
R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

I’M OK I F  YOU’RE OK: 

O N  T H E  N O T I O N  OF 

T R U S T I N G  C O M M U N I C A T I O N *  

ABSTRACT. We consider the issue of what an agent or a processor needs to know in 
order to know that its messages are true. This may be viewed as a first step to a gen- 
eral theory of cooperative communication in distributed systems. An honesf message is 
one that is known to be true when it is sent (or said). If every message that is sent is 
honest, then of course every message that is sent is true. Various weaker considerations 
than honesty are investigated with the property that provided every message sent satis- 
fies the condition, then every message sent is true. 

1 .  INTRODUCTION 

In an analysis of communication between people or machines, it is 
frequently assumed (often implicitly) that all messages sent are truthful. 
Indeed, Lewis even takes truthfulness to be a convention in language 
[Lew]. Actually, an even stronger assumption is usually made. The 
speaker must know (or at  least strongly believe) that his messages are 
truthful. Messages that are true only by accident don’t count. 

Of course, knowing what is and isn’t true in a given situation can 
be subtle. Consider the following informal example, taken from [HF]. 
For simplicity, let us assume that communication proceeds in syn- 
chronous rounds. In the first round, Alice says to Bob, “I will eventu- 
ally tell you whether I love YOU”, and Bob says the same thing to 
Alice. There seems to be no problem with these statements, assuming 
Alice and Bob do indeed know their own feelings. Suppose that in the 
second round (after the first-round messages are received) Alice says 
to Bob, “I will tell you whether I love you one round after you tell 
me whether you love me.” This still seems reasonable. After all, Alice 
knows that Bob will eventually tell her his feelings towards her, and 
then she can fulfill the pledge that she made one round after Bob’s 
pledge is fulfilled. However, by similar reasoning, in the second round 
Bob can also send Alice the message “I will tell you whether I love 
you one round after you tell me whether you love me.” But now they 
are deadlocked! Neither of them can fulfill the pledges that they made 

Journal of Philosophical Logic 17 (1988) 329 - 354. 
0 1988 by KIuwer Academic Publishers. 



330 R O N A L D  F A G I N  A N D  JOSEPH Y.  H A L P E R N  

to each other in the first and second rounds. So in some sense these 
messages are not truthful. Yet exactly where did the lack of truthful- 
ness arise? 

can tell whether a message sent (or statement uttered) in a given 
situation is true and known (by its sender) to be true. We would 
claim that it is still unreasonable to expect most messages in a given 
situation to be honest, that is, known to be true. In ordinary com- 
munication between people, what usually happens is that the informa- 
tion received via messages is combined with other information, and 
the resulting conclusion is passed on. For example, suppose that Alice 
knows that Debbie is either in Boston or San Francisco and then 
Charlie tells her that Debbie is not in Boston. Alice then turns around 
and tells Bob that Debbie is in San Francisco. 

Alice’s message is not honest in the technical sense we have defined 
above. Alice does not know that Debbie is in Philadelphia. After all, 
Charlie might have been lying when he said that she was not in Boston. 
By producing a more guarded statement (such as “Charlie told me 
that Debbie is not in Boston, so I concluded that she was in San 
Francisco”), Alice could have produced an honest message. If Alice 
believes quite strongly that Charlie is truthful, then it would be quite 
odd of her to make such a guarded statement: in fact, in practice, 
such a statement might convey implicitly that Alice has good reason 
to believe that Charlie is lying! Furthermore, in complex, real-life 
situations, there are many underlying assumptions, some of which the 
speaker may not even be aware of. So, in order to guarantee that her 
messages are honest, it would be necessary for Alice to produce 
extremely convoluted and unnatural messages. The theme of this 
paper is to consider less restrictive conditions than honesty, which still 
guarantee that provided every message satisfies the condition, then 
every message sent is true. 

Our goal is to get a general theory of cooperative communication 
in distributed systems. Such a theory would lead to more efficient 
communication in systems of cooperating agents (where the “agents” 
might well be processors in a distributed system or communicating 
robots). We expect that the issues that we are considering here in 
the restricted setting of communication in a distributed system to 

Suppose we even assume, as we do in the rest of this paper, that we # 



I’M OK I F  Y O U ’ R E  OK 33 1 

be relevant also to a general theory of natural language under- 
standing. 

The idea we are trying to capture is essentially that of “I know that 
my message is true provided everyone else has been telling the truth.” 
Somewhat more formally, we might say that a message m sent by p at 
time t is conditionally honest if p knows (at time t )  that if every mess- 
age sent up to time t is true, then m is true.2 For example, Alice’s 
message to Bob above that Debbie is in San Francisco is condition- 
ally honest (although, as we observed, it is not honest). 

We are really looking for an even less restrictive notion than con- 
ditional honesty that, roughly speaking, corresponds to the idea “I’m 
OK if you’re OK”. That is, we want a notion trusting with the 
property that the message m sent by p is trusting if p knows that if all 
previous messages are trusting, then m is true.3 To understand the 
difference between conditionally honest and trusting messages, con- 
sider the following two situations. First suppose Charlie tells Alice 
“Richard loves Susan”. If Alice now tells Bob “Richard loves Susan”, 
than this would be a conditionally honest message. It is true provided 
that Charlie’s message is true. Suppose instead Alice tells Bob “Charlie 
knows that Richard loves Susan”. Now this is no longer conditionally 
honest. It is possible that Charlie’s message is true without his know- 
ing it (he might not know that Richard loves Susan and make a lucky 
guess). Thus Alice’s message would be false although all previous 
messages are true. On the other hand, suppose that communication 
proceeds in rounds and Charlie’s message was sent on the first round. 
Then for Charlie’s message to be trusting, Charlie would have to 
know it  were true. Thus Alice’s message would be trusting although, 
as we have observed, it is not conditionally honest. 

Since trusting is defined in terms of itself, it is not clear that it is 
well-defined. Indeed, we shall show that in general trusting is not a 
well-defined notion. More formally, trusting can be viewed as a fixed 
point of a certain equation. We say that there is a complete consistent 
notion of trusting in a system if there is a way of marking as “trust- 
ing” some of the messages that are sent so as to satisfy this equation. 
A fixed point of this equation might not exist (and thus there are 
systems in which there is no complete consistent notion of trusting), 
and even if one exists, it may not be unique. However, in systems 



332 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

where messages fulfill a certain well-foundedness property (such as 
systems with a global clock where messages proceed in rounds), we 
show that there is a unique complete consistent notion of trusting. 
Moreover, we can show that whenever there is a complete consistent 
notion of trusting, the messages labelled trusting are a (not necessarily 
strict) superset of the conditionally honest messages. 

The rest of the paper is organized as follows. In the next section we 
briefly review ideas from [HM, HF] and other papers, describing how 
to ascribe knowledge to processors in a distributed system. In Section 
3 we formally define the notions of honest and conditionally honest, 
and give the intuition behind the notion of trusting. We show that, in 
a precise sense, there is no notion with the properties we want trusting 
to have in a general system, but in well-founded systems, there is. In 
Section 4 we introduce the fixed point equation defining a complete 
consistent notion of trusting and examine its solutions in more detail. 
In Section 5 we give our conclusions. 

2.  T H E  M O D E L  

Starting with [HM], there have been a number of papers recently that 
have argued that knowledge provides a useful tool for analyzing sys- 
tems of communicating processors or agents (see [Ha] for an overview 
and survey). Of particular interest has been the issue of how the 
knowledge of the agents in a system changes with over time, as a 
result of communication. 

tributed system is by now fairly standard. We briefly review the 
details here. We phrase our definitions in terms of processors in a 
distributed system; we leave it to the reader to check that these defi- 
nitions apply perfectly well to any group of communicating agents. 

some fixed set 4. A run r of a distributed system is a description of 
the execution of the system over time. We assume here for definite- 
ness that “time” ranges over the natural numbers or the nonnegative 
reals here, although we could perfectly well have assumed that it 
ranged over any linearly ordered, unbounded set. The only facts 
about the run which will be relevant to us are the current state of a 

The formal model for ascribing acknowledge to processors in a dis- 

We assume that processors communicate by sending messages from 



I ’ M  OK I F  YOU’RE OK 333 

processor and the messages that it sends. Thus we take a run to be 
a function from time to global states, which are tuples of the form 
( e ,  s, , . . . , s,), where s, describes processor p,’s current local state, 
and e, the environment, describes which messages are currently being 
sent by each of the processors.“ Thus, if r is a run and t is a time, 
then r ( t )  is a global state. We also assume that only finitely many 
messages are sent up to any time t in a run r.  As has been done in all 
the papers cited above, we will identify a system with a set R of runs. 

We define a point in a system R to be a pair (r,  t )  consisting of a 
run r E R and time t. We say that two points ( r ,  t )  and (r’, t’) in R 
are indistinguishable to processor p,,  and write ( r ,  t )  -, (r’, t’), if 
processor p ,  has the same local state in r ( t )  and r’(t‘). That is, if 
r ( t )  = ( e ,  s,, . . . , s,) and r’(t’) = (e’, s;, . . . , s;), then s, = s:. 

There are times when we want to restrict our attention to systems 
with certain properties. Of particular interest will be synchronous 
phase systems. These are systems where communication proceeds in 
rounds and there is a global clock, so that, intuitively, every processor 
knows what round it is. More formally, R is a synchronous phase 
system if time ranges over the natural numbers and for every two 
points ( r ,  n )  and (r’, n’) in R, we have ( r ,  n)  -, (r’, n’) only if n = n’. We 
do not necessarily assume that a message in a synchronous phase sys- 
tem (or another other system, for that matter) arrives the round after 
which it is sent, although this will be the case in many of our examples. 

In order to capture notions such as honesty, we need to be able to 
assign truth values to messages (which we are thinking of as formulas 
in some language). Given a set R of runs, a semantic function p for R 
associates with each message m a set p(m) of points in R .  Intuitively, 
p(m)  is the set of points in R where m is true. In this paper we are 
viewing messages as syntactically unstructured, so there are no con- 
straints on the function p. In practice, there will be some fixed syntax 
for formulas (and thus for messages). We might expect, for example, 
that if m and m’ are messages, then there is a message m A m’ and 
that p(m A m’) = p(m) n p(m’). We could easily extend p to allow 
us to deal with conjunctions and negations of formulas as well as 
facts such as “all messages sent prior to this time are true”. Although 
we do not do this formally here, we will informally assume that such 
more complicated statements also have truth values. 



334 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

We call a pair (R, p), consisting of a system R and a semantic 
function p on R ,  an interpreted system. Finally we say that m is true 
at (or holds at)  the point ( r ,  t )  in the interpreted system Y = ( R ,  p )  if 
( r ,  t )  E Am).  

We want to extend the notion of truth at a point to assertions 
involving knowledge. This will allow us to talk about a processor 
knowing that a message is true, rather than the message just being 
true. Again, we follow the lines of all the papers previously cited. The 
intuition, which goes back to Hintikka [Hi], is that a processor knows 
a fact if it is true in all the worlds it considers possible. The worlds in 
an interpreted system are simply the points, and the points that 
processor p ,  considers possible at the point (r,  t )  are exactly those 
it cannot distinguish from ( r ,  t ) ,  i.e. those worlds (r’, t’)  such that 
( r ,  t )  -, (r’, 1’) .  Thus, for a message m, we say that K,m is true at 
or holds at the point ( r ,  t )  in the interpreted system Y = ( R ,  p )  if 
{ ( r ’ ,  t’)l(r, t )  -, (r’, t ’ ) )  G p(m). A formula such as K,m is read 
“processor p ,  knowns m”. 

As has been remarked before (e.g., in [HM, HF, Ha]), this is an 
external notion of knowledge. We ascribe knowledge to a processor 
based on its local state. A processor cannot necessarily answer ques- 
tions based on its knowledge, nor do we imagine it doing any com- 
putation in order to acquire its knowledge. It may seem somewhat 
surprising that such a non-computational notion of knowledge is 
used in computer science. This usage is, however, quite well motiv- 
ated. This notion of knowledge has been shown to be quite useful 
for analyzing distributed protocols (see, for example, [CM, DM, Ha, 
HM, MT]). Moreover, it does capture one way the word “know” has 
been used informally. For example, when someone says “processor 2 
does not know that processor 3 is faulty at the end of round 5 in this 
run”, what is often meant is that if we denote “this run” by r, then 
there is a point indistinguishable to processor 2 from the point ( r ,  5) 
where processor 3 is not faulty. Note that this interpretation of 
knowledge gives us a concrete model for the S5 notion of knowledge 
originally discussed by Hintikka. We have chosen to work with this 
interpretation of knowledge because the underlying model is well 
understood and has numerous applications. Recently, variants of this 
model have been introduced that try to take computational issues 



I’M OK IF  Y O U ’ R E  OK 335 

into account (see [FH, HMT, Lev, Mo]). It would clearly be interest- 
ing to develop a theory of cooperative communication along the lines 
we suggest here for these (and perhaps other) more computational 
interpretations of knowledge. 

3 .  HONEST,  C O N D I T I O N A L L Y  H O N E S T ,  A N D  
T R U S T I N G  M E S S A G E S  

Following [HF], we say that a message is honest if i t  is known to be 
true. Formally, the message m sent by p ,  at the point ( r ,  t )  in an inter- 
preted system 9’ is honest if KIm holds at ( r ,  1). Note that it is not 
really a message that is honest or dishonest, it is a message sent by a 
particular processor at  a particular point. The same message m may 
be honest at one point and not at another, or may be honest if sent 
by one processor but not by another. It will often be convenient for 
us to associate with the message m sent by p ,  at the point ( r ,  t )  the 
tuple (m, i, r ,  t).  We call such a tuple a labelled message. We say a 
labelled message (m, i, r ,  t )  is true (resp. honest) if m is true (resp. 
honest) at the point ( r ,  t). 

As we mentioned in the introduction, we want to extend the notion 
of honesty to allow deductions based on previous messages under the 
assumption that the previous messages are true. As a first step towrds 
capturing this intuition, we say that the labelled message (m, i, r, t )  is 
conditionally honest if p I  knows at the point ( I ,  t )  that if all previous 
messages are true, then m is true. More formally, the labelled message 
(m, i, r ,  t )  in the interpreted system 9’ is conditionally honest if for 
all (r’, t’) such that (r’, t’) -, ( r ,  t ) ,  either m is true at (r’ ,  t’) (i.e. 
(r’, t’)  E y(m)) or for some t” < t’, a message m‘ sent at  time t“ in r’ 
was not true when it was sent (i.e. (r’, t”) q! p(m’)). It is easy to see 
that in the scenario described in the first example in the introduction, 
Alice’s message is not honest, but it is conditionally honest. 

Recall that we are trying to capture the idea “I’m OK if you’re OK.” 
The notion of conditional honesty intuitively captures the idea “I’m 
telling the truth provided all the statements you made were true provided 
all the statements I made were true provided . . .” In order to capture 
the former notion, we need a notion “trusting” with the property that 
(m, i, r, t )  is trusting if p ,  knows at the point ( r ,  t )  that if all previous 



336 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

messages are trusting, then m is true. Given the circularity inherent in 
this notion, it is not clear that it is well-defined. Indeed, we shall show 
that in general it is not. We first provide a few formal definitions. 

Suppose we have an interpreted system Y = (R,  p). A consistent 
notion of trusting in Y is simply a function (called a markingfunction) 
that marks some labelled messages in Y “trusting” in such a way that 
if a labelled message (m,  i, r ,  t )  is marked “trusting” then for all 
points (r‘, t’) such that (r’, t’)  -, (r,  t ) ,  either m is true at (r’, t’) or 
some labelled message sent previously (before time t’) in r’ is not 
marked “trusting”. A complete consistent notion of trusting is a con- 
sistent notion of trusting where a message is marked “trusting” ifand 
only iffor all points (r’, t’) such that (r’, t’) -, ( r ,  t ) ,  either m is true 
at (r’, t ’ )  or some labelled message sent previously (before time t’)  in 
r‘ is not marked “ t r~s t ing” .~  Note that here we have been somewhat 
lax and have talked about a “message” being marked “trusting” rather 
than a labelled message. We are similarly lax throughout the paper; 
we hope that what is meant is clear from context. 

We remark that a complete consistent notion of trusting can be 
characterized as a solution to a fixed point equation. We do this in 
the next section. We first must check that the notion of trusting has 
the properties that originally motivated its definition. Note that it is 
immediate from the definitions that a consistent notion of trusting 
(resp. complete consistent notion of trusting) has the property that a 
labelled message is marked “trusting” only if (resp. iff) the sender 
knows that if all previous labelled messages are marked “trusting”, 
then I is true. It follows that a consistent notion of trusting captures 
the intuition “I’m OK if you’re OK.” If every message in a run is OK 
(i.e. marked trusting), then they are all true. The following proposit- 
ion makes this precise. 

PROPOSITION 3.1. Let Y be an interpreted system and (r ,  t )  a point 
in Y.  For each consistent notion of trusting, i f  every message that is 
sent in run r up to time t is marked trusting, then every message sent in 
run r at time t is true. 

Proof. Suppose we have a consistent notion of trusting with a 
marking function f such that every message in run r up to time t is 
marked trusting by$ Further suppose that p sends message m in run 



I ’M O K  I F  Y O U ’ R E  OK 337 

r at time t. It follows from the definition of a consistent notion of 
trusting that p knows that if every previous message is marked “trust- 
ing”, then m is true. Since every previous message is indeed marked 
“trusting”, m is true. H 

We now examine the relationship between trusting and the other 
notions we have defined. Clearly we can always get a trivial consistent 
notion of trusting by simply not marking any messages “trusting”. It 
is also easy to see that we get a consistent notion of trusting by mark- 
ing the honest messages “trusting”, and we get another one by mark- 
ing the conditionally honest messages “trusting”. Thus a consistent 
notion of trusting can be viewed as generalizing the notions of honest 
and conditionally honest. However, it is clearly possible to have con- 
sistent notions of trusting where some conditionally honest messages 
are not marked trusting (for example, the consistent notion of trust- 
ing where no messages are marked “trusting”). As the following result 
shows, this is not the case for a complete consistent notion of trusting. 

PROPOSITION 3.2. Every conditionally honest message is marked 
“trusting” by every complete consistent notion of trusting. 

Proof. Suppose we have a complete consistent notion of trusting. 
Let I = (m, i, r ,  t )  be a conditionally honest labelled message. So p ,  
knows when it sends m at the point (r,  t )  that if every previous message 
is marked trusting, then (by Proposition 3.1) every previous message 
is true, so 1 is true (since 1 is conditionally honest). So 1 must be 
marked “trusting”. 4 

It is not hard to show that there are interpreted systems where the 
messages marked “trusting” according to a complete consistent notion 
of trusting form a strict superset of the conditionally honest messages. 
(We gave an informal example in the introduction which can be easily 
formalized; another example is given at  the end of this section.) Of 
course we still haven’t shown that every interpreted system has a 
complete consistent notion of trusting. Indeed, as we hinted above, 
this is not the case. We now prove this by example. 

(m, i, r. t )  and (m, i, r’, t‘) of Y are indistinguishable by the sender (in 
Given an interpreted system 9, let us say that the labelled messages 



338 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

this case p , )  iff (r,  t )  w i  (r’, t’). Note that in a complete consistent 
notion of trusting, if two labelled messages are indistinguishable by 
the sender, then either both are marked “trusting” or neither is marked 
“trusting”. This is as it should be, since we would expect that if two 
messages are indistinguishable by the sender, then they should be 
marked the same way. 

THEOREM 3.3. There exists an interpreted system with no complete 
consistent notion of trusting. 

Proof. Consider an interpreted system Y = (R,  p) where there are 
three processors p I  , p 2 ,  and p 3 ,  and where R consists of exactly three 
runs, say rl , r2,  and r3 .  The only message that is ever sent in any of 
these runs is the message m, which we can think of as saying “This is 
the first message in the run”. In run r l ,  processor p I  sends m at time 
1, and processor p z  sends m at time 2. In run r,, processor p2 sends m 
at time 1, and processor p3 sends m at time 2. In run r3,  processor p 3  
sends rn at time 1, and processor p I  sends m at time 2. These are the 
only messages sent. We assume that each processor’s local states are 
such that the processor is in the same state at the two points where it 
sends a message, and in a different state at the other points. Note that 
in particular this means that Y is not a synchronous phase system. 
Finally, we take p to be such that m is true at  time 1 in each of the 
runs, but false at time 2. The situation is described in Figure 1 .  In the 
figure, we label a point T or F to indicate whether or not the message 
m is true at that point. Whenever an edge labeled i connects two 
points, the two points are indistinguishable by processor p i .  (We do 
not include in the figure information about which processor sends m 
at each point.) 

Suppose there were a complete consistent notion of trusting in 9’. 
Assume first that some message sent by p1 is marked “trusting”. Since 
p I  cannot distinguish the two points where it sent the message, each 
message sent by p I  must be marked “trusting”. But then our definit- 
ion forces us not to mark either message sent by pz  “trusting”’ (since, 
for example, (m, 2 ,  r I ,  2 )  is false and is preceded only by a message 
marked “trusting”). We now leave it to the reader to check that this 
forces us to mark each message sent by p ,  “trusting”, which in turn 
forces us not to mark the message sent by p I  “trusting”. We have 

. 



I’M OK IF YOU’RE OK 339 

Fig. I 

shown that if some message sent by p,  is marked “trusting”, then 
every message sent by pI should not be marked “trusting”, a con- 
tradiction. On the other hand, if no message sent by p ,  is marked 
“trusting” then arguing as before, we see that this forces us to mark 
each message sent by p2 “trusting”, which forces us not to mark any 
message sent by p ,  “trusting”, which forces us to mark every message 
sent by pI “trusting”, a contradiction. 

Intuitively, the problem here is a certain lack of well-foundedness. 
We define a partial order < on labelled messages in an interpreted 
system Y by taking < to be the least transitive relation such that (a) 
(m, i, r,  t )  i (m’, i ‘ ,  r ,  t’)  if t < t’ and (b) if I,, I ;  (resp. 1 2 ,  I;) are 
labelled messages that are indistinguishable by the sender and I, < I,, 
then I,’ < I;. We say that Y is well-founded if < is a well-founded 
partial order on labelled messages in Y; i.e., if there is no infinite 
descending chain . . . 4 l, < l2 < I, of labelled messages. 

It is easy to see that the interpreted system described in Theorem 
3.3 is not well-founded. On the other hand, synchronous phase sys- 
tems are always well-founded. Indeed, any system with a global 
clock where messages can be sent only at  a well-founded set of 
times is well-founded. Well-foundedness seems to be a reasonable 
idealization to make about human interactions, especially in certain 
constrained settings (for example, face-to-face discussions, or cor- 
respondence by dated memos). As we now show, well-foundedness 
is a sufficient condition for a system to have a unique complete 



340 R O N A L D  F A G l N  A N D  JOSEPH Y .  H A L P E R N  

consistent notion of trusting. Intuitively, this is because in a well- 
founded system, we can define the notion of trusting by induction. 

THEOREM 3.4. In each well-founded interpreted system, there is a 
unique complete consistent notion of trusting. 

Proof. Let < be as defined above, and assume that the interpreted 
system Y is well-founded. By transfinite induction on <, we can 
associate a rank with each labelled message 1 by letting rank(1) be the 
least ordinal that is greater than every rank(1’) where I‘ < 1. We now 
define, by transfinite induction, a marking function J 

rank(1) > 0 and we have already decided which labelled messages of 
rank less than rank(1) are marked “trusting”. If 1 = (m, i, r, t) ,  we 
mark I “trusting” iff for all points (r’, t’) such that (r’, t’) - I  ( r ,  t ) ,  
either m is true at (r’, t’) or some labelled message I‘ sent previously 
in r’ is not marked “trusting”. This completes the definition of the 
marking function. A straightforward induction on rank can now be 
used to show that a labelled message I = (m, i, r ,  t )  is marked “trust- 
ing” iff for all points (r’, t’) such that (r’, t’) -, (r,  t ) ,  either m is true 
at ( r ’ ,  t’) or some labelled message sent previously (before time 1’)  in 
r’ is not marked “trusting”. Thusfdefines a complete consistent 
notion of trusting in Y. I f f ’  is another complete consistent notion of 
trusting in Y we can show by induction on rank that 1 is marked 
“trusting” by f iff it is marked “trusting” by f ’. Thus f defines the 

If rank(1) = 0, we mark I “trusting” iff I is honest. Suppose 

unique complete consistent notion of trusting in Y .  

It follows that in a well-founded system we can not only speak of a 
trusting message, but can do so without ambiguity. The following 
result says that in general we cannot. Even in a system where there is 
a complete consistent notion of trusting, it might not be unique. 

THEOREM 3.5. There are interpreted systems with more than one 
complete consistent notion of trusting. 

so that there are now only two processors rather than three. Let 
Y = (R ,  p)  be an interpreted system with two processors, p ,  and p 2 ,  
where R consists of exactly two runs, say r ,  and r2 .  Again there is 

ProoJ We modify the system described in the proof of Theorem 3.3 



I’M OK IF  YOU’RE OK 341 

Fig. 2. 

only one message m. In run r l  , processor p I  sends m at time 1, and 
processor p 2  sends m at time 2. In run r 2 ,  processor p2 sends m at time 
1, and processor p I  sends m at time 2. These are the only messages 
sent. We take the processors’ local states to be such that each 
processor is in the same state at the two points where it  sends a mess- 
age, and in a different state at the other points. Finally, we take p to 
be such that m is true at time 1 in both runs, but false at time 2. The 
situation is described in Figure 2. 

Thus, as in Theorem 3.3, we can think of m as saying “This is the 
first message in the run”. It is straightforward to verify that we get a 
complete consistent notion of trusting either (a) by marking only p I  ’s 
messages “trusting”, or (b) by marking only p2’s  messages “trusting”. 

4 

Theorem 3.3, Theorem 3.4,  and Theorem 3.5 together show that in an 
interpreted system there may be no complete consistent notion of 
trusting, exactly one such notion, or more than one. However, Theorem 
3.4 and our observations preceding it together suggest that for many 
naturally occurring situations there will be a unique complete con- 
sistent notion of trusting. 

Note that in the interpreted system constructed in the proof of 
Theorem 3.5, none of the messages are conditionally honest. Thus we 
have an example of a complete consistent notion of trusting where the 
messages marked “trusting” form a strict superset of the conditionally 
honest messages. We can also formalize the example given in the 
introduction to get a well-founded system with a unique complete 



342 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

consistent notion of trusting where the messages marked “trusting” 
form a strict superset of the conditionally honest messages. 

4.  V I E W I N G  TRUSTING A S  A F I X E D  P O I N T  

We have seen that “trusting” is not guaranteed to be a well-defined 
notion if the interpreted system is not well-founded. We can get a 
better understanding of the situation by viewing “trusting” as a sol- 
ution of a certain fixed point equation, and then constructing 
approximations to it. 

9, define F , ( X )  to be the set of labelled messages (m,  i, r, t )  of Y 
such that p ,  knows at ( r ,  t )  that either m is true or some previous 
message is in X (i.e. (m,  i, r, t )  E F , ( X )  if whenever (r’, t’)  -, ( r ,  t ) ,  
either (r’, t’) E p(m) ,  or some message sent before time t‘ in r‘ is in 
X ) .  Similarly, define F 2 ( X )  to be the set of labelled messages (m,  i ,  
r, t )  of Y such that p ,  considers it possible at ( r ,  t )  that all previous 
messages are in X and m is false (i.e. (m,  i, r ,  t )  E F , ( X )  if there exists 
a point (r’, t’)  such that (a) (r’, t’)  -, ( r ,  t ) ,  (b) (r’, t’) qi p(m), and (c) 
all messages sent before time t’ in r’ are in X ) .  It is clear that F, and 
F, are monotone, in the sense that if X G Y ,  then F , ( X )  E F , ( Y )  
and F 2 ( X )  G F 2 ( Y ) .  

brought out in the following lemma (where X‘ denotes the com- 
plement of X ) .  

Let Y be an interpreted system. If X is a set of labelled messages of 

The relation between these functions and the notion of trusting is 

LEMMA 4.1. Let Y be an interpreted system and let f be a function that 
marks the precisely the labelled messages in a set F “trusting”. 

1. 

2. 

f is a consistent notion of trusting if F G F, (F). 

f is a complete consistent notion of trusting if 

F = F , ( P )  and F = F 2 ( F ) .  

Proof. Straightforward. rn 
Define F(X,  Y )  = ( F , ( Y ) ,  F2(X) ) .  By Lemma 4.1, it follows that f is 
a complete consistent notion of trusting iff F ( T ,  F )  = (F, F), 
where F is the set of labelled messages marked “trusting” byf. We 



I’M OK I F  Y O U ’ R E  OK 343 

know from Theorem 3.3 that we will not always be able to find such 
a set F.  However, this fixed point equation suggests a way of approxi- 
mating a complete consistent notion of trusting. We define two hier- 
archies Ta and Nu of (labelled) messages of 9, where each hierarchy is 
indexed by ordinals a. 

1. To = No = a. 
2. Ta+i = Fi(N,>. 

3. Na+l = Fz(T,). 

4. If a is a limit ordinal, then T, = Ud<uTd and 
Na = U 6 < a N a .  

Let T* = U,Tu and let N *  = lJaNm.6 

the hierarchy extends the notion of honesty. We discuss how con- 
ditionally honest messages relate to the hierarchy at the end of this 
section. 

Intuitively, T* forms a lower bound on the labelled messages 
marked “trusting” by any complete consistent notion of trusting, 
while N *  forms a lower bound on the labelled messages not marked 
“trusting”. More formally we have 

It is easy to see that Ti consists precisely of the honest messages, so 

PROPOSITION 4.2. For each complete consistent notion of trusting, every 
message in T* is marked “trusting” and every message in N *  is not 
marked ‘‘trusting”. 

Proof. Iff is a complete consistent notion of trusting in an inter- 
preted system Y ,  we can show by a straightforward induction on ct 

that every message in T, is marked “trusting” by f and every message 
in N, is not marked “trusting”. 

Proposition 4.2 would lead us to expect that we get a unique com- 
plete consistent notion of trusting when T* = (N*)’.  It is clear that 
if we have an interpreted system where T* = (N*)’ and there is a 
complete consistent notion of trusting in this system, then it must be 
unique. In order to show that there is a complete consistent notion of 
trusting in such a system, we need an easy lemma, which shows that 



344 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

the T,’s and N,’s do indeed form a hierarchy. This observation will 
have a number of other interesting consequences. 

LEMMA 4.3. 

1. If a < f l ,  then T, E TB and N,  s N,.  

2. T* and N*  are disjoint. 

Proof. We prove (1) by induction on /3. The result is clear if /? is a 
limit ordinal. If fl is a successor ordinal, suppose that p = p’ + 1. 
Then 

Tp = FI(NB.1 2 U,<B.~I;I(NJ = UY<&+l = Tp.. 

Note that the inductive step is used in a number of these steps, as 
well as the fact that F, is monotonic. Finally, since a < p, we have 
a < p’, so from the inductive hypothesis i t  follows that T, c T K .  
Thus T, c T,. Identically Nu E N B .  

In order to prove (2), we show by induction on a that T, and Nu 
are disjoint. There is no difficulty for limit ordinals. If a is a successor 
ordinal, suppose that c1 = a‘ + 1 and the labelled message 1 = (m,  
i, r, t )  is in N,.  By definition, there exists a point (r’, 1’) such that (a) 
(r’ ,  t ’ )  -, ( I ,  t ) ,  (b) (r’, t’)  $ p(m), and (c) all messages sent before 
time t‘ in r‘ are in T,.. By the inductive hypothesis, no messages sent 
before time t‘ in r‘ are in Nm,, so it is easy to see that I $  F, (Nu, )  = T,. 

H Thus T, and N, are disjoint. 

One easy consequence of Lemma 4.3 is that the T, and N, hierarchies 
must eventually collapse. 

THEOREM 4.4. For each interpreted system, there exists y such that 
T, = T* and N, = N * .  

If the T, hierarchy does not eventually collapse, then there are arbi- 
trarily large values of fl (and, in particular, more than R distinct 
values of p) such that the difference T,,, - T, is nonempty. But this 
gives us too many labelled messages. 

Proof. Let A be the cardinality of the number of labelled messages. . 
. 



I ’M O K  I F  Y O U ’ R E  O K  . 345 

It follows easily from this proof that it is sufficient to take y in the 
statement of Theorem 4.4 to be the least cardinal greater than the 
cardinality of the number of labelled messages. (We require the addi- 
tional observation that if T, = T,,, = T,,, then T, = T*.) 

Another consequence of the preceding results is that (T* ,  N * )  is a 
fixed point of F; in fact, i t  is easy to see that the construction guaran- 
tees that it is the least fixed point, although we do  not bother to 
prove this here. 

THEOREM 4.5. F(T*, N * )  = (T* ,  N * ) .  
Proof. We must show that T* = F I ( N * )  and N *  = F,(T*). The 

argument is quite standard. We show that T* = F , ( N * ) ;  the proof 
that N *  = F,(T*) is similar and left to the reader. 

Since F,  is monotonic, we clearly have 

F , ( N * )  2 U,F,(Na) = U,T,+I = T*. 

From Theorem 4.4, i t  follows that there exists y such that N* = N ; ,  
so that 

F,(N*) = F,(N;) q,+l E T*. 

Thus T* = F , ( N * ) .  I 

THEOREM 4.6. For all a, the function which marks all the labelled mess- 
ages in T, “trusting” is a consistent notion of trusting. 

monotonic, we get the following chain of containments: 
Pro06 Using Lemma 4.3, Theorem 4.5, and the fact that F, is 

T, 5 T* = F , ( N * )  E F,((T*)’) C F,(T;). 

Since T, E Fl(T; ) ,  it follows from Lemma 4.1 that the function 
which marks all the labelled messages in T, “trusting” is a consistent 
notion of trusting. 

We are now ready to prove: 

THEOREM 4.7. I f  T* = (N*)” ,  then there is a unique complete con- 
sisrent notion qf trusting f ,  and the labelled messages marked “trusting” 
by ,f are precise119 the nietnbers of T*. 



346 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

Proof. Let f be the function which marks the members of T* as 
“trusting”. It follows immediately from Proposition 4.2 that the only 
possible complete consistent notion of trusting is$ We now show 
that f is indeed a complete consistent notion of trusting. We must 
show that a labelled message 1 is marked “trusting” iff the sender 
knows that if all previous messages are marked “trusting”, then 1 
is true. We shall simply show the “only if” direction, since the “if” 
direction is very similar. Let y be so large that T, = T,,, = T* and 
N, = N,,, = N * .  Assume that a labelled message I = (m, i, r, t )  is 
marked “trusting”. Hence, 1 E T*. Therefore, 1 E T,,, , and so p ,  
knows at (r,  t )  that either m is true or some previous message is in 
&, = N * .  Therefore, p ,  knows that if all previous messages are mar- 
ked “trusting”, then 1 is true. This was to be shown. = 
We have already shown (Theorem 3.4) that for well-founded inter- 
preted systems there is a unique complete consistent notion of trust- 
ing. It will probably not surprise the reader to learn that the proof of 
this fact easily generalizes to show that in a well-founded interpreted 
system we also have T* = ( N * ) ‘ .  

THEOREM 4.8. If the interpreted system is well-founded, then 
T* = ( N * ) ‘ .  

ProoJ It is easy to modify the proof of Theorem 3.4 to show that 
T, consists precisely of those labelled messages 1 with rank(1) = CI 

that are marked “trusting” while N, consists of those labelled mess- 
ages 1 with rank(1) = CI that are not marked “trusting”. The result 
follows. 

In the important special case of synchronous phase systems, we have 
the following result. 

COROLLARY 4.9. For synchronous phase systems, T, = T* = (N*)’ = 

( N J .  
ProoJ It follows immediately from the proof of Theorem 4.8 that if 

y is larger than the rank of every labelled message in a well-founded 
system 9, then T* = Tt and N* = N,,. It is clear that the rank of a 
labelled message sent in the kth round of a synchronous phase system 

, 



I ’ M  OK I F  YOU’RE O K  347 

is at most k - 1. Therefore, o is larger than the rank of every labelled 
message in a synchronous phase system, so T* = T,  and N* = N,. 
This, together with Theorem 4.8, gives us the result desired. 

Thus, for synchronous phase systems, we have 

To 5 T I  C . . . E Tk C Tk,, C . . . C T, 

NO E N ,  G . . . C Nk C Nk+, C . . . C N, 

= T * .  

N * .  
(*I 

= 

Does the T, hierarchy (or the N, hierarchy) collapse earlier than level 
o in this case or are the inclusions in (*) strict? In general, the latter 
holds: 

THEOREM 4.10. There is a synchronous phase system where all of the 
inclusions in (*) are strict. 

Proof. Consider a synchronous phase system Y = (R, p) where 
there are two processors p ,  and p 2 ,  and where R consists of countably 
many runs r , ,  r z ,  r3 ,  . . . and r ; ,  r ; ,  r ; ,  . . . . In each run, each 
processor sends exactly one message. In run r k ,  message mk is sent in 
round k and message mk+ , is sent in round k + 1. In run r;,  message 
mi is sent in round k and message mi+, is sent in round k + 1 .  
Processor p ,  sends the odd-numbered messages (m, , mi, m,, mi ,  . . .) 
while p 2  sends the even-numbered messages. We think of m, as being 
logically true, mi as being logically false, and the messages i n k + !  (resp. 
m; + I ) for k 3 1 as saying “if this is the point (rk , k + 1) or (rk+ , , 
k + 1) (resp. ( r i ,  k + 1) or ( r ; + , ,  k + l)), then this is the first mess- 
age in the run”. Thus, we take p to be such that m, is true at  all 
points, mi is false at all points, and mk+l (resp. m;+,) is false at  the 
point (r, ,  k + 1) (resp. (r; ,  k + 1)) but true at all other points. Finally, 
we assume that for all runs r, each of the processors is in distinct 
local states at every round of r (so that Y’ really is a synchronous phase 
system) and that in odd-numbered rounds (resp. even-numbered 
rounds) processor p ,  (resp. p 2 )  is in the same state at the two points 
where it sends the message mk and in the same state at the two points 
where it sends the message mi. This situation is described in Figure 3. 

An easy induction on k now shows that for k 3 1, if k is odd, then 
(the labelled version of) the message mk is in T, but not in Tk- , ,  and 



348 R O N A L D  F A G I N  A N D  JOSEPH Y. HALPERN 

r, rz  r3 r4 

L T 

F 

J 

F 

Fig. 3 .  

if k is even, then (the labelled version of) the message mk is in Nk but 
not in N k - ,  . A very similar argument shows that if k is odd, then (the 
labelled version of) the message m; is in Nk but not in N k - ,  , and if k 
is even, then (the labelled version of) the message m; is in Tk but not 
in Tk- ,  . Taken together, or course, these results are sufficient to prove 
the theorem. We leave details to the reader. H 

We note that similarly, for each y ,  we can find a well-founded inter- 
preted system where T, # T, and N, # N, when a and fl are distinct 
ordinals less than y .  

From Theorem 3.3 and Theorem 4.7 it follows that there will be 
interpreted systems where we do  not have T* = (N*)’ .  Techniques 
similar to those of Theorem 3.3 and Theorem 3.5 can be used to 
show that in interpreted systems where T* # (N*)’ ,  anything may 
happen. We may have no complete consistent notion of trusting, a 
unique complete consistent notion of trusting, and more than one 
complete consistent notion of trusting. We omit details here. 

We close this section with a comparison of conditionally honest 
messages and the hierarchy we have defined. 

THEOREM 4.1 1. 

1 .  

2.  

No conditionally honest messages is ih N * .  

In general the set of conditionally honest messages is 
incomparable to T*. 

I 



I’M OK IF YOU’RE OK 349 

Proof. For part 1 ,  we use induction on u to show that no con- 
ditionally honest message is in N,. There is no difficulty if IX is a limit 
ordinal. If u = a’ + 1, suppose that I = (m, i, r ,  t )  is a conditionally 
honest message in N,.  By definition of N, we know that I E F2(T,,). 
Thus there must be a point (r’, t’) such that (a) (r’, t’) -, ( r ,  t ) ,  (b) m 
is false at (r’ ,  t’), and (c) all earlier messages in r‘ are in T,.. By The- 
orem 4.6, the function which marks all the formulas in T,. “trusting” 
is a consistent notion of trusting. By Proposition 3.1, it follows that 
all the messages sent in run r’ up to time t‘ are true. But this con- 
tradicts the assumption that I is conditionally honest. 

strict subset of the set of conditionally honest messages, then con- 
struct one where T* is a strict superset of the set of conditionally 
honest messages. Putting these two examples together (by taking the 
union of the sets of runs), we can get an interpreted system where the 
set of conditionally honest messages is incomparable to T*. 

Our first construction is a modification of that given in the proof 
of Theorem 3.5. The situation is described in Figure 4. Again we 
have two processors p I  , p2 and two runs r l ,  r 2 .  After the message m is 
sent by both processors in both runs, processor p ,  sends another 
message m’ in both runs. We take p to be such that m is true in 
the first round of both runs and false at all other points, while m’ is 
false at  all points. Processor p 1  is in state s at the two points where it 
sends the message m, in a different state s’ at the two points where it 
sends the message m‘, and in states other than s and s’ at all other 
points (it is not important whether or not these states are distinct); 
processor p2 is in state s at the two points where it sends m and in 
states other than s at all other points. We leave it to the reader to 
check that m’ is conditionally honest, but T* = N *  = 0 in this 
interpreted system. 

We next construct an interpreted system where three are no con- 
ditionally honest messages, but T* # @. Consider the following syn- 
chronous system (which actually formalizes the example given in the 
introduction), described in Figure 5. Again there are two processors 
p I ,  pz  (which correspond to Alice and Bob) and two runs. In round 1 
of both runs p I  sends the message m, , while in round 2 of both runs 
pz  sends the message m2. We take ,u to be such that m ,  is true at 

For part 2, we first construct an interpreted system where T* is a 



350 R O N A L D  F A G I N  A N D  JOSEPH Y .  H A L P E R N  

m 

T T 

Fig. 4 

Fig. 5 .  

( r , ,  1) and false at  (r, ,  I), while m, is false at both ( r , ,  2) and (r , ,  2). 
(We are thinking of m, as the statement “Richard loves Susan” 
and of m, as the statement “Charlie knows that Richard loves 
Susan”.) We take the processors’ local states to be such that p ,  is 
in state s in round 1 of both runs and state t in round 2 of both 
runs, while p ,  is in state s in round 1 of both runs and in state t 
in round 2 .  

It is now easy to check that N ,  = N *  = {(ml,  1, r l ,  I), (m,, 1, 
r , ,  I)} and T, = T* = {(m,, 2, r , ,  2), (m,, 2, r , ,  2)). (Note that we 
get a complete consistent notion of trusting since this is a synchron- 
ous phase system.) It is also easy to check that there are no con- 
ditionally honest messages. 

We can simply combine these two examples to get an interpreted 
system with four runs where the set of conditionally honest messages 

b 

I 

is incomparable to T*. rn 



I’M OK I F  YOU’RE OK 351 

We remark that we could define another hierarchy starting with T; 
consisting of the conditionally honest messages and with Ni  = @, 
and again applying the function F, and F2. Again we could construct 
a fixpoint ((7”)*, (N’)*) ,  but this time our construction would guaran- 
tee that the conditionally honest messages are a subset of (T’)*. We 
omit further details here.’ 

5 .  CONCLUSIONS 

We investigated the general issue of what an agent or processor needs 
to know in order to know that its messages are true. This led us to 
define the notion of conditionally honest messages, where a message is 
conditionally honest if it is known to be true provided that all previous 
messages are true. We tried to generalize this notion by defining trusting 
messages, where intuitively a trusting message is one that is known to be 
true provided that all previous messages are trusting. We showed that 
trusting messages are not well-defined in general. However, they are 
well-defined in many natural systems, such as synchronous phase systems, 
where communication proceeds in rounds and there is a global clock. 

None of the results in this paper is difficult to prove. We believe 
that the major contribution of the paper lies not in the depth of the 
results, but in the ideas. We made a number of false starts in pur- 
suing the ideas in this paper, and we now feel that we have the 
“right” definitions (although, as we indicated in a few places in the 
paper, there are some quite reasonable variants of the definitions we 
have chosen that lead to essentially the same results). 

While we defined honest, conditionally honest, and trusting mess- 
ages in the context of the S5 notion of knowledge used in distributed 
systems, they should make sense for other notions of knowledge as 
well. It would be interesting to pursue these issues in the context of 
other notions of knowledge, perhaps ones that better model resource- 
bounded human reasoners. 

ACKNOWLEDGEMENTS 

We would like to thank Gordon Plotkin, Rich Thomason, Moshe 
Vardi, and Ed Wimmers for their comments on a previous draft of 



352 R O N A L D  F A G I N  A N D  JOSEPH Y.  H A L P E R N  

this paper, and And Gupta for suggesting some useful references on 
truthfulness. Moshe also pointed out to us the connection between 
trusting and the Knpke truth predicate. Rich suggested the term “con- 
ditionally honest”. 

NOTES 

* This is an expanded version of a paper that appears in the Proceedings of the Second 
IEEE Symposium on Logic in Computer Science, 1987. 
’ Bob doesn’t really have to send his message at the same round as Alice for the dead- 
lock to occur. All that is required is that Bob send his second message after receiving 
Alice’s first message and before receiving her second one, and similarly for Alice. Thus, 
we can arrange for this type of deadlock in any setting where a reasonable amount of 
time may pass between when a message is sent and when it is received. 
* We could have taken a variant of this notion by defining a message m sent by p at 
time t to be conditionally honest if p knows that m is true provided that all messages 
previously received by p are true; i.e., instead of considering all messages sent, we could 
consider only the messages received by p. Everything we say in this paper goes through 
with this definition as well. The definition we actually use is slightly less restrictive, in 
that more messages will be considered conditionally honest. 

As Rich Thomason has pointed out, trusting is perhaps a bit of a misnomer; 1 can 
presuppose what someone has told me for the sake of conversation without believing it 
at all. We have used this name partly for historical reasons (it was used in an earlier 
version of this paper, although for the notion we are now calling conditional honesty), 
and partly because we feel it gets across the idea that conversation often presupposes 
trust on the part of the communicating parties that only truthful messages are being 
communicated. 

information and satisfy extra conditions. For example, we would expect the environ- 
ment in the global state in run r at time t to describe all the messages that have been 
sent but not delivered up to that time. Moreover, we would expect a processor’s local 
state to be a function of its message history, the sequence of messages it has sent and 
received in run r up to, but not including, time t ,  together with the times they were sent 
and received on the processor’s local clock (if there are clocks in the system). However, 
the results and definitions of this paper are independent of these conditions, so we do 
not impose them here. We remark that all our impossibility results hold if we restrict 
attention to systems where a processor’s state encodes its complete message history 
(this is the total view or complete history interpretation discussed in [HM]). 

We could have considered a slight variant of the definition of “consistent notion of 
trusting” by defining a consistent’ notion of trusting to be a function that marks some 
(not necessarily all) labelled messages in Y as either “trusting” or “not trusting” (but 
not both!) in such a way that (a) a labelled message (m, i, r, t )  is marked “trusting” 
only if for all points (r’, t’) such that (r’, 1’) -, (r ,  t ) ,  either m is true at (r’, t’) or some 
labelled message sent previously is labelled “not trusting” and (b) a labelled message 
(m, i, r, t )  is marked “not trusting” only if at some point (r’, t’) such that 
(r’, t’) -, (r, t )  we have both that rn is false and that all messages sent previously in r’ 

In a more detailed model of a distributed system, the global state would include more 

4 

I 



I’M O K  I F  YOU’RE OK 353 

are marked “trusting”. We could then define a complete consistent’ notion of trusting 
to be one where all messages are marked either “trusting” or “not trusting”. It is easy 
to see that a complete consistent’ notion of trusting is simply a complete consistent 
notion of trusting where all the messages not labelled “trusting” are labelled “not trust- 
ing”. Thus, complete consistent and complete consistent’ notions of trusting are essen- 
tially identical. Moreover, if we consider the messages marked “trusting” by a consis- 
tent’ notion of trusting, we get a consistent notion of trusting. The converse, however, 
is not true in general. Consider an interpreted system Y where a false message m is 
sent at the point (I, t )  by pI . Suppose that there are no other points in Y where pI has 
the same local state as in (r ,  t), and further suppose that m is preceeded in (r, t )  by one 
message, which happens to be honest. The function that labels only m “trusting” gives 
a consistent notion of trusting, but it is easy to see that there is no consistent’ notion of 
trusting that marks rn “trusting”. All the theorems we state here hold if we replace 
consistent by consistent’, with essentially no change in proof. We gave the definitions 
we did simply because they are somewhat simpler and they make our proofs go 
through a little more smoothly. Both definitions agree on what we consider to be the 
most important properties. 

The reader familiar with the work of Kripke and other philosophers on defining a 
truth predicate [Kr, Gu] will immediately see the similarities between our approach and 
theirs. Kripke also defines a function analogous to our F and constructs its fixed point 
just as we have constructed T* and N*. Kripke is interested in all the fixed points of 
the function that he constructs. We only focus here on fixpoints of F of the form 
(5, Y) (which, as shown in Lemma 4.1, correspond to complete consistent notions of 
trusting) and the fixed point (T*, N * ) .  We remark that the labelled messages in 
T* u N* are analogous to what Kripke called grounded formulas. 

More generally, given any consistent’ notion of trusting (as defined in Note 6), we 
could construct a hierarchy by setting T,’ to consist of all the labelled messages that are 
marked “trusting” and setting N,’ to consist of all the labelled messages that are marked 
“not trusting”. We could then prove analogues to all the theorems in this section. However, 
the results do not go through in general if we use a consistent (rather than consistent’) 
notion of trusting to define T,’ (no matter how NL is defined). 

R E F E R E N C E S  

M. Chandy and J. Misra, ‘How processes learn’, Distributed Computing 1(1), 

C. Dwork and Y. Moses, ‘Knowledge and common knowledge in a Byzantine 
environment I: Crash failures’, Theoretical Aspects of Reasoning about Know- 
ledge: Proc. of the 1986 Conference (ed. J. Y. Halpern), Morgan Kaufmann, 

R. Fagin and J. Y. Halpern, ‘Belief, awareness, and limited reasoning’, Arti- 
ficial Intelligence 34, 1988, pp. 39-76. 
A. Gupta, ‘Truth and paradox’, Journal of PhiIosophical Logic 11, 1982, pp. 
1-60. Reprinted in Recent Essays on Truth and the Liar Paradox (ed. R. L. 
Martin), Oxford University Press, 1984, pp. 175- 235. 
J. Y. Halpern, ‘Using reasoning about knowledge to analyze distributed sys- 
tems’, Annual Review of Computer Science, Vol. 2 (ed. J. Traub et al. ), Annual 
Reviews Inc., 1987, pp. 37-68. 

1986, pp. 40-52. 

1986, pp. 149- 169. 



354 R O N A L D  F A G I N  A N D  JOSEPH Y. H A L P E R N  

[HF] J. Y. Halpern and R. Fagin, ‘A formal model of knowledge, action, and com- 
munication in distributed systems’, Proceedings of the 4th ACM Symposium on 
Principles of Distributed Computing, 1985, pp. 224-236. 
J.  Y. Halpern and Y. 0. Moses, ‘Knowledge and common knowledge in a 
distributed environment’, Proceedings of the 3rd ACM Symposium on Principles 
of Distributed Computing, 1984, pp. 50-61; a revised version appeared as IBM 
Research Report RJ 4421, 1986. 

zero knowledge’, Proceedings of the 20th ACM Symposium on Theory of Com- 
puting, 1988, pp. 132- 147. 
J. Hintikka, Knowledge and BelieJ Cornell University Press, 1962. 
S. A. Kripke, ‘Outline of a theory of truth’, Journal of Philosophy 72, 1975, 
pp. 640-116. Reprinted in Recent Essays on Truth and the Liar Paradox 
(ed. R. L. Martin), 1984, Oxford University Press. 
H. J. Levesque, ‘A logic of implicit and explicit belief‘, Proc. National ConJ 
on Artificial Intelligence, 1984, pp. 198-202; a revised and expanded version 
appears as Fairchild Lab. Technical Report FLAIR # 32, 1984. 
D. Lewis, Convention, A Philosophical Study, Harvard University Press, 1969. 
Y. Moses, ‘Resource-bounded knowledge’, Proceedings of the Second Con- 
ference on Theoretical Aspects of Reasoning about Knowledge (ed. M. Y .  Vardi), 
Morgan Kaufmann, 1988, pp. 261-295. 
Y. Moses and M. Tuttle, ‘Programming simultaneous actions using common 
knowledge’, AIgorithmica 3, 1988, pp. 121 - 169. 

I 

[HM] . 
[HMT] J. Y. Halpern, Y. 0. Moses, and M. Tuttle, ‘A knowledge-based analysis of 

[Hi] 
[Kr] 

[Lev] 

[Lew] 
[Mo] 

[MT] 

IBM Almaden Research Center, 
650 Harry Road, 
San Jose, CA 95120-6099, 
U.S.A. 

& 

I 


