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I t  is proven that under the assumption of independent references, the (apparently 
analytically and computationally intractable) expected LRU (least recently used) miss 
ratio with main memory size CAP can be approximated arbitrarily dosely by the (analyt- 
ically and computationally tractable) expected working-set miss ratio with expected 
working-set size CAP, as the size of the database goes to infinity. Their common asymptotic 
value is given by a tractable formula involving integrals. An immediate corollary of the 
representation is the asymptotic independence of miss ratio from page size in the in- 
dependent reference model and in some generalizations of this model. This result also 
has implications about the effect on miss ratio of variable or fixed partitioning of main 
memory, in case of multiprogramming. Furthermore, in certain database environments, 
we can answer the question as to how the size of main memory must vary in order to 
maintain the same miss ratio, when the size of the database increases. The methods of this 
paper are extended to give an asymptotic formula for the miss ratio under VMIN, the 
optimal variable-space page replacement algorithm under demand paging. 

1 .  INTRODUCTION 

A major difficulty in the mathematical analysis of computer system performance is 
the lack of analytically tractable formulas for page fault behavior in even some very 
simple models of page reference patterns. In this paper, we will give a solution to this 
problem in the case of the well-known LRU (least recently used) miss ratio [l, 151 in the 
simple, widely studied “independent reference model” [l, 4, 9, 123 in a paged, two-level 
storage hierarchy. The solution consists of replacing the LRU miss ratio formula by a 
tractable formula which we prove is close to the LRU miss ratio in this model for large 
database sizes. 

There is another way to view the results in this paper. An important question about a 
multiprogrammed computing system is how to divide the main (first-level) memory 
among competing programs. One issue is whether there should be a fixed or a variable 
partition of main memory. When each program is operated under LRU memory manage- 
ment, then we have one example of a fixed partition of memory; when each program is 
operated under a working-set memory management policy, then we have a variable 
partition. So an analysis of the LRU vs the working-set miss ratio gives a comparison 
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between one natural fixed-partition policy and one natural variable-partition policy. 
Several papers [3, 161 have dealt with this very comparison. 

In  this paper, we show that in the independent reference model, there is little difference 
in the miss ratio for the two cases (in fact, under suitable assumptions, as the number of 
pages gets large, the miss ratios get arbitrarily close). Further, we show that this indif- 
ference also holds in a page reference model (due to Easton [5]), which is a generalization 
of the independent reference model, but in which there is locality of reference. 

Throughout this paper, we analyze miss-ratio behavior as the number of pages goes 
to infinity (“asymptotic behavior”). Actually, for each of the three applications of our 
results which are discussed in this paper, we are interested in the miss-ratio behavior 
when the number of pages is fixed and “sufficiently large.” In the first (and most im- 
portant) application, we use the fact that under suitable assumptions, the limit (as the 
number of pages goes to infinity) of the expected LRU miss ratio and the limit of the 
corresponding expected working-set miss ratio converge to the same value; because 
of this fact, we know that if the number of pages is large (but fixed), then the expected 
LRU and expected working-set miss ratios are approximately equal. Furthermore, our 
asymptotic formula gives a value which is close to the correct expected miss ratio when 
the number of pages is large but fixed. In the second application (in Section 5),  we show 
that in the independent reference model (and some generalizations), if we hold fixed 
both the total number of bytes in the database and the number of bytes in main memory, 
but double the number of pages by halving the page size, then the expected miss ratio 
remains approximately constant. In the third application (in Section 6), we show that 
under not unreasonable assumptions, if we know that our database will double in size in 
the next five years, then to maintain the same miss ratio we must approximately double 
the size of main memory. 

In the independent rejkence model, we assume that at each discrete time t ( t  = 1,2,3,  ...), 
one page is referenced, where page i is referenced with probability p i ,  independent of 
past history. Of course, C pi = 1.  Assume that the capacity, or size of main memory, is 
CAP pages. Under the LRU memory management policy, if there is a page fault, that is, 
if a page is referenced that is not in main memory, then that page is moved into main 
memory, and the page that has been least recently referenced is removed. It is easy to 
see that main memory always contains the CAP pages which have been most recently 
referenced. The expectedLRU miss ratio is the limiting probability of a page fault, that is, 
the limit (as T -+ a) of the probability that the Tth page reference is a page fault. It is 
well known that the limit exists, and is independent of the initial configuration of main 
memory. 

King [12] derived the following formula for the expected LRU miss ratio (in the 
independent reference model): 

where the sum is taken over all CAP-tuples (il ,..., iCM) such that i, # ik if j # K. This 
formula is sufficiently complex that it seems difficult to derive or prove interesting 
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analytic results by using it. In  addition, the formula contains so many terms (roughly nCA*, 
where n is the number of pages and CAP is the capacity), that it is impossible to numer- 
ically evaluate it (in the straightforward manner) for moderate size n and CAP except 
in the most trivial cases (such asp, = - * *  = p ,  = I/n, where the formula collapses). We 
remark that Lenfant [14] has obtained another formula for the expected LRU miss ratio 
in the independent reference model. Lenfant's formula contains (n-CAP)2n terms, and 
it also seems analytically and computationally intractable. 

The expected working-set miss ratio (with window size T) [4] in the independent reference 
model is defined to be the probability that the page referenced at time t > T was not one 
of the pages referenced over the course of the previous T (not necessarily distinct) 
references. It is easy to see that this value is independent of t ,  for t > T, and that the 
value is 

n 

W T )  = 1 $41 -Pi>'> (1.2) 
i=l 

if there are n pages with reference probabilities p ,  ,..., p, . For, p,(l - pJT is the prob- 
ability that page i is the next page referenced, and that page i was not referenced during 
the previous T references. Another quantity of interest, the expected number of distinct 
pages to be referenced over the course of T references, or the expected working-set size, is 

since 1 - (1 - p#' is the probability that page i was referenced. Thus, if S( T )  = CAP, 
then the expected working-set miss ratio with expected working-set size CAP is M( r )  = 
M(S-l(CAP)). Note that M(S-l(CAP)) is well defined, via (1.2) and (1.3), for all real 
CAP between 0 and n, even if the intermediate parameter T = S-I(CAP) is not an 
integer: This procedure gives us a convenient interpolation. 

Now M(S-l(CAP)) is easy to evaluate numerically: First, find Tby  binary search such 
that S(T) = CAP, and then find M ( T )  for this 7'. In addition, this formula is analytically 
tractable. For example, from this formula upper bounds are obtained in [A for the effect 
of page size on the working-set miss ratio. There appears to be no way to obtain simiiar 
results about the LRU miss ratio by using King's formula. 

In  this paper, we show that the expected working-set miss ratio with expected working- 
set size CAP is close to the LRU miss ratio with size of main memory CAP in a certain 
precise asymptotic sense. In  addition, we exhibit a formula, involving integrals, for their 
common asymptotic value. This formula depends on two factors: The shape of the 
cumulative probability distribution function (such as Zipf's law with a given skewness), 
and the fraction of pages which can fit in main memory. This formula, like the formula 
for the expected working-set miss ratio with expected working-set size CAP, is analytically 
and computationally tractable. We also give a formula (Section 4) for the asymptotic 
value of the expected VMIN miss ratio, where VMIN is the optimal variable-space page 
replacement algorithm under demand paging [17, 181. 
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We close this section with a brief digression on the independent reference model. The 
assumption that page references are independent can be justified in some cases, such as 
for archival store references [20]. In other cases, such as for program traces, there is a 
great deal of serial correlation between page references, and hence the independence 
assumption fails badly. However, even here, where the independent reference model does 
not apply, results about the independence reference model can yield interesting con- 
clusions. For example, in [7] an argument is presented that if the LRU miss ratio is 
approximately independent of page size in the independent reference model, then the 
LRU miss ratio is approximately independent of page size in more realistic models also, 
in which page references have an “independent” component and a “sequential” com- 
ponent. Finally, as Gelenbe observes [9], results about the independent reference model 
have a more universal flavor than results about more realistic but more restricted reference 
processes. 

2. SUMMARY OF RESULTS 

Since we wish to discuss asymptotic behavior as the number of pages gets large, we 
need a canonical method for determining a probability distribution {p?), ..., p:)}, for 
each n. We proceed as follows. 

Let F be a smooth: monotone increasing function with domain the closed interval 
[0, I], such thatF(0) = 0 andF(1) = 1. We will callF a cumulativeprobability distribution 
function. For each positive integer n, we can define a probability distribution { p r ) ,  ..., pp)> 
by setting 

p p )  = ~ ( i / n )  - ~ ( ( i  - l)/n), I < i < n. (2.1) 

When n is fixed, we may write pi for p y ) .  Of course, pi 3 0 for each i, and 2 pi = 1. 
We will call {PI ,...,pn} the probability distribution determined by F (and n). In  Fig. 1,  
we sketch the situation for n = 4. 

Caution. The reader should not assume that going from, say, n = 4 to n = 8 means 
that we have doubled the number of pages by halving the page s u e ,  with the total number 
of bytes in the database remaining fixed. This will be the correct scenario for only one 
application of our results (the independence of miss ratio from page size, Section 5); it 
will not be the correct scenario in general. A better viewpoint is that in going from n = 4 
to n = 8, we have doubled the number of pages while Ieaving the page size fined, which 
means that the total number of bytes in the database has doubled. Because the number 
of pages has changed (from 4 to 8), there must be a new probability distribution, and we 
have given a formula, or mechanism, for determining this probability distribution, 
through using a cumulative probability distribution function F which is assumed to 
always remain fixed. 

Let Po be a real number, 0 < &, < 1. Intuitively, p,, will be CAP/n, where CAE’ is the 

By “smooth,” we mean continuously differentiable. To include the important Zipf’s law case 
(Section 3), we will allow the possibility that F’(0) = CO. 
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FIGURE 1 

capacity, or size of first-level memory (in pages) in the LRU case and the expected 
working-set size (in pages) in the working-set case, and where n is the total number 
of pages. 

Denote by LRU(n, &,) the expected LRU miss ratio in the independent reference 
model with probability distribution {p l  ,..., pn) determined by F, and with capacity 
w o n ] .  (By 1x1, we mean the greatest integer not exceeding x; similarly, r.1 is the least 
integer not less than x.) We will show that LRU(n, /lo) converges to a value MISSW,) 
as n -+ 03. This result says that if the cumulative probability distribution function F 
and the fraction Po of pages which can fit in main memory are each held fixed, then the 
expected LRU miss ratio in the independent reference model converges, as the number n 
of pages goes to infinity. 

Let WORK(n, Po) be the expected working-set miss ratio with expected working-set 
size [&n). We will show that WORK(n, Po) converges as n + CO, to the same value 

This result says that if the cumulative probability distribution function F and 
the ratio Po of the expected working-set size divided by the total number of pages are 
each held fixed, than the expected working-set miss ratio in the independent reference 
model converges, as the number n of pages goes to infinity, and that the limiting value is 
the same as in the LRU case. In particular, WORK(n, Po) and LRU(n, Po), the working- 
set and LRU miss ratios, are close for large n. 

We will now explicitly define the limiting value MISSOS,). Let 70 and po be new 
parameters, where 0 < r0 < 03, and 0 < po < 1. Intuitively, T~ will be T/n, where T 
is the window size and n is the number of pages. The parameter po will be the limiting 
miss ratio MISS(&). 

We will demonstrate a natural one-one correspondence between Po's and 70)s, given by 
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The correspondence is one-one, since if T~ = 0, then Po = 0, and if T~ = 00, then 
Po = I; further, the right-hand side of (2.2) is a strictly monotone-increasing function 

There will also be a natural one-one correspondence between 7:s and pis ,  given by 
of To . 

To find MISS(Po), first find T~ such that (2.2) holds. Then let MISS(Po) = po, where 
po relates to T~ via (2.3). In other words, define functions /3* and p* as 

since we can differentiate under the integral sign by continuity of the integrands in (2.4) 
[lo, p. 10q. Equation (2.6) is the continuous analog of Denning and Schwartz's difference 
equation 

S(T + 1) - S(T)  = M(T). (2-7) 

Equation (2.7) can be verified directly (for the independent reference model) from (1.2) 
and (1.3). 

We close this section with a more detailed explanation of the sense in which the 
normalized capacity" P o ,  the "normalized window-size" -r0 , and the limiting miss " 

ratio po correspond. Define 
n 

p(n, To) = c p,(")(l - p p y ,  
i=l 

where { p r ) ,  . . . ,pr ) }  is the probability distribution determined by F and n. Comparing 
Eqs. (2.8) with (1.2) and (1.3), we see that if T = r@ is an integer, then p(n, T ~ )  is the 
expected working-set miss ratio, and P(n, T ~ )  the ratio of the expected working-set size 
divided by the number of pages, when T is the window size (if T is not an integer, then 
these are interpolated values). We will show that 

An, r0) + p*(~o)  = pop as n - a, 
P(n, 70) -+ @*(TO) = P o ,  as n -+ 00. 
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3. SPECIAL CASES 

Zipf’s Law. G. K. Zipf found that many naturally occurring probability distributions 
follow “Zipf‘s law” [21; 13, p. 3971, in which the probability zi that page i is referenced is 

where I3 is a positive constant (the “skewness”), and k is a normalizing constant chosen 
so that C zi = 1. For example, for the probability distribution of words in natural 
language texts, Zipf found that 8 w 1, and for the distribution of personal income, 
0 w 0.5. The well-known “80/20 law” [ll], which states that 80% of the references to 
a file occur to only 20% of the file (and that 80% of these references occur to only 20% 
of the top 20%, and so on), can be approximated by a Zipf‘s law distribution with 

It would be nice if for each skewness 6, there was an easily evaluable function ZIPF = 
ZlPF, such that ZIPFP,) were the limit (as the number of pages goes to infinity) of the 
expected LRU miss ratio for a Zipf‘s law distribution when the fraction Po of pages can 
fit in main memory. 

If there was a cumulative probability distribution function F = Fo such that the Zipf’s 
law distribution with n pages (and skewness 13) were exactly the probability distribution 
determined by F and n as before, then there would be such a function ZIPF: Namely, 
the function MISS = MISS, defined in Eq. (2.5). We will show in Appendix 1 that the 
function F: x -+ xl-, “almost” determines the Zipf’s law distribution with skewness I3 
(for 0 < 0 < l), and in Appendix 2 that this is good enough, that is, that ZIPF, = 
MISS,. By “almost” in the previous sentence, we mean that if {zr), ..., zF)> is the Zipf‘s 
law distribution with n pages (and with skewness O), and if Po lies between 0 and 1, then 

e 0.86 [n, p. 3981. 

i=l 

That is, if 0 < 6 < 1, then (3.1) holds, where FCB,) = /?:-’. 
We can now obtain the asymptotic value (as the number of pages gets large) of the 

expected LRU miss ratio in the independent reference model with a Zipf’s law distribution 
with skewness 0, when 0 < 8 < 1. Let /Io be the fraction of pages which can fit in main 
memory. Then the limiting expected LRU miss ratio is MISS(IS,) = p*(/3*-1(/30)), where 

To calculate MISS(/Io) numerically, find T~ by binary search such that 
then find po = p * ( ~ ~ ) ,  the limiting miss ratio. 

= Is,, and 
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Let us give a numerical exampIe.2 We will round off all results to four decimal places. 
Let the skewness 0 be 0.5, and let Po be 0.6. From Eq. (3.2), we find that Po = 0.6 corre- 
sponds to T~ = 1.1403 (that is, P*(1.1403) = 0.6). From (3.3), we find that p*(1.1403) = 
0.2902. So the limiting value MISS(0.6) is 0.2902. Thus, with a Zipf's law distribution 
with skewness 0 = 0.5, if 60% of the pages can fit in main memory, then the expected 
LRU miss ratio converges to po w 0.2902 as the number of pages gets large. In addition, 
the expected working-set miss ratio, where the expected working-set sue is 60% of the 
number of pages, converges to po . As an empirical confirmation, we can calculate the 
expected working-set miss ratio for various values of n, when the expected working-set 
size CAP is 60% of n (See Table I.) 

TABLE I" 

Zipf's Law, Skewness 6 = 0.5 and PI, = 0.6 

n CAP Working-set miss ratio LRU miss ratio 

10 6 0.3492 0.3518 
1 0 0  60 0.3109 ? 

1000 600 0.2968 ? 
1 OOOO 6000 0.2923 ? 

Limiting value 0.2902 0.2902 

I 
Values rounded to four decimal places. 

In the case of LRU, if tt = 10 and CAP = 6, then King's formula has over 30,000 
terms and involves over 300,000 multiplications and divisions. When n = 100 and 
CAP = 60, then King's formula has (100!)/(40!) M 10110 terms, so of course direct 
computation is out of the question. 

What about the case of Zipf's law when 0 2 1 ? We remark that in this case, there is a 
limiting miss ratio function ZIPFe as described earlier, and that it is degenerate: ZIPFeOS,) 
is 1 if Po = 0, and 0 otherwise. 

Arithmetic Probubility Distribution 

Assume that a and b are constants (a  nonnegative and b positive), and that 

&' = k(a + ib), 1 < i < n, 
where k is a normalizing constant chosen so that Cy=lp:") = 1. Then we say that 
{ p r ) ,  ..., pin:'> is an arithmetic probability distribution. 

It is straightforward to check that the quantity pr '  + .-. +${;in, converges to Po* 
as n -+ m, independent of a and b. Hence, all arithmetic probability distributions 

All calculations were carried out on the IBM 370/168 at the IBM Thomas J. Watson Research 
Center. 
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correspond to the cumulative probability distribution function F: x --f x2, in the same 
approximate sense that Zipf’s law with skewness 0,O < 8 < 1, corresponds toF: x-+  XI-^. 
So, the results of Appendix 2 imply that the limit (as the number of pages goes to infinity) 
of the expected (LRU or working-set) miss ratio as a function of /I, is MISS@,) = 
p*(/3*-*(/3,)), where 

In the next section, we will make some observations concerning the expected A, miss 
ratio and the expected VMIN miss ratio in the case of an arithmetic probability distribu- 
tion. 

4. ASYMPTOTIC VALUES OF THE EXPECTED A, AND VMIN MISS RATIOS 

A, is the optimal page replacement algorithm with no knowledge of the future in the 
independent reference model [l]. In the A, page replacement algorithm, if the capacity 
is CAP, then main memory always contains the (CAP - 1) pages with the largest reference 
probabilities, along with the most recently referenced of the remaining (n - CAP + 1) 
pages. I t  is not hard to check that if F is concave (that is, if the derivativeF’ is monotone 
decreasing; this corresponds to p ,  > p z  3 ... > p,) as it is in the Zipf’s law case, then 
the limit (as n -+ co) of the expected A, miss ratio, when the fraction Po of pages can 
fit in main memory, is 1 - F(/3,); if F is convex, as it is in the arithmetic case, then the 
limit (as n -+ 00) of the expected A, miss ratio is F(l - /I,) (in the arithmetic case, F 
is convex, since for convenience we defined arithmetic probability distributions { p ,  ,..., p,} 
in such a way that p ,  < p ,  < ... \< p ,  .) 

VMIN [17,18] is the optimal variable-space page replacement algorithm under demand 
paging. (By a demand-paging algorithm, we mean one in which a page may be brought 
into main memory only in the event of a page fault; however, a page may be removed 
from main memory at any time.) The VMIN algorithm, like the working-set algorithm, 
has associated with it a fixed window-sue T.  When a page is referenced, it is brought 
into main memory if it is not yet present. If the page is not rereferenced within the next 
T time units, then it is immediately removed from main memory just after it is referenced; 
otherwise, it is retained in main memory, at least until when it is first rereferenced. 
For a given value of T and a given page reference string, let M be the VMIN miss ratio, 
let VCAF’ be the average number of pages in main memory under the W I N  page 
replacement algorithm, and let WCAP be the average number of pages in main memory 
under the working-set page replacement algorithm (with the same window-size T.) 
Slutz shows [18] that 

VCAP = WCAP - (T - 1)M. (4.1 1 
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It will be convenient to “normalize” Eq. (4.1) by dividing both sides by n (the number 
of pages), to obtain 

VCAP/n = (WCAP/n) - ((2- - I)/n)M. ( 4 4  

Let us now consider the independent reference model. Assume that we hold fixed a 
cumulative probability distribution function F. For each T~ (0 < T ,  < a), define 

where !* and T* are defined in (2.4). From (4.2) and from the fact that the VMIN and 
working-set miss ratios with window-size T are equal (so M in (4.2) can be considered 
the working-set miss ratio), along with our discussion of P* and p* at the end of Section 2, 
it follows that if a “normalized window-size’’ T~ is held fixed as in Section 2, then the 
expected value of VCAP/n converges (as n --+ co) to P**(T,), and the expected value of 
the VMIN miss ratio converges to P*(T,). It  can then be shown (by analogy with (2.5)) 
that if we hold fixed a “normalized capacity” Po (which is the ratio of the expected 
number of pages in main memory under VMIN, divided by the number n of pages), then 
the expected VMIN miss ratio converges (as n + co) to p*(,!?**-l(/?o)). 

Let us apply these results to Zipf‘s law example of Table 1 (where the cumulative 
probability distribution function F is given by F(x) = x O . ~ ,  and where the “normalized 
capacity” is 0.6). As we saw, the limit (as n + co) of the expected LRU and expected 
working-set miss ratio is p*(P*-l(O.6)) = 0.2902. The limit (as n + co) of the expected 
A, miss ratio is 1 - F(0.6) = 0.2254, and the limit of the expected VMIN miss ratio is 
~*(P**-~(0.6)) = 0.0973. Thus, under a Zipf’s law distribution with skewness 0.5, if the 
number of pages is large and if 60% of the pages can fit in main memory, then the 
expected LRU and working-set miss ratios are each approximately 0.2902, the expected 
A, miss ratio is approximately 0.2254, and the expected VMIN miss ratio is approximately 
0.0973. 

Since the formulas for B*(T,) and p*(~ , )  in the arithmetic case can be written in closed 
form without integrals (formulas (3.4)), it is amusing to look at this case a little closer. 
As before, let MISSG6,) be the limit (as n ---f co) of the expected LRU miss ratio (and 
of the expected working-set miss ratio), let A,@,) be the limit of the expected A, miss 
ratio, and let VMINOS,) be the limit of the expected VMIN miss ratio. It can be shown 
by using (3.4) that as Po -+ 1 (which corresponds to T~ -+ co), 

In particular, under an arithmetic probability distribution, if the number of pages is 
large and if a very high percentage of the pages can fit in main memory, then the expected 
LRU and expected working-set miss ratios are approximately double the expected A, 
miss ratio, which in turn is approximately double the expected VMIN miss ratio. 



232 RONALD FAGIN 

5. INDEPENDENCE OF LRU MISS RATIO FROM PAGE SIZE 

From our results, it follows that asymptotically, LRU miss ratio in the independent 
reference model depends on two factors: The cumulative probability distribution function 
F and the fraction Po of pages that can fit in main memory. We will show in this section 
that this implies that LRU miss ratio in the independent reference model is approximately 
independent of page size if the size of main memory (in bytes) is held fixed, provided 
pages are blocked together in order of their probabilities of reference. 

We will deal in this section with concave cumulative probability distribution functions 
F. Let { p l  ,..., p,} be the probability distribution determined byFand n (sop, > ... >p,, , 
by concavity ofF). Let LMISS be the LRU miss ratio in the independent reference model 
with probability distribution { p ,  ,..., p,} and with capacity CAP pages. Under our previous 
terminology, LMISS is LRU(n, (CAPIn)). We will now consider the effect of moving 
all data in blocks, each of which contains B pages. Our rule for block formation is to 
combine the B pages with the highest probabilities of reference into one block, the B 
pages with the next-highest probabilities of reference into a second block, and so on. 
Assume for convenience that B divides both n, the number of pages, and CAP, the 
capacity. 

Since p ,  > * * *  3 p ,  , the blocked case amounts to dealing with the independent 
reference model with probability distribution {u, ,..., unIB}, where u, = p1 + ... + p B  , 
u2 = pB+* + ... + p,, , etc. But then {ul ,..., unIB} is simply the probability distribution 
determined by F and n/B. Let LMISS* be the LRU miss ratio in the independent 
reference model with probability distribution {ul ,..., unIB} and capacity CAP/B blocks 
(CAPIB blocks contain the same number of bytes as CAP pages, and this is the quantity 
we hold fixed in comparing the blocked and unblocked cases). Under our previous 
terminology, LMISS* is LRU((n/B), (CAPIn)). If n (and n/B) are sufficiently large, then 
LMISS and LMISS* are each as close as desired to the asymptotic LRU miss ratio with 
cumulative probability distribution function F and with Po = CAP/n. Hence, LMISS M 
LMISS*, that is, the LRU miss ratio in the blocked and unblocked cases are approx- 
imately the same. 

New let WMISS and WMISS* be the expected working-set miss ratios in the unblocked 
and blocked cases with expected working-set sizes CAP pages and CAPIB blocks, 
respectively. Under our previous terminology, WMISS = WORK(n, (CAPIn)) and 
M I S S *  = WORK((n/B), (CAPIn)). By the same argument as above, we find that 
WMISS m WMISS*. Indeed, it was proven in [7] that if C = CAP/B is the expected 
working-set size in blocks, then 

I WMISS - WMISS* 1 < (2 /C)  + (33/C2). 

In [7] an argument is presented that if LRU miss ratio is insensitive to page size in 
the independent reference model, then the same insensitivity is to be expected in more 
realistic models of page reference strings, in which page references have an “independent” 
component and a “sequential” component. (In addition, some justification is given there 
to the assumption that pages are blocked together in order of their reference probabilities.) 
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Hence, the results in this section hold under less restrictive assumptions than those of 
the independent reference model. 

6. EXTENSION TO A MODEL WITH LOCALITY 

Several papers [3,16] have dealt with the difference between LRU memory management 
and working-set memory management. Under multiprogramming, if each program is 
managed by LRU, then this is a fixed partition of main memory; if each program is 
managed by a working-set memory management policy, then this is a corresponding 
variable partition of main memory. By the results in this paper, in the independent 
reference model the miss ratios in the two cases get arbitrarily close as the number of pages 
gets large. We will now generalize this result to a model (due to Easton [5]) with “locality 
of reference” [4]. 

Easton’s model is given by a first-order Markov chain. If there are n pages, then there 
are n + 1 parameters, Y, p, ,..., p ,  , all lying between 0 and 1. Assume that page i was 
referenced a t  time t .  At time t + 1, the process goes into “rereference” (or “sequential”) 
mode with probability r, and page i is rereferenced. With probability (1 - r ) ,  the process 
goes into “random” mode, and page j is referenced with probability (1 - y)pj, for 
1 \<j < n (including the casej = i). Thus, if Qij is the probability that pagej is referenced 
at time t + 1, given that page i was referenced at time t ,  then 

Easton found [5] that with an appropriate choice of parameters, if capacities are reasonably 
large, then his model gives a good fit to the LRU miss ratio curve of the database portion 
of the IBM Advanced Administration System (A.A.S.) [19], a large database system. 
Intuitively, this model “works” because if the page size is large enough, then locality can 
be approximately captured by rereferences to the same page. 

It is not hard to see that the expected LRU miss ratio in Easton’s model is (1 - I) 
times the expected LRU miss ratio in the underlying independent reference model, 
where r is the probability of going into “rereference” mode. This is because rereferences 
do not change the LRU stack. Also, the expected working-set miss  ratio in Easton’s 
model gets arbitrarily close to (1 - Y) times the expected working-set miss ratio in the 
underlying independent reference model, as the number of pages gets large. This latter 
result follows by obtaining formulas for Easton’s model analogous to p(n, TJ and j3(n, 7,) 
of (2.8), and expressing the limits as integrals. Then the limit (as n ---f co) of the expected 
working-set miss ratio in Easton’s model turns out to be (1 - r )  MISS@,), where 
MISS@,) is as before. 

So the asymptotic equivalence of the LRU and working-set miss ratios in the inde- 
pendent reference model carries over to Easton’s model. 

We conclude this section with another application of our results. Assume that we have 
a database (such as that of A.A.S., mentioned earlier in this section) for which Easton’s 
model gives a good fit to the LRU miss ratio curve. Assume that there is reason to believe 
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that as the database grows (that is, as the number of pages increases, with the page size 
remaining fixed), it happens that 

proximately the same, and 

curve, with the parameter Y of Easton’s model remaining approximately the same. 

(1) 

(2)  

the shape of the cumulative probability distribution function remains ap- 

the appropriate Easton’s model again gives a good fit to the LRU miss ratio 

As for assumption (l), we will assume in particular that 

(1‘) the cumulative probability distribution function is based on Zipf‘s law with 
skewness 0 M 0.86, which corresponds to the “80/20 law” (see Section 3). 

As for assumption (2), it is not unreasonable to assume that the parameter Y remains 
about the same, since T is roughly a measure of sequentiality within a typical page, and 
hence should remain more or less constant if the applications and database organization 
do not change very much. 

An interesting question is how the size of main memory must vary in order to maintain 
the sape miss ratio. For example, say that when the database contains n pages of k bytes 
each, and when the capacity is CAP pages, then the LRU miss ratio turns out to be M. 
When, in a number of years, the database has doubled in size, that is, when it contains 2n 
pages of K bytes each, how big should the capacity be so that the LRU miss ratio remains 
approximately M ?  It follows immediately from our results that the new capacity should 
be 2 . CAP, since then the “normalized capacity” ( 2  . CAP)/(:! . n) remains the same, 
and since the miss ratio is essentially determined by the normalized capacity. In other 
words, if the size of the database and the size of main memory (in bytes) each double, 
and if assumptions (1’) and (2)  both hold, then the LRU miss ratio remains approximately 
the same. 

7. FURTHER EXTENSIONS 

There are various further directions in which the results of Section 2 can be extended. 
We remark briefly on three such generalizations without giving details. 

(1) Page sizes need not be all equal. This corresponds to dividing the x axis in 
Fig. 1 into n intervals whose lengths need not be equal (however, as n --f CO, the maximum 
interval length must go to 0). All asymptotic results go through easily. 

(2) The LRU page replacement algorithm may be generalized to allow page fixing, 
in which certain key pages always remain in main memory. This corresponds to allowing 
cumulative probability distribution functions F for whichF( 1) < 1. Again, all asymptotic 
results go through, with certain natural modifications, such as changing the limits of 
integration. 

(3) Under our definition of a cumulative probability distribution function F, the 
derivative F‘ is continuous and finite (except possibly F’(0) = CO.) We can drop all 
finiteness restrictions on F :  Thus, F is allowed to be infinite at any number of points. 
The essential reason that all of our results still hold is that every monotonic function 
(in our case, F )  has a finite derivative except on a set of measure 0 [2, p. 1341. 
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8. PROOFS 

In this section, we prove that if the cumulative probability distribution function F 
and the fraction Po of pages that can fit in main memory are held fixed &lo is the capacity 
divided by the total number of pages), then the expected LRU miss ratio converges, as 
the number of pages goes to infinity. In addition, we show that the expected working-set 
miss ratio, when Is, is the expected working-set size divided by the number of pages, 
also converges to the same limit, as the number of pages goes to infinity. Their common 
limit is shown to be p*@?*-l@?o)), where 

p*(To) = Jol ~ ’ ( x )  e-+’(x) dx,  0 < T~ < CO. 

Let F be a cumulative probability distribution function, and -r0 3 0 a real number. 
Let { p r ) ,  . . . ,pr)} be the probability distribution determined by F and n. As in (2.8), 
define 

n 
(n)  T o n  P(% 70) = c P W  - Pi 

p(n, To)  = 1 -(I/.) c (1 -py)’”n. 

, 
i=l 

n 

i=l 

As we remarked earlier, if T = TP is an integer and T is the window size, then p(n, T ~ )  is 
the expected working-set miss ratio, and B(n, T ~ )  is the ratio of the expected working-set 
size divided by the number of pages. 

We begin our proofs of the results in this paper by showing that if F and T~ (as opposed 
to Po) are held fixed, then P(n, T ~ )  and p(n, T ~ )  each converge, as the number n of pages 
gets large. The limit of B(n, T,,) is 

P*(To) = 1 - dx, 

and the limit of p(n, T ~ )  is 

THEOREM 1. 
P(n, 7 0 )  - B*(.o), as: n - a, 
An,  70) - Y*(TO), as 11 --t 00. 

Proof. We first prove (8.1). Statement (8.1) is trivially equivalent to 

6 
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Due to technical problems which arise in caseF’(0) = co, it is convenient to show that 
for each 6, with 0 < 6 < 1,  

1 
(8.4) (~/n) ( I  - p ? ) ~  -+ la e-+’(z) dx, as n+ co. 

i-LSnJ+I 

Then (8.4) is sufficient to prove (8.3), since it is easy to verify that the left-hand side of 
(8.4) differs from the left-hand side of (8.3) by at  most S (since (1 -$,).on < I), and that 
the right-hand side of (8.4) differs from the right-hand side of (8.3) by at most 6 (since 
F‘ 2 0, and hence e-ToF’(o) < 1). Then (8.3) follows from (8.4) by letting S go to 0. We 
leave the (straightforward) details to the reader. 

We will now prove (8.4). For ease in notation, write pi for pin), and write d for [SnJ + 1. 
By the Mean Value Theorem, 

Pi =F’(5i)/ns (8.5) 

for some ci with ((i - l)/n) < bi < (i/n). 
We will show in Appendix 3 that for each closed bounded set B, 

(1 - (b/n).on -+ c T o b  as n -+ 03, uniformly over all b in B. (8.6) 
Let B = {F’(x): (6/2) < x < I}. By continuity of F’, the set B is closed and bounded. 
It is clear that there is No so large (in fact No = 2/S is adequate) that if n > N o ,  then 
ti 2 6/2 for each i > d, and hence F’(Q E B. Pick c > 0. By (8.6), find Nl > No so 
large that for each n > Nl and each b in B, we have 

1(1 - (+)).on - e-Tob I < E .  

In particular, if we define 

(8.7) 

n 

< (I/#) I ERR@, n)l, by the triangle inequality, 
i=d 

= f. 
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Now by definition of the Riemann integral, 

1 is an approximation to the Riemann integral sa e-7~FI(Z) dx, where the interval [S, 11 is 
broken into subintervals of length l /n .  So we can find Nz > iVl so large that for each 
f l  > N , ,  

Hence for all 7t > N, , 

Then (8.4) follows, as desired. 
We will now prove (8.2). Statement (8.2) says 

Let 6 be arbitrary, 0 < 6 < 1. We will prove that 

Then (8.11) implies (8.10). For, the left-hand side of (8.11) differs from the left-hand 
side of (8.10) by at most x::’ pjn), which is bounded by F(S), which goes to 0 as S goes 
to 0. And, the right-hand side of (8.11) differs from the right-hand side of (8.10) by at 
most S/e, since the maximum possible value of F’(x) e-F’(z) (or of ze+ for arbitrary 2) 
is I/e, by elementary calculus. 

We will now prove (8.1 1). Pick E > 0. Write d = [Snl + 1, and write pi for pr’. 
Find Ci as in (8.5), for each i. 

Let C = sup(F’(x): (S/2) < x < 1). As before, we can choose No so large that if 
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n > N o ,  then ti 3 6/2 for i > d, and hence F(&) < C. If ERR(2, n) is as before, then 
we can again find Nl > No so large that for all n > Nl , 

I ERR(?; n)l < E/C. 

so, 

As before, we can find N2 > Nl so large that for all n > N ,  , 

From (8.12) and (8.13), we find that for all n > N, , 

(8.12) 

(8.13) 

Then (8.11) follows, as desired. 

, In Theorem 1, we held r0 fixed. However, we are really interested in holding Po fixed. 
As before, define WORK(n, Po) to be the expected working-set miss ratio with expected 
working-set size &nJ, over the probability distribution {$jn), ..., $An)} determined by F 
and n. We can now prove that WORK(n, Po) converges to MISSCB,) = p*@*-*@,)), as 
the number n of pages gets large. 

I 

THEOREM 2. 

Proof. 

WORK(% Po) -+ MISS(Po), as n -+ CO. 

For each positive integer n, find r, such that 

P h  7,) = IAPJln. 
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This is possible, because ,B(n, T )  takes on all values between 0 and 1 as T ranges between 
0 and 00. By definition, 

WORK(n, Is,) = ~ ( n Y 7 n ) -  (8.14) 

Find T~ such that ,B*(T~) = MISS&). We will show that 

T,, - + T ~ ,  as n-+ CO. (8.15) 

The fact that T ,  converges is implicit in the proof in [7]. We will now demonstrate that 
(8.15) is sufficient to prove the theorem. 

Pick E > 0. By continuity of p*, we can find 6 > 0 so small that 

P*(T.o - 6) < P*(To) + 6- (8.16) 

By Theorem 1 ,  with -rO - 6 playing the role of T ~ ,  we know that 

p(n, T~ - 6) -+ ~ * ( 7 ~  - 6), 

Hence, we can find N so large that if n > N ,  then 

as n + 00. 

p(n, 7 0  - 6) < P * ( T O  - 6) + c- (8.17) 

By (8.15) we can also assume that N is so large that if n > N, then 

7, > TO - 6. (8.18) 

Assume that n > N. Since p is monotone decreasing in its second argument, it follows 
from (8.18) that 

d n ,  7,) d p(n, 7 0  - 6) 
< tL*(70 - 8) + €9 by (8.17), (8.19) 
< P*(TO) + 2% by (8.16). 

We can substitute WORK(n, Po) for p(n, 7,) in (8.19) by (8.14), and we can substitute 
MISSOS,) for P * ( T ~ )  by definition of T ~ .  We then obtain 

WORK(n,,Bo) < MISSCB,) + 2 ~ .  (8.20) 

By a symmetric argument, we find that if n is sufficiently large, then 

WORK(n, P o )  > MISS(&) - 2 ~ .  (8.21) 

The theorem follows from (8.20) and (8.21). It remains to prove (8.15). 
Assume (8.15) fails. Then for some E > 0, either 

T,, < T~ - 6, for infinitely many n, (8.22) 

7, > T~ + E, for infinitely many n. (8.23) 
or 
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Assume that (8.22) holds; the proof if (8.23) holds is symmetric. Let T’ = T~ - (42), and 
p‘ = P*(T’). By monotonicity of P*, 

B’ = P*(T’) < B*(To) = P o .  

Let 0 = Po - B’ > 0. By Theorem 1, 

P(n, T’) -+ P*(T’) = ,C7’, as n -+ CO. 

So for n sufficiently large, 

P(n, 7’) < 8’ + (0/2) = P o  - (W). 

By (8.22) and (8.24), there is some integer N such that 

TN < ‘To - E ,  

P ( N  4 < P o  - (W). 
We can also assume that N is so large that 

F&l/N > P o  - (W. 
Then 

W&I/N = P(N, by definition of T N ,  

by (8.25) and monotonicity, 
by monotonicity and definition of T’, 

< p(N, T~ - E), 

< B ( N  4, 
< P o  - (W), by (8.2% 
< Uwl/N by (8.27). 

This is a contradiction. 1 

(8.24) 

(8.25) 
(8.26) 

(8.27) 

As before, define LRU(n, Po) to be the LRU miss ratio with capacity [13,,n] over the 
probability distribution {@I, ..., p r ’ }  determined by F and n. We will now prove that 
LRU(n, Po) converges to MISS@,) = p*(fl*-1(j30)), as the number of pages gets large. 
We begin with a lemma, which is due to Easton [5]. 

LEMMA 3 (Easton). Under working-set memory management in the independent 
refmeme model with npages, the variance in the size of the working set i s  bounded above by n/4. 

Proof. Let T be the window size, and consider the process in which there are T 
independent page references. 

Let X be a random variable which is equal to the number of distinct pages referenced 
over the course of the T references. Thus, X is the working-set sue. We went to show 
that the variance V ( X )  of X is bounded above by n/4. 

Let X i ,  1 9 i < n, be a random variable which is 1 if page i is in the working-set 
(that is, if page i appears in the course of T references), and 0 otherwise. So X = 
XI + * - -  + X,, . Let Ai be the event that page i occurs. So, E(Xi), the expected value 
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of Xi, equals Pr[Ai], the probability of event Ai . Then the variance V ( X )  in the size 
of the working set is 

n 

V(X1f ... + X,) = 1 V ( 4 )  + 2 1 COV(Xi, Xj), (8.28) 
i=l i<j 

where Cov is the covariance [8, p. 2151. Now 

V(XJ < a 9 (8.29) 

since Xi is 0-1 valued. (If Xi  = 1 with probability p, then V(Xi )  = p(l  - p) < 4 by 
elementary calculus); and 

C0V(Xi, X,) = E(XiXj) - E(Xi) E(Xj)  
= Pr[Ai A Aj] - Pr[Ai] Pr[Aj] 

= Pr[A,] Pr[Aj [ A,] - Pr[A,] Pr[A,] 
= Pr[Ai](Pr[AAi 1 Ail - Pr[Aj]) 

< 0, 

(8.30) 

since if page i appears, then this lessens the probability that pagej  appears. 
So from (8.28), (8.29), and (8.30), we find that V(Xl + *.- + Xn) < 44 ,  as desired. 

Remark. 
I 

If p, = ..- = pn = l/n, and T = [(In 2)nJ w 0.693~1, then the variance in 
the size of the working set can be shown to be arbitrarily close to n/4 for n sufficiently 
large. 

THEOREM 4. LRU(n, Po) + as n -+ co. 

Proof. Pick E > 0. Find 70 such that P * ( T ~ )  = P o ,  and let po = p * ( ~ ~ )  = MISS(Po). 
Find m i g  > T,, SO close to T~ that po - p*(mig) < E. Write Pbig = p*(q,ig), and Pbig = 

Po - Pbig < E -  (8.31) 

(Warning: pbig is smalk than p,, , because p* is a monotone decreasing function of r.) 
Let 0 = pbig - Po > 0. By Theorem 1, if n is sufficiently large, then 

P*(wg)-  so 

and 
(8.32) 

(8.33) 

Assume also that n is sufficiently large that both 

n > l/(P€) (8.34) 

and also that if (9, ,..., pn} is the probability distribution determined by F and n, then 

max(P1 ,-**,Pnl < 6- (8.35) 
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Consider the following process, which we will call Process (*). 

(*) There are n pages, with reference probabilities {PI ,.-.,pn) 
determined by F and n, and a sequence of independent references. 

Let Tbig = [Tbign], and let CAP = PpJ. Define events A, B, and C as 

A is the event that during the first Tbig references in Process (*), at least CAP 
distinct pages appeared. 

B is the event that the (Tbig + 1)st reference already appeared among the first 
Tbig , in Process (*). 

C is the event that just after there have been CAP distinct pages referenced for the 
first time, the next reference is to one of the CAP pages that has already appeared, in 
Process (*)- 

Then P r [ q  is the LRU hit ratio with capacity CAP, that is, 

Pr[C] = I - LRU(n, Po). (8.36) 

Also, Pr[B] is the working-set hit ratio with window-size Tbig. The following estimate 
is helpful. 

P~[BJ = 1 - Cpl ( l  - p ~ ~ b i g ,  

= 1 - C p l (  1 - pi)tTbfgnJ, 

< 1 - cpi(l  - pi)'bign + c, (8.37) 
by (8.35) and a simple argument, 

= 1 - ~ ( n ,  q i g )  + c, 

< 1 - Pbig -k 2E) 
< 1 - + 3e, by (8.31). 

by (8.33), 

We will now show that A is a likely event. Consider again Process (*) defined earlier, 
and let X be a random variable whose value is the number of distinct references among 
the first Tbig . The expected value E(X> is 

E ( X )  = n - (1 - pJTb1~, by (1.3), 

= n - (1 - pi)rTbIgnl, 

n - C (1 - pi)zbif, (8.38) 

= nls(n, m i d ,  

> '@big - (0/2)), 

E(X)  - CAP = E(X) - l,Bon], 

by (8.32). 
Hence, 

> '@big - (6/2)) - [PIPI, 
2 n(pbig - (0/2)) - Pow, 
= n0/2, since 0 = pbjg - #lo. 

by (8-38), 
(8.39) 
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Now for the event -A to occur, X must take on a vaIue smaller than CAP = p0nJ. 
Therefore, by (8.39) it follows that for event -A to occur, X must differ from E ( X )  by 
at least n 0/2. Hence, 

Pr[-A] < Pr[l X - E(X)I 3 n 0/2], 

< 4V(X)/(n2O2), 

d 1/(.e2), 
< €3 by (8.34). 

by Chebyshev's inequality [8, p. 2191, 

since V ( X )  < 4 4  by Lemma 3, 
where V ( X )  is the variance of X ,  (8.40) 

We now interrelate Pr[A], Pr[B], and P r [ q  as follows. 

Pr[C] = Pr[C A A] + Pr[C A - 4 ,  

< Pr[C A A] + Pr[-A], 

< Pr[B A A] + Pr[-A), 
(8.41) 

since Pr[C I A] < Pr[B 1 A], 

< Pr[B] + Pr[-A]. 

Putting together what we have proved, we obtain 

1 - LRU(n, Po) = Pr[C], by ( 8 W  
< Pr[B] + Pr[-A], 
< 1 - po + 3~ + E ,  

by (8.41), 
by (8.37) and (8.40). 

Hence, for n sufficiently large, 

(8.42) 

By a very similar argument, we can show that 

LRU(n,Po) < MISS(P0) + 4. (8.43) 

The only essential modification of the proof is to change each occurrence of Tbig in the 
definitions of events A, B, and C to Tlittle, where Tlittle = [Tiittlen) and Tlittle < 70 is 
close to T~ - Then derivation (8.41) is replaced by 

Pr[B] =Pr[B A A] +Pr[B A -A] 
< Pr[A] + Pr[B A -A] 
< Pr[A] + Pr[C A -A] 

< P r [ 4  4- wq. 
Inequality (8.43) then follows. 
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By (8.42) and (8.43), we see that for n sufficiently large, 

MISS&,) - 46 < LRU(n, Is,) < MISS&) + 4 ~ -  
The theorem follows. I 

Of course, we have the following immediate corollary of Theorems 2 and 4. 

THEOREM 5. I LRU(n, Po) - WORK(n, p0)1 3 0, as n + co. 

That is, the LRU miss ratio and the appropriate corresponding working-set miss ratio 
get arbitrarily close, as the number of pages gets large. 

APPENDIX 1 

We will show that if 0 < 0 < 1, then the function F x -+ xl-e corresponds to the 
class of Zipf‘s law distributions with skewness 0, in the sense that if {.zp), ..., z r ) }  is the 
Zipf‘s law distribution with skewness 0 and with n pages, then for each Po, with 0 < 
P o  < 1 ,  

i=l 

For, 
LBonJ 1 zp’ = NUM/DENOM, 
i=l 

(Al.l)  

(A1.2) 

where 
L W J  

NUM = ’F i-e. 
Y 
i=I 

n 

DENOM = 1 P. 
i=l 

If we multiply NUM and DENOM each by nl-e and regroup, we find that 

NUM/DENOM = NUMl/DENOMl, (A1.3) 
where 

LBonl 
NUMl = C (+~)-~(l/n), 

i=l 

n 

DENOMI = 1 (+~)-~(l/n). 
i=l 

Now NUMl is an approximation to the Riemann integral s2 re dx, where the interval 
[O, Po] is broken into subintervais of length l/n. So, 

80 
N U M l + k  x-’dx, as n-+ co. 
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Similarly, 

DENOMl+[x-'dx, as n+ co. 

If we evaluate these integrals, we find 

NUMl /DENOMI+~~-8 ,  a s  n+ co. 
Hence 

L W J  C z?) = NUM/DENOM, by (A1 3, 
i=l 

= NUMI/DENOMI, by (A1.3), 

-+ Pi-@, as n -+ co by (A1.4), 

(A1.4) 

The assumption that 0 < B < 1 is used implicitly in the evaluation of the integrals, 
since NUMl and DENOMI are infinite for B 

We remark that in addition to the previous proof, there is a simple intuitive reason 
why the functionF: x + xl-@ approximately gives a Zipf's law distribution with skewness 
B (0 < 0 < 1)- Let { p ,  ,...,p,} be the probability distribution determined by F and n. 
Then 

1. 

pi = F(i/n) -F ( ( i  - I)/.), 

M (I/n) F'(i/n), by the Mean Value Theorem, 

= (1 In)( 1 - 8)(i/n)-', 

which is proportional to i-e for fixed 0 and n. 

APPENDIX 2 

In  this appendix, we sketch the proof of a theorem which generalizes Theorems 2 and 4. 
Assume that for each n, we have a probability distribution {$I, ..., z r ) }  such that zr '  3 
z r )  3 --. 2 zr). Assume that F is a cumulative probability distribution function for 
which 

for each Po with 0 < Po < 1. 
Define L(n, Po) to be the expected LRU miss ratio for probability distribution 

{zr), ..., z:")) when the capacity is &n]. Define W(n, Po) to be the expected working-set 
miss ratio for probability distribution {zr), ..., ~r )}  when the expected working-set size is 
[&,n]. Let MISS = MISS, be as defined earlier (2.5). 

THEOREM 6 .  
qn, P o )  - MISS@,), us n - 00, ( A 2 4  
W(n, Po) + MISS@,), as n + 00. W . 2 )  
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This theorem, which we invoked in Section 3, is a generalization of Theorems 2 and 4. 
It  is also convenient to generalize Theorem 1, as follows. By analogy with p(n, T ~ )  and 
p(n, T ~ )  in (2.8), define pl(n, T ~ )  and B ( n ,  T ~ )  as 

Thus, if T = TG is an integer, then h(n ,  T ~ )  is the expected working-set miss ratio 
with window size T over probability distribution {zy), ..., z;")}, and Pl(n, T ~ )  is the 
expected working-set size divided by the number n of pages. In both cases, if T is not an 
integer, then these are interpolated values. 

Define p* = pF* and /3* = BF* as in (2.4). 
Theorem 1 generalizes as 

as n-+co, 
as n - +  co. 

Then Theorem 6 follows from Theorem 7 by &-.nost the identicr- proof that Theorems 2 
and 4 follow from Theorem 1. I t  remains to prove Theorem 7. 

We will now state the key lemma by which the proof of Theorem 1 can be modified 
to prove Theorem 7. Since z r )  3 zp) 3 * * *  2 z:), it is possible to define a (smooth) 
concave cumulative probability distribution function Fn which "passes through" these 
points, in the sense thatF,,(i/n) - Fn((i - I)/n) = z?), for 1 < i < n. Thus, {zr) ,  ..., z r ) }  
is the (unique) probability distribution determined by F,, and n. 

LEMMA 8. 

Remark. 

Assume that 0 < S < 1.  Then Fn' -+ F' as n -+ GO, uniformly on [ S ,  1 - 61. 

It follows in particular that F,' -+F pointwise on (0, I), that is, F,'(x) --f 
F'(x) for each x with 0 < x < 1. However, Fd(0) need not converge to F'(O), and Fl(1) 

Before proving Lemma 8 we will indicate how the proof of Theorem 1 can be modified, 

Very much as (8.1) of Theorem 1 follows from (8.4) in the proof of Theorem 1, it also 

need not converge to P( 1). 

via Lemma 8, to prove Theorem 7. 

happens that (A2.3) of Theorem 7 follows from 

Just as py' =F'(l,+z in the proof of Theorem 1, similarly zl") =Fn'(Ci)/n = 
(1 + @(i, n))F'([j)/n, where by Lemma 8, if n is sufficiently large then I 6(i, n)l is arbi- 
trarily small, uniformly in i (1 < i < n). 
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The  remaining details to modify the proof of Theorem 1 to prove (A2.5) are straight- 

We must now prove Lemma 8. 

Proof of Lemma 8. It is not hard to see that F,, converges to F pointwise on [0, 13, 
as n-+ 03. 

It  follows fairly easily that since each F,, is concave, so is F. We will now show that F,,' 
converges pointwise toF'  on (0, l), as n + 00. Assume not. Let x, be a point, 0 < x, < 1, 
such that Fn'(xo) does not converge to F'(x,), as n -+ 00. Then there exists E > 0 such 
that either 

Fn'(xo) > F'(x,) + E ,  for infinitely many n, (A2.6) 
or 

forward. Similarly (A2.4) follows, and Theorem 7 is proven. 

F,'(xo) < F'(xo) - E ,  for infinitely many n. (-42.7) 

Assume that (A2.6) holds; the proof if (A2.7) holds is very similar. Let BAD = 
{n: F,'(x,) > F'(x,) + E}; by (A2.6), BAD is an infinite set. It is easy to see geometrically 
(see Fig. 2) that it is possible to find < E, and y1 > F(x,) so close to F(x,), with 0 < 

FIGURE 2 

that the line L through (x, , yl) with slope F'(xo) + E ,  intersects the graph of F twice. 
Let x, and x, be the x values of the intersection of F and L, and let x3 be arbitrary, subject 
only to x, < x, < x, . Find N so large that Fn(xo) < yl for each It > N; this is possible 
since Fn(xo) -+ F(x,) as n - 03. Let BADl = {n > N n E BAD). Now if n E BADI, 
then F,'(x,) > F'(x,) + E 2 F'(x,) + = I,'(%,). So if n E BAD1, then the tangent 
line to F,, at x, is steeper than L, and hence lies completely below L for 0 < x < x, . 
But F,, , being concave, lies below its tangent line. Hence F, lies below L for 0 < x < x, , 
that is, F,(x) < L(x) for each n in BADl and each x between 0 and xo . In particular, 
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F,(x3) < L(x3) for each n in BAD1. Hence, F(x3) -Fn(x3)  > F(x3) -L(x3) > 0 for 
each n in BADl. But then F(x3) - F,(x,) is bounded away from 0 by the positive quantity 
F(x3) -L(x3),  for each n in BADl. This contradicts the fact thatFn(3c3) -F(x3), as n + m. 
So we have shown that F,' converges to F pointwise on (0, l), and hence on [S, 1 - S]. 
To show that F,' converges to F uniformly on [S, 1 - 61, the following lemma is clearly 
sufficient, where G,  is F,' and G is F. 

LEMMA 9. Assume that functions G, and G are defined m a closed interval, that G is 
continuous, that each G ,  i s  monotone decreasing, and that G, --j G pointwise as n + co. 
Then G, --+ G unijbrmly. 

We close Appendix 2 by a proof of Lemma 9. 

Proof. Assume without loss of generality that the closed interval is [0, 11. Pick E > 0. 
Since G is continuous on [0, 13, it is well known that G is uniformly continuous on [O, 11. 
It is clear that G is monotone decreasing since each G, is. Find an integer m so large 
that if x1 and x, are points in [O, I], then 

I xi - xz I < l/m * I G(xi) - G(x,)l < c- (A2.8) 

Find N so large that whenever n > N, 

I GJx) - G(x)l < E for x = 0, 1/m, 2/m ,..., 1.  (82.9) 

We will show that if x in [0, 11 is arbitrary, and n > N ,  then G(x) - 2.5 < G,(x) < 
G(x) + 2e, which proves the lemma. Find an integer K (0 < K < m) such that klm < 
x < (K + I)/m. Write Q = k/m and b = (k  + I)/m. Then 

G A x )  3 Gn(b), since G, is monotone decreasing, 
> G(b) - E ,  by (A2.9), (A2.10) 
> G(x) - 26, by (A2.8), 

and, 
Gn(4 < Gn(a), since G, is monotone decreasing, 

by (-42.8). 
< G(a) + c, by (A2.9), (A2.11) 

< G(x) + 2c, 

From (A2.10) and (A2.11) we obtain G(x) - 2c < G,(x) < G(x) + 26, as desired. I 

APPENDIX 3 

In  this appendix, we will prove the following lemma, which is utilized in the proof of 
Theorem 1. 

LEMMA 10. Let B be a closed, bounded set. Then (1 - (b/n).on --f e-% as n 3 03, 

un;f.rmly over all b in B. 
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Proof. Pick E > 0. Let Bl = (ecb: b E B). By uniform continuity of the function 
x -+ xTo on closed bounded sets, we can find 6 > 0 such that 

I y - x l  < S a n d x E B ,  * l y T ~ - x T ~ 1  <E.  (A3.1) 

We will now show that 

(1  - (b/n))n -+ e-b as n --+ co, uniformly over b in B. ( A 3 4  

This is sufficient to prove the result of the lemma, because if n is sufficiently large, then 

1(1 - (b/n))” - e-b 1 < S, for all b in B by (A3.2), 

and hence 

1(1 - ( b / ~ ~ ) ) * ~ o  - e- b 7 ~  I < C, by (A3.1), where y = (1 - ( 6 / ~ t ) ) ~  and x = e-b. 

Now (A3.2) follows by Dini’s theorem [lo, p. 1211 if we only show that there is an N 
such that for all n > N and for all b in B, (1 - (b/n))* is a monotone increasing function 
of n. It is sufficient to show that (1 - (b/x))” has a positive derivative for x > b; take 
N = sup B. The derivative is easily found to be 

by using the Taylor series of In 1 - - ( 3 
b 2-1 1 b 2  1 1 6 3  1 1 b 4  
X 2 x2 3 x 3  3 4 x 4  = (1 - -) [(l --) - + (z - -) - + (- - -) - + ...I 
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