . .Pr{Bn=jnIB,  =j1,...,Bn-, = j n - , }  

= Pr{B, =jl}Pr{B, =j ,>. . .Pr{B,=j , )  . 
For convenience, in what fcJlows, we shall always make use of Corollary 7.2 

instead of Theorem 7.1, even in the case of independent trials, so that we can refer to 
the constants c ,  and c2 .  

$8. Proof of Theorem 4.6. In this section, we prove Theorem 4.6, which as we 
have seen is sufficient to prove our nonexpressibility results. To  prove this theorem, 
it is easy to see that it is sufficient to prove the following proposition. 

PROPOSITION 8.1. Let r and 1 be positive integers, and let E > 0. Assume that 5 is 
suficiently large with respect to E ,  that 0 is sufficiently large with respect to r, I ,  and E, 

that G > 0 is suficiently small with respect to 5, and that n is sufficiently large with 
respect to r, I ,  E, (, and G. Suppose that V is a set with n elements, and that (B , ,  . , . , B l )  is 
a successor-like family with parameters 5 and 0. Assume that O/n < p < na/n, and that 
Q2, is a random path on V with random backedges. Let L be the language obtained from 
L by including also symbols to represent unary relations A,, . . . , A,, where k 5 r. Let $ 
be a first-order sentence of length at most r over the language L'. 

With probability at least 1 - E (where the probability is taken over the choices of 
Qi), for each choice of the unary relations A,, . . . ,Ak over V,  the probability is at least 
1 - E (where the probability is taken over the choices of the deleted forward edge e) 
that 

( v, Q;, S, 4 Bi 9 .  . . , Bi, A , ,  . . . , Ak) k= Y!' 
~ ~ ( V , Q ~ - e , s , t  , ~ i , . . . , B i , A i , . . . , A ~ ) ~  $. 
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Note. The reader may be puzzled as to why the symmetric conclusion (‘‘iff”) of 
Proposition 8.1 does not imply that we can replace “if A? i= cp then Me I= cp” in the 
conclusion of Theorem 4.6 by ‘‘A I= cp iff Me t= cp”, which we showed in Note 2 after 
Theorem 4.6 is not possible. The reason is that the sentence cp in that note is of the 
form 3A$, where the choice of A depends on e (that is, no single set A “works” for 
every choice of e). Further details are left to the reader. 

It is convenient to view ( V ,  Q;, s, t ,  B,, . . . , B,, A , ,  . . . , A , )  as a colored graph Go, 
which is a directed graph where there is a color associated with each vertex and each 
edge. The set V(G,) of vertices of Go is simply V. We assume that there are 2, + 2 
vertex colors, where 2, of the vertex colors tell precisely which of the sets A , ,  . . . , A ,  
the vertex is a member of, and the remaining two colors tell whether or not the vertex 
is s and whether or not the vertex is t. The (directed) edges of Go consist of the union 
of the edges in Qi, B,, . . . , I l l .  We assume that there are 2*+’ edge colors, where the 
color of an edge tells precisely which of Q;, B,, . . . , B, the edge is an edge of. When 
necessary, we may denote by C, the vertex and edge colorings we have given for 
Go. Similarly, we let G, be the colored graph corresponding to ( V ,  Q; - e, 
s,t,B1 ,..., B, ,A ,  ,..., A k ) ,  and denote the coloring by C,. We ,assume that the 
meaning of a color Q in C, is the same as that of SZ in C,. In particular, if u E V, then 
the C, color of v is the same as the C, color of v ;  similarly, each edge other thane has 
the same C, color as its C, color. 

To prove Proposition 8.1 (and hence our main theorem and its extension to 
allowing built-in relations), we need only prove the following result. 

PROPOSITION 8.2. Assume the first paragraph of assumptions in Proposition 8.1. 
With probability at least 1 - E (where the probability is taken over the choices of Q;), 
for each choice of the unary relations A , ,  . . . , A ,  over V, the probability is at least 1 - E 

(where the probability is taken over the choices of the deleted forward edge e)  that the 
duplicator has a winning strategy in the r-round Ehrenfeucht-FraLssd game played on 
Go and G I ,  where the isomorphisms must respect vertex and edge colors. 

To prove Proposition 8.2, we introduce vertex colorings that refine the vertex 
colorings of C, and C,. If d and q are positive integers, we shall define the d ,  q- 
coloring of Go (the definition of the d,  q-coloring of G ,  is the same, except that we 
replace Go and Co by G, and C ,  throughout). For each d ,  the d ,  1-color of each vertex 
is simply the C ,  color. Assume inductively that the d, q-coloring has been defined; we 
now define the d ,  q + 1-coloring. Let u be a vertex. For each vertex w, define the u- 
type of w to be a complete description of the d ,  q-color of w, along with a complete 
description as to whether or not (v, w) is an edge of Go, if so what its C, color is, 
whether or not (w ,u )  is an edge of Go, and if so what its C ,  color is. The d, q + 1- 
color of u is a complete description of the d ,  q-color of v, along with a complete 
description, for each possible v-type, as to whether there are 0,1,. . . , d - 1, or at least 
d points with that u-type. Thus, the d, q + 1-color of a vertex v tells the d, q-color of v, 
and also tells how many vertices there are of each v-type, except that we do not count 
beyond d. 

It is important to note for later that for each d, q, r, and 1 (where r, the length of our 
sentence, is relevant since k I r, and where 1 is the number of built-in relations) the 
number of d, q-colors is finite, and an upper bound depends only on d, q, 1, and r (and 
not, for example, on n, the number of vertices). Note also that the d, q-color of a 
vertex determines its d ,  q’-color if q’ < q. The rough idea as to why we are interested 
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in d, q-colorings is as follows: Assume that the spoiler and duplicator are playing an 
r-round Ehrenfeucht-Fraisse game on Go and G,. Assume that through the first j 
rounds, the points u,,.  . . ,u j  picked in Go have the same d ,  q’ + 1-colors as the 
corresponding points b,, . . . , bj picked in G,, where q‘ 2 1 and d > j .  If the spoiler 
then picks, say, uj+ , in Go where uj+,, is adjacent to a, in Go, for some i 5 j ,  then the 
duplicator is guaranteed that there is a point b,,, in G, that is adjacent to bj in G,, 
and where the d, q’-color of bj+,  is the same as the d, q’-color of u j C l .  If u j+ ,  is 
distinct from any of a,, . . . , u j ,  and if d > j ,  then bj+ , can be taken to be distinct from 
any of b,,  ..., bj. 

Our goal in the remainder of this paper is to prove Proposition 8.2, which says 
that the duplicator has a winning strategy in the r-round Ehrenfeucht-Fraisse game 
played on Go and G,, where the isomorphisms must respect vertex and edge colors. 
We now give a sketch of how we shall prove this result. 

Three important parameters that we shall select are (, cr, and 6, where ( and 6 will 
be selected to be large, and cr to be small (but positive). The graph contains no cycle 
of length less than (, and the degree of each point in is at most 1V1“. The 
probability p of a backedge lies in the range 6 /n  < p < n“/n. We shall show that if 6 
is sufficiently large (so that the probability p of a backedge is sufficiently large), then, 
with high probability, each vertex has the same d, q-color (for appropriated, q )  in Go 
as in GI .  The reason this is true is that if e = (x, y) is the deleted forward edge, and if 
p is large enough, then there are enough backedges from x to “play the role” of the 
missing edge e. One reason it is useful that (with high probability) each vertex has the 
same d, q-color in Go as in G, is that in the first round, whatever point the spoiler 
selects, the duplicator can select the same point in the opposite graph, and be 
guaranteed that (with high probability), these points have the same d, q-color. 

Let m = 15/21. We shall show that if 0 is sufficiently small, then, with high 
probability, each neighborhood of radius m in Go is small. This is because the degree 
of each point in r is at most lVlc, and because the probability p of a backedge is 
made small enough. As we shall show, it follows that, with high probability, the 
number of points in short cycles (when we ignore the directions of edges) is small. 

Let A be the set of special points (those points on short cycles, and those points 
whose color is unusual, in a sense to be specified later). From what we have said, we 
can select our parameters so that, with high probability, A is small. Let C be the set 
of points near (within distance rn) of A.  Since A is small, and since neighborhoods of 
radius m are small, it follows that C is small. In particular, with high probability, 
neither endpoint of the deleted forward edge is in C. So we assume that neither 
endpoint of the deleted forward edge is in C .  

The duplicator’s winning strategy is roughly as follows. When the spoiler picks a 
point u, the duplicator picks the same point u in the other graph, unless u is near 
some point in c (the complement of C )  that has already been picked by one of the 
players. What if the spoiler picks a point that is near some point in c that has already 
been picked by one of the players? For definiteness, let us say that on round 35, the 
spoiler selects the point u35 in Go, that is distance 3 from the point u17 that was 
picked earlier. Say that uo, u l ,  u 2 ,  u3 is a minimal path in V ( C o )  from u17 to u35,  where 
uo = a17 and u3 = u35.  We assume by inductive assumption that a17 has the same 
d,  q-coloring in Go as the point b17 has in GI,  for some large d and q. Assume for 
definiteness that, say, there is a directed edge ( u l ,  u o )  but no directed edge ( u o ,  u , )  in 
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Go. Let the d, q - 1-color of u,  be 52, and let the C,-color of the edge ( u , , u , )  be 52'. 
Since a17 and b,, have the same d, q-color, we have that the number of points in Go 
with d, q - 1-color 52 and that have an edge in Go with C,-color SZ' to a17 but no 
reverse edge is either greater than d, or the same as the number of points in G, with 
d, q - I-color 52 and that have an edge in G, with C,-color 52' to b17 and no reverse 
edge. Thus, if d is sufficiently large, then there is a point w ,  in G,, distinct from any 
previously selected hi,  with d, q - 1-color SZ and that has an edge in G, with C,-color 
52' to b17, and no reverse edge. Similarly, we find w2 and w, ,  and let b,, = w3. Then 
a35 and b,, have the same d, q - 3-color. Since there are no small cycles in c, the 
subgraph of Go induced by u,, u , ,  u2 , u ,  is isomorphic to the subgraph of G, induced 
by w,, w , ,  w 2 ,  w , ,  and the isomorphism respects color. 

Unfortunately, in order to give a precise proof along the lines of the ideas in the 
sketch wejust gave, we have to do considerable work, which we now begin. We note 
that the winning.strategy for the duplicator that we shall give is more complicated 
than the strategy we just sketched. 

In the next lemma, the order of choice of Q i  and A , ,  . . . , A,  is reversed. Thus, we 
can think of the situation in Proposition 8.2 as one where the sets A , ,  . . . , A ,  are 
selected by an adversary after Q; has been randomly generated. However, in 
Lemma 8.3 below, the adversary must select A ,  ,.. . , A ,  before seeing what Q i  is. 
This is an important difference. For example, if we know that, say, u E A ,  and u y! 
A , ,  then in the latter case (the situation of Lemma 8.3), the probability that there 
is a backedge with endpoints u and u is simply p (the probability of an arbitrary 
backedge). However, in the former case, this is not necessarily true: it is possible, 
for example, that A ,  has been selected so that there are no backedges with end- 
points in A , .  

LEMMA 8.3. Assume that d, q, r, I ,  and 5 are positive integers, and E > 0. Assume that 
0 is suficiently large with respect to d ,  q, r,  I ,  and E, that 0 < G < 112, and that n is 
suficiently large with respect to r and E. Suppose that V is a set with n elements, and 
that ( B ,  , .. . , B,)  is a successor-like family with parameters 5 and G. Let A , ,  . . . , A,  be 
arbitrary unary relations over V, where k 5 r. Assume that %In < p < n"/n, and that 
QF is a random path on V with random backedges. Then with probability at least 
1 - ~ 2 - ~ ~  (where the probability is taken ouer the choices of Q;), the probability 
is at least 1 - E (where the probability is taken over the choices of the deleted forward 
edge e )  that each vertex has the same d, q-color in Go as in GI. 

PROOF. Let us define the d, q-edge color of a pair ( u ,  w ) ,  where u, w E V(Go), to be a 
complete description of the edge color of (u ,  w )  and the d, q-colors of the vertices u 
and w. As before, there is a finite upper bound q (that depends only on d, q, I ,  and r )  on 
the number of d, q-edge colors. Let T be a positive real number chosen sufficiently 
small with respect to q and E,  and let 8 be sufficiently large with respect to d and T .  Let 
us say that a pair ( u ,  w )  is r-free if (u, w) is not an edge of r. Call a forward edge f of 
Go special if (a) f is not r-free, or if (b) when we denote the d, q-edge color off by 52, 
then f is among the first rTn1 or last rznl of the forward edges of Go with d, q-edge 
color 52. 

For each point u, the probability that the forward edge f starting at u satisfies (a) 
(i.e., is not I'-free) is at most n'/n, since the degree of u in r is at most nu. If G < 112, we 
can make this probability be less than ~ / 4  for n sufficiently large with respect to E.  

Also, the number of forward edges f that satisfy (b) is at most 2rznlq, so, by taking T 
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sufficiently small with respect to y~ and E, we can make the probability that a 
randomly selected forward edge f satisfy (b) be less than 44.  So by suitable choice of 
parameters, the probability that a randomly selected forward edge f is special is less 
than 4 2 .  

Let E be an arbitrary set of rznlvertices, and let u be an arbitrary vertex not in E.  
Let us say that u is weak for E if it is not the case that there are at least d r-free 
backedges b where one endpoint of b is u and the other endpoint u is a member of E 
(as before, we say that such a backedge involves u and u). The probability of a r-free 
backedge involving u and a given member of E is at least p(1 - n'/n), since the 
degree of u in f is at most nu. If G < 1/2 and n 2 4, then this probability is at least 
p / 2 .  So the expected number of r-free backedges involving u and a point in E is at 
least p m / 2  > &/2 (since p > %/n). By taking 9 sufficiently large with respect to d and 
T ,  this expected number is at least 2d. By Corollary 7.2 to the large deviation 
theorem, if 9 is sufficiently large that 82/2 > cl, then the probability that there are 
less than d backedges involving u and a point in E is less than e-czer/2. By taking 9 
sufficiently large with respect to T ,  we can make this probability as small as we want. 
Let us call this probability 6 (shortly, we shall select how small we want 6 to be). If A 
is a set of at least ne/(4v]) vertices, and E is a set of [Tnl vertices, and if A and E are 
disjoint, then let Y ( A ,  E )  be the event that every member of A is weak for E. So the 
probability of Y ( A ,  E )  is at most 6"ei(4v). Since there are at most 2" possibilities for A 
and 2" possibilities for E, the probability that there exists some pair A,  E such that 
Y(A,  E )  occurs is at most 

We can take 6 sufficiently small with respect to E and v]  that 2 + (log, 6)(4(4y1)) < 
-(k + l), so that this probability is less than 2-(k+1)". We can then assume that n 
is sufficiently large with respect to r (and hence with respect to k 5 r )  that this 
probability is less than Ckn. 

So with probability at least 1 - C k " ,  it is the case that Q: has been selected so 
that Y(A,  E )  fails for every A, E .  So assume now that Y(A,  E )  fails for every A, E. That 
is, for every set E of [Tnlvertices, there are less than n~/(4v]) vertices that are weak for 
E. 

Let us say that a forward edge f = (u ,  v )  is bad if it is not the case that (a) there are 
at least d r-free backedges from u to points with the same d ,  q-color as u, and (b) there 
are at least d r-free backedges to u from points with the same d,  q-color as u. We now 
count the number of nonspecial edges f that are bad. Assume that f is not special. 
Let 52 be the d, q-edge color off. Since f is not special, f is not among the first or last 
rznl forward edges of Go with d,  q-edge color 52. Let El be the set of the first rznl 
forward edges of Go with d ,  q-edge color 52, and let E, be the set of the last [snl 
forward edges of Go with d ,  q-edge color 52. Then f comes after the edges of E ,  (that 
is, if z is the head of an arbitrary edge of E l ,  then x > z), and f comes before the 
edges of E,. Now there are less than nel(4y1) vertices that are weak for El, and less 
than ne/(4v]) vertices that are weak for E,. So the number of forward edges f = 
(u, u )  where u is weak for El or u is weak for E ,  is less than n s l ( 2 ~ ) .  Therefore, the 
number of nonspecial forward edges with d,  q-edge color 52 that are bad is less than 
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n ~ / ( 2 ~ ) .  So the total number of nonspecial forward edges that are bad is less than 
nE/2. 

From what we have shown, it follows that the probability is at least 1 - ~ 2 - , “  
(where the probability is taken over the choices of QF) that the probability is at least 
1 - E (where the probability is taken over the choices of the deleted forward edge e )  
that e is neither special nor bad. If e = ( x , y )  is neither special nor bad, then (a) e is 
I--free, (b) there are at least d r-free backedges ( x ,  w )  where the d, q-color of w is the 
same as the d,  q-color of y, and (c) there are at least d r-free backedges ( w ,  y )  where 
the d,  q-color of w is the same as the d,  q-color of x. So assume that (a), (b), and (c) 
hold. We show by induction on q’ I q that the vertices of Go and G, have the same 
d, q’-color. For q’ = 1 this is by definition, since the d, l-coloring on Go (resp. G,) is 
simply the C, (resp. C,) color, and, as we have noted, these colorings are the same on 
vertices. Suppose inductively that the d,  q’-colorings are identical for some q’, where 
1 5 q’ < q. The d, q’ + l-color of a point z is determined by the d ,  q’-color of z along 
with the number of edges of each Co-color (resp. C,-color) going to and the number 
of such edges coming from points with a fixed d ,  q’-color. Assume now that z # x 
and z # y (where e = ( x , y )  is the deleted forward edge). By our induction 
assumption, the d,  q’-color of z and its neighbors are identical in both Go and GI;  
since also the C, and C, colors of edges containing z are identical, it follows that the 
d,  q’ + l-colors of z are also identical. 

We now consider the d,  q’ + 1-color of x. The only difference between the graphs 
Go and GI is the edge e = (x, y ) .  However, e is r-free, and by assumption there are at 
least d r-free backedges (x, w )  where the d, q-color of w is the same as the d, q-color 
of y (and hence the d ,  q’-color of w is the same as the d ,  q’-color of y ) .  So all of these 
edges will be counted together with (x ,y) .  Since their number is at least d,  the 
omission of e will not change the d, q’ + l-color of x. (Here we also used the fact that 
the colorings do not distinguish between forward edges and backedges.) Sox has the 
same d,  q’ + 1-color in both Go and G,. A similar argument shows that y also has the 
same d, q’ + I-color in both Go and G,. This completes the induction step. 

We need Lemma 8.3 only to prove Lemma 8.4 below. Unlike Lemma 8.3, in 
Lemma 8.4 the unary relations A , ,  . . . , A ,  can be thought of as being selected by an 
adversary after Q; has been randomly generated (as in Proposition 8.2). Lemma 8.3 
says that the probability that a j x e d  sequence A , ,  . . . , A ,  is “good” is high, and 
Lemma 8.4 says that the probability that every sequence A , ,  . . . , A ,  is “good  is high 
(see the proof of Lemma 8.4 to see what “good” means). In Lemma 8.4 and in all of 
the other remaining lemmas, we assume that V is a set with n elements, that 
(B l , .  . . , B,) is a successor-like family with parameters 5 and B, that Q / n  < p < n“/n, 
that Q; is a random path on V with random backedges, and that A , ,  . . . , A ,  are 
arbitrary unary relations over V (where k I r), selected after (2;. Lemma 8.4 makes 
good our claim that, with high probability, each vertex has the same d,  q-color in Go 
as in G , .  

LEMMA 8.4. Assume d, q, r, I ,  and 5 are positive integers, and E > 0. Assume that 8 is 
suficiently large with respect to  d ,  q, r, I ,  and E ,  that 0 < G < 112, and that n is 
suficiently large with respect to r and E .  Then with probability at least 1 - E (where the 
probability is taken over the choices of Q”,, for  each choice of the unary relations 
A , ,  . . . , A ,  over V, the probability is at least 1 - E (where the probability is taken over 
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the choices of the deleted forward edge e) that each vertex has the same d ,  q-color in Go 
as in G,. 

PROOF. Let us say that A , ,  . . . , A ,  is good for A = ( V ,  Q;,s, t ,  B,, . . . , B,) if the 
probability is at least 1 - E (where the probability is taken over the choices of the 
deleted forward edge e)  that each vertex has the same d ,  q-color in Go as in G I .  By 
Lemma 8.3, we know that the probability is at most that A , ,  . . . , A ,  is not good 
for M. Since there are only 2," possible choices for A , ,  . . . , A , ,  it follows that the 
probability is at most ~ 2 - ~ " 2 ~ "  = E that there is some A , ,  . . . , A ,  that is not good for 
M .  So with probability at least 1 - E (where the probability is taken over the choices 
of Q;), every A , , .  . . , A ,  over V is good for M .  

If G is a (possibly colored) directed graph, let V ( G )  be the ordinary undirected 
graph which is obtained by ignoring the colors of vertices and edges, and ignoring 
the directions of edges. Whenever we speak of the distance d,(v, w) between two 
points v and win G ,  we mean the distance in U ( C ) .  We may refer to this distance as 
the G-distance. 

The next lemma makes good our claim that neighborhoods of radius m = r5/21 
are small. 

LEMMA 8.5. Let 5 be a positive integer, let m = r</21, and let E > 0. If n is 
suficiently small with respect to 5 ,  and n is suficiently large with respect to E and n, 
then with probability at least 1 - E (where the probability is taken over the choices of 
Q;), for every vertex v E V(Go), the set of points whose Go-distance from v is at most m 
is less than n1/loo. 

PROOF. Let v be a fixed vertex. If 0 < q < 1, then define P, to be the probability 
that there are at least 2n" backedges to or from u, if the probability of each backedge 
appearing were q (thus, we are actually interested in P,, where p is our probability of 
selecting each backedge). It is clear that P, is monotone in q, so that Pp I P,,,, (since 
p < n"/n). If the probability of each backedge appearing were na/n, then the 
expected number of backedges would be nu. So if n is sufficiently large with respect 
to CS, then, by Corollary 7.2 to the large deviation theorem, P,,/, < e-c2no. Hence, P, 
< e-c2na . So, with probability at most ne-c2nu, for some point v the number of 
backedges to or from v is at least 2n". If n is sufficiently large with respect to E and n, 
then this probability is less than E. So assume that the number of backedges to or 
from each point is less than 2n". Then the degree of each point in Go is less than 3n" 
+ 2(where the extra nu is from r, and the 2 is from the forward edges). This is less 
than n2a for n sufficiently large with respect to 0. So the number of points in a 
neighborhood of radius m is less than 1 + nZa + n4" + ... + n2"'", which is a 
geometric series bounded above by n2("'+ l)". If cs is sufficiently small with respect to 
m, then this is less than n1/loo. 

The next lemma makes good our claim that the number of points in short cycles 
(when we ignore the directions of edges) is small. 

LEMMA 8.6. Let 5 be a positive integer, let m = r5/21, and let E > 0. If cs is 
suflciently small with respect to 5, and i f  n is suficiently large with respect to E and CS, 
then with probability at least 1 - E (where the probability is taken over the choices of 
Q;), the number of points that are on some cycle shorter than m in the graph U(Go)  is 
less than n3l4. 

PROOF. By Lemma 8.5, if cs is sufficiently small with respect to <, and n is 
sufficiently large with respect to E and CS, then, with probability at least 1 - ~ / 8 ,  every 
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neighborhood of radius rncontains less than nlilo0 points. But if i t  were the case that 
every neighborhood of radius rn contains less than nlilo0 points, then the degree of 
each vertex would be less than nliloo, so the number of edges would be less than 

than n1 + '/loo. Let us refer to a cycle of length shorter than rn in U(G,) as a short cycle. 
Let g denote the number of backedges in QF, and W the set of points u such that u is 
on some short cycle. Since the probability is at least 1 - c / 8  that the number of edges 
is less than n'+li loO, it follows easily that we need only show that the conditional 
probability that IWI < n314, given that the number of edges is less than n1 + llloo, is at 
least 1 - ~ / 2 .  So we need only show that the conditional probability that I WI < n3'4, 
given that g = c, is at least 1 - 4 2  for all c = 1,.  . . , n1 + l i 1 O 0  . Su ppose now that 
g = c, for some fixed c = l,...,nl+l/loo. This means that QF contains exactly 
g backedges with uniform distribution. We may get these g backedges by picking 
a sequence fi ,  . . . , f ,  of backedges from the edges of the complete graph, so that if 
Ei = {f l , .  . . ,Ai> for 1 I i I g, then the distribution off;. is uniform on the comple- 
ment of Ei 1 .  

Let us refer to a short cycle in the graph consisting of r and the undirected version 
of all of the backedges as a type 1 short cycle. Let us say that the backedgef;. causes a 
type 1 short cycle if the undirected version of f, is an edge of a type 1 short cycle in 
r u U(E,). Further, let us say that the backedge f; is bud if (a) there is no point whose 
neighborhood of radius rn in r LJ U(Ei-  1 )  is of size at least n'/loo, and (b) f;. causes a 
type 1 short cycle.4 We now give an upper bound on the probability that f;. is bad for 
a fixed i with 1 5 i 5 g. If there is some point whose neighborhood of radius m in 

LJ U(E,-  l)is of size at least n1/lo0, then the probability that his bad is 0. So assume 
that the neighborhood of radius rn in r u U(Ei-  1 )  of every point is of size less than 
n1/loo. Then the number of pairs of points that are of distance less than rn apart in 
r u U(E, - , )  is at most n1+lilo0, since each of the n points has at most nl'loo points 
within distance rn. However, the total number of pairs of points that are not in Ei- 
is at least C; - n1 +liloo, where C; is the binomial coefficient, and where n1 +li loo  is 
an upper bound on the size of E i _  (since the number of edges in r LJ U ( E i _  1 )  is at 
most n1+liloo). Therefore the probability that f ,  is bad in this case is at most 

/(c; - n' + lil00 ), which is less than n - l i 2  if n is sufficiently large. So the n l  + l / l O O  

probability that is bad is less than n-1/2, for each fixed i = 1,. . . , g. Hence the 
expected number of bad backedges is less than n1+1'100n-1i2 < n2I3. So by 
Corollary 7.2 to the large deviation theorem, if n is sufficiently large with respect to E ,  

then with probability at least 1 - 4 8  the number of bad backedges is less than 2n2I3. 
So assume for now that the number of bad backedges is less than 2n2l3. But also, as 
we noted, with probability at least 1 - $3, every neighborhood of radius m contains 
less than nl'loo points. So assume for now that every neighborhood of radius rn 
contains less than nl'loo points. It follows that if f;. causes a type 1 short cycle, then f ; :  
is a bad backedge. So it follows that the number of backedges that cause a type 1 

n l + l / l o o  . He nce, with probability at least 1 - ~ / 8 ,  the number of edges would be less 

4The reader may wonder why we d o  not simply invoke Lemma 8.5 and say that, with high probability, 
every neighborhood of radius rn in Go contains less than n'iloo points, assume that this is true, and go on 
from there. The reason is that if we were to make this assumption, then it would no longer be the case that 
the distribution off, is uniform on the complement of Ei- since this assumption has a subtle influence 
on the probabilities. 
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short cycle is less than 2n2 /3 .  Now every point in a type 1 short cycle caused by 1;: is of 
distance at most m from the tail of J .  But by assumption, there are less than n'/"' 
such points. So the total number of points on type 1 short cycles is at most 
2n2"n'"00, which is less than n3I4/2 if n is sufficiently large. 

Similarly, we can define a type 2 short cycle to be a short cycle that contains a 
forward edge. Let f l , .  . . ,h- now be the forward edges in order (thus, the head off ,  
is the tail of A+' for 1 I i < n - 1). Let F;. = {fl ,..., f , )  for 1 I i < n, and let E be 
the set of backedges. We say that a forward edge f; causes a type 2 short cycle if the 
undirected version o f f ,  is an edge of a type 2 short cycle in r u U ( E )  u U(FJ.  We 
can now consider the forward edges one by one in order, and estimate the 
probability that the forward edge causes a type 2 short cycle. Here, the argument is a 
little easier. By a very similar argument to that contained in the proof of Lemma 8.5, 
the probability is at least 1 - 4 8  that every point in r u U ( E )  has degree at most 
n'/(lo'("'+l)). So assume for now that every point in r u U ( E )  has degree at most 
n'i('o'(m+ ')I. Then the degree of every point in Go is at most 2 + nli('o'(m+ ')), which is 
less than nli( loo(m+l))  if n is sufficiently large with respect to m. So by summing a 
geometric series as in the proof of Lemma 8.5, every neighborhood of radius m in Go 
contains less than n'i'oo  point^.^ We now consider which of the first ( n  - 1) - ni l2  
forward edges cause a type 2 short cycle. The probability that such a forward edge 
causes a type 2 short cycle is less than n'i'00/n'/2, so, by our usual argument, with 
probability at least 1 - ~ / 8 ,  the number of such edges is less than 2(n - l)n'~'oo/n'~z 
< 2n2I3. So even if all of the last n'I2 forward edges cause a type 2 short cycle, the 
total number of forward edges that cause a type 2 short cycle is less than 2 n 2 / 3  
+ n'/'. So, as before, the total number of points on type 2 short cycles is at most 
( 2 ~ " ~  + n'/z)n'/'oO, which is less than n3I4/2 if n is sufficiently large. Since a point is 
on a short cycle iff it is on a type 1 short cycle or a type 2 short cycle, our result 
follows. 

We now define some more concepts we will need. Let G be a colored directed 
graph, D a subset of V(G),  and j a positive integer. We say that the vertex color 52 is j -  
dispersed in D if there is a subset R of D consisting entirely of points of color 52, so 
that IRI = j and for all u, w E R we have d,(u, w) > j .  

We say that the partition T = ( A ,  B, W )  of the set V ( G )  into three subsets is an m- 
trisection with respect to the coloring, where m is a positive integer, if the following 
conditions are satisfied: 

1. Each point in each cycle shorter than m in the graph U ( G )  is contained in A.  
2. If 52 is a color that is not m-dispersed in W, then all of the points of color 52 are 

3. If a E A and w E W, then &(a, w) > m. 
Intuitively, in an m-trisection ( A ,  B, W ) ,  the set A contains all of the special points 

contained in A .  

5As with the backedges, we cannot simply invoke Lemma 8.5 and say that, with high probability, every 
neighborhood of radius rn in Go contains less than n1'lo0 points, assume that this is true, and go on from 
there. Similarly to before, if we were to make this assumption, then it  would no longer be the case that the 
selection of A + ,  is made independently of r u U ( E )  u U(FJ. However, assumptions on degrees in 
r u U ( E )  do not effect probabilities of forward edges, since the forward edges are selected independently 
of r u U(E) .  
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(those on short cycles, and those whose color is unusual), the set W contains typical 
points, and B is the borderline between A and W. 

The proof of the next lemma shows that the set A of special points is small (as 
promised earlier). We do not bother to state explicitly in the statement of the lemma 
that A is small, but instead state only those facts that we need later. 

LEMMA 8.7. Let d ,  q, r, and 1 be positive integers, and E > 0. If 5 is suficiently large 
with respect to E, if m = 15/21, if o is sufficiently small with respect to 5, and n is 
sufficiently large with respect to r, 1, E, <, a, d ,  and q, then with probability at least 1 - E 

(where the probability is taken over the choices of Qa), there is an m-trisection 
( A ,  B, W )  of Go with respect to the d,  q-coloring such that if X is the set of points in 
V(Go) whose Go-distance from A u B is at most m, then with probability at least 1 - E 

(where the probability is taken over the choices of the deleted forward edge e), X does 
not contain the tail or the head of the deleted forward edge e. 

PROOF. We will define a sequence of increasing sets q, by induction on j .  The last 
element of the sequence will be A.  

First, we define Y, to be the set of points that are on some cycle shorter than m in 
the graph U(Go). By Lemma 8.6, we can assume that I Y, I < n314. Since we will define 
A with A 2 Y,,  the definition of Y, already implies that A will satisfy the first 
condition in the definition of an m-trisection for Go.  Suppose that Y, c ... c q is 
already defined. Let 4 be the set of those points whose Go-distance from k; is at most 
m. Let X j  be the set of those points of V(Go) - r, whose d,  q-color is not m-dispersed 
in the set V(Go) - 3.. If X j  is not empty, then let r,, , = k; u Xi. It is easy to see that 
the number of colors outside r, strictly decreases with j; this is because Y,,, is 
defined by taking all points of some color SZ that is represented outside of k;, and 
putting all points with color 52 into q+ ,. So for some z ,  which is at most one plus the 
number of d ,  q-colors, X ,  = Iz, (recall that the number of d,  q-colors depends only on 
d,  q, r and I ,  and not on n or a). Let A = x, B = N, - A, and W = V(Go) - N,. It is 
clear that our construction produces an m-trisection. 

We now show that if X is as in the statement of the lemma, then 1x1 < n4I5 for 
sufficiently large n. To do so, we first estimate the size of A .  By Lemma 8.5, we can 
assume that each neighborhood of radius m contains less than n1/lo0 points. Let us 
estimate lXjl = I ?+ , - 51, where 1 I j < z. Recall that Xj  is the set of those points 
of V(Go) - I;. whose d ,  q-color is not m-dispersed in the set V(Go) - 4. Assume that 
52 is a d, q-color that is not m-dispersed in the set V(Go) - Nj.  Let Xj(52) be those 
points of color SZ in X j .  Let Z be a maximal subset of Xj(52) with the property that 
every pair of distinct points in Z are of distance greater than m apart (if every pair of 
distinct points in Xj(SZ) is within distance m, then Z is a singleton set). Since 52 is not 
m-dispersed in V(Go) - 4, we know that IZJ < m. By maximality, Xj(52) is covered 
by the union of the neighborhoods of radius m of each point in Z. Each such 
neighborhood contains less than n1/lo0 points; hence, since there are less than m such 
neighborhoods, IXj(52)l < mn’ilOO. So lXjl is bounded by the number q of d ,  q- 
colors times this bound on Xj(52). Thus, lXjl < qmn’/loo. So IA - Y,l < zqmn1/loo I 
(q  + l)qmn”loo. Since IY,l < n314, it follows that IAl < n4I5 if n is sufficiently large 
with respect to r,  (, d,  q, and I (and hence with respect to m and 9). 

Now B is defined to contain those points not in A whose Go-distance from A is at 
most m. So B is the union of the neighborhoods of radius m about the points in A.  
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Each such neighborhood contains less than n1/’O0 points, and there are /A1 < n4/’ 
such neighborhoods, which tells us that IA u BI < n415n11100. Similarly, 1x1 < 
IA 
least 1 - E (where the probability is taken over the choices of QF), 1x1 < n’I6. 

Let e = (x,y> be the deleted forward edge. Since there are n - 1 forward edges, 
and since 1x1 < n’16, the probability that x E X is less than n5I6/n, and similarly for 
y.  So if n is sufficiently large with respect to E, then with probability at least 1 - E 

(where the probability is taken over the choices of the deleted forward edge e), the set 
X does not contain the tail or the head of the deleted forward edge e. 

Before we describe the duplicator’s winning strategy (and thereby prove 
Proposition 8.2) we need a few more definitions. First, it is convenient to slightly 
modify the definition of the rules of the game to an equivalent but technically more 
convenient form. 

Let Go and G, be colored graphs. Let r be a positive integer. We now define an r- 
round Ehrenfeucht-Fraissh game (played on Go and G,). There are two players (the 
spoiler and the duplicator), and two graphs, Go and G,. On round j ,  the spoiler 
selects a point xj from the universe of one of Go or GI .  (Since the universes of Go and 
G, need not be disjoint, the spoiler not only selects a point but labels it with either Go 
or G,. If the spoiler selects the point x j  and labels it with, say, Go, then we say that the 
spoiler selected xj from Go.) The duplicator then selects a partial isomorphism iLj 
from a subset of the universe of Go to a subset of the universe of GI .  By partial 
isomorphism, we mean (a) iLj is a one-to-one map; (b) if u is in the domain of j b j ,  then 
the colors of u and i j ( u )  are the same, and (c) if u and w are distinct points in the 
domain of L j ,  then there is an edge ( u , w )  of color !2 in Go iff there is an edge 
( i j ( u ) , i j ( w ) )  of color Q in G,. There are two restrictions on i j :  

1. If j > 1, then A, is an extension of the partial isomorphism j v j -  , selected in the 
previous round. 

2. If the spoiler selected x j  from Go (resp. GI), then the domain (resp. range) of jV j  

contains xj. 
The duplicator wins if each ibj that he selects (for 1 I j I r )  satisfies these 

restrictions; otherwise, the spoiler wins. 
Assume that cz and P are positive integers (where, for convenience, we assume that 

P 2 2). Assume that H c V(G)(in the cases of interest to us, G is either Go or G,), and 
that Pis a partition of H .  We say that Pis an a, p-decomposition of H if the following 
conditions are satisfied: 

1. Each class of P is the set of points in a connected component of the subgraph 
of U(G) generated by H (so, in particular, each case of P is  a connected subset of the 

B ( n ” l O O  < n4/s n l / l O O  n l / l O O  < nsi6. We have shown that with probability at 

graph U(G)). 
2. If u and w are in the same class of P, then their G-distance is less than CI. 

3. If u and w are in different classes of P, then their G-distance is at least b. 
Let 1, be a partial isomorphism from Go to G,, where the domain of i, is H. We say 

that is CI, P-perfect if the following conditions hold, when P is the partition of H 
where each class is the set of points in a connected component of the subgraph of 
U(G) generated by H .  We assume that ( A , &  W )  is a fixed m-trisection of Go (so 
‘‘a, P-perfect” is really defined with respect to ( A ,  B, W ) ) .  

1. P is an CI, P-decomposition of H in Go. 
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2. i.(P) is an (r, P-decomposition of /.(H) in GI (by i.(P), we mean the obvious 
partition of the range of i). 

3. If p is a class of P so that either p or i . (p)  is contained in A u B, then the 
restriction of i. onto p is the identity map. 

We are now ready to begin the proof of Proposition 8.2. We must show that with 
probability at least 1 - E (where the probability is taken over the choices of Q;), for 
each choice of the unary relations A , ,  . . . , A ,  over V, the probability is at least 1 - E 

(where the probability is taken over the choices of the deleted forward edge e) that 
the duplicator has a winning strategy in the r-round Ehrenfeucht-Fraisse game 
played on Go and G1, where the isomorphisms must respect the vertex and edge 
colorings as given by C, and C, (we use the more refined d,  q-coloring on vertices 
only as a tool in the proof). For convenience, we introduce a 0th round, where no 
points have been selected so far by either player, and so the domain of the partial 
isomorphism A. after round 0 is the empty set. Let f be the function x F+ 2”, with 
domain the positive integers. We define f j  inductively by letting f ’  be f ,  and fJ’ 
= f 0 f j .  Let d = f3r+’ ( l )  + 1. Assume that 5 (and hence m = 14/21) is sufficiently 
large that m > d. Define qj  = ( r  - j ) ( f3r+3( l )  + 1 )  + 1, for 0 I j 2 r, and q = qo. 
Thus, d and q depend only on r. By Lemmas 8.4 and 8.7, we know that if E > 0, if 5 is 
sufficiently large with respect to E ,  if 8 is sufficiently large with respect to r,  I ,  and E, if 
o > 0 is sufficiently small with respect to 5, and if n is sufficiently large with respect to 
r,  I ,  E, 5 and G, then with probability at least 1 - E (where the probability is taken over 
the choices of QE), for each choice of the unary relations A , ,  . . . , A ,  over V, where 
k I r, the probability is at least 1 - E (where the probability is taken over the choices 
of the deleted forward edge e) that (a) each vertex has the same d ,  q-color in Go as in 
G,, and (b) there is an m-trisection ( A ,  B, W )  of Go with respect to the d ,  q-coloring 
such that if X is the set of points in V(G,) whose Go-distance from A u B is at most 
m, then X does not contain the tail or the head of deleted forward edge e. So assume 
that (a) and (b) hold. Define a partial d ,  q’-isomorphism to be a partial isomorphism 
that preserves d, q’-colors. We prove inductively on j that, by proper play, the 
duplicator can maintain the following conditions after round j(for 0 I j I r),  where 
we take CI-’ = 0 and p-,  = co. 

1. iVj is a partial d, qj-isomorphism whose domain (resp. range) contains the point 
selected by the spoiler if the spoiler’s move in round j is to select a point in Go (resp. 
GI) ,  and if j > 0 then ibj extends ibj- ‘. 

2. There are positive integers C I ~  and pj such that 
r - , + 3  

(a) aj- 1 < aj < f 3  (aj) < Pj < Pj- 1 > 

(b) the domain Hj of 
(c) jbj is aj,  pj-perfect. 

is of size at most C I ~ ,  and 

It is clear that condition (1) is sufficient to  guarantee that the duplicator has 
a winning strategy, since each partial d,  qj-isomorphism is also a partial d ,  1 -  
isomorphism. 

For the base case j = 0, we let R, have empty domain, a, = 1, and Po = f”’+’(l) 
+ 1 < m (we can think of the partition of the domain as having only one class, the 
empty set). Assuming that the conditions hold after round j ,  we now show that the 
duplicator can move in such a way that the conditions hold after round j + 1 (for 
0 I j < r).  In our arguments below, we shall sometimes speak only of the “distance” 
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between points, when it is clear whether we mean the Go-distance or the G,-distance, 
or when it does not matter. We shall sometimes take advantage of the following 
facts: 

1. If a E A u B, then dG,(a, b) = y < miff &,(a, b) = y < m(this is because neither 
the head nor the tail of the deleted forward edge e is in X). 

2. The m-trisection ( A ,  B, W )  of Go is also an m-trisection of GI (this follows from 
the fact that the G,-distance between any pair of points is less than or equal to the 
G,-distance). 

Assume that on round j + 1, the spoiler selects point v in Go (by the two facts just 
given and by the symmetry of our induction assumption, the reader can verify by 
going through the proof below that a very similar argument holds if the spoiler 
selects a point in GI). Let K be the Go-distance of v and H j ,  and let p be a class in 
the partition of Hj that is of Go-distance K from v. Define i to be 3 r - j + 3 ,  and let 

There are five cases. The first two cases (Cases I and 11) occur when the point v 
selected by the spoiler is near (within distance q, of) some point in Go that was 
selected earlier. In Case I, the nearest class p to v is completely contained in A u B, 
and in Case I1 i t  is not. In the remaining three cases (Cases 111, IV, and V), the 
point v selected by the spoiler is not near any point in Go that was selected earlier. 
In Case 111, we have v E W, while in Cases 1V and V, we have v 6 W. In Case IV, 
the point u is not near any point in G, that was selected earlier, while in Case V, 
the point u is near some point in G, that was selected earlier. 

K g  = f‘i’2’(~j). 

Case I. K 5 K~ and p is completely contained in A u B. 
Since by the induction assumption A j  is g j ,  Dj-perfect, and since p is completely 

contained in A u B, it follows that iLj is the identity on p. Let 6 contain the set of 
points in a path of minimal length (in U(Go))  connecting p and v. Thus, 161 5 K ~ .  We 
define i j+ , by letting its domain Hj+ be Hj u 6, and defining i j+ to be the identity 
on 6. We define the new partition P by replacing the class p by p u 6. Since 161 I K~ 

< < Do < m, it follows that p u 6 G X ,  where Xis  as above. The identity map on 
p u 6 is then an isomorphism, because X does not contain the deleted forward edge 
e, and because Go and GI have the same d, q-coloring. Since ,Ij is a partial d, q j -  
isomorphism, it follows that i j+ , is also a partial d ,  qj-isomorphism, and hence a 
partial d ,  qj+ ,-isomorphism (since q j +  , < qj).  Let aj+ be f l i i 2 ’ +  ‘ (a j ) ,  and let be 
f i -  ‘ (a j ) .  We now show that condition 2(a) above holds, where j is replaced by J + 1. 
The first two inequalities are immediate. The third inequality holds, since 

(UjX 
(aj+ ,) = f i /3 (Ej+ ,) = f “  1 / 3 ) + l i / 2 1 +  1 f 3‘ - ( J +  ” + 

which is less than aj+, = f i - ’ (a j ) ,  since i is big enough that ( i / 3 )  + Li/2J + 1 < 
i - 1.  The final inequality holds, since 

3 r - ,  + 3 - 1 3 r - , + 3  p. J +  1 = f i - l ( a j )  = f (aj) < f (aj) < Bj. 

As for condition 2(b), we see that 

lHj+ll = IHj u 61 I Iff,] + 161 I aj + rc0 = aj + f l i /2 ’ (a j )  < f l i / 2 J + 1 ( ~ j )  = aj+,, 

where the inequality follows from the growth rate of f (if we define z to be 
f‘i/21-1(aj), then aj + f L i / 2 1 ( a j )  < z + f ( z )  < 2 f ( z )  = 2fLiI2J(aj) < fli/’1+ l(ctj)) .  We 
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now show that i,+, is a,+,, B,+,-perfect. We first show that P is an a,+,, p,+,- 
decomposition of Hj+ To show this, we begin by showing that every pair of points 
within a class p‘ in P are within distance aj+ of each other. If p’ # p u 6, then this 
follows from our induction assumption and the fact that a, < a,+,. If p’ = p u 6, 
then the distance between a pair of points in p’is at most a, + K,, which we showed 
is less than a,+ 1. We now show that every pair of points that are in different classes 
in P are further than pj+ , apart. Since pi+ , < Ir,, this follows from the inductive 
assumption unless one of the classes is p u 6. But in this case, the distance is at least 
p, - K ,  > f i ( a j )  - f1i’2’(ctj) > fi- ‘(a,) = pi+ So P is an a,+ ,, pj+ ,-decomposition 
of Go. By a similar argument, A j + l ( P )  is an a,+,, p,+,-decomposition of G,. This 
establishes the first two conditions for I-,.+, to be a,+,, p,+,-perfect. The third 
condition holds for A,+ by construction, since it holds for A,. 

Case 11. K 5 K ,  and p contains a point from W. 
Let 6 contain those points in a path u, ,  ..., uK of minimal length (in U(G,)) 

connecting p and u, where u,  E p and u, = u. The domain Hj+ of A,+ will be the set 
H, u 6. We define A,+ l ( u p )  by induction on p. We describe only the case p = 1, since 
this is essentially the same as the general case. 

Now the distance between A and W is greater than m, by definition of an m- 
trisection. The distance between an arbitrary pair of points in p is at most a,, so the 
distance between an arbitrary pair of points in p u 6 is at most a, + ice, which as we 
saw above is less than f1i/2J+1(aj), which in turn is less than pi < Po < m. So, since 
p n W # 0, it then follows that (p  u 6) n A = 0. We know that there is an edge in 
U(G,) between uo and u , .  Assume for definiteness that, say, there is a directed edge 
( u , ,  u o )  but no directed edge ( u , ,  u l )  in Go. Let the d, qj  - 1-color of u1 be 52, and let 
the C,-color of the edge ( u , ,  u , )  be 52’. Since uo and Aj(u,) have the same d, qj-color, 
and since d = Po > aj 2 IHjl, we have that the number of points in Go with d ,  qj  - 1- 
color 52 and that have an edge in Go with C,-color 52‘ to u, but no reverse edge is the 
same as the number of points in G, with d, qj  - 1-color 52 and that have an edge in 
G, with C,-color 52’ to iL j (u, )  and no reverse edge. Thus, there is a point w in G,, 
distinct from any of b,, . . . , b,, with d, q j  - 1-color 52 and that has an edge in G, with 
C,-color 52’ to ,?,(u,), and no reverse edge. Let A,+ , ( u l )  = w. We define a,+ , and pj+ , 
in the same way as in Case I. By the same argument as before, conditions 2(a) and 
2(b) above hold. The new partition P is obtained by replacing the class p by p’ = 
p LJ 6. As before, the first two conditions that A,,,, be a,+,, P,+,-perfect hold. As 
for the third condition, we know that p, and hence p‘, is not contained in A u B, by 
assumption. If Aj+,(p‘), and hence Aj(p), were contained in A u B, then the 
restriction of A, onto p would be the identity, since A, is a,, P,-perfect. But then, since 
p n W # 0, we would have A,(p) n W # 0, a contradiction since Aj(p)  is a subset 
of A u B. So A,,+ , is a,+ ,, /?,+ ,-perfect, as desired. 

We now show that A,+, is a partial d, q,+?-isomorphism. By the induction 
assumption, we need only show that the restriction of A,+, to p‘ is a d ,  qj+,- 
isomorphism. Since I,, is a partial d,  qj-isomorphism by the induction assumption, 
and since q j  - qj+ , > K ,  2 K ,  it is not hard to see that our construction guarantees 
that the restriction of A j +  to p’ is a d, q j +  ,-isomorphism, provided that both p’ and 
Aj+ , (P I )  contain no cycles. This is because we extend the isomorphism by “following 
the path”, and, intuitively, we never get into trouble because there are no cycles. The 
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straightforward details are left to the reader. So we now show that both p’ and 
j . j + , ( p ’ )  contain no cycles. As we showed, p’ n A = @, where we simply used the 
fact that p’ contains a point in W, and p‘ is a connected set whose size is less than m. 
By a similar argument, jv j+  , ( p ‘ )  n A = /a. Since lp’l < m, it follows that if p’were to 
contain a cycle, i t  would be of size less than m. By definition of an m-trisection, every 
point on a cycle shorter than m is contained in A.  Since p’ n A = a, it follows that p’ 
contains no cycles. Similarly, neither does i j+ , (p’) .  

Case 111. K > K~ and u E W. 
If the G,-distance between u and i.j(Hj) is greater than K ~ ,  then let i j+ ,(u) = u. So 

assume for now that the G,-distance (and hence the Go-distance) between u and 
i.,(Hj) is at most K ~ .  

Let 52 be the d ,  qj-color of u. By the definition of an m-trisection, we know that 52 is 
m-dispersed in W. So there is a subset R of W, consisting entirely of points of color L?, 
so that I RI = m and so that every distinct pair of points in R is of Go-distance greater 
than rn apart. Now each point in i l j (Hj) is within Go-distance K~ of at  most one 
member of R ,  since otherwise two distinct points in R would be within Go-distance 
2 K o  + 1 < m of each other. Since l jGj(Hj)l  I aj < m, it follows that there is some 
member w of R that is of Go-distance (and hence G,-distance) greater than K~ from 
every member of 2vj(Hj). Let i.j+ , (u )  = w. 

So in each situation (whether or not the G,-distance between u and i V j ( H j )  is greater 
than K ~ ) ,  we have defined iLj+ ,(u) so that the G,-distance between i j+ ,(u)and j.j(Hj)is 
greater than K ~ .  Let a j + l * =  aj + 1, and let pi+ ,  = K ~ .  I t  is easy to verify that the 
induction assumption holds when j is replaced by j + 1. 

Case IV. K > K~ and u E A u B, and the G,-distance between u and j . j ( H )  is greater 
than K ~ .  

Let i j+ ,(u) = u, and let aj+ = aj + 1 and Pj+ , = K ~ .  Again, it is easy to verify that 
the induction assumption holds when j is replaced by j + 1. 

Case V. K > K~ and u E A u B, and the G,-distance between u and Aj (Hj)  is at 
most K ~ .  

We shall first show that there is a point w E W where dG,(w, u)  < m. Let i . j (p ’ )  be 
the closest class (in U(G,) )  to u in j . j(Hj),  and let z be a point in Aj(p‘ )  whose G,- 
distance from u is at most K ~ .  Now p’ and i j ( p ’ )  are distinct, because the Go-distance 
(and hence the GI-distance) between u and p’ is more than rc0, while the G,-distance 
between u and i j ( p ‘ )  is at most K ~ .  So, from the third condition on 3., being a j ,  j I j -  
perfect, we know that i j ( p ’ )  has a point w in W. Now i,.(p’) is connected, since p’ is 
and since Ewj is a partial isomorphism. Therefore, there is a path between z and w 
completely within 2.j(p’),  since both are in iL j (p ’ ) .  The shortest such path is of length 
at most aj,  since lkj(p’)1 = lp’l I lHjl I a j .  Since the G,-distance, and hence the Go- 
distance between u and z is at most K ~ ,  and since, as we just saw, the Go-distance 
between z and w is at  most aj ,  it follows that the Go-distance between u and w is at  
most K~ + a j .  As we showed before, K~ + x j  < m. So there is a point w E W where 
dGo(w, u) < m, as claimed. 

Since w E W, we can now apply Case I, 11, or I11 to extend i.j so that the domain 
includes w, just as if the spoiler had selected w in Go as his move (Cases I, 11, and I11 
are the only cases where the spoiler selects a point in W).  Since the distance between 
wand u is less than m, and since the Go-distance between A and W is greater than m, it 
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follows that the minimal path in U(G,) from w to 2j contains no point in A .  Therefore, 
by the same argument as we gave in Case 11, we can further extend to the minimal 
path in U(G,) connecting u' and L:, to obtain i j+ 

This completes the induction step, and hence the proof. 
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