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employee) are studied, including their interaction with functional dependencies, or FDs. A 
simple complete axiomatization for INDs is presented, and the decision problem for INDs is 
shown to be PSPACE-complete. (The decision problem for INDs is the problem of deter- 
mining whether or not C logically implies u, given a set Z of INDs and a single IND u). It is 
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implication are distinct for FDs and INDs taken together. It is shown that, although there are 
simple complete axiomatizations for FDs alone and for INDs alone, there is no complete 
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we consider finite implication or unrestricted implication. In the case of finite implication, this 
result holds, even if no relation scheme has more than two attributes, and if all of the depen- 
dencies are unary (a dependency is wary if the left-hand side and right-hand side each 
contain only one attribute). In the case of unrestricted implication, the result holds, even if no 
relation scheme has more than three attributes, each FD is unary, and each IND is binary. 
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The nonexistence of a k-ary complete axiomatization for FDs and INDs taken together is 
proven by giving a condition which is necessary and sufficient in general for the existence of a 
k-ary complete axiomatization. 

1. INTR~OUCTI~N 

Functional dependencies (FDs) [Co 11, are certainly the most important and widely 
studied integrity constraints for relational databases. Another important integrity 
constraint is the inclusion dependency (IND) [Fa3]. As an example, an inclusion 
dependency can say that every MANAGER entry of the R relation appears as an 
EMPLOYEE entry of the S relation. In general, an inclusion dependency is of the 
form 

R [A, ,..., A,] 2 S[B,,..., B,], (1.1) 

where R and S are relation names (possibly the same), and where the Ats and Bts 
are attributes. The inclusion dependency (1.1) holds for a database if each tuple that 
is a member of the relation corresponding to the left-hand side of (1.1) is also in the 
relation corresponding to the right-hand side of (1.1). Hence, INDs are valuable for 
database design, since they permit us to selectively define what data must be 
duplicated in what relations. 

Together INDs and FDs form the basis of the structural model of Wiederhold and 
El-Masri [WM]. They also appear when an entity-relationship schema is mapped to 
the relational model [Ch, Kl]. Yet in another perspective, INDs can be viewed as a 
relaxation of the controversial universal relation assumption [BG, Ke, Ul], which 
requires that all relations in a database be projections of a single (universal) relation. 
Inclusion dependencies are commonly known in Artificial Intelligence applications as 
ISA relationships (cf. Beeri and Korth [BK]). 

We note that INDs differ from other commonly studied database dependencies in 
two important respects. First, INDs may be interrelational, whereas the others deal 
with a single relation at a time. Second, INDs are not typed [Fa4]; they are special 
cases of extended embedded implicational dependencies [Fa4], for which the 
existence of “Armstrong-like databases” have been proven. For details, see [Fa4]. 

Although INDs have been utilized extensively for databases ]BK, Ch, Co3, Fa3, 
Kl, SS, WM, Za], there has been very little analysis of their properties, with only a 
few recent exceptions [CV, Da, FV, JK, KCV, Li, Mil, Mi2, SC], nearly all of which 
appeared after the first version of this paper. This paper was written to help remedy 
this neglect. 

We show that INDs have a simple complete axiomatization. However, we also 
show the rather surprising fact that the decision problem for INDs (the problem of 
determining, given a set z of INDs and a single IND u, whether or not C implies a) 
is PSPACE-complete. Hence, there is no polynomial-time algorithm for this problem 
(unless P = PSPACE) [GJ]. 
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Although INDs, like FDs, have a simple complete axiomatization, we show that 
the interaction of FDs and INDs is complex. In particular, we show that for no k 
does there exist a k-ary complete axiomatization for FDs and INDs taken together 
(by k-my, we mean that each rule has at most k antecedents.) Thus, no k-ary 
axiomatization can fully describe the interaction between FDs and INDs. In 
particular, there is no finite complete axiomatization. To obtain this result, we give 
general necessary and sufficient conditions for the existence of a k-ary complete 
axiomatization. We also show how this characterization can be used to explain Sagiv 
and Walecka’s [SW] result on the nonexistence of a k-ary complete axiomatization 
for embedded multivalued dependencies (Fall, for arbitrary k. 

In Section 2, we present basic definitions. In Section 3, we present a simple 
axiomatization for INDs, and show that it is complete. As a by-product of the proof, 
it follows that finite implication (implication over finite databases) is the same as 
unrestricted implication for INDs. We also show that the decision problem for INDs 
is PSPACE-complete. In Section 4, we give some examples that illustrate the 
interaction between FDs and INDs. Taken together, they can imply new depen- 
dencies, called repeating dependencies (RDs), which can say, for example, that in 
each tuple t of the R relation, the A and B entries oft are the same. We give a simple 
example that shows that finite implication is distinct from unrestricted implication, 
for FDs and INDs taken together. In Section 5, we give a general necessary and 
sufficient condition for the existence of a k-ary complete axiomatization. We show 
how the result can be used to explain Sagiv and Walecka’s [SW] result on the nonex- 
istence of a k-ary complete axiomatization for embedded multivalued dependencies, 
for arbitrary k. In Section 6, we show that for no k does there exist a k-ary complete 
axiomatization for finite implication of FDs and INDs. In fact, our proof shows that 
this result holds, even if no relation scheme has more than two attributes, and if all of 
the dependencies are unary. (We say that a dependency is unary if the left-hand side 
and right-hand side each contain only one attribute.) In Section 7, we give the more 
complex construction which shows the same result for unrestricted implication (where 
no relation scheme has more than three attributes, each FD is unary, and each IND 
is binary.) In Sections 6 and 7, we show that even if RDs are included with FDs and 
INDs, then it is still the case that for no k does there exist a k-ary complete 
axiomatization. In Section 8, we present our conclusions, and suggest directions for 
further research. 

We remark that the first author spent several months trying to find a finite 
axiomatization for FDs and INDs, and to prove its completeness. Of course, our 
results show that such a project was doomed! However, the knowledge acquired 
could be redirected toward proving the major result of Section 7. 

We also note that by allowing the dynamic addition of new attributes, Mitchell 
[Mill has recently found a ternary “complete axiomatization” for FDs and INDs. 
(We put “complete axiomatization” in quotes, since Mitchell’s approach involves a 
different notion of complete axiomatization than ours.) We also note that recently 
Mitchell [Mi2] and, independently, Chandra and Vardi [CV] have shown that the 
decision problem for FDs and INDs taken together is undecidable. 

571/28/l-3 
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2. DEFINITIONS 

A relation scheme is a pair (R, U), where R is the name of the relation scheme and 
where U is a finite sequence (A, ,..., A,) of attributes, called the attributes of R. We 
use the notation R [U] for (R, U). We usually write a sequence, such as (A I ,..., A,), 
as simply A, ,..., A,,,. For example, we shall write simply R [A, ,..., A,] for 
R [(A I,..., A,)]. A tuple t over U = (A, ,..., A,,,) is a sequence (a, ,..., a,) of the same 
length m as U. A relation (over R [ U], or simply over R) is a set of tuples over U. If 
(a i,..., a,) is a tuple in relation r, then we say that a, is an entry (in column Ai), 
1 < i < m. Note that our definition, which is convenient for use in this paper, is 
distinct from other definitions [ABU, Ar] in which a tuple is a mapping, not a 
sequence. If X= (Ai ,,..., A,,), where i, ,..., i, are distinct members of { l,..., n}, and if t 
is as above, then t[X] is (a,,,..., 
{t[X]: t E r}. 

a,,). If r is a set of tuples over U, then r[X] = 

A database scheme D= {R,[U,] ,..., R,[U,]} is a finite set of relation schemes. A 
database over D is a mapping that associates each relation scheme Ri[ Ui] with a 
relation ri over Ri. When it can cause no confusion, we may refer to r, ,..., rn as the 
database. 

A relation is finite if it has a finite set of tuples; a database r1 ,..., r,, is finite if each 
ri is finite. If C is a set, then 1 Cl is the cardinality of C; if X= (a, ,..., ak) is a 
sequence, then IX] = k. 

If R [A 1 ,..., A,] is a relation scheme, and if X is a sequence of distinct members of 
A 1 ,..., A,,,, as is Y, then we call R: X-+ Y a functional dependency (FD). Although X 
and Y are usually taken to be sets, rather than sequences, it is necessary for us to use 
sequences, so that we can interrelate FDs and inclusion dependencies, defined soon. If 
r is a relation over R, then r obeys or satisfies the FD R: X -+ Y if, whenever t, and t, 
are tuples of r such that t, [X] = tz[X], then t, [ Y] = t2[ Y]. We also say then that the 
FD R: X+ Y holds for r, or is true about r. If the FD does not hold for r, then we 
say that r violates the FD. A similar comment applies for other dependencies, defined 
later. 

If Ri[A, ,..., A,] and Rj[B, ,..., BP] are relation schemes (not necessarily distinct), if 
X is a sequence of k distinct members of A, ,..., A,, and if Y is a sequence of k 
distinct members of B , ,..., B,, then we call Ri[X] E Rj(Y] an inclusion dependency 
(IND). (Inclusion dependencies should not be confused with the subset dependencies 
of Sagiv and Walecka [SW], which are quite different). If rl ,..., r, is a database d 
over D = {R,[U,],..., R,[U,]}, then d obeys the IND Ri[X] G Rj[Y] if ri[X] c rj[Y]. 

The FDs and INDs are examples of dependencies, or sentences about databases 
[Fa4]. Let Z be a set of dependencies over D, and let u be a single dependency 
over D. When we say that C logically implies o (in the context D), or that c is a 
logical consequence of Z, we mean that whenever d is a database over D that obeys 
every dependency in Z, then d obeys o. That is, there is no “counterexample 
database” d such that d obeys every sentence in .Z, but such that d does not obey u. 
We then write C b=D u, or, if D is understood, simply C b r~. If C and r are each sets 
of dependencies, then by .Z K I-, we mean that Z + y for each y E r. We write C +rin c 
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to mean that whenever d is a finite database that obeys C, then also d obeys u. 
Clearly, if z I= D, then C fin 0, but as we shall see, the converse is false. Finally, we 
write ,X !# u to mean that it is false that t; k u. 

3. IMPLICATION OF INDS 

In this section, we present a simple axiomatization for INDs, and show that it is 
complete. Our proof shows that the same axiomatization is complete, even if we 
restrict our attention to finite databases (databases with a finite number of tuples). 
Hence, finite implication and unrestricted implication (kc,, and K) are the same for 
INDs. We show that the decision problem for INDs is PSPACE-complete. We close 
by relating our results to known results about special classes of first-order sentences. 

We note that Lin [Li] presents a set of inference rules for INDs, and conjectures 
their completeness. Since his rules imply ours below, his axiomatization is indeed 
complete. 

The axiomatization comprises the following inference rules (the first is a rule with 
no antecedents; such a rule is sometimes called an axiom). 

IND 1 (reflexivity): R [X] c R IX], if X is a sequence of 
distinct attributes of R. 

IND2 (projection and permutation): 

IND3 (transitivity): 

ifR[A , ,..., A,,,] c S[B, ,..., B,], then 
R Vi,,..., Aik] E S[Bi,,...? Bi,], 
for each sequence i, ,..., i, of 
distinct integers from (l,..., m). 

if R[X] c S[Y] and s[Y] G TlZ], 
then R[X] c T[Z]. 

Let 2 be a set of INDs and let CJ be a single IND. A proof of u from ,J? is a finite 
sequence of INDs, where (1) each IND in the sequence is either a member of 2, or 
else follows from previous INDs in the sequence by an application of the rules, and 
where (2) u is the last IND in the sequence. We write C + u to mean that there is a 
proof of u from ,X. 

THEOREM 3.1 (Completeness theorem for INDs). Let z be a set of INDs, and let 
u be a single IND. The following are equivalent: 

(1) Cbao, 

(2) Ebfi” a2 
(3) Cku. 

ProoJ We shall show that (3) * (1) + (2) 3 (3). 

(3) => (1) This is soundness, which simply says that the inference rules are valid. 
This is very easy to verify. 
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(1) =P (2) If every database that satisfies Z also satisfies u (i.e., if C + a), then 
clearly every finite database that obeys Z also satisfies u (i.e., Z !=rin o). 

(2) * (3) Assume that Z bun u. We must show that .Z F u. Assume that u is the 
IND &[A ,,“‘, A,] C&[Bi,..., B,]. Assume that R, ,..., R, are the names of the 
relation schemes. We shall create a database I, ,..., r,, over R ,,..., R,, by adding 
tuples, one at a time. Later we shall make use of this database to prove that C t- u. 

Let p be a tuple over the attributes of R,, such that p[A,] = i (1 < i < m), and such 
that p[A ] = 0 for each remaining attribute A of R, . Initialize the database by letting 
ra have the tuplep and no other tuple, and by letting each remaining ri be empty. One 
at a time, we add tuples to the database by 

Rule (*). Assume that the IND R,[C ,,..., C,] E Rj[D ,,..., Ilk] is in C, and that 
the tuple u is in ri. Let t be a tuple over the attributes of Rj, where t[D,] = u[C,], for 
1 < u < k, and where t[A] = 0 for each remaining attribute A of Rj. Then add the 
tuple t to Yj, if t is not already in rj. We say that t is added to ri as a result of the 
IND R,[C ,,..., C,] G Rj[D, ,..., Dk] and of the tuple t.~ of ri. 

Rule (*) is similar to the chase procedure [BVl, MMS, SU], except that instead of 
repeatedly introducing new undistinguished variables, we always use 0 when a “new” 
value is needed. 

Apply Rule (*) until no more tuples can be added by applying it. Clearly, the 
resulting database r , ,..., r, is finite, since every entry of every tuple is in the set 
(0, l,..., m). It is easy to see that the database also satisfies E, or else Rule (*) could 
be applied to add another tuple. Since also, by assumption, C +nn u, it follows that 
the database satisfies a; that is, the database satisfies the IND R,[A,,..., A,] SK 
R,[B, ,..., B,]. So, since ra contains the tuple p, as described above, it follows that rh 
contains a tuple p’, over the attributes of R,, where p’[B,] = i (1 < i < m). 

Consider 

Claim (**). If rj contains a tuple t, with t[E,] = i, > 1, for 1 < u < k, then Z F 
Ra[Ai,,***> Ai,J G Rj[Ei y***y Ek]* 

If we prove Claim (**), then since s contains the tuple p’, it follows that Z I- 
&]A I,..., A,] G RJB, ,..., B,]; that is, Z t- u, which was to be shown. 

Thus, we need only prove Claim (**). We prove Claim (**) by induction on when 
the tuple was inserted in the database (by Rule (*)). If t is the first tuple p that was 
inserted to initialize the database (so rj = r,), then Claim (**) is true, since Z I- 
R,[Ail>*.*’ Ai,] cR,[Ai,,***, A,,], by INDl (reflexivity). We now show that Claim (**) 
is true about tuple t, under the inductive assumption that it holds for all tuples 
previously inserted in the database. Assume that tuple t is inserted in relation rj, via 
Rule (*), as a result of the IND Ri[X,,...,X,] c Rj[Y,,..., Y,] of Z and of the tuple z) 
of ri. Let us say that attribute X, of Ri corresponds to attribute Y, of Rj, for 
1 < w < q. Let F, be the attribute of Ri that corresponds to attribute E, of Rj 
(1 < u < k), where the attributes E, are as in Claim (**). Then s[F,] = i,, since 
t[E,] = i, (1 < u < k). 

Since the IND Ri[X, ,..., X,] c Rj[ Y, ,..., Y4] is in Z, it follows by IND2 (projection 
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and permutation) that Z F R#,,..., Fk] E Rj[EI,..., Ek], By inductive assumption, 
Claim (**) holds when the roles of rj and t are played by ri and v, respectively. 
Hence, C I- R[Ai,, ...) Ai,] c Ri[F, ,..., Fk]. So, by IND3 (transitivity), it follows that 
C t- R [Ai, ,..., Ai,] s R,[E, ,..., Ek], which was to be shown. 1 

COROLLARY 3.2. Let C be a set of INDs, and let o be a single 
IND R,[A, ,..., A,] G Rb[B, ,..., B,]. Then Zt= u if and only if there is a sequence 
S,[X,], S,[X,],..., S,[X,], where 

(i) Si is the name of one of the relation schemes, for 1 < i < w; 

(ii) Xi is a sequence of m distinct attributes of Si, for 1 < i < w; 

(iii) thefirst member S,[X,] of the sequence is R,[A, ,...,A,]; 

(iv) the last member S,[X,] of the sequence is Rt,[B,,..., B,]; and 

(V) the IND Si[Xi] G Si+ I[Xi+ I] can be obtained from a member of C by 
IND2 (projection and permutation), for 1 < i < w. 

By (v), we mean that there is an IND Si(C, ,..., C,] E Si, ,[D, ,..., Dk] in I;, and that 
there is a sequence i, ,..., i, of distinct integers from {l,..., k} such that Xi is Ci,,..., Cim 
and Xi+ , is Di, ,..., Di . m 

Proof: If there is such a sequence, then clearly Z F cr. Conversely, assume that 
C + o; we shall show that there is such a sequence. We shall make use of the 
database r, ,..., r, that we constructed in the proof of (2) =P (3) in Theorem 3.1. By 
our construction, it follows that there is a sequence (tl, s,),..., (t,, s,) such that 

(a) si is one of the relations r,,..., rn in the database, for 1 < i & w; 

(b) ti is a tuple of si, for 1 < i < w; 

(c) (tl, s,) = (p, rJ, and so t, is the first tuple inserted into the database in our 
construction; 

(d) (t,, s,) = (p’, r&, where p’ is as described in the proof of Theorem 3.1; 

(e) ti+l is added to si+ 1 as a result of a member of Z and of the tuple ti of si, 
for 1 < i < w. 

If t is a tuple that was inserted into the database, then let us say that t is special if t 
contains each of l,..., m as entries. By definition, each of t, and t, (i.e., each of p 
and p’) is a special tuple. By reverse induction on i, it follows easily from (e) that 
each ti is special. Thus, each ti contains at least one occurrence of each of l,..., m. By 
(forward) induction on i, it then follows easily from (e) above that each ti contains 
exactly one occurrence of each of l,..., m. 

If t,[C,] = k (1 < k < m), and if si is rj, then let us say that (ti, si) corresponds to 
the expression Rj[CI,..., C,] (and vice versa). Let S,[X,],..., S,[X,] be the 
expressions that correspond to (tl, sJ,..., (t,,,, s,), respectively. It is straightforward to 
verify that the sequence S,[X,],..., S,[X,] fulfills conditions (i)-(v) of the statement 
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of Corollary 3.2. The member of C mentioned in (v) is the member of E mentioned in 
(e), for each i (1 <i< w). I 

Corollary 3.2 immediately leads to a decision procedure for the decision problem 
for INDs (i.e., for determining if _X + u, where _E is a set of INDs, and where o is a 
single IND). Say (T is the IND Z?,[A, ,..., A,] G Rb[B, ,..., B,]. 

(1) Initialize set Z by letting it contain the single expression R,[A 1 ,..., A,]. 

(2) If Z contains an expression S[X], and if an IND S[X] G T[ Y] can be 
obtained from a member of 2 by IND2 (projection and permutation), then add T[ Y] 
to the set Z, unless it is already in Z. 

(3) Apply step (2) repeatedly, until either R,[B, ,..., B,] appears in Z, or until 
it is no longer possible to add an expression to Z by using step (2), whichever comes 
first. 

(4) I: l= u if and only if R,[B, ,..., B,] is in the resulting set Z. 

This decision procedure is nondetermininistic, since we do not specify the order in 
which the INDs in z are applied to members of Z in step (2). Our procedure is quite 
similar to a decision procedure for FDs [BB], where Z is a set of attributes, and 
where attributes are added to Z on the basis of FDs. However, there is a major 
difference. The FD decision procedure can be implemented (with the appropriate data 
structure) to run in linear time. Unfortunately, however, in the case of INDs, our 
procedure requires superpolynomial time, as we now show. 

Assume that there is a single relation scheme R, with m distinct attributes 
A A,,,. 1,-*-T Associate with each permutation y of l,..., m the IND R[A,,..., A,] c 

R[A yc,j,..., Aycmj], which we shall denote by a(y). Let yi (1 <i< m) be the 
permutation of l,..., m which maps 1 to i and maps i to 1, and which leaves 
everything else fixed. It is well known that the set {rl ,..., y,} of permutations generate 
all permutations on l,..., m (i.e., every permutation of l,..., m is a product /J, .a. /I,, 
where each pi is a yj, and a given yj may appear many times). It follows easily that 
every IND over R[A 1 ,..., A,] is a logical consequence of the set {o(y,),..., a@,)} of 
INDs. Hence, if we were to make our decision procedure above deterministic by 
fixing the order in which INDs of z are applied to members of Z in step (2), then in 
the worst case, the procedure would run in (worse than) exponential time, since every 
IND over R [A, ,..., A,] will eventually appear in Z if step (2) is applied repeatedly 
until it cannot be applied anymore. 

However, from what we have said it is still conceivable that for each pair z:, u for 
which z k u, there is some fortuitous choice (of how to apply the INDs of z to 
members of Z in step (2)) such that the algorithm shows that E + u, using only a 
polynomial number of steps. We now show that this is not the case. 

If y is a permutation, then define order(y) to be the least integer k such that yk is 
the identity permutation. Define f(m) to be max{order(y): y is a permutation of 
l,..., m}. Landau [La] has shown that log(f(m)) is asymptotic to (m log m)“*, where 
the logarithms are to the base e. Thus,f(m) grows like e’m’oem)1’2. (Landau obtains a 
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permutation of big order by composing it of relatively prime cycles.) Let y be a 
permutation of order f(m) on l,..., m, and let 6 be flm)-‘. Let a(y) and o(6) be the 
associated INDs, as defined above. It is not hard to see that the IND o(y) logically 
implies the IND a(6), and that the minimal number of applications of step (2) 
required for our algorithm to recognize that a(y) t= a(6) is f(m) - 1. Thus, a super- 
polynomial number of steps are required for our algorithm. 

We remark that for the class of examples we just gave, there are short proofs that 
a(y) b a(6) using our complete axiomatization from the start of Section 3. Thus, this 
particular class of examples is not one for which long (superpolynomial length) 
proofs are required under our complete axiomatization. However, if NP # PSPACE, 
then long proofs are necessarily required in general, under our complete 
axiomatization or any other (as long as proofs are recognizable in polynomial time). 
This follows easily from the fact, which we shall show later in this section, that the 
decision problem for INDs is PSPACE-complete. 

Since, as we just noted, the decision problem for INDs is PSPACE-complete, we 
know that there is no polynomial-time algorithm for this problem (unless 
P=PSPACE) [GJ]. H owever, it is easy to see that in certain special cases, the 
decision procedure given after Corollary 3.2 can be implemented to run in polynomial 
time. For example, there is a polynomial-time algorithm if we restrict our attention to 
INDs that are at most k-ary for some fixed k (i.e., INDs R[A 1 ,..., A,] G S[B, ,..., B,], 
where Y < k). (We note that Kannelakis, Cosmadakis, and Vardi [KCV] have shown 
that this problem, where k is fixed, is NLOGSPACE-complete.) As another example, 
there is a polynomial-time algorithm if we restrict our attention to INDs of the form 
R [X] c S[X]. A s an example of this later type of IND, it is possible to say that every 
manager is an employee of the department that the manages by the IND 
MGR[NAME, DEPT] c EMP[NAME, DEPT], where, say (Hilbert, Math) is a tuple 
of the MGR relation if Hilbert manages the Math Department, etc. 

We now show the main result of this section. 

THEOREM 3.3. The decision problem for INDs is PSPACE-complete. 

Proof: We tirst show that the decision problem for INDs is in PSPACE. We do 
this by describing a nondeterministic polynomial-space algorithm for deciding if 
C k o, where Z is a set of INDs and where u is a single IND. Assume that u is 
&]A I,..., A,] c R$, ,..., B,]. Let S,[X,] be R,[A,,...,A,]. Given S,[X,], the 
nondeterministic algorithm simply “guesses” an IND t in Z to apply IND2 
(projection and permutation) to, in order to obtain an IND S,[X,] c Si+,[Xi+,], and 
then overwrites S,[X,] with Si+ ,[Xi+ i]. The algorithm halts and rejects if the IND r 
that it guesses cannot yield an IND with left-hand side S,[X,] when IND2 is applied. 
The algorithm accepts if it ever prints Rb[BI,..., B,] as an S,[X,]. Since the nondeter- 
ministic algorithm operates in linear space, it follows by Savitch’s theorem [Sal that 
there is a deterministic quadratic-space algorithm. Thus, the decision problem for 
INDs is in PSPACE. 
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We now show that the decision problem for INDs is PSPACE-complete. To show 
this, we shall reduce the following known PSPACE-complete problem to ours: 

Linear Bounded Automaton Acceptance [GJ] 

Instance: A nondeterministic Turing machine M and an input x E r*. 
Question: Is there a halting computation of M on input x using no more than 1x1 

tape cells? 

Given an instance M; x of LINEAR BOUNDED AUTOMATON ACCEP- 
TANCE, we shall construct a set Z of INDs and a single IND Q such that Z K u if 
and only if M halts on x in space Ix]. M= (K, r, d, s, h) is a nondeterministic l-tape 
Turing machine with state set K, alphabet r, start state s E K, halt state h E K, and 
transition relation A (see [LPI for Turing machine notation). A configuration of such 
a machine on input x, with Ix] = n, shall be denoted by a string in I’*KT’ of length 
n + 1. The n symbols in r are the tape contents, and the symbol in K denotes the 
current state and the head position (it is placed immediately to the left of the symbol 
scanned). The initial configuration is sx, and the final configuration hB”, where 
B E r is the blank. 

Our INDs are defined on a single relation scheme R with set of attributes U = 
(KUT)X {1,2,..., n + 1 }. The intuition is that the attribute (r, j) E U corresponds to 
the jth symbol in a configuration being I (this will become clearer later). The IND u 
is 

R [(s, 11, (xl, 2),..., ( x,, n + 111 cR[@, 11, (4 2),..., (4 n + 111. 
The INDs in C encode the legal moves of M. These moves can be thought of as 
rewriting rules of the form abc + u’b’c’, where a, b, c, a’, b’, c’ E KU r, applied on 
configurations. For each such move m, and eachj E { 1,2,..., n - 1 }, we have in Z the 
IND S(m, j) 

R[Pj, (a,j), (b,j+ I), (~,j+ 2)] GR[Pj, (~‘,j), (b’,j+ I), (c’,j+2)1, 

where Pj is one arbitrarily selected ordering of the attributes in r X { 1, 2,..., j - 1, 
j + 3,..., n + 1 }. This completes the construction. We now show that Z + u if and 
only if M accepts x in space n. 

Assume first that M accepts x in space n. Let Y,, Y,,..., Y, be a sequence of 
configurations such that Y, is the initial configuration sx, that Y, is the final 
configuration hB”, and configuration Yi immediately yields Yi+ , (1 < i < w). If Yi is 
Yl *‘* Y,+19 then define Xi to be the sequence (( y, , l),..., (v, + 1, n + 1)). It is easy to 
see that R[X,],..., R [X,,,] is a sequence as in Corollary 3.2. Hence, C k u. 

Conversely, assume that Z l= u. Let R [X,1,..., R [X,] be the sequence demanded by 
Corollary 3.2, where R [X,] is R [(s, l), (x1, 2),..., (x,, n + l)], where R [X,,,] is 
R [(h, l), (B, 2) ,..., (B, n + l)]. Of course, each Si in Corollary 3.2 is R. It is easy to 
see, inductively on i, that each Xi can be obtained from a configuration Yi by the 
transformation described in the previous paragraph, and further, that Y, is the initial 
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configuration sx, Y, is the final configuration hB”, and that configuration Yi 
immediately yields Yi+ 1 (1 < i < IV). Hence, M accepts x in space IZ, as desired. I 

We close this section by relating our results to known results about various classes 
of first-order sentences. The extended Muslov class [DG] consists of sentences in 
prenex normal form with quantifier structure VW, and whose quantifier-free part is a 
conjunction of binary disjunctions. It is known [DG] that a sentence in the extended 
Maslov class is satisfiable (true in some database) if and only if it is finitely 
satisfiable (true in some finite database). If C is a finite set of INDs, and if u is a 
single IND, then it is easy to see that there is a first-order sentence which is 
equivalent to Z A --,u and which is in the extended Maslov class. Hence, Z A +J is 
satisfiable if and only if it is finitely satisfiable. But this means that Z + u if and only 
if Z i=an u. Thus, the equivalence of implication and finite implication for INDs 
(Theorem 3.1(l),(2)) follows from known results. Further, it is well known [DG] that 
the equivalence of implication and finite implication for a class of sentences implies 
the decidability of their decision problem. Hence, the decidability of the decision 
problem for INDs follows from classic results. We have shown something stronger, 
namely, PSPACE-completeness. 

We know of another example of a PSPACE-completeness result for a decision 
problem for dependencies. Chandra, Lewis, and Makowsky [CLM] showed that the 
decision problem for untyped full implicational dependencies [Fa4] for which the left- 
hand side and right-hand side each contain exactly one conjunct is PSPACE- 
complete. This result is incomparable with ours. 

4. EXAMPLES OF INTERACTIONS BETWEEN FDs AND INDs 

In this section, we give a few simple results that help us to understand the 
interaction between FDs and INDs. As we shall see, a new class of dependencies 
arises quite naturally from the interplay between FDs and INDs. We also show that 
when we restrict our attention to finite databases, implication is distinct from 
unrestricted implication, for FDs and INDs taken together. A similar result was 
shown for template dependencies by Fagin, Maier, Ullman, and Yannakakis 
[FMUY], although the proof in the case of template dependencies is much harder. 

Throughout this section, each of T,..., Z denote sequences of distinct attributes, and 
XY denotes the concatentation of X and Y. Since all attributes have to be distinct on 
each side of an IND, when we write R [XY] c S[ TU], say, we are implicitly saying 
that X and Y are disjoint, as well as T and U. 

We now give two simple propositions, the first of which describes a situation where 
a set of INDs and FDs imply a new FD, and the second of which describes a 
situation where a set of INDs and FDs imply a new IND. Other such cases will be 
presented in Section 7. We shall make use of Proposition 4.1 in Section 7. 

PROPOSITION 4.1. Assume that 1X1= 1 TI. Then {R[XY] E S[TU], S: T- U) b 
R: X+ Y. 
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Proof Let r, s be a database that satisfies R [XY] c S[ TU] and S: T-+ U. Let 
U, u E r be such that u[X] = v[X]. Then there are u’, 2r’ E s such that U’ [ TU] = u[XY] 
and 2)’ [ TU] = v [XY]. Hence, U’ [T] = u’ [T]. But, since s satisfies S: T -+ U, and since 
u’[T] = v’[T], it follows that u’[U] = v’[U]. Therefore, u[Y] = u[Y]. Thus, if U, u E r 
and u[X] = v[X], then u [ Y] = u [ Y]. That is, the database satisfies R: X -+ Y. 1 

PROPOSITION 4.2. Assume that IXI = I 0 
R[XZ] G S[TV], S: T+ U} I== R[XYZ] c S[TUV]. 

Then {R[XY] E S[TU], 

ProoJ Let r, s be a database that satisfies R [XY] E S[ TU], R [XZ] G S[ TV] and 
S: T+ U. Take u E r. Then there are v’, v” E s such that v’ [ TU] = u[XY] and 
v”[TV] = u[XZ]. Hence, v’[T] = v”[T]. But since s satisfies S: T-t U, it follows that 
v’[U] = v”[U]. Thus, v”[U] = u[Y], since v’[U] = u[Y]. Therefore, for each u E r, 
there is v” E s such that v”[TUV] = u[XYZ]; that is, r, s satisfies 
R[XYZ] G S[TUV]. 1 

Proposition 4.2 has one important degenerate case which we state as 

PROPOSITION 4.3. Assume that 1x1 = I T/. Let ,E = {R[XY] G S[TU], 
R[XZ] E S[TU], S: T+ U}. Zf r, s is a database satisfying z, and if u E r, then 
u[ Y] = u[Z]. 

Proof: Can be obtained by an obvious modification of the proof of 
Proposition 4.2. I 

Proposition 4.3 leads us to consider a new type of dependency, called a repeating 
dependency, or RD. An RD is a statement of the form R [X = Y], where X and Y are 
sequences of attributes of R, with IX] = ] Y]. A relation r over R obeys the 
RD R [X = Y], if whenever u is a tuple of r, then u [X] = u [ Y]. Proposition 4.3 says 
the INDs R [XY] c S[ TU] and R [XZ] G S[TU], taken together with the FD S: 
T+ U, imply the RD R [Y = Z]. It is not hard to verify that RDs are new depen- 
dencies, in the sense that if R [X = Y] is a nontrivial RD (one for which X # Y), then 
R [X = Y] is not equivalent to a set of FDs and INDs. (However, RDs are equivalent 
to a special case of a generalized type of IND, utilized by Mitchell [Mill, where we 
allow an attribute to be repeated several times on the same side, i.e., left-hand side or 
right-hand side, of a generalized IND.) Note that the RD R [A, ,..., A, = B, ,..., B,], 
where each Ai and B, is an attribute, is equivalent to the set {R [Ai = Bi]: i = I,..., m} 
of unary RDs; the comparable statement about INDs is false. 

We also note that RDs are special cases of extended embedded implicational 
dependencies [Fa4]. The RDs arise naturally in the equijoin of Codd [Co21 and in 
the extended relations of Yannakakis and Papadimitriou [YP], since in these cases, 
there may be duplicate copies of a column. 

Sometimes, by enlarging the class of dependencies under study, it is possible to 
cause a k-ary complete axiomatization to exist where none did before. For example, 
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FIGURE 4.1 

. . 

for no k does there exist a k-ary complete axiomatization for embedded multivalued 
dependencies [SW, Sect. 51. However, the larger class of template dependencies has a 
2-ary complete axiomatization [BV2, SU]. In this paper, we show that for no k does 
the collection of FDs and INDs taken together have a k-ary complete axiomatization. 
Is it possible that the larger class of FDs, INDs, and RDs taken together have a k- 
ary complete axiomatization for some k? As we shall show in Sections 6 and 7, this is 
not the case. (We remark that Abiteboul and Vardi [AV] have shown that if we 
enlarge the class still further to encompass all untyped EIDs, then there is a binary 
complete axiomatization.) 

We close this section by showing that finite implication is distinct from 
unrestricted implication, for FDs and INDs taken together. By contrast, we showed 
in Section 3 that finite and unrestricted implication are the same for INDs. Also, it is 
well known that a similar remark holds for FDs. 

THEOREM 4.4. (a) There is a set Z of FDs and INDs and a single IND u such 
that Z bfin u, but such that it is false that Z + u. 

(b) There is a set Z of FDs and INDs and a single FD CJ such that Z kfin CJ, 
but such that it is false that Z F IL 

Proof: (a) Let Z be {R:A+B,R[A] ER[B]}, and let o be R[B] GR[A]. We 
first show that .Z +nn 0. Let T be a finite relation satisfying C. We now show that r 
obeys o; that is, that r[B] E r[A]. Since r obeys R: A --t B, it follows that /r[B]l < 
Ir[A]I. Since r[A] cr[B], it follows that Ir[A]l<lr[B]I. Thus Ir[A]I=lr[B]I. But 
since r[A] c r[B] and since both r[A] and r[B] are finite, we then have r[A] = r[B], 
and so r[B] s r[A]. This was to be shown, 

To show that it is false that Z l= u, we need only exhibit a relation (necessarily 
infinite) that obeys C but not u. Let r be the relation in Fig. 4.1, with tuples 
{(i + 1, i): i > 0). It is obvious that r obeys Z but not u. 

(b) Let~be{R:AjB,R[A]ER[B]},andletubeR:B-tA.Wefirstshowthat 
Z t=an u. Let r be a finite relation satisfying C. We now show that r obeys the 
FD B + A. Let k be the number of tuples of r. Since r obeys the FDA + B, it follows 
that no two distinct tuples of r have the same A entry, and so there are k distinct 
values in r[A]. Because r obeys 2, we know that r[A] c r[B], and so r[B] contains at 
least k (and hence exactly k) distinct values. Because r is finite, and the number of 
distinct values in r[B] is the same as the number of tuples, it follows that no two 
distinct tuples of r have the same B entry. Therefore, r obeys the FD B -+ A, which 
was to be shown. 
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FIGURE 4.2 

To show that it is false that Z + o, we need only exhibit a relation (necessarily 
infinite) that obeys C but not u. Let r be the relation in Fig. 4.2, with tuples { (1, I)} U 
{(i + 1, i): i > 1). It is obvious that Y obeys Z but not u. 1 

5. CHARACTERIZATION OF THE EXISTENCE 
k-ARY COMPLETE AXIOMATIZATION 

OF A 

In this section, we present necessary and sufficient conditions for the existence of a 
k-ary complete axiomatization for a set S of sentences over a database scheme D. In 
Sections 6 and 7, we use our characterization to show that for each k, there is a 
database scheme D such that the set of FDs and INDs over D have no k-ary 
complete axiomatization. In this section, we use our characterization to explain Sagiv 
and Walecka’s similar result for embedded multivalued dependencies. 

Let D = {R 1 ,..., R,} be a database scheme, that is, each R, has associated with it a 
set of attributes (1 < i < n). Let 9 be a set of dependencies, that is, sentences over 
R 1 ,..,, R,. In our case of primary interest, 3’ is the set of all FDs and INDs over 
R 1 ,..., R,. By a rule (over Y), we mean a statement of the form “if T then r,” where 
T is a finite set of sentences in .-V (each called an antecedent of the rule) and where t 
is a single sentence in 9 (called the consequence of the rule). If T contains exactly k 
distinct members, then we call this rule k-ary. A 0-ary rule (one for which T = 0) is 
sometimes called an axiom. The rule “if T then r” is sound if T bD z; that is, if every 
database over D that obeys T also obeys r. A set 9 of rules is said to be sound if 
every member of 9 is sound. 

Let 9 be a set of rules over 9. Let Z be a set of sentences in 9, and let u be a 
single sentence in 9. A proof of u from C via 9 is a finite sequence (rl ,..., r,,J of 
sentences in 9, where r,, the last sentence in the sequence, is CJ, and where for each i 
(1 < i < m), either (a) ri E Z:, or (b) there is a subset T of { tl ,..., zi_ 1 } such that “if T 
then ri)’ is a rule in 9. If there is a proof of u from Z via 9, then we write Z t--,0 
(or, if 9 is understood, simply C E u). It is easy to see that a set 3 of rules is sound 
under our definition if and only if whenever .Z E9 u, then E !==D u. 

A set 9 of rules over 9’ and D is complete if whenever Z c Y and u E Y, then 
Z kD u if and only if Z k9 u. We note that some authors weaken this definition by 
requiring only that if Z l=D u, then Z k9 u’. Thus, for these authors, completeness 
does not imply soundness, whereas for us, it does (i.e., for us, every complete set of 
rules is sound). We sometimes call a complete set of rules a complete axiomatization. 
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A set 9 of rules is k-ary if each rule p in 9 is at most k-ary; in other words, if p is 
r-ary, then r < k. 

As an example, consider our complete axiomatization for INDs in Section 3. For a 
given database scheme D, each of INDI, IND2, and IND3 is really a rule scheme 
that represents a set of rules. For example, INDl (reflexivity), R [X] c R [Xl, 
represents a set of 0-ary rules, one for every relation scheme R in D and every 
sequence X of distinct attributes of R. Similarly, IND2 (projection and permutation) 
represents a set of I-ary rules, and IND3 (transitivity) represents a set of 2-ary rules. 
For a given database scheme, the set of all of these rules (rules represented by one of 
INDl, IND2, IND3) is a 2-ary complete axiomatization. 

We shall give a necessary and sufficient condition for the existence of a k-ary 
complete axiomatization for a set 9 of sentences over a database scheme D. In later 
sections, we shall use this characterization to show that for each k, there is a 
database scheme such that if 9 is the set of all FDs and INDs over the scheme, then 
there is no k-ary complete axiomatization for 9. But what does this mean? Let D be 
a given database scheme, and let 9 be the set of all FDs and INDs over D. There 
are only a finite number of distinct FDs and INDs over D; let this number be k. Then 
there is certainly a k-ary complete axiomatization: we simply take all rules “if T then 
5,” where T is a set of FDs and INDs over D, where r is a single FD or IND over D, 
and where T l==D r. What our results say is that there is no single k that can work for 
every database scheme D (although, as we just saw, every database scheme D has a 
k-ary complete axiomatization for FDs and INDs for some k). 

By a “complete axiomatization for FDs and INDs,” one might mean a “uniform” 
complete axiomatization, good for every scheme D. For example, our complete 
axiomatization for INDs in Section 3 is in some sense “uniform,” as are Armstrong’s 
[Ar] complete axiomatization for FDs, Beeri, Fagin, and Howard’s [BFH] complete 
axiomatization for multivalued dependencies, Sadri and Ullman’s [SU] complete 
axiomatization for template dependencies, and the Beeri and Vardi [BV2] and 
Yannakakis and Papadimitriou [YP] complete axiomatization for embedded 
implicational dependencies (which Yannakakis and Papadimitriou call “algebraic 
dependencies”). Whatever one means by a “uniform” k-ary complete axiomatization, 
this must at least imply that for every scheme, there is a k-ary complete 
axiomatization. Therefore, our result on the nonexistence of a k-ary complete 
axiomatization for FDs and INDs over certain schemes certainly implies the nonex- 
istence of a “uniform” k-ary complete axiomatization for FDs and INDs. 

We note also that when we speak of a “complete axiomatization,” we make no 
assumption that the set of axioms is recursive (although, in practice, a recursive set of 
axioms is certainly desirable.) This makes our results stronger, since we prove the 
nonexistence of a k-ary complete axiomatization. 

Before we present the main result of this section, we need some more definitions. 
Let D be a database scheme, let .9 be a set of sentences about D, and let r be a 
subset of 5“. We say that r is closed under implication (with respect to D and 9) if 
whenever (a)Z c r, (b) (T E C9, and (c)Z bD o, then u E r. If D and ._Y: are 
understood, then we simply say that r is closed under implication. If k > 0 is an 
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integer, then we say that r is closed under k-ary implication (with respect to D 
and 9) if whenever (a), (b), and (c) hold, and also (d) 1 .E I< k, then u E r. Again, if 
D and 9 are understood, then we simply say that r is closed under k-ary 
implication. 

THEOREM 5. Let D be a database scheme, let 9 be a set of sentences about D, 
and let k 2 0 be an integer. There is a k-ary complete axiomatization for sentences in 
9 if and only if whenever PC 9 is closed under k-ary implication, then P is closed 
under implication. 

ProoJ (+) Assume that there is a k-ary complete set 9 of rules. Let r be a 
subset of 9 that is closed under k-ary implication; we must show that r is closed 
under implication. Assume that Z 5 r, and that .Z bD u. We must show that o E r. 
Since Z bD u, it follows by completeness that Z F_.w 0. Let (ri ,..., TV) be a proof of o 
from C via 9. Thus, 7, = u. We shall show by induction on i that zi E r. 

Basis step (i = 1). The first sentence 7, in the proof is either a member of Z, or 
else there is a 0-ary rule “if 0 then rl” in 9. In the former case, tl E r, since ,Z G r. 
In the latter case, by soundness of the rules 9, we know that 7, is a tautology. Since 
r is closed under k-ary implication, and since k > 0, it follows that r contains all 
tautologies in 9, and thus 71 E r. So in either case, 7, E r. 

Induction step. Assume that 1 < i < m, and that {zl ,..., 7[} G r. We shall show 
that zi+ 1 E r. Either ti+ 1 E .Z (in which case TV+ 1 E I’, since Z c_ r), or else there is a 
rule “if T then zi+ 1” in 9, where T is a subset of (7 1 ,..., ti}. In the latter case, we 
know that T has at most k members, since 9 is a k-ary set of rules. Every member of 
T is in r, by induction hypothesis. Also, T +b ti+ 1, by soundness of the rules. Since 
r is closed under k-ary implication, it follows that ti+ 1 E K 

We have shown inductively that t,,..., 7, are each in 7. In particular, 7, E I’, that 
is, u E I’. This was to be shown. 

(t;) Assume that there is no k-ary complete axiomatization for sentences in 9’. 
We shall construct a set rc 27 that is closed under k-ary implication but is not 
closed under implication. Let 9 be the set of all rules “if T then 7,” where T is a set 
of at most k members of 9, where 7 E 9, and where T I==D 7. Now 5%’ is a k-ary set 
of rules, so by assumption, it is not complete. Clearly, 9 is sound. Since 9 is sound 
but not complete, it follows that there is a set Z c Y and a sentence u E .Y such that 
Z bD u but such that it is false that C I-, u. Let r be the set of all members y of 9 
for which C F9 y. Since C G r but u 6! r, it follows that r is not closed under 
implication. We now show that r is closed under k-ary implication, which completes 
the proof. Assume that T is a set of at most k members of r, that r E 9, and that 
T +=D 7. We must show that 7 E I’. By our assumptions, 9 contains the rule “if T then 
7.” Since T 5 r, there is a proof of each member of T from Z, via 9’. The result of 
concatenating all of these proofs and following this concatenation by 7 is clearly a 
proof of 7 from Z, via 5%’ (where the last line 7 of the proof is justified because of the 
rule “if T then t” of R). Thus, C F9 7, and so 7 E r. Thus, r is closed under k-ary 
implication, which was to be shown. I 
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We now give a corollary which we shall use to explain Sagiv and Walecka’s [SW] 
result on the nonexistence of a k-ary complete axiomatization for embedded 
multivalued dependencies (EMVDs), for each k. Assume that each of X, Y, and 2 are 
sets of attributes, that Y and Z are disjoint, and that r is a relation whose set of 
attributes includes X U Y U Z. The relation r is said to obey the EMVD X -++ Y 1 Z if 
whenever there are tuples 1, and fz of r such that tl[X] = tz[X], then there is a tuple t, 
of r such that t3[XY] = tIIXY] and t3[XZ] = t, [XZ]. For a discussion (and 
motivation) of EMVDs, see [Fall. 

COROLLARY 5.2. Let D be a database scheme, let 9 be a set of sentences about 
D, and let k > 0 be a constant. Assume that C 5 9, that o E 2?, and that 

(i) ~l=c, 

(ii) if r E z then it is false that t + a, and 

(iii) if A is a set of at most k members of .E, ifs E 9 and ifA b z, then there is 
some 6 E A such that 6 + t. 

Then there is no k-ary complete axiomatization for sentences in 9. 

ProoJ Let r = {t E 9: there is r’ E C such that r’ I= r}. Since C s r but u @ I-, 
it follows that r is not closed under implication. We now show that r is closed under 
k-ary implication. Assume that T is a set of at most k members of r, that t E ,_v and 
that T + z. We must show that r E I’. For each a in T, find a’ E z such that 01’ b (r 
(we know that a’ exists by definition ofr). Let A = {a’: a E T}. Clearly A + r, since 
A b T and T + r. By (iii), it follows that r E I’. Hence, r is closed under k-ary 
implication. Since r is not closed under implication, it follows from Theorem 5.1 that 
there is no k-ary complete axiomatization for sentences in ,50. This was to be 
shown. I 

THEOREM 5.3 [SW]. For no k does there exist a k-ary complete axiomatization 
for EMVDs. That is, given k, there is a relation scheme R such that there is no k-ary 
complete axiomatization for EMVDs over R. 

ProoJ: Let R be a relation scheme with at least k + 2 distinct attributes 
‘4 Akfl, I,.**, B, let .X be the set 

A,++A*lB 

A,++Aj IB 

Ak-t*Ak,, IB 
A k+l -++A, IB 

of EMVDs, let u be the EMVD A, + Ak+, 1 B, and let 9 be the set of EMVDs over 
9. Sagiv and Walecka [SW] show that the conditions of Corollary 5.2 hold. The 
result follows. I 
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Because of the subtlety of the issues, it is prudent to make a warning. Let us denote 
by C, the set Z of EMVDs in the proof of Theorem 5.3, and similarly let uk be u of 
Theorem 5.3. Then the rule “if C, then uk” is a rule with k + 1 antecedents, none of 
which can be eliminated and still leave a sound rule. However, the reader is cautioned 
against believing that this property, in and of itself, shows the nonexistence of a k-ary 
complete axiomatization. For, let T, be the set 

A ktl'AktZ 

of FDs, and let r/, be the FDA, -+ Akt *. Then the rule “if Tk then rk” has this same 
property, yet FDs have a 2-ary complete axiomatization [Ar, Fa2]. 

6. NEGATIVE RESULTS FOR FINITE IMPLICATION 

In this and the next section, we use the main theorem of Section 5 to prove that 
there is no k-ary complete axiomatization for FDs and INDs or for FDs, INDs, and 
RDs. In this section we concentrate on finite implication, which means that an 
axiomatization 9 is considered complete here when Z t, u if and only if C kan u. 
In the next section we deal with unrestricted implication (as we showed in Section 4, 
finite implication is distinct from unrestricted implication for FDs and INDs taken 
together.) At the end of this section, we comment on how our results in this section 
can be strengthened somewhat. 

THEOREM 6.1. (i) For no k does there exist a k-ary complete axiomatization for 
finite implication of FDs and INDs. 

(ii) For no k does there exist a k-ary complete axiomatization for finite 
implication of FDs, INDs, and RDs. 

Note. By Theorem 6.1(i), we mean that for each k, there is a database scheme D 
such that there is no k-ary complete axiomatization for finite implication of FDs and 
INDs over D. A similar comment applies to (ii). 

Proof We first prove (ii). Let k be a fixed natural number. Let Ri[AB] 
(0 < i < k) be a set of relation schemes. Define (where, henceforth, addition is 
modulo k): 

(1) C=(Ri:A-+B,Ri[A]c_Rit,[B]:O<i<k},and 

(2) u = R,[B] c &[A]. 

Let r be the union of C with the set of all trivial FDs, INDs, and RDs (those that 
are tautologies). By Theorem 5.1 (where finite implication plays the role of 
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implication, that is, where bnn plays the role of t=), we need only show that r is 
closed under k-ary finite implication but not under finite implication. 

We first show that r is not closed under finite implication. To do this, we need 
only show that .Z #nn (T, since it is immediate that 2Z E r and that u 62 lY Let d = 
{rO,..., k r } be a finite database satisfying Z. Since d satisfies R,[A] c Ri+ ,[B], it 
follows that ]rj[,4]] < ]ri+,[B]], for 0 < i < k. Since d satisfies R,: A + B, it follows 
that 1 ri[B]I < ) r,[A]I holds, for 0 < i ,< k. Putting these inequalities together, we obtain 
Id4 < MBII G bMI G ..a <hPII G IdBll< h[4I. Hence, Id4I = IroPII. 
But since d satisfies the IND R,[A] c R,[B] an since d is finite, we then have d 
r&t] = r,[B]. Hence, r,,[B] G r,JA], and so d obeys cr. 

We conclude the proof of (ii) by showing that r is closed under k-ary finite 
implication. That is, we shall show that if T is a set of at most k members of r, if r is 
an FD, IND, or RD, and if T kfln r, then r E r. 

Since Z contains k + 1 INDs, we know that T does not contain some IND 6 of Z. 
We shall exhibit a finite database d where precisely the dependencies (FDs, INDs, 
and RDs) in r - 6 are true. (In the terminology of Fagin [Fa4], the database d is a 

Jinite Armstrong database for r - 8.) 
Since T G r- 6, it follows that d obeys T. Because T brin 5, we also know that d 

obeys t. Since d obeys precisely r- 6, it follows that r E r- 6. Hence, t E r, which 
was to be shown. 

Thus, the proof of (ii) is complete if we exhibit a finite database d such that 

if t is an FD, IND, or RD, then d obeys r if and only if r E r - 6. (6.1) 

Since 2Y is symmetric with respect to INDs, we may assume without loss of 
generality that 6 is the IND R,[A] E R,[B]. We construct a database d = (r”,..., rk) 
as 

r. = (((0, O), (0, k + l)), ((1, O), (1, k + l)), ((2, O), (1, k + l))}, 

ri= {((O,i), (O,i- l)), ((l,i), (l,i- 1)) ,..., ((2i+ l,i), (2i+ l,i- l)), 

((2i+2,i),(Z+ l,i-l))}, for 1 <i< k. 

Figure 6.1 exhibits d for k = 3. 

‘3: A 
- 

KJ.31 
(1.3) 
(2.3) 
(3.3) 
(4.3) 
(5.3) 
16.31 
17.3) 
(8.3) 

- 
8 - 

10.2) 
(1.2) 
(2.2) 
(3.2) 
(4.21 
(5.2) 
(6.2) 
(7.2) 
(7.21 

FIGURE 6.1 
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We now show (6.1). If r is trivial, then clearly (6.1) holds. So assume r is non- 
trivial. 

Case 1. 5 is a nontrivial FD. The only nontrivial FDs are 

Ri:A+B, R,: 0+A, 

R,:B-,A, Ri: 0+ B, 

for 0 < 1 < k. (An FD with PI as the left-hand side means that the right-hand side 
entries are constants. For example, Ri: 0 -+ A means that every A entry in the Ri 
relation is the same.) If r is Ri: A + B, then d obeys 7 (since no two A entries of Ti are 
the same), and r E r - 6 (0 < i < k). In each of the other three cases, it is easy to see 
that d violates the FD r, and that r & r- 6. 

Case 2. T is a nontrivial IND. Each entry of r,[A] is of the form (m, i), for 
0 < i < k; each entry of ri[B] is of the form (n, i - l), for 1 < i < k; and each entry of 
ro[B] is of the form (p, k + 1). Thus, the only pairs of nondisjoint columns are 

No IND ri+l[B] E ri[A] holds for d (0 < i < k), since ri+ ,[B] contains the entry 
(2i + 3, i), which is not in r([A]. Thus, the only possible nontrivial INDs that can 
hold for d are those of the form R,[A] 5 R,+,[B], for 0 & i < k. In fact, it is easy to 
verify that each of these INDs hold for d, and that these INDs are precisely the 
nontrivial INDs in r - 6. 

Case 3. Sentence r is a nontrivial RD. Then d does not obey r, and r & r- 6. 
Thus, (6.1) holds. This concludes the proof of part (ii) of the theorem. Since RDs 

played no essential role in the previous proof, it is clear that the same proof shows 
part (i). 1 

We now make a number of comments concerning Theorem 6.1 and its proof. 
Let 9 be a class of dependencies such that the database d constructed in the proof 

of the previous theorem violates every nontrivial member of Y. Then our proof 
shows that there is no k-ary complete axiomatization for finite implication of FDs, 
INDs, and dependencies in 9. For example, if we let JY be the class of multivalued 
dependencies, or MVDs [Fall, then we know that there is no k-ary complete 
axiomatization for finite implication of FDs, INDs, and MVDs, since d obeys no 
nontrivial MVDs. 

Our proof shows that Theorem 6.1 holds, even if no relation scheme has more than 
two attributes, and if all of the dependencies are unary. In the case of finite 
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implication involving unary INDs and (general) FDs, Kannelakis et al. [KCV] have 
presented a complete axiomatization, which is, of course, not k-ary for any k. 

Our proof demonstrates a set r of FDs, INDs, and perhaps RDs, that is closed 
under k-ary implication, along with an IND u not in r such that rl==fin o. We note 
that there is also such an FD 0 (namely, R,: B --) A). In the proof of Theorem 7.1 
(which deals with unrestricted implication), a similar r and cr are constructed. In that 
proof, the 0 we use is an FD. We note without proof that by slightly complicating the 
proof, we could just as well have used an IND u. 

A key to the proof of the previous theorem is the class of inference rules “if Z=, 
then ok,?’ where Z, and ok are the Z and (I of the proof. We make two observations 
about this class of inference rules. 

The first observation is that we proved the soundness (for finite implication) of 
these inference rules by using a counting argument. The counting argument depended 
on the fact that we are dealing with finite databases; in fact, these rules are not sound 
for unrestricted databases. 

The second observation is that an important feature of this class of inference rules 
“if Zk then ok)’ (for k = 1,2,3,...) is that for each n, it contains a rule with at least n 
antecedents, none of which can be eliminated and leave a sound rule. However, as we 
showed at the end of Section 5, this feature alone is not enough to show that for no k 
does there exist a k-ary complete axiomatization. 

7. NEGATIVE RESULTS FOR UNRESTRICTED IMPLICATION 

The main result of this section is identical to Theorem 6.1, except that we assume 
unrestricted implication this time. 

THEOREM 7.1. (i) For no k does there exist a k-ary complete axiomatization for 
FDs and INDs. 

(ii) For no k does there exist a k-ary complete axiomatization for FDs, INDs, 
and RDs. 

Note. By Theorem 7.1 (i), we mean that for each k, there is a database scheme D 
such that there is no k-ary complete axiomatization for FDs and INDs over D. A 
similar comment applies to (ii). 

Note that the proof of Theorem 6.1 does not imply Theorem 7.1, since the proof of 
the former relied on the assumption of finite databases to justify a counting argument. 
However, as we shall see, the proof of Theorem 7.1 does imply Theorem 6.1. This 
remark does not make Section 6 superfluous, since the proof of Theorem 6.1 is much 
simpler than the one we give for Theorem 7.1. 

Our proof of Theorem 7.1 shows that the theorem holds, even if no relation scheme 
has more than three attributes, each FD is unary, and each IND is binary. We note 
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that in the case of unrestricted implication, it is necessary to make use of INDs that 
are at least binary to prove Theorem 7.1, since Kannelakis et al. [KCV] have 
presented a binary complete axiomatization for FDs and unary INDs in the case of 
unrestricted implication. (This should be contrasted with the case of finite 
implication, where we showed in Theorem 6.1 that there is no k-ary complete 
axiomatization for FDs and unary INDs.) 

Proof of Theorem 7.1. As in the proof of Theorem 6.1, we shall use Theorem 5.1 
to prove part (ii), and then note that essentially the same reasoning carries over to 
prove part (i). Thus, to prove part (ii), we shall show that for each k > 0, there is a 
database scheme D and a set r of FDs and INDs over D that is closed under k-ary 
implication (with respect to FDs, INDs, and RDs), but is not closed under 
implication. 

Let k and it be two fixed natural numbers such that k < n. Denote by ZI the set of 
all FDs, INDs, and RDs over the relation schemes F[ABC], G,[ABC], Gi[BC] 
(i = I)...) n), H,[BC] (i = 0 )..., n - 1) and H,[BCD]. We now define Z, r c II, and 
u E II. 

Define Z as the set of dependencies 

a,, = F[AB] G G,[AB], 

ai = F[B] c G,[B] (1 <‘inn), 

pi = F[B] E H,[B] (0 < i < n), 

,8,, = F[BC] 2 HJBD], 

y[ = H,[BC] g G,[BC] (0 < i < n), 

y; = Hi[BC] c Gi+ , [BC] (0 < i < n), 

6, = G,: A + C, 

ci = Gi: B -+ C (0 < i < n>, 

t?,=H,:C-,D. 

Define o as F: A + C. 
If [ is a set of dependencies of type t E { FD, IND, RD }, then we use cf to denote 

the set of all logical consequences of [ of type t. For example, if [ is a set of FDs, 
then ct is the set of all FDs that are logical consequences of c. Using this notation, 
we define the sets of dependencies 

d(F) = {F: A + C, F: B -+ C}, 

((G,) = {G,: A + C, G,: B -+ C}, 

Q(Gi) = {Gi: B -+ C} (1 <i<n), 
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#(Hi) = {Hi: B --t C} (0 < i < n), 

4(H,) = {H,: B -, C, H,: C + D}, 

$ = 4(F) u #(Go) u .a- u #(G,) u $(H,) u .a. u #(H,), 

A= {rEC:tisanIND}, 

o = {z: 7 is a trivial RD}, 

r=#+ Ul+ vu- (F:A+C}. 

We now show that ,?T + o. Since CC r but o 6Z r, this implies that r is not closed 
under implication. 

LEMMA 7.2. .2Tk u. 

Proof: Let d = {f, g, ,..., g, , h, ,..., h,} be a database satisfying 2. We show that d 
satisfies u. Suppose that 

(1) (a, b, c), (a, b’, c’) E f. 

We show that c = c’. Using the INDs in C, there are a’, a”, ci, c;, cf’, and cy 
(0 < i < n) such that: 

(2) (a, b, c,), (a, b’, c;) E go by a, and (l), 

(3) (b> ci), (b’, cf) E gi by a, and (l), for 1 <i<n, 

(4) (b, c;), (b’, cf”) E hi by/Ii and (l), for O<i<n, 

(5) (b, c;, c), (b’, c;, c’) E h, by P, and (0 
(6) (a’, b, c;), (u”, b’, cf’) E go by rb and (4), 
(7) (b, cf’), (b’, c;l) E gi by yi and (4), (5), for 1 < i < n, 

(8) (by c/-l)> (b’, c:Ll) E gi by yy and (4), for 1 < i < n, 

Using the FDs in C, we have: 

(9) c;=ci 
(10) ci = CI’ , 

(11) co = ct, 
(12) Cf =cf” 

(13) I c!” = c! 1+1 

by ci and (2), (3), (6), (7), for 0 < i < n, 

by si and (3), (8), for 1 < i < n, 

by 6, and (2), 
by .si and (2), (3), (6), (7), for 0 < i < n, 

bY &i+l and (3), (8), for 0 < i < n. 

Hence, we may derive that ci = c: using the sequence of equalities ci = c, = c,!_ , = 

C n-1 = *** =c,=cb=~~=cl=cl”=...=c:,=cl.’ Thus, c;=cfi’. Since also d 
satisfies 13,, and since (5) holds, we finally have: 
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(14) c = c’. 

Thus, we may conclude that each database satisfying Z also satisfies u. Hence, Z + u, 
as desired. 1 

Lemma 7.2 completes the proof that r is not closed under implication. We now 
show that r is closed under k-ary implication. Several lemmas and claims (that we 
shall prove) will be helpful. 

LEMMA 7.3. .?Yk 4 and Zt==T. 

Proof: We first show that Z + 9. Recall that # was defined above to be )(F) U 
#(Go) U -a. U #(GA U VW,) U . . - U ((H,). Take y in 4. We must show that Z + y. 
If y is in C, then it is immediate that Z + y. If y is F: A + C, then y is u, and so C k y 
by Lemma 7.2. If y is another member of 4, then Proposition 4.1 implies that Z k y. 
For exam.ple, if y is Hi: B --f C, for 0 < i < n, then C k y, because {HJBC] s GJBC], 
Gi: B -+ C} b Hi: B -+ C. (In the case when y is F: B -+ C, we first show that Z K 
#Z,) + H,: B --t D, and we then apply Proposition 4.1 by using also the 
dependency /I,.) So in every case, Z k y. Thus, Z + 4. We now show that Z t= lY 
Recallthatr=#+uI+uo-{F:A + C}. Take y E r. We must show that Z + y. If 
y E #+, then Z + y, since we already showed that C != 4. If y E A+, then Z + y, since 
1 E Z. If y E o, then C + y, since y is trivial. So in every case, C k y. This was to be 
shown. I 

We wish to show that r is closed under k-ary implication. So, let T be a set of at 
most k members of I’, and let r be an FD, IND, or RD. Suppose that T k 5. We have 
to show that r E I’. We claim that: 

Claim 1. tE)+uI+uo. 

Claim 2. T!#F:A-+C(andsorisnotF:A-+C). 

Combining these two claims, we obtain that r E r. Thus, we need only prove 
claims (1) and (2) to show that r is closed under k-ary implication. 

To prove the first claim, we begin by giving a characterization of the logical conse- 
quences of C. 

LEMMA 7.4. If 6 is a RD, then Z b 6 if and only if 6 E w. 

ProoJ Consider the database of Fig. 7.1. In this database and in subsequent 
databases we shall exhibit, distinct variables represent distinct entries. For example, 
in Fig. 7.1, each of a, b, c, and d are distinct. This database satisfies all dependencies 
in Z, but no nontrivial RD. Hence, no RD is a logical consequence of C, except the 
trivial ones. I 

LEMMA 7.5. If 6 is an FD, then Z b 6 if and only if 6 E 4 + . 



INCLUSION DEPENDENCIES 53 

go 

FIGURE 1.1 

Proof (=s) Let e be the database of Fig. 7.2. One can verify by inspection that 

(1) e satisfies Z, and 

(2) for each FD 6, if e satisfies 6 then 4 + 6. 

The second task is facilitated because if 6 is of the form F: X-+ Y, say, it suffices to 
check that if f satisfies 6 then 4(F) I= 6. We also note that the double-primed letters 
were included so that no relation satisfies an FD with the empty set as the left-hand 
side (e.g., the relation f does not satisfy the FD F: 0 + C, which says that the C entry 
of the F relation is a constant). 

Now, let 6 be an FD such that Z != 6. Since, by (l), we know that e satisfies Z, it 
follows that e must satisfy 6. Therefore, by (2), we obtain that 0 i= 6. 

(x=) This is immediate from Lemma 7.3. I 

LEMMA 7.6. If 6 is an IND, then Z b 6 if and only if 6 E A+. 

ProoJ: (5) Let e be the database of Fig. 7.3. One can verify by inspection that: 

(1) e satisfies Z’, and 

(2) for each IND 6, if e satisfies 6 then I k 6. 

The second task is facilitated due to a careful choice of the cardinalities of the 
relations in e and because b,, ci occurs only in hi, gi and gi+ 1. Now, let 6 be an IND 

(l<i<n) 

FIGURE 1.2 
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such that C k 6. Since, by (l), we know that e satisfies Z, it follows that e must 
satisfy 6. Therefore, by (2), we have that 1 k 6. 

(+) Follows trivially, since 1 g Z by definition. I 

We now combine Lemmas 7.4-7.6 to prove our first claim. 

LEMMA 7.7. If T is a set of at most k members of r, ift is an FD, IND, or RD 
and ifT+r then 7E#+ U,?” Uo. 

Proof: Assume T G I’. Although we have phrased Lemma 7.7 as we have to show 
that we are proving claim (l), we do not actually need to assume that T has at most 
k members. Let 7 be an FD, IND, or RD. Suppose that T k 7. Hence r+ 7, since 
TE r. By Lemma 7.3, we know that Z + r. Since also r+ 7, it follows that C k 7. 
Now, by Lemmas 7.4-7.6, we obtain that 7 E 0’ U 1’ U w. This concludes the 
proof. I 

We now show that the second claim holds. The crucial steps of the proof are 
spelled out in the following two lemmas: 

LEMMA 7.8. Assume ‘that 0 < j < n. Then 4’ U 1’ U o - {F: A -+ C, F[B] G 
Hj[B]} = (4 - {F: A + C})’ u (A- {F[B] c I-Ij[B]})+ U w. 

ProoJ Let p be the left-hand side of the above equality, that is, p is 
$‘U~‘U~-(F:A-~C,F[B]GH~[B]}. Since, by definition, dt, it and cc) 
contain only FDs, INDs, and RDs, respectively, we have: 

(1) p=(#+-{F:A-,C})Uo,+-{F[B]cHj[B]})Uw. 

We now show that 

(2) (4+-{F:AX})=(#-{F:AX})+. 

By definition of 0, and since a set of FDs over a relation scheme R can imply another 
FD only over the same R, it suffices to show that 

(3) (d(F)+ - {F: A j C}) = ($(F) - {F: A + C})‘. 

FIGURE 7.3 
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The right-hand side is simply {F: B -+ C} +. It is straightforward to verify that the left- 
hand side also equals this same value {F: B --t C} +. Hence (3), and thus (2), follows. 

We now show that 

(4) (~+-{F[B]~Hj[B]})=(~-{P[B]EHj[B]})+. 

We first show that the right-hand side of (4) is a subset of the left-hand side, that is, 
that 

(5) (2’ - {F[B] S Hj[B]}) 2 (A - {F[B] C Hj[B]})+* 

To show (5), we first show 

(6) I;[B] E Hj[B] ~ (~ - {I;[B] ~ Hj[B]})‘. 

To prove (6), it suffices to consider the database of Fig. 7.4, which satisfies (A - 
{F[B] G Hj[B]}), but not F[B] G Hj[B]. This proves (6). Now, we trivially have that 

(7) A+ 3 (A - {F[B] c HJB]})‘. 

Now (5) follows immediately from (6) and (7). We now prove that the left-hand side 
of (4) is contained in the right-hand side, that is, 

(8) (n+ - {F[B] G Hj[B]}) 5 (I - (P[B] E Hj[B]})+* 

Let y be an IND R [X] E S[ Y] in the left-hand side of (8). Thus, y E A+, and y is 
not the IND F[B] G H,[B]. We must show that y is in the right-hand side of (8). 
Assume that IX] = m (and hence 1 YI = m), By Corollary 3.2, there is a sequence 
S,]X,l, ~2[T&, S,[X,], where 

(i) Si is the name of one of the relation schemes, for 1 < i < w; 

(ii) Xi is a sequence of m distinct attributes of Si, for 1 < i < w; 

(iii) the first member S,[X,] of the sequence is R[X]; 

(iv) the last member S,[X,] of the sequence is S[ Y]; and 

(v) the IND Si[Xi] C: Si+ I[Xi+ 11 can be obtained from a member cri of 1 by 
IND2 (projection and permutation), for 1 < i < w. 

(l<i<n) 

bwtv 
relation) 

(l<k<n and ktjl 

FIGURE 1.4 
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We can assume that w is as small as possible so that (i)-(v) hold. If w = 1, then y is 
a trivial IND, which is therefore in the right-hand side of (8), which was to be shown. 
So, assume that w > 1. 

If no ci (from step (v)) is the IND F[B] s H,[B], then y is in the right-hand side of 
(8), and so (8) is proven. Therefore, assume that uk is the IND F[B] E H,[B], for 
some k (1 < k < w). Then S&Y,] is I;[B]. If k # 1, then u~_~ is an IND in 1 with 
right-hand side F[Z], for some Z. But there is no such IND in 1. Hence, k = 1. This 
tells us that the left-hand side R [X] of y is F[B], that S, [X,] is F[B], and that S,[X,] 
is Hj[B]. If w = 2, then y would be the IND F[B] c H,[B], which we know it is not. 
Thus, w > 2. Since S,[X,] is Hj[B], we see by examining I that S,[X,] is either 
G,[B] or G,+i[B]. But in either case, the IND S,[X,] c S,[X,] can be obtained from 
one of (x0,..., a, by IND2 (projection and permutation). Thus, S,[X,] is unnecessary, 
that is, the sequence S,[X,], S,[X,],..., S,[X,] obeys (i)-(v). This violates 
minimality of w. So, (8) follows. Then (4) follows from (5) and (8). 

Finally, from (l), (2), and (4), we obtain 

p = (4 - {F:A j C})’ u (A- {F[B] E H,[B]))’ u w, 

which proves the lemma. 1 

LEMMA 1.9. If T is a set of at most k members of r, then T l# F: A --) C. 

Proof: Let T G r be such that 1 TI < k. Since each of the n dependencies F[B] E 
H,[B ] is in r, for 0 < i < n, and since ) TI < k < n, it follows that T does not contain 
F[B] c Hj[B], f or some j (0 < j < n). Hence, we have that T 5 p, where, as before, 

p=#+uL+uw-{F:A-,C,R[B]EH~[B]}. 

By Lemma 7.8, we obtain 

(9) ~=(~L{F:A~})+U(L{F[B]GH~[B]})+U~. 

Let e be the database of Fig. 7.5. One can verify by inspection that e satisfies Q - 
{F: A * C} and that e satisfies I - (F[B] c Hj[B]}. Also, e satisfies CU, since o is a 

f: go 

(Ock<i) (emptv 
relation) 

(j<k<n) 

FIGURE 1.5 
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set of trivial dependencies. Thus, by (9), it follows that e satisfies p. Since T c p, it 
follows that e also satisfies T. But F: A --f C is false in e. Therefore T# F: A + C. 1 

LEMMA 7.10. If T is a set of at most k members of r, ifz is an FD, IND, or RD, 
and ifTl=r, then sET. 

Proof: Let T be a set of at most k members of K Let t be an FD, IND, or RD. 
Suppose that T b z. By Lemmas 7.7 and 7.9, we know that t E 4’ U At U w - 
(F: A + C}, that is, t E I-. 1 

Thus, r is closed under k-ary implication, which was to be shown. This completes 
the proof of part (ii) of the theorem. The proof of part (i) is exactly the same, except 
that Lemma 7.4 is superfluous. 1 

We close this section by observing that nowhere in the proof of Theorem 7.1 did 
we use infinite databases. Therefore, Theorem 7.1 applies also to the case of finite 
implication. We also note that we did not see how to use Corollary 5.2 to prove 
Theorem 7.1. Instead, we found it necessary to use the more general Theorem 5.1. In 
fact, this led us to state Theorem 5.1 in its full generality. 

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

We have shown that inclusion dependencies have a simple complete 
axiomatization, just as FDs do. However, when INDs and FDs are considered 
together, then for no k does there exist a k-ary complete axiomatization. This result 
was obtained with the help of a general necessary and sufficient condition for the 
existence of a k-ary complete axiomatization. This condition is itself of interest, since 
it might help analyze classes of dependencies that have not yet been completely 
axiomatized, such as join dependencies [ABU, Ri]. (Beeri and Vardi [BV3] have 
given a complete axiomatization in the Gentzen style for full join dependencies; this 
axiomatization is not k-ary for any k.) 

We have also shown that the decision problem for INDs is PSPACE-complete. 
Thus, there is no polynomial-time decision procedure (unless P = PSPACE). 

From the point of view of practical database design, the results in this paper can be 
evaluated as follows. On the one hand, INDs are a valuable tool in database design, 
as we discussed in the Introduction. However, our results show that INDs have a 
computationally hard decision problem (provided P # PSPACE), which implies that 
it might be useful to consider restricted forms of inclusion dependencies, with an 
easier decision problem. For example, if we restrict attention to inclusion depen- 
dencies that are k-ary or less, for fixed k, then the decision problem is solvable in 
polynomial time. 
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