
JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.1 (1-26)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Expressive power of entity-linking frameworks ✩

Douglas Burdick a, Ronald Fagin a,∗, Phokion G. Kolaitis b,a, Lucian Popa a,
Wang-Chiew Tan c

a IBM Research – Almaden, United States of America
b University of California Santa Cruz, United States of America
c Megagon Labs, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 October 2017
Received in revised form 22 June 2018
Accepted 10 September 2018
Available online xxxx

Keywords:
Entity-linking framework
Expressive power
Certain links

We develop a unifying approach to declarative entity linking by introducing the notion
of an entity-linking framework and an accompanying notion of the certain links in such
a framework. In an entity-linking framework, logic-based constraints are used to express
properties of the desired link relations in terms of source relations and, possibly, in terms
of other link relations. The definition of the certain links in such a framework makes use
of weighted repairs and consistent answers in inconsistent databases. We demonstrate
the modeling capabilities of this approach by showing that numerous concrete entity-
linking scenarios can be cast as such entity-linking frameworks for suitable choices of
constraints and weights. By using the certain links as a measure of expressive power, we
investigate the relative expressive power of several entity-linking frameworks and obtain
sharp comparisons.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction and summary of results

Entity linking is the problem of creating links among records representing real-world entities that are related in certain
ways. As an important special case, it includes entity resolution, which is the problem of identifying or linking “duplicate”
entities. Since the pioneering work of Fellegi and Sunter [16] in 1969, entity linking has been recognized as a fundamental
computational problem that has been investigated by several different research communities. While much of the work in
this area [12,14,20,23] has focused and continues to focus on the design, implementation, and validation of direct algorithms
for entity linking (and, in particular, for entity resolution), recent investigations have developed declarative approaches to
entity linking that make it possible to separate the specification of entity linking from its actual implementation (see, for
example, [1,9,18,19]).

In [9], we introduced and explored a declarative approach to entity linking that makes use of logical constraints. Our
approach differs from earlier declarative approaches because it uses link-to-source constraints, instead of source-to-link con-
straints. Source-to-link constraints constitute, in effect, rules for creating links from source data in an operational manner.
Approaches based on source-to-link constraints include Dedupalog [1] and HIL [19]. Another related approach is the one
based on matching dependencies (MDs), introduced in [15], to enforce equality on attribute values based on matching con-

✩ This is the journal version of [10].

* Corresponding author.
E-mail address: fagin@us.ibm.com (R. Fagin).
https://doi.org/10.1016/j.jcss.2018.09.001
0022-0000/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2018.09.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:fagin@us.ibm.com
https://doi.org/10.1016/j.jcss.2018.09.001

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.2 (1-26)

2 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
ditions. In effect, MDs are source constraints that lead to in-place modifications of the source relations. MDs have been
given operational semantics in [6] via a variation of the chase procedure that fixes violations of a given set of MDs.

Our link-to-source constraints spell out declarative conditions that the links must satisfy, independently of how the links
will be created, and thus give rise to solutions of the declarative entity-linking specification at hand. In [9], we focused on
the class of maximum-value solutions as “good” solutions for entity linking; intuitively, these are the solutions in which
links have maximum “justification” in terms of the constraints and in terms of the source data. Since there can be multiple
maximum-value solutions, we introduced the notion of the certain links, which, by definition, are the links that appear
in every maximum-value solution and, therefore, are the links that should be kept. We then explored the problem of
enumerating all maximum-value solutions and the problem of computing the certain links. This investigation was carried
out for several different languages expressing link-to-source constraints, including languages that capture collective entity
resolution, where interdependence between link relations is allowed. Unlike matching dependencies, all languages considered
in [9] apply to scenarios in which the source instances are given as clean databases; therefore, the source instances should
not be modified.

The variety and multitude of entity-linking approaches raise the question of developing methods and tools for comparing
such different approaches. A comparative evaluation of the performance of several different direct algorithms for entity
resolution (or entity matching) has been carried in [21] and [22]. Up to now, however, no methodology has been developed
for comparing, along some axis, different declarative approaches for entity linking. The main aim of this article is to develop
such a methodology that is centered on the notion of the expressive power of declarative entity-linking frameworks.

Our first conceptual contribution is to formulate a unifying notion of an entity-linking framework and an accompanying
notion of the certain links in such a framework. This is achieved by bringing into the picture a notion of weighted repairs of
inconsistent databases; these are a variant of the notion of weighted repairs of inconsistent databases in description logics
studied in [13]. The “good” solutions for entity linking are then identified with the maximum weight repairs of inconsistent
databases with respect to suitable choices of constraints and weights, while the certain links are defined to be the consistent
answers of atomic link queries with respect to the maximum weight repairs, that is, those links that are in every maximum
weight repair.

The inconsistent database whose weighted repairs we consider gives an upper bound or a domain for the candidate
links; it could be provided (e.g., handed in from another system), or could be simply based on the Cartesian product of sets
of entities (which we do in many of our definitions and proofs1).

This general approach gives rise to a single formalism for declarative entity linking in which the constraint language,
the sets of constraints allowed, and the weight function that measures the “strength” of the links are parameters of the
definition. We demonstrate the modeling capabilities of this formalism by showing, first, that it contains as special cases all
but one of the concrete declarative entity-linking scenario studied in [9] (it does not capture the scenario of maximal solu-
tions, a scenario that [9] says leads anyway to a “naive semantics”); further, our formalism accounts for new entity-linking
scenarios, such as entity linking based on maximum cardinality repairs and entity linking with constraints that incorporate
preferences.

Our second conceptual contribution is to use the certain links as a measure of the expressive power of an entity-linking
framework and define what it means for an entity-linking framework to subsume another entity-linking framework. This
makes it possible to compare different entity-linking frameworks along the axis of their expressive power.

As regards technical results, we first show that, under some mild hypotheses on entity-linking frameworks, it is possible
to enumerate with polynomial delay all maximum weight repairs and to compute the certain links in polynomial time. This
general result contains as special cases several similar results for concrete entity-linking scenarios obtained in [9]. Our main
technical contribution, however, is to delineate the relative expressive power of different linking frameworks. Specifically, we
show that the entity-linking framework of the maximum-value solutions considered in [9] and the entity-linking framework
of maximum cardinality repairs introduced here are of incomparable expressive power, in the sense that neither of the
two can subsume the other. We also show that the entity-linking framework for collective entity resolution where the
constraints allow the link relations to depend on other link relations is strictly more expressive than in the case where
constraints do not allow for interdependence among the link relations. This increase in expressive power takes place even
when the dependencies among the link relations are non-recursive. Finally, we show that we also gain expressive power by
adding preference constraints, which represent an additional, practical mechanism (see HIL [19]) for specifying the “good”
links by letting a user explicitly, and declaratively, give priority to some types of links over other types of links. Concretely,
we show that there is an entity-linking framework with preference constraints that is not subsumed by the entity-linking
framework of maximum-value solutions (with no preference constraints).

In summary, the conceptual and technical contributions in this article provide a unifying approach to declarative entity
linking and pave the way for the systematic comparative evaluation of different entity-linking frameworks.

This article is the full version of the conference paper [10]. The key difference between this article and [10] is that we
include the proofs in this article. It should be pointed out that since the expressive power is measured via the certain links,
proving that a specific entity linking framework is not subsumed by some other specific entity-linking framework is a much
more challenging task than simply showing that the constraints defining the first framework are not logically equivalent to

1 This is conceptual and it does not mean that the Cartesian product needs to be materialized.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.3 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3
those defining the second framework. The proofs of our results about the expressive power of entity-linking frameworks
involve a combination of special-purpose techniques with techniques from finite model theory. In particular, the proof of
the result concerning the expressive power of entity-linking frameworks with preference constraints makes essential use of
a locality theorem that is interesting in its own right.

2. Background on declarative entity linking

A schema P is a set of relation symbols, each with a designated arity. A P-instance K is a collection of relations P K

interpreting the relation symbols P in P. A fact of K is an expression P K (t) or, simply, P (t), where P is a relation symbol
in P and t is a tuple in the relation P K .

We focus on declarative scenarios for entity linking, such as the ones considered in [9]. In such scenarios, S is the schema
of source relations, while L is the schema of link relations, where each link relation is binary; we assume that S and L are
disjoint. We use the notation R = S ∪ L for the union of the two schemas. If I is an S-instance and J is an L-instance, then
〈I, J 〉 denotes the R-instance that is the union of I and J viewed as sets of facts.

Relation symbols in S will be referred to as source symbols, while relation symbols in L will be referred to as link symbols.
Some source symbols may be interpreted by built-in relations, that is, such symbols may have the same interpretation on
every allowable source instance. For example, a source symbol may stand for the substring relation between two strings, or
it may stand for a user-defined predicate, such as similarity of names. If J is an L-instance and (a, b) ∈ L J for some link
symbol L in L, then we say that (a, b) is a link of L in J . We sometimes write such a link as the fact L J (a, b), or L(a, b)

when J is clear from the context. We may also refer to J as a link instance.
An important feature of declarative entity linking is that the link relations are distinct from the source relations. The

purpose of entity linking is to establish connections among source values (i.e., among various identifiers or names of entities)
without changing any of the source data. A link relation is defined, implicitly, via link-to-source constraints that specify the
properties that the link relation must satisfy with respect to the source data.

2.1. The language L0 and entity-linking specifications based on L0

We first revisit the language L0 introduced in [9]; this language consists of three types of constraints.

• Inclusion dependencies of the form L[X] ⊆ S[A] and L[Y] ⊆ T [B], where L is a link symbol, and S and T are source
symbols. We use X and Y to denote the first and the second attribute of L, while A and B denote attributes in relations
S and T , respectively. Note that S and T could be the same source symbol.

• Functional dependencies (FDs) L : X → Y and L : Y → X , where L is a link symbol and X and Y denote the attributes
of L.

• Matching constraints of the form:

L(x, y) → ∀u(ψ(x, y,u) → α1 ∨ . . . ∨ αk), (1)

where L is a link symbol, ψ(x, y, u) is a (possibly empty) conjunction of atomic formulas over S (with the requirement
that the universally quantified variables u must occur in ψ), and where each αi is of the form ∃zi φi(x, y, u, zi). Each
φi is a conjunction of atomic formulas2 over S or equalities. We assume that the variables in zi are disjoint from the
variables in ψ and from {x, y}. The variables x and y are universally quantified, but for simplicity of notation we omit
their quantifiers. Note also that if ψ is empty, then formula (1) becomes

L(x, y) → (α1 ∨ . . . ∨ αk). (2)

We will give shortly an example to illustrate the intuition behind these types of constraints. At a high-level, the motiva-
tion behind the use of disjunction in a matching constraint is that it lists all the possible matching conditions α1, . . ., αk for
why a link L(x, y) may exist (provided ψ holds). If a link L(x, y) exists, then one or more of those conditions must be true
(provided ψ holds). We do not require a matching constraint to be given for each link; for those links without a matching
constraint, the link relation is restricted only by the rest of the constraints. The inclusion dependencies have the important
role of specifying the domain of values that can be used to populate a link relation, while the functional dependencies
encode basic cardinality constraints on the result of entity linking. (See also [19] for the significance of such constraints in
practice.) The presence of one functional dependency means that the links are required to be many-to-one, that is, an entity
on one side must be linked with at most one entity on the other side. The presence of both functional dependencies means
that the links must be one-to-one.

While in general there could be more than two inclusion dependencies for each link, all the scenarios considered in
[9] focused on the case of exactly two inclusion dependencies and exactly one matching constraint per link symbol. While

2 Note that some of these atomic formulas may involve built-in relations.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.4 (1-26)

4 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
other combinations of constraints may also be meaningful (e.g., more than two inclusion dependencies per link, or more
than one matching constraint per link), these restrictions have a good practical motivation, since they correspond to entity
linking statements in the HIL language [19].

Definition 1. An entity-linking specification in L0 is a triple E = (L, S, �),3 where L is a link schema, S is a source schema,
and � is a set of constraints containing, for each link symbol L in L, at most one matching constraint in L0 , two inclusion
dependencies (one for each attribute of L), and zero, one, or two functional dependencies.

Definition 2. Let E = (L, S, �) be an entity-linking specification, and let I be a source instance. A solution for I w.r.t. E is
a link instance J such that the instance 〈I, J 〉, obtained taking the union of the facts in I and J together, satisfies the
constraints in �.

Example 1. [9] In this scenario, we link subsidiaries in one database with parent companies in another database. Consider
the following source schema S:

Subsid(sid, sname, location) Company(cid, cname,hdqrt)
Exec(eid, cid,name, title)

This source schema includes the relation symbols Subsid from the first database, and Company and Exec from the
second database. The link schema L consists of a single link relation L(sid, cid). A source instance I for S is given below as
a set of facts:

Subsid(s1, “Citibank N.A.”, “New York”) Company(c1, “Citigroup Inc”, “New York”)
Subsid(s2, “CIT Bank”, “Salt Lake City”) Company(c2, “CIT Group Inc”, “New York”)

Exec(e1, c1, “E. McQuade”, “CEO, Citibank N.A.”)

In the above, ‘Citigroup Inc” and “CIT Group Inc” are two different parent companies, and “Citibank N.A.” is the name of a
true subsidiary of “Citigroup Inc”, while “CIT Bank” is the name of a true subsidiary of “CIT Group Inc”. The goal of entity
linking is to identify links such as L(s1, c1) and L(s2, c2).

The following set � of constraints can be used to specify declaratively the properties of the link relation in terms of
the source relations. First, � contains two inclusion dependencies L[sid] ⊆ Subsid[sid], L[cid] ⊆ Company[cid], and the
functional dependency L : sid → cid. While the inclusion dependencies specify where L is allowed to take values from, the
functional dependency gives the additional requirement that the links must be many-to-one from sid to cid (i.e., every
subsidiary must link to at most one parent company). Additionally, � includes the matching constraint:

L(sid, cid) → ∀sn, loc, cn,hd (Subsid(sid, sn, loc)∧ Company(cid, cn,hd)

→ (sn ∼ cn)

∨
∃e,n, t (Exec(e, cid,n, t) ∧ contains(t, sn))),

which lists all possible reasons as to why a link may exist. Concretely, if a subsidiary id (sid) and a company id (cid) are
linked, then for every binding of Subsid and Company source tuples where sid and cid respectively occur, it must be that
one of the two matching conditions holds: (1) there is a similarity in the names, as specified by sn ∼ cn, or (2) there is
some executive working for the company and this executive has a title that contains the subsidiary’s name.

The following are solutions for I w.r.t. E :

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}

We assume here that the name similarity predicate ∼ evaluates to true for all pairs of subsidiary name and company name
occurring in our instance I (thus, “Citibank N.A.” ∼ “Citigroup Inc” but also “Citibank N.A.” ∼ “CIT Group Inc”, and so on).
Note that the link L(s1, c1) satisfies both the ∼ predicate and the Exec-based condition, while other links satisfy only the
∼ predicate. Intuitively, the link L(s1, c1) is a stronger link than the others. The link instance J5 = {L(s1, c1), L(s1, c2)} is not
a solution, since it violates the functional dependency. Finally, note that a sub-instance of a solution is always a solution.

The above example illustrates that, in general, unlike the situation with entity resolution, in entity linking we allow
linking of entities that are not necessarily of the same type; moreover, a link relation need not be an equivalence relation.

3 [9] puts the link schema first to emphasize the link-to-source nature of the specification.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.5 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
2.2. Maximum-value solutions

An important feature of using link-to-source constraints for expressing matching requirements is that entity-linking spec-
ifications always have solutions (in particular, the empty solution). However, as it was observed in [9], not all solutions are
equally good, for a given entity-linking specification and for a given source instance. As a result, [9] introduced a refinement
on the notion of solutions, called “maximum-value solutions”, based on assigning values to the links in a solution, where
the value reflects intuitively the evidence supporting a link. We recall next the calculation of a value of a link from [9].

Given a set � of constraints in L0 (with at most one matching constraint per link relation), an R-instance 〈I, J 〉 and
a link fact L J (a, b), we define the value Val(L J (a, b)) of the link fact as follows. If L(a, b) does not satisfy the inclusion
dependencies, then Val(L J (a, b)) = 0. Otherwise, we distinguish several cases.

1. If � contains no matching constraint for L, then Val(L J (a, b)) = 1.
2. If � contains a matching constraint for L (which, by assumption, is the only such matching constraint) and if (a, b) does

not satisfy the right-hand side of the matching constraint for L, then Val(L J (a, b)) = 0.
3. If � contains a matching constraint for L and if (a, b) satisfies the right-hand side of the matching constraint for L, we

define Val(L J (a, b)) as follows.
First, recall that the matching constraint for L has the form (1). Assume that there is no instantiation u0 of the vector
of universally quantified variables u such that I |= ψ(a, b, u0). This means that the matching constraint for L(a, b) is
satisfied for vacuous reasons. As in the earlier case of no matching constraint, we take the value of the link to be 1. In
doing so, we treat the implication ψ(x, y, u) → α1 ∨ . . .∨αk in the matching constraint (1) as a strict implication rather
than a material implication (i.e., we ignore the right-hand side when the left-hand side is false).
In all other cases, we let the value of the link be:

Val(L J (a,b)) = min
u0

(
∑
αi ,z0

1). (3)

In the above, u0 ranges over all the distinct instantiations of the vector of universally quantified variables u such that
I |= ψ(a, b, u0). We take the minimum, over all such u0, of the strength with which the source instance I satisfies the
disjunction α1 ∨ . . . ∨ αk . This strength is defined as a sum that gives a value of 1 for every distinct combination of
a disjunct αi such that I satisfies αi(a, b, u0), and distinct instantiation z0 of the vector z of existentially quantified
variables of αi that makes the satisfaction of αi hold. (Recall that αi is, in general, of the form ∃z φi(x, y, u, z).) In the
case when αi is satisfied and the existentially quantified variables are missing, then we count only 1. If ψ is empty, so
that the matching constraint is of the form (2), then Val(L J (a, b)) = ∑

αi ,z0
1.

We can see that, intuitively, the sum in formula (3) calculates the strength of a link by counting the number of satisfied
disjuncts together with the evidence (i.e., the number of existential witnesses). Taking the minimum guarantees that
we take the weakest strength among all u0.

The value of a solution J , denoted by Val(J), is then the sum of the values of the links in J . Putting it all together,
the following definition, adapted from [9], introduces the class of maximum-value solutions as well as the notion of certain
links with respect to the class of maximum-value solutions.

Definition 3. Assume an entity-linking specification E in L0 . Given a source instance I , a maximum-value solution for I
w.r.t. E is a link instance J such that: (1) J is a solution for I w.r.t. E , and (2) for every other solution J ′ , we have that
Val(J ′) ≤ Val(J). The set of certain links for I w.r.t. the class of maximum-value solutions and E is the set of links that
appear in every maximum-value solution J for I w.r.t. E .

Let us revisit Example 1. We have that Val(L J1 (s1, c1)) = 2, since L J1 (s1, c1) satisfies both disjuncts in the matching
constraint, while Val(L J1 (s2, c1)) = 1. Thus, the total value of the link instance J1 is 3. Similarly, the other link instance
containing L(s1, c1), namely J2, also has value 3. The remaining link instances J3 and J4 have value of 2. Hence, J1 and J2
are the two maximum-value solutions in this example. It follows that there is precisely one certain link, namely L(s1, c1).
This also reflects the intuition that L(s1, c1) is the stronger link based on all the available evidence.

3. Entity-linking frameworks

In what follows, we will introduce the notion of an entity-linking framework, in which the constraint language, the sets
of constraints allowed, and the weight function that measures the “strength” of the links are parameters of the framework.

3.1. Weighted repairs and consistent answers

We first consider a general setting where S and L are two disjoint relational schemas, and R = S ∪ L is the union of these
two schemas. In the subsequent subsection, we will instantiate this to the specific case where S is a source schema and L
is the link schema.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.6 (1-26)

6 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Definition 4. A weight function on R is a function w that assigns a non-negative weight w(〈I, J 〉, L J (a1, . . . , an)) for every
R-instance 〈I, J 〉 and for every fact L J (a1, . . . , an) of J , where L is a relation symbol in L. The weight w(〈I, J 〉, L J (a1, . . . , an))

is called the weight of the fact L J (a1, . . . , an) in 〈I, J 〉.

Note that, even though only facts in relations interpreting L-symbols have weights, the weight of such a fact may depend
on the entire R-instance 〈I, J 〉 and not just on J .

In what follows, we will define the notion of a maximum weight repair of an R-instance 〈I, J 〉; this notion is inspired by a
similar one introduced by Du, Qi, and Shen [13] in the context of knowledge-bases with constraints expressed in description
logics.

Definition 5. Let � be a set of integrity constraints on R, let w be a weight function on R, and let 〈I, J 〉 be an R-instance.
A sub-instance 〈I, J ′〉 of 〈I, J 〉 is a maximum weight repair of 〈I, J 〉 with respect to � and w if 〈I, J ′〉 has the following proper-
ties:

1. 〈I, J ′〉 is consistent, i.e., 〈I, J ′〉 satisfies every constraint in �.
2. J ′ has maximum weight, i.e., if 〈I, J ′′〉 is a consistent sub-instance of 〈I, J 〉, then � f ∈ J ′′ w(〈I, J ′′〉, f) ≤ � f ∈ J ′ w(〈I, J ′〉, f).

In general, the weight function w may also depend on the set � of constraints at hand. If � and w are understood from
the context, then we will simply talk about maximum weight repairs of 〈I, J 〉, instead of maximum weight repairs of 〈I, J 〉
with respect to � and w .

Thus, a maximum weight repair of 〈I, J 〉 is a consistent sub-instance 〈I, J ′〉 of 〈I, J 〉 whose total sum of the weights of
its L-facts is maximum across all consistent sub-instances 〈I, J ′′〉 of 〈I, J 〉. In general, violations of integrity constraints can
be repaired via tuple deletions, tuple insertions, or attribute value updates [11]. In this article, because of the constraints
we allow, we consider only repairs obtained via tuple deletions from the link relations (source relations are not allowed to
change).

Note that the notion of maximum weight repairs introduced in Definition 5 differs from the standard notion of subset
repairs [2] in two ways: first, in the standard notion, the repair takes place with respect to the entire schema or, more
precisely, we have there that S = ∅ and R = L; second, in the standard notion, there is no weight function on the facts.
Note also that maximum cardinality subset repairs [26] are the special case of maximum weight repairs in which S = ∅, R = L,
and the weight function assigns weight 1 to each fact. Finally, note that our notion of maximum weight repairs differs also
from the notion of maximum weight repairs introduced in [13] in the following way. In [13], the weight of each fact f
depends on the inconsistent instance 〈I, J 〉 under consideration, but remains the same on all consistent sub-instances of
〈I, J 〉 containing f . In contrast, in Definition 5, the weight of each fact f may differ from instance to instance; thus, we
may have w(〈I, J 〉, f) �= w(〈I, J ′〉, f), where 〈I, J ′〉 is a consistent sub-instance of 〈I, J 〉.

Maximum weight repairs give rise to a notion of consistent answers of queries in exactly the same way subset repairs
do.

Definition 6. Let � be a set of integrity constraints on R and let w be a weight function on R. If q is a query on R, and
〈I, J 〉 is an R-instance, then a tuple a is a consistent answer of q on 〈I, J 〉 with respect to � and w if a ∈ q(〈I, J ′〉), for every
maximum weight repair 〈I, J ′〉 of 〈I, J 〉 with respect to � and w .

3.2. Certain links and entity-linking frameworks

We now consider the specific case of entity linking, where S is a source schema and L is the link schema.

Definition 7. Let S be a schema of source symbols, let L be a schema of link symbols, let � be a set of integrity constraints
on R = S ∪ L, and let w be a weight function on R = S ∪ L. If L is a link symbol in L and 〈I, J 〉 is an R-instance, then a
certain link of L on 〈I, J 〉 with respect to � and w is a consistent answer of the atomic query L(x, y) on 〈I, J 〉 with respect to
� and w , i.e., a pair (a, b) such that (a, b) ∈ L J ′ , for every maximum weight repair 〈I, J ′〉 of 〈I, J 〉 with respect to � and w .

We will also use the notation L(a, b) for a certain link (a, b) of L. It will be clear from the context if L(a, b) refers to a
certain link or to a link L J (a, b) for some instance J .

Intuitively, in the above definition, we are given an instance 〈I, J 〉, not necessarily consistent with respect to the set � of
integrity constraints, where J represents an initial set of link facts. Then, the certain links of L on 〈I, J 〉 represent precisely
the subset of L-facts of J that appear in every maximum weight repair of 〈I, J 〉. In this article, we focus on links that are
certain, because this is a standard semantics in information integration, including data exchange and incomplete databases.
While other alternatives may be considered (e.g., possible links, which are the links that appear in at least one maximum
weight repair), we leave such investigation for future work. We point out, however, that the certain links have an advantage
over the possible links because they provide a stronger guarantee.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.7 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Note that Definition 7 is very general and does not make any assumptions about the class of integrity constraints that
is allowed in � or about the weight function w . We also note that the weight function w is assumed to be defined over
instances of R = S ∪ L, independently of whether these instances are consistent with � or not.

The concrete choices for � and w will be incorporated into the notion of entity-linking frameworks, which we define
next, together with the notion of entity-linking specifications.

Definition 8. Let S be a schema of source symbols, let L be a schema of link symbols, and let R = S ∪ L.

• An entity-linking framework on R is a triple (L, S, W) consisting of a logical language L on R, a collection S of finite
sets of L-formulas, and a collection W of weight functions such that, for each � ∈ S , there is a weight function w�

on R.
• If � is a member of S and w� is the associated weight function in W , then we say that the triple (L, �, w�) is an

entity-linking specification in the entity-linking framework (L, S, W).

Note that since L is a language on R = S ∪ L, Definition 8 allows for entity-linking frameworks that have source
constraints, in addition to link constraints and constraints between links and sources. Here, we focus on entity-linking
frameworks in which the language has no source constraints, because we assume that the source instances are given as
clean databases that we do not need to modify.

Several different logical languages for expressing entity-linking specifications were introduced in [9] and then used to
define and study different scenarios for declarative entity linking. Here, we show that all but one of the scenarios considered
in [9] (namely, the scenario of maximal solutions) are concrete instances of the notion of an entity-linking framework in
Definition 8, by choosing, in each case, the logical language L, the collection S of finite sets of constraints from L, and
the collection W of weight functions. As we shall see, the weight functions can become progressively more sophisticated.
Furthermore, the logical language L together with the collection S can become progressively richer.

3.3. Entity-linking frameworks based on L0

As earlier mentioned, practical scenarios for entity linking using the language L0 have focused on the case of exactly
two inclusion dependencies and also on the case of exactly one matching constraint per link symbol [9]. The next definition
captures these requirements by introducing the collection S0; it also introduces an initial instance 〈I, I∗〉 that will be used
repeatedly in the sequel (intuitively, as a superset for the repairs).

Definition 9. Let S be a schema of source symbols and let L be a schema of link symbols.

• We write S0 to denote the collection of all finite sets � of L0-formulas such that for each link symbol L, the set �
contains one inclusion dependency on L for each of its attributes, contains zero, one or both functional dependencies
on L, and at most one matching constraint on L.

• If I is an S-instance, then we write I∗ to denote the L-instance defined as follows: for each link symbol L in S, we
have that LI∗ = πA(S I) × πB(T I), where A is the attribute of the source symbol S and B is the attribute of the source
symbol T for which L0 contains the inclusion dependencies L[X] ⊆ S[A] and L[Y] ⊆ T [B].

In the above definition, the instance 〈I, I∗〉 satisfies the inclusion dependencies of L0 on each link symbol, but it need
not satisfy the functional dependencies or the matching constraints of L0 .

We are now in a position to define several concrete entity-linking frameworks by instantiating the general concepts
introduced above. We consider three different entity-linking frameworks obtained from L0 and S0 by using three different
types of weight functions.

Framework 1. The entity-linking framework (L0, S0, V0) of maximum-value solutions.
For each � ∈ S0, consider the following weight function w� . Given an R-instance 〈I, J 〉 and a fact L J (a, b), we define

w�(〈I, J 〉, L J (a, b)) = Val(L J (a, b)), where Val(L J (a, b)) is defined in Section 2 (relative to the set � of constraints).

By analyzing the definition of Val(L J (a, b)) we can see that the weight w�(〈I, J 〉, L J (a, b)) used by the above entity-
linking framework does not actually depend on the link instance J but rather on the link fact itself.

Consider the above entity-linking framework (L0, S0, V0). It is easy to verify that if I is an S-instance, then the following
statements are equivalent for an L-instance J :

1. 〈I, J 〉 is a maximum weight repair of 〈I, I∗〉 with respect to � and w� .
2. J is a maximum-value solution for I with respect to �, as defined in [9].

It follows that the entity-linking framework (L0, S0, V0) coincides with the entity-linking scenario given by L0(⊕) in [9].

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.8 (1-26)

8 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Framework 2. The entity-linking frameworks (L0, S0, Vw) of maximum-value solutions with weighted disjuncts.
For each matching constraint L(x, y) → ∀u(ψ(x, y, u) → α1 ∨ . . . ∨ αk) of L0 and for each disjunct αi ::= ∃z φi(x, y, u, z),

let wφi (x, y, u, z) be a function that returns non-negative numbers. Intuitively, with each disjunct that returns true or false,
we also have a function that computes a weight for that disjunct. This collection of functions wφi gives rise to a weight
function Vw that is computed as in the case of V0 except that in formula (3) we replace the number 1 by wφi (a, b, u0, z0).

Note that each different collection of functions wφi gives rise to a different entity-linking framework (L0, S0, Vw). This
family of frameworks captures the entity-linking scenarios given by L0(⊕, w), which, as discussed in [9], is of special
interest because of its connection to probabilistic methods for entity resolution, including those based on Markov Logic
Networks (MLNs) [27].

Framework 3. The entity-linking framework (L0, S0, W1) of maximum cardinality repairs.
Let 1 be the weight function on R such that 1(〈I, J 〉, L J (a, b)) = 1, for every R-instance 〈I, J 〉 and every fact L J (a, b).

Consider the entity-linking framework (L0, S0, W1), where, for each � ∈ S0, we have that w� = 1.
A maximum weight repair of 〈I, I∗〉 with respect to � and 1 is a repair that maximizes the total cardinality of the link

facts. We call such repairs maximum cardinality repairs.

This is a new framework that has not been considered in [9]. It can be verified that if 〈I, J 〉 is such a maximum
cardinality repair of 〈I, I∗〉, then J is a maximal solution for I , as defined in [9]. The converse, however, does not always
hold. Like maximal solutions, the notion of maximum cardinality repairs suffers from the deficiency that they give rise to
“too few” certain links. This can be seen in the following example from [9].

Example 2. Assume the same schemas and constraints as in Example 1. Also, assume the same source instance I . It can
be seen that, given our set � of constraints, there are exactly four maximum cardinality repairs for 〈I, I∗〉, namely 〈I, J i〉,
i = 1, 4, where the J i ’s are the same as the solutions listed in Example 1. We display them again for convenience:

J1 = {L(s1, c1), L(s2, c1)} J2 = {L(s1, c1), L(s2, c2)}
J3 = {L(s1, c2), L(s2, c1)} J4 = {L(s1, c2), L(s2, c2)}

It follows that the set of certain links of L on 〈I, I∗〉 w.r.t. � and 1 is empty: there is no link that appears in all four
maximum cardinality repairs and, hence, no link qualifies as a certain link. This is in contrast with the framework of
maximum-value solutions, which is able, for the same example, to differentiate the link L(s1, c1) as a stronger link than
the other links. Recall from Section 2.2 that J1 and J2 are the maximum-value solutions for this example; hence, L(s1, c1)

is the certain link with respect to maximum-value solutions. However, the constant weight function 1 used by the simpler
framework of maximum cardinality repairs does not provide such differentiation.

Next, we state a general theorem for enumerating all maximum weight repairs with polynomial delay and for computing
the certain links in polynomial time. Several results in [9], including Theorem 5.4, are special cases of this theorem.

Theorem 1. Let (L0, S0, W) be an entity-linking framework such that for each � ∈ S0 , for each S-instance I , for each sub-instance J
of I∗ , and for each fact L J (a, b), we have that w�(〈I, I∗〉, LI∗ (a, b)) = w�(〈I, J 〉, L J (a, b)). Then the following statements are true.

1. There is a polynomial-delay algorithm that, given an S-instance I , enumerates the maximum weight repairs of 〈I, I∗〉.
2. There is a polynomial-time algorithm that, given an S-instance I , computes the certain links of 〈I, I∗〉 with respect to � and w� .

Note that the hypothesis of Theorem 1 is satisfied by the preceding three entity-linking frameworks. In particular, in
all three frameworks, the weight of a link fact does not depend on the link instance J in which it appears. The proof of
Theorem 1 is essentially the same as the proof of Theorem 5.4 in [9], where the problem is reduced to computing and
enumerating maximum-weight matchings in undirected weighted bipartite graphs.

3.4. Collective entity-linking frameworks

We now consider a language Lc that is richer than L0 and allows for link relations to appear in the right-hand side of
matching constraints. Thus, the language Lc allows us to express what is usually called collective entity linking [7], that is,
the process of creating or specifying multiple inter-dependent links.

Concretely, in Lc , the matching constraint for a link symbol L has the same form

L(x, y) → ∀u(ψ(x, y,u) → α1 ∨ . . . ∨ αk)

as in L0 , with the difference that in each disjunct αi ::= ∃z φi(x, y, u, z), the formula φi can now be a conjunction of
source and link atomic formulas, along with equalities. Thus, the matching constraint for L is allowed to refer to other link
symbols (possibly, including L itself). As an example, which we give shortly, in Lc one can express matching constraints to

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.9 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
specify both publication links and venue links, where the matching constraint for publication links may depend on the links
between venues, and the matching constraint for venue links may depend on the links between publications.

Based on the language Lc , we can define two entity-linking frameworks, one that does not allow for recursion among
the links, and one that does allow for recursion.

Framework 4. The entity-linking framework (Lc, S1, V1) for recursion-free collective entity linking.
In this framework, S1 is the collection of all finite sets of constraints from Lc , such that for each link symbol L, the set

� contains the two inclusion dependencies on L, it contains zero, one or two functional dependencies on L, and at most
one matching constraint on L. Additionally, we require that there is no recursion through the links. Thus, for each � in S1,
there is implicitly a hierarchy of link symbols, and a matching constraint for L may call only links that are strictly lower
in the hierarchy than L. Additionally, V1 is the collection of weight functions that associates with each � in S1 a weight
function w� defined in the same way as in the entity-linking framework (L0, S0, V0).

Framework 5. The entity-linking framework (Lc, S2, V2) for recursive collective entity linking is defined in the same way
as (Lc, S1, V1) except that S2 allows recursion through the links.

Example 3. Consider a bibliographic example from [9], where we link papers from one database with articles from an-
other database, while also linking the corresponding venues. Other examples involving bibliographical data have appeared
in the literature, including [5,7]. In our example, the source schema S consists of Paper(pid, title, venue, year) and
Article(ano, title, journal, year). Here, pid is a unique id assigned to Paper records, while venue could be a confer-
ence, a journal, or some other place of publication. The Article relation represents publications that appeared in journals,
and ano is a unique id assigned to such records. The link schema L consists of two relations: PaperLink (pid, ano)

and VenueLink (venue, journal). The first relation is intended to link paper ids from Paper with article numbers from
Article, when they represent the same publication. The second relation is intended to relate journal values that occur
in Article (e.g., “ACM TODS”) to journal values that occur under the venue field in Paper (e.g., “TODS”).

A possible entity-linking specification in the framework (Lc, S2, V2) is (Lc, �, w�), where � contains the following two
matching constraints:

VenueLink(ven, jou) → (ven ∼1 jou)

∨ ∃pid, t1, y1,ano, t2, y2 (Paper(pid, t1, ven, y1)

∧ Article(ano, t2, jou, y2)

∧ PaperLink(pid,ano))

PaperLink(pid,ano) →
∀t1, ven, y1, t2, jou, y2 (Paper(pid, t1, ven, y1)∧ Article(ano, t2, jou, y2)

→ ((t1 ∼2 t2) ∧ (y1 = y2))

∨ ((t1 ∼2 t2) ∧ VenueLink(ven, jou)))

The first constraint specifies that we may link a venue with a journal only if their string values are similar (via some
similarity predicate ∼1), or if there are papers and articles that have been published in the respective venue and journal
and that are linked via PaperLink. The second constraint specifies that we may link a paper with an article only if their
titles are similar (via a similarity predicate ∼2) and their years of publication match exactly, or if their titles are similar and
their venues of publications are linked via VenueLink.

Additionally, � includes two functional dependencies on PaperLink: pid → ano, ano → pid, to reflect that each paper
id in Paper must match to at most one article number in Article, and vice-versa. We do not require any functional
dependencies on VenueLink; thus, we could have multiple venue strings in Paper matching with a journal string in
Article, and vice-versa. We also include in � the expected inclusion dependencies from the link attributes to the corre-
sponding source attributes (e.g., PaperLink[pid] ⊆ Paper[pid]).

With a simple modification, where we remove the second disjunct in the matching constraint for PaperLink, we obtain
a different entity-linking specification that is in the recursion-free collective entity-linking framework (Lc, S1, V1).

We point out that the entity-linking framework (Lc, S1, V1) coincides with the entity-linking scenario given by L1(⊕)

in [9], while entity-linking framework (Lc, S2, V2) coincides with the entity-linking scenario given by L2(⊕) in [9]. This is
yet another manifestation of the modeling capabilities of the general notion of an entity-linking framework in Definition 8.

For the preceding two entity-linking frameworks (Framework 4 and Framework 5), it is important to note that the weight
functions depend on the link instance in a crucial way. In particular, the hypothesis of the preceding Theorem 1, stating
that the weight of a link fact only depends on I∗ and not on the link instance J , is no longer satisfied. In fact, as shown in
[9] (Theorem 7.3), Theorem 1 fails even for (Lc, S1, V1), unless NP = coNP.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.10 (1-26)

10 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
4. Comparing the expressive power of entity-linking frameworks

The notion of certain links makes it possible to compare the expressive power of entity-linking frameworks. In the next
definition, we first introduce the notion of certain-link equivalence between entity-linking specifications. This notion is of
interest as a tool to compare entity-linking specifications in a way other than logical equivalence (which may be too strict
for entity linking purposes). The second part of the definition then makes use of certain-link equivalence to define a notion
of subsumption between entity-linking frameworks.

Definition 10. Let S be a schema of source symbols, let L be a schema of link symbols, let R = S ∪ L. Assume that F =
(L, S, W) and F ′ = (L′, S ′, W ′) are two entity-linking frameworks on R.

• Let E = (L, �, w�) be an entity-linking specification in F , and let E ′ = (L′, �′, w�′) be an entity-linking specification
in F ′ . We say that E and E ′ are certain-link equivalent if for every link symbol L in L and every R-instance 〈I, J 〉, we
have that the certain links of L on 〈I, J 〉 with respect to � and w� coincide with the certain links of L on 〈I, J 〉 with
respect to �′ and w�′ .

• We say that F is subsumed by F ′, denoted F � F ′ , if for every entity-linking specification E of F there is an entity-
linking specification E ′ of F ′ such that E and E ′ are certain-link equivalent. Otherwise, we say that F is not subsumed
by F ′ , and write F �F ′ .

• We say that F is strictly subsumed by F ′ if F �F ′ , but F ′ �F .

We note that a weaker notion of subsumption was considered implicitly in [9] for concrete entity-linking scenarios. In
this weaker notion, we say that E = (L, �, w�) and E ′ = (L′, �′, w�′) are certain-link equivalent if for every link symbol
L in L we have that the certain links of L on 〈I, I∗〉 with respect to � and w� coincide with the certain links of L on
〈I, I∗〉 with respect to �′ and w�′ . Thus, this weaker notion considers only repairs of the instance 〈I, I∗〉 instead of repairs
of arbitrary instances 〈I, J 〉.

We note that for of all our subsumption results (Theorems 2, 3, 4, and 5), whenever we prove failure of subsumption,
we actually prove it in a stronger sense, by showing that it fails even under the weaker notion.

The next two theorems say that the entity-linking framework (L0, S0, V0) of maximum-value solutions and the entity-
linking framework (L0, S0, W1) of maximum cardinality repairs are incomparable in expressive power, in that neither
subsumes the other.

Theorem 2. The entity-linking framework (L0, S0, V0) of maximum-value solutions is not subsumed by the entity-linking framework
(L0, S0, W1) of maximum cardinality repairs.

Proof. We now give an entity-linking specification E in (L0, S0, V0) for which there is no E ′ in (L0, S0, W1) that is certain-
link equivalent to it.

Let E be the entity-linking specification given by the following:

• L(x, y) → R(x, y) ∨ S(x, y) ∨ T (x, y)

• FD L : X → Y
• L[X | ⊆ D
• L[Y] ⊆ D

Note that the relation D , which appears in the inclusion dependencies, is unary.
For each of the instances I j we now specify, the role of J in Definition 10 is played by (I j)

∗ , which is defined in
Definition 9.

For I1 = {R(0, 1), R(0, 2), S(0, 2), D(0), D(1), D(2)}, we have L(0, 2) as a certain link.
For I2 = {R(0, 1), R(0, 2), S(0, 1), S(0, 2), T (0, 1), D(0), D(1), D(2)}, we have L(0, 1) as a certain link.
For I3 = {R(0, 1), R(0, 2), T (0, 2), D(0), D(1), D(2)}, we have L(0, 2) as a certain link.
For I4 = {R(0, 1), R(1, 1), D(0), D(1)}, we have L(0, 1) and L(1, 1) as certain links.
For I5 = {R(0, 1), S(1, 2), D(0), D(1), D(2)}, we have L(0, 1) and L(1, 2) as certain links.
Assume that there were an entity-linking specification E ′ in the framework (L0, S0, W1) of maximum cardinality repairs

that is certain-link equivalent to E ; we shall derive a contradiction.
Because of I5, we see that E ′ has the inclusion dependencies L[X | ⊆ D and L[Y] ⊆ D , since no projection of R , S , or T

contains all of the values of L[X] (respectively, of L[Y]).
Because of I4, we see that E ′ does not have the FD L : Y → X . So it either has no FDs or only the FD L : X → Y .
If E ′ has no matching constraint, then L(0, 1) and L(0, 2) cannot be distinguished from each other in I1, so either neither

or both would be certain links, a contradiction.
Let the matching constraint for E ′ be of the form (1), with the same restrictions as given there. The way that we shall

derive a contradiction is to show that L(0, 2) satisfies the marching constraint in I2, that is, that the right-hand side of

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.11 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
(1) holds when x = 0 and y = 2. Thus, assume that L(0, 2) satisfies the marching constraint in I2. Let M be a maximum
cardinality repair for I2. Then M contains L(0, 1), since L(0, 1) is a certain link for I2. Form M ′ from M by replacing L(0, 1)

by L(0, 2). Then M ′ satisfies the inclusion dependencies and the only possible FD L : X → Y . Also, by assumption, L(0, 2)

satisfies the matching constraint. Hence, M ′ is a maximum cardinality repair. But this is a contradiction, since M ′ does not
contain the certain link L(0, 1). So the proof is complete if we show that L(0, 2) satisfies the marching constraint in I2.

We begin by considering the case where ψ is empty. Thus, in this case the matching constraint is of the form (2) in
Section 2.

Then some disjunct αi is satisfied in I1 when x = 0 and y = 2. But that same disjunct is satisfied in I2 when x = 0 and
y = 2, since I1 is a sub-instance of I2. So L(0, 2) satisfies the matching constraint in I2, as desired.

Now consider the other case, where ψ is nonempty. If ψ were to contain S , then the matching constraint (1) would
be trivially satisfied in I3 when x = 0 and y = 1, since there is no atomic fact involving S in I3. Let M be a maximum
cardinality repair for I3. Then M contains L(0, 2), since L(0, 2) is a certain link for I3. Form M ′ from M by replacing L(0, 2)

by L(0, 1). Then M ′ satisfies the inclusion dependencies and the only possible FD L : X → Y . And as we already noted,
L(0, 1) satisfies the matching constraint. Hence, M ′ is a maximum cardinality repair. But this is a contradiction, since M ′
does not contain the certain link L(0, 2). So ψ does not contain S . Similarly, by considering I1, we see that ψ does not
contain T . Since ψ does not contain S or T , it follows that ψ contains only R and/or D .

Let x = 0 and y = 2. We now show that

∀u(ψ(x, y,u) → α1 ∨ . . . ∨ αk) (4)

holds in I2. This certainly holds if there is no assignment t to the variables in u that makes ψ(x, y, u) hold in I2 when x = 0
and y = 2. So let t be an arbitrary assignment to the variables in u that makes ψ(x, y, u) hold in I2 when x = 0 and y = 2,
and let t′ be the extension of t where t′(x) = 0 and t′(y) = 2. Then ψ also holds in I1 under t′ , since I1 and I2 agree on the
tuples of R and D , the only possible relation symbols of ψ . Then there is some disjunct αi that holds in I1 under t′ , since
L(0, 2) is a certain link for I1. Now αi is of the form ∃zi φi(x, y, u, zi), where φi is a conjunction of atomic formulas and
equalities. Since αi holds in I1 under t′ , there is t′′ that extends t′ to the variables in zi such that φi holds in I1 under t′′ .
Then φi holds in I2 under t′′ , since (a) every atomic fact that holds in I1 also holds in I2, and (b) the equalities among
variables in t′′ hold independent of which database we are considering. So ψ(x, y, u) → αi holds in I2 under t when x = 0
and y = 2, and hence

ψ(x, y,u) → α1 ∨ . . . ∨ αk

holds in I2 under t when x = 0 and y = 2. Since t is an arbitrary assignment to the variables in u that makes ψ hold in I2
when x = 0 and y = 2, it follows that (4) holds in I2 when x = 0 and y = 2. So L(0, 2) satisfies the matching constraint
in I2, as desired. �
Theorem 3. The entity-linking framework (L0, S0, W1) of maximum cardinality repairs is not subsumed by the entity-linking frame-
work (L0, S0, V0) of maximum-value solutions.

The proof of Theorem 3 is somewhat long and technical, and is given in the appendix.
By definition, the entity-linking framework (L0, S0, V0) is subsumed by the entity-linking framework (Lc, S1, V1). The

next theorem says that this subsumption is strict. This means that allowing for link relations to appear on the right-hand
side of matching constraints gives strictly more expressive power than not allowing this, even when the dependencies
among the link relations are non-recursive.

Theorem 4. The entity-linking framework (L0, S0, V0) of maximum-value solutions is strictly subsumed by the entity-linking frame-
work (Lc, S1, V1) for recursion-free collective entity linking.

Proof. By definition, the entity-linking framework (L0, S0, V0) is subsumed by the entity-linking framework (Lc, S1, V1).
We now show that this subsumption is strict. Thus, we now give an entity-linking specification E in (Lc, S1, V1) for which
there is no E ′ in (L0, S0, V0) that is certain-link equivalent to it.

Let E be the entity-linking specification given by the following:

• L1(x, y) → (S(x, y) → (L2(x, y) ∧ R(x, y))

• L2(x, y) → (P (x, y) → T (x, y))

• There are no FDs
• L1[X | ⊆ D
• L1[Y | ⊆ D
• L2[X] ⊆ D
• L2[Y] ⊆ D

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.12 (1-26)

12 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Note that the relation D , which appears in the inclusion dependencies, is unary.
For each of the instances I j we now specify, the role of J in Definition 10 is played by (I j)

∗ , which is defined in
Definition 9.

For I1 = {D(0)}, the link L1(0, 0) is a certain link.
For I2 = {D(0), S(0, 0)}, the link L1(0, 0) is not a certain link. This is because R(0, 0) does not hold, and so the matching

constraint for L(0, 0) is not satisfied.
For I3 = {D(0), S(0, 0), R(0, 0)}, the link L1(0, 0) is a certain link.
For I4 = {D(0), S(0, 0), R(0, 0), P (0, 0)}, the link L1(0, 0) is not a certain link, since the matching constraint for L1(0, 0)

fails, as we now show. The matching constraint for L2(0, 0) is not satisfied (since P (0, 0) holds but not T (0, 0)). Since
L2(0, 0) fails, while S(0, 0) holds, we see that L1(0, 0) does not satisfy the matching constraint for L1.

Assume that there were an entity-linking specification E ′ in the entity-linking framework (L0, S0, V0) of maximum-value
solutions that is certain-link equivalent to E ; we shall derive a contradiction.

We denote by E ′ � L1 the entity-linking specification that consists of the matching constraint for L1, the FDs for L1, and
the inclusion dependencies for L1.

Because of I1, the inclusion dependencies for L1 are L1[X | ⊆ D and L1[Y | ⊆ D . From the inclusion dependencies, we
see that L1(0, 0) is the only candidate link for L1 in I1, I2, I3, and I4. Throughout the rest of this proof, we will focus our
attention only on this link L1(0, 0). So we assume throughout the rest of this proof that x = y = 0.

If in E ′ � L1, there is no matching constraint, then L(0, 0) would be certain link in I2, a contradiction.
Assume that in E ′ � L1, we have that the matching constraint for L1 is

L1(x, y) → ∀u(ψ(x, y,u) → α1 ∨ . . . ∨ αk), (5)

where ψ(x, y, u) is a conjunction (possibly empty) of atomic formulas, where the universally quantified variables u must
occur in ψ , and where αi is of the form ∃zi φi(x, y, u, zi). Each φi is a conjunction of atomic formulas and equalities. We
assume that the variables in zi are disjoint from the variables in ψ and from {x, y}.

We begin by considering the case where ψ is empty. Thus, in this case the matching constraint is of the form

L1(x, y) → (α1 ∨ . . . ∨ αk). (6)

Since L1(0, 0) is a certain link for I1, it satisfies the matching constraint with respect to I1. Since I1 ⊂ I2, it follows
by monotonicity that L1(0, 0) satisfies the matching constraint with respect to I2 (this monotonicity property when the
matching constraint is of the form (6) was noted in the proof of Theorem 3.5 in [9]). Since L1(0, 0) is the only candidate
link for L1 in I2, and it satisfies the matching constraint and the inclusion dependencies, it follows that L1(0, 0) is a certain
link for I2, a contradiction.

So the matching constraint for L1 is of the form (5) where ψ is nonempty. If P , R , or T were to appear in ψ , then
(5) would be trivially satisfied for I2. Since L1(0, 0) would satisfy the matching constraint, it would follow, as before, that
L1(0, 0) would be a certain link for I2, a contradiction. Therefore, only D and S can appear in ψ . When the variables in u
(if any) are all assigned the value 0 (under our assumption throughout this proof that x = y = 0), then ψ holds in I3. Since
I3 satisfies (5), and since ψ holds in I3 when all of the variables in u (if any) are assigned the value 0, it follows that there
is some αi that is satisfied in I3 when all of the variables in u (if any) are assigned the value 0. Now the only predicates
that can appear in αi are D , S , and R , since P and T are empty in I3.

We showed that ψ → αi is true in I3 when all of the variables in u (if any) are assigned the value 0. Since the premise ψ
can be satisfied in I3 only when all of the variables in u are assigned the value 0, it follows that ∀u(ψ → αi) is satisfied in
I3. Now the only predicates that can appear in ∀u(ψ → αi) are D , S , and R , since ψ can contain only D and S , and the only
predicates that can appear in αi are D , S , and R . Therefore, since I3 and I4 agree on D , S , and R , we have that ∀u(ψ → αi)

holds in I4. So (5) holds in I4 (for x = y = 0), and hence, as before, L1(0, 0) is a certain link for I4, a contradiction. �
In summary, this section focused on comparisons of the entity-linking framework (L0, S0, V0) of maximum-value solu-

tions with the entity-linking framework (L0, S0, W1) of maximum-cardinality repairs and with the entity-linking framework
(Lc, S1, V1) for recursion-free collective entity linking. Theorems 2 and 3 establish that (L0, S0, V0) and (L0, S0, W1) are in-
comparable in terms of expressive power, while Theorem 4 establishes that (L0, S0, V0) is strictly subsumed by (Lc, S1, V1).

5. Adding preference constraints

Staworko et al. [28] introduced the idea of preferring some repairs over others. In this section, we introduce a family of
entity-linking frameworks (L0, S0, P�) that is parameterized by a set of � preference constraints. This family of frameworks
can be seen as an extension of the entity-linking framework (L0, S0, V0), where we use a more refined collection of weight
functions that also take into account preferences among the link facts.

We first introduce the language of preference constraints from which � is drawn. The main motivation for such pref-
erence constraints is that they allow a user to specify explicitly whether some link facts should be considered stronger
than other link facts. Such preference constraints are given independently of, and in addition to, the set � of constraints in

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.13 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 13
S0, and will be used to further differentiate among conflicting links (i.e., pairs of link facts that violate one or both of the
functional dependencies on a link relation).

A preference constraint has the following general form:

L(x, y) ∧ L(x′, y′) ∧ α(x, y) ∧ ¬α(x′, y′) → L(x, y) ≥ L(x′, y′) (7)

In the above, L can be any of the link symbols in L while α(x, y) can be any predicate of the form ∃z φ(x, y, z), where φ is
a conjunction of source atomic formulas along with equalities.

Example 4. Consider a variation of the earlier Example 1 linking subsidiaries with companies, where the set � of constraints
is as follows. The functional and inclusion dependencies are as before. However, the matching constraint is simplified, for
the purposes of this example, so that it now requires only the similarity of the subsidiary name and company name:

L(sid, cid) → ∀sn, loc, cn,hd (Subsid(sid, sn, loc)∧ Company(cid, cn,hd)

→ (sn ∼ cn).

We now consider, additionally, a set � consisting of a single preference constraint, which uses an Exec-based condition to
differentiate among links:

L(sid, cid) ∧ L(sid′, cid′)
∧ ∃e,n, t, sn, loc (Exec(e, cid,n, t) ∧ Subsid(sid, sn, loc) ∧ contains(t, sn))

∧¬∃e,n, t, sn, loc (Exec(e, cid′,n, t) ∧ Subsid(sid′, sn, loc) ∧ contains(t, sn))

→ L(sid, cid) ≥ L(sid′, cid′)

Thus, whenever we have two links relating a subsidiary with a company, if one of the links satisfies the fact that the
company has an executive whose title contains the subsidiary name, while the other link does not satisfy such fact, we
prefer the first link over the second link.

Note that a user has the freedom, in general, to choose which conditions to push into the matching constraints of �
and which ones into the preference constraints of �. This is manifested, in this example, via the fact that the executive
information is used in a preference constraint whereas before it was used as part of a matching constraint.

The notion of a consistent instance when there are preference constraints continues to be the same as that of a consistent
instance with respect to an entity-linking specification in (L0, S0, V0) where there are no preference constraints. Thus, the
set � of preference constraints plays no role in defining consistent instances under (L0, S0, P�). However, � plays an
important role in defining the weight functions for the links, as we see next.

We are now ready to formally define (L0, S0, P�). First, we recall from Section 3.2 the instance 〈I, I∗〉, which for a given
source instance I , represents a superset for the repairs that we consider. Thus, I∗ represents the domain for all the links
that may appear in link relations.

Framework 6. The family of entity-linking frameworks (L0, S0, P�) with preference constraints.
For every fixed finite set � of preference constraints, we define an entity-linking framework (L0, S0, P�), by assigning

to each � ∈ S0 a weight function w�,� that depends on both � and �. Given an R-instance 〈I, J 〉 and a fact L J (a, b), we
define w�,�(〈I, J 〉, L J (a, b)) to be w�,�(〈I, I∗〉, LI∗ (a, b)), which in turn is defined as follows.

For each link symbol L, and source instance I , we first compute a preference relation ≥L on I∗ on conflicting links of L,
by evaluating each preference constraint of the form (7) that involves L. Concretely, whenever (x0, y0) and (x′

0, y
′
0) are

pairs in I∗ such that L(x0, y0) and L(x′
0, y

′
0) are conflicting (i.e., together violate one or both of the functional dependencies

on L), and such that α(x0, y0) is true in I but α(x′
0, y

′
0) is not true in I , we set L(x0, y0) ≥L L(x′

0, y
′
0). In general, ≥L can

have cycles. For example, we can have two distinct pairs l = L(x0, y0) and l′ = L(x′
0, y

′
0) such that l ≥L l′ and l′ ≥L l. Such

situation may arise when a user gives (at least) two preference constraints for L, the evaluation of which leads to opposite
preferences for the particular links.

We then turn ≥L into an acyclic relation >L as follows. First, we take the transitive closure ≥∗
L of ≥L . Then, we set l >L l′

whenever l ≥∗
L l′ but it is not the case that l′ ≥∗

L l. Intuitively, l >L l′ means that l is strictly preferred to l′ . It can be verified
that, for each L, the relation >L (or rather its inverse <L) forms a strict partial order. We may also drop the subscript L and
use the notation > or (≥) whenever L is understood from the context. We may refer to > as the preference relation.

The weight of a link fact l in I∗ is then defined recursively as follows:

w�,�(〈I, I∗〉, l) = w�(〈I, I∗〉, l), if there is no l′ such that l > l′;
w�,�(〈I, I∗〉, l) = w�(〈I, I∗〉, l) +

∑
l>l′

w�,�(〈I, I∗〉, l′), otherwise.

In the above, w� is the weight function associated with � in the entity-linking framework (L0, S0, V0) of maximum-value
solutions. Thus, the weight of l is obtained by adding up w�(〈I, I∗〉, l), which is calculated solely based on � as defined

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.14 (1-26)

14 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
for (L0, S0, V0), with the total aggregated weight of all the links that l dominates (via the preference relation >). In the
special case when there are no preference constraints, the weight of a link l falls back to w�(〈I, I∗〉, l). Thus, for each �,
the entity-linking framework (L0, S0, P�) is an extension of the entity-linking framework (L0, S0, V0).

Note that, by definition, the weight of a link is relative to 〈I, I∗〉, on which we evaluated the preference constraints, but
independent of any particular sub-instance 〈I, J 〉. Thus, the hypothesis of Theorem 1 holds, by definition.

Example 5. Recall the specification in Example 4. First, it is immediate to see that this is an example of an entity-linking
specification in the entity-linking framework (L0, S0, P�), for the given set � of preference constraints. Moreover, let us
assume the same source instance I as in Example 2. The link L(s1, c1) strictly dominates the link L(s1, c2) (by the fact that
c1 satisfies the Exec condition for s1 in the preference constraint, while c2 does not). Since no other strict domination
holds, we have that w�,�(〈I, I∗〉, LI∗(s1, c1)) = 2, while the weight of any other link is 1. As a consequence, among the
four maximal cardinality repairs for 〈I, I∗〉 that we have seen earlier, we have that 〈I, J1〉 and 〈I, J2〉 have weight 3, while
〈I, J3〉 and 〈I, J4〉 have weight 2. Thus, 〈I, J1〉 and 〈I, J2〉 are the maximum weight repairs with respect to � and w�,� . As
a result, we also obtain that L(s1, c1) is the sole certain link, in this example.

As we noted above, the hypothesis of Theorem 1 holds for (L0, S0, P�) and so we obtain, as a corollary, a polynomial-
delay algorithm for the enumeration of maximum weight repairs and a polynomial-time algorithm for the computation of
the certain links.

It is clear that every entity-linking framework (L0, S0, V0) (Framework 1) can be simulated by using an entity-linking
framework involving preferences (Framework 6) by simply taking the set � of preferences to be empty. The next theorem
says that, in fact, we gain expressive power by allowing preference constraints. This is our main technical result.

Theorem 5. There is a finite set � of preference constraints such that the corresponding framework (L0, S0, P�) is not subsumed by
the entity-linking framework (L0, S0, V0) of maximum-value solutions.

A key tool in the proof of Theorem 5 is a locality theorem that is interesting in its own right, and that we use multiple
times in the proof of Theorem 5. We note that locality theorems have been used extensively in finite model theory to obtain
inexpressibility results [25].

We begin with some preliminaries. For each entry a in a fact in an instance I , define N I
0(a) to be {a}. Inductively, define

N I
i+1(a) to consist of N I

i (a) along with each c such that there is a′ in N I
i (a) where a′ and c are both entries in some

fact in I . Thus N I
r (a) consists of those entries of I within distance r of a in the Gaifman graph [25] of I . Let N I

r (a, b) be
N I

r (a) ∪ N I
r (b). We may refer to N I

r (a, b) as an r-neighborhood. We are interested in N I
r (a, b) only for source instances I .

When I is understood, we may write simply Nr rather than N I
r .

In the statement of the Locality Theorem, by I � N I
r (ai, bi) we mean the usual notion of the restriction of I to the domain

N I
r (ai, bi).

Theorem 6 (Locality Theorem). Let E be an entity-linking specification in (L0, S0, V0), with link symbol L. Then there is r, depending
only on E , such that for every source instance I , every link instance J , and every a1, b1, a2, b2 in I , if I � N I

r (a1, b1) and I � N I
r (a2, b2)

are isomorphic under an isomorphism f with f (a1) = a2 and f (b1) = b2 , then the weights of the links L(a1, b1) and L(a2, b2) in E
are the same, that is, w(〈I, J 〉, L J (a1, b1)) = w(〈I, J 〉, L J (a2, b2)).

Proof. If there is no matching constraint for L, then we can take r = 0, since the weight of every link is then 1. So assume
that the link L has the matching constraint (1). By the Gaifman locality theorem for first-order logic [17], we have that
there is r′ such that if I � N I

r′(a1, b1) and I � N I
r′(a2, b2) are isomorphic under an isomorphism f with f (a1) = a2 and

f (b1) = b2, then we have that ∃uψ(x, y, u) holds when x = a1 and y = b1 if and only if ∃uψ(x, y, u) holds when x = a2

and y = b2. Furthermore, by the Gaifman locality theorem for first-order logic with counting [24], it follows that for each
positive integer c, there is r with r ≥ r′ such that if I � N I

r (a1, b1) and I � N I
r (a2, b2) are isomorphic under an isomorphism f

with f (a1) = a2 and f (b1) = b2, then we have that

∃u(ψ(x, y,u) ∧ (
∨

c1,...,ck,s.t.c=c1+···+ck

#z1.φ1(x, y,u, z1) = c1 ∧ · · · ∧ #zk.φk(x, y,u, zk) = ck)

holds when x = a1 and y = b1 if and only if it holds when x = a2 and y = b2. Here αi in (1) is ∃zi φi(x, y, u, zi), and
#zi.φi(x, y, u, zi) is a count of the number of tuples zi that satisfy φi(x, y, u, zi). In fact, it turns out that the same value
of r can be used for each choice of c: this follows from results by Libkin [24], which say that the choice of r depends only
on the quantifier rank of the formula, and so is independent of c.

These observations imply the theorem, based on the definition of the weight of a link in (L0, S0, V0). �
We now give a sketch of the proof of Theorem 5. We give the proof in full in the appendix.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.15 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
Sketch of the proof of Theorem 5. Our entity-linking specification E in the framework (L0, S0, P�) has one link symbol L,
the matching constraint L(x, y) → R(x, y), both FDs on L, and the inclusion dependencies L[X | ⊆ R[X] and L[Y | ⊆ R[Y]. We
define a family of source instance Kr and a set of preference constraints such that we get two long chains L(0, 1) > L(2, 3) >
L(4, 5) > · · · > L(m, m + 1) and L(0, 1′) > L(2′, 3′) > L(4′, 5′) > · · · > L(n′, (n + 1)′) of strict preferences, where m > n (so the
first chain is longer than the second). It is shown that L(0, 1) has so much weight that it is a certain link for E . However,
given an entity-linking specification E ′ in the entity-linking framework (L0, S0, V0) of maximum-value solutions, when we
select r based on E ′ , the source instance K = Kr is designed so that the neighborhoods K � N K

r (0, 1) and K � N K
r (0, 1′) are

isomorphic, and so by the Locality Theorem, L(0, 1) and L(0, 1′) have the same weight in E ′ .
Assume, by way of contradiction, that there is an entity-linking specification E ′ in the entity-linking framework

(L0, S0, V0) that is certain-link equivalent to E . By considering an instance with only one fact R(0, 1), we show that E ′
has the same inclusion dependencies as E . We show that E ′ has both FDs on L with the following argument. Assume first
that E ′ does not have the FD L : Y → X . Since L(0, 1′) has the same weight in E ′ as L(0, 1), in particular L(0, 1′) satisfies
the matching constraint for E ′ . Now L(0, 1′) is not a certain link in E ′ , since it is not a certain link in E . So let 〈K , N〉 be a
maximum weight repair of 〈K , K ∗〉 that does not contain L(0, 1′). Then of course N contains the certain link L(0, 1). Form
N ′ by replacing L(0, 1) in N by L(0, 1′). Now N ′ satisfies the only possible FD L : X → Y , and it satisfies the inclusion
dependencies and matching constraint. Furthermore, N ′ has the same weight as N , since L(0, 1) and L(0, 1′) have the same
weight, and so 〈K , N ′〉 is a maximum weight repair. But this is a contradiction, since 〈K , N ′〉 is a maximum weight repair
that does not contain the certain link L(0, 1). Now define the instance U (K), where (a, b) is a tuple of a relation of K if
and only if (b, a) is a tuple of the corresponding relation of U (K), and where a and b are new values. The proof that the
FD L : X → Y holds for E ′ is the same, except rather than replacing the certain link L(0, 1) in a maximum weight repair of
〈K , K ∗〉 by L(0, 1′), we instead replace the certain link L(1, 0) in a maximum weight repair of 〈U (K), (U (K))∗〉 by L(1′, 0).

We explicitly find the set M of certain links for I = K ∪ U (K) in E and prove, using the FDs and inclusion dependencies
for E ′ , that 〈I, M〉 is the unique maximum weight repair for 〈I, I∗〉 in E ′ . Let M ′ consist precisely of all of the links of E
that are not links in M . We prove, again using the Locality Theorem, that there is a one-to-one correspondence between the
links � of M and the links �′ of M ′ , where � and �′ have the same weight in E ′ . In particular, each link of M ′ satisfies the
entity-linking specification of E ′ . Further, since M ′ also satisfies both FDs and the inclusion dependencies, it follows that
〈I, M ′〉 is a maximum weight repair. But this is a contradiction, since 〈I, M〉 is the unique maximum weight repair. �
6. Concluding remarks

In this article, we introduced and explored a unifying approach to entity linking. This approach, which is based on the
notion of an entity-linking framework and the notion of the certain links in such a framework, provides a single formal-
ism for modeling different entity-linking scenarios and for comparing them using the certain links as a measure of their
expressive power. To this effect, we defined a notion of certain-link equivalence that allows us to compare entity-linking
specifications, in a way other than logical equivalence (which may be too strict for entity linking purposes). We then made
use of certain-link equivalence to define what it means for an entire entity-linking framework to subsume another one. We
established a number of technical results that delineate the comparative expressive power of several concrete entity-linking
frameworks.

Our concrete focus in this article was on the comparison of the entity-linking framework of maximum-value solutions
with entity-linking frameworks (1) that involve maximum cardinality repairs, (2) that allow recursion-free collective entity
linking, and (3) that incorporate preferences among links. It might be interesting to compare the expressive power of other
frameworks defined in this article.

There are several other directions of research that arise from the work reported here. To begin with, Theorem 1 gives
a sufficient condition for the tractability of computing the certain links for a family of entity-linking frameworks based
on L0 . The certain links are the consistent answers of the atomic queries involving a single link relation. A next step would
be to investigate how the complexity changes for the case of consistent answers of more general queries involving link
relations and source relations. Another next step is to understand the expressive power of recursive collective entity linking.
Specifically, we conjecture that the framework (Lc, S2, V2) of recursive collective entity linking cannot be subsumed by the
framework (Lc, S1, V1) of non-recursive collective entity linking. Another next step has to do with Markov Logic Networks
(MLNs), which were first studied in [27]. As stated earlier, it follows from results in [9] that linear MLNs are subsumed by an
entity-linking framework of maximum-value solutions with weighted disjuncts, where the constraints are in the existential
fragment ∃L0 of the language L0 . It is an open problem if more general MLNs (i.e., not necessarily linear) can be subsumed
by an entity-linking framework of maximum-value solutions with weighted disjuncts for some suitable choice of weights
and constraints from L0 or from the more general language Lc of collective entity linking.

In a different direction, we note that our unifying approach to entity linking is flexible enough to allow assigning proba-
bilities to links in a natural way. Specifically, we can define the probability Pr(L(a, b)) of a link L(a, b) to be the number of
maximum weight repairs containing L(a, b) divided by the total number of maximum weight repairs. Thus, a link L(a, b) is
certain if and only if Pr(L(a, b)) = 1. The introduction of probabilities in entity-linking frameworks raises several algorithmic
questions, including the question of enumerating the links whose probability is above a fixed threshold, say, enumerating
all links L(a, b) such that Pr(L(a, b)) ≥ 0.75. Furthermore, it may be possible to establish tight connections between our ap-
proach and other approaches in entity linking and entity resolution, such as Probabilistic Soft Logic (PSL) [3,4,8], that derive

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.16 (1-26)

16 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
links with scores based on weighted first-order formulas. By utilizing such connections, one may also be able to transfer
the formalism of preference constraints, which fits naturally in our declarative approach, into PSL (or into MLN as well). In
general, we may obtain more powerful entity linking approaches that combine declarative, logic-based specification with
probabilistic reasoning and with explicit user preference constraints.

Acknowledgments

Part of this work was done while Phokion G. Kolaitis was visiting the Simons Institute for the Theory of Computing.

Appendix A. Proof of Theorem 3

Theorem 3. The entity-linking framework (L0, S0, W1) of maximum cardinality repairs is not subsumed by the entity-linking frame-
work (L0, S0, V0) of maximum-value solutions.

Proof. We now give an entity-linking specification E in (L0, S0, W1) for which there is no E ′ in the framework (L0, S0, V0)

of maximum-value solutions that is certain-link equivalent to it.
Let E be the entity-linking specification given by the following:

• L(x, y) → R(x, y) ∨ S(x, y)

• FD L : X → Y
• L[X | ⊆ D1
• L[Y] ⊆ D2

Note that the relations D1 and D2, which appear in the inclusion dependencies, are unary.
For each of the instances I j we now specify, the role of J in Definition 10 is played by (I j)

∗ , which is defined in
Definition 9.

For I1 = {R(0, 1), S(2, 3), D1(0), D1(2), D2(1), D2(3)}, we have L(0, 1) and L(2, 3) as certain links.
For I p

2 = {S(0, 1), R(0, 2), S(0, 2), D1(0), D2(1), D2(2), . . . , D2(p)}, where p ≥ 2, we have no certain links, as we now
show. Even though L(0, 1) and L(0, 2) satisfy the matching constraint and the inclusion dependencies, they each have
weight 1 in the entity-linking framework (L0, S0, W1) of maximum cardinality repairs. Because of the FD, it then follows
that neither is a certain link. For notational simplicity, denote I p

2 simply by I2 when p = 2.
For I p

3 = {R(0, 2), D1(0), D2(1), D2(2), . . . , D2(p)}, where p ≥ 2, we have L(0, 2) as a certain link. For notational sim-
plicity, denote I p

3 simply by I3 when p = 2.
For I4 = {D1(0), D2(1)}, we have no certain link, as we now show. The only possible link based on the inclusion

dependencies is L(0, 1) but L(0, 1) does not satisfy the matching constraint.
Assume that there were an entity-linking specification E ′ in the framework (L0, S0, V0) of maximum-value solutions

that is certain-link equivalent to E ; we shall derive a contradiction.
Because of I1, we see that E ′ has the inclusion dependencies L[X | ⊆ D1 and L[Y] ⊆ D2, since no projection of R or S

contains all of the values of L[X] (respectively, of L[Y]), and since D2 does not contain all of the values of L[X], and D1
does not contain all of the values of L[Y].

If E ′ has no matching constraint, then L(0, 1) would be a certain link in I4, because (1) it fulfills the inclusion depen-
dencies, and (2) no FD is violated since L(0, 1) is the only possible link because of the inclusion dependencies. But this is a
contradiction, since L(0, 1) is not a certain link in I4.

Let the matching constraint for E ′ be of the form (1), with the same restrictions as given there. We begin by considering
the case where ψ is empty. Thus, in this case the matching constraint is of the form (2).

We now show that as far as the links L(x, y) that we consider in this portion of this proof (where we are assuming that
ψ is empty), we can assume without loss of generality that no equality appears in any of the disjuncts. Let αi be a disjunct.
Form equivalence classes of the variables in αi by putting two variables v and w in the same equivalence class precisely
if there is a sequence of equalities in αi that force v and w to be equal. If the distinguished variables x and y are in the
same equivalence class, then that disjunct cannot be satisfied for the links L(x, y) and instances considered in this portion
of this proof, because we have disjoint domains for x and y; therefore, we can delete that disjunct. Otherwise, let x be
the representative for the equivalence class containing x, let y be the representative for the equivalence class containing y,
and for the other equivalence classes arbitrarily select a representative. Then replace each variable by the representative
of its equivalence class, and if the existentially quantified variable z is thereby eliminated, delete ∃z from the disjunct.
These changes have no effect on the weight of a disjunct when we are calculating the weight of a link, since (a) when
we eliminate a disjunct because it has x and y in the same equivalence class, that disjunct could not be satisfied anyway
for the links and instances considered in this proof, and so that disjunct would not contribute to the weight of a link, and
(b) the weight is determined by the number of satisfying truth assignments to the existentially quantified variables, and for
each choice for the element assigned to the representatives, there is a unique choice for the element assigned to the other
variables, so these changes do not affect number of satisfying truth assignments.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.17 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 17
Since L(0, 2) is a certain link in I3 and L(0, 1) is not, there must be some disjunct αi0 that distinguishes between y = 1
and y = 2, and that is satisfied in I3 when x = 0 and y = 2. Since no disjunct contains an equality, and since neither
D1(y) nor D2(y) distinguishes between y = 1 and y = 2, the only feasible possibility is R(v, y) where v is either x or an
existentially quantified variable. So there is some disjunct αi0 that is satisfied in I3 when x = 0 and y = 2 and where αi0

contains R(v, y) for some variable v .
In I2, we see from the inclusion dependencies that the only possible links are L(0, 1) and L(0, 2). We now show that

for each disjunct αi , we have that L(0, 2) gets at least the same weight in I2 from αi as L(0, 1). This is certainly true if αi
contributes 0 to L(0, 1). So assume that αi contributes a positive weight to L(0, 1). Let αi be ∃ziφi , and let t be an arbitrary
assignment to the variables of zi that makes φi hold in I2 when x = 0 and y = 1. We now show that t also makes φi hold
in I2 when x = 0 and y = 2. Since t makes φi hold in I2 when x = 0 and y = 1, the only possible appearances of y in
φi are as either D2(y) or as S(v, y) for some variable v (where v is either x or some existentially quantified variable). In
both cases, the same atomic formula holds in I2 under t when x = 0 and y = 2. Since the weight for αi is the sum over all
assignments t that make φi hold in I2, it follows that L(0, 2) gets at least the same weight in I2 from αi as L(0, 1).

Now let αi0 be as defined above. In particular, αi0 is satisfied in I3 when x = 0 and y = 2. Then αi0 is also satisfied in I2
when x = 0 and y = 2, since I3 is a sub-instance of I2. However, αi0 is not satisfied when x = 0 and y = 1 in I2, since αi0

contains R(v, y) for some variable v , and R(v, y) does not hold in I2 for any choice of v when y = 1.
We have shown that in I2, every disjunct that gives a positive weight to L(0, 1) gives at least that same positive weight

to L(0, 2), and that in addition there is a disjunct αi0 that gives a positive weight to L(0, 2) but not to L(0, 1). Therefore,
L(0, 2) has a strictly higher weight in I2 than L(0, 1). Because of the inclusion dependencies, the only two possible inks for
I2 are L(0, 1) and L(0, 2). Therefore, L(0, 2) should be a certain link in I2. But it is not. This contradiction completes the
case when E ′ has the matching constraint (1) with ψ empty.

Now consider the other case, where E ′ has the matching constraint (1), and where ψ is a nonempty conjunction of
atomic formulas. We now show that ψ can contain only D1 and/or D2, but not R or S . For if ψ were to contain R or S ,
then in I4 the matching constraint for L would be trivially satisfied when x = 0 and y = 1. Since the inclusion dependencies
are satisfied in I4 when x = 0 and y = 1, and since the inclusion dependencies also tell us that L(0, 1) is the only possible
link for I4, this would imply that L(0, 1) is a certain link for I4, which is a contradiction. So indeed, ψ can contain only D1
and/or D2.

We now show that we can assume without loss of generality that no disjunct αi contains an equality involving an
existentially quantified variable in zi . If an equality z = z′ appears in αi where z and z′ are in zi , then pick one of z and
z′ , say z′ , and replace every occurrence of z′ by z and remove the existential quantifier ∃z′ . After this, if an equality x = z
(or z = x) occurs in αi , then replace every occurrence of z by x and remove the existential quantifier ∃z. After this, if an
equality y = z (or z = y) occurs in αi , then replace every occurrence of z by y and remove the existential quantifier ∃z.
After this, if an equality u = z (or z = u) occurs in αi , where u is a universally quantified variable in u, then replace every
occurrence of z by u and remove the existential quantifier ∃z. As before, a uniqueness argument shows that these changes
have no effect on the weights of links.

Furthermore, we can assume without loss of generality that no αi contains an equality v = v (that is, an equality where
the left-hand side and the right-hand side are the same), since this can have no effect on distinguishing the weights of
links.

We have shown that ψ can contain only D1 and/or D2. If ψ contains only D1, then, since for the links and instances
we consider in this portion of this proof, the D1-relation contains precisely one entry (namely, 0), it follows that we are
effectively back to the case we already considered, where ψ is empty. So assume that ψ contains at least one occurrence
of D2. Let us refer to each universally quantified variable u such that D1(u) appears in ψ as a U1-variable, and each
universally quantified variable u such that D2(u) appears in ψ as a U2-variable. If some variable were both a U1-variable and
a U2-variable, then the matching constraint would be trivially satisfied in I4 when x = 0 and y = 1, and so as before, L(0, 1)

would be a certain link for I4, a contradiction. So every universally quantified variable is a U1-variable or a U2-variable but
not both. For the links and instances we consider in this portion of this proof, we can assume without loss of generality
that no αi contains D1(y) or D2(x), or contain D1(u) for a U2-variable u, or contain D1(u) for a U2-variable u, as we now
explain. Assume first that αi were to contain D1(y). Because of the inclusion dependencies, we know that D2(y) holds. For
each of the links and instances considered in this proof, we have D1 and D2 disjoint. Therefore, if D1(y) were to appear in
αi , we know that αi would fail, and so contribute nothing to the weights of a link. So assuming that αi does not contain
D1(y) has no effect on the weights of links in this proof. Therefore, in this proof, we can assume without loss of generality
that no αi contains D1(y). Similarly, we can assume without loss of generality that no αi contains any of D2(x), D1(u) for
a U2-variable u, or D1(u) for a U2-variable u.

Let m be the number of U2-variables in the matching constraint. Let us now consider Im+2
3 (that is, I p

3 where p = m + 2).
Based on the inclusion dependencies, the only possible links are L(0, j), for 1 ≤ j ≤ m + 2. Since L(0, 2) is the only certain
link, it must be that L(0, 2) has a strictly higher weight than each L(0, j) for j �= 2. In particular, L(0, 2) has a strictly higher
weight than L(0, 1). The weight for L(0, 1) is, by definition, the min over all choices of assignments t to the universally
quantified variables of the weight for α1 ∨ . . .∨αk in Im+2

3 when x = 0, y = 1, and when the universally quantified variables
are assigned according to t . Let t0 be the assignment to the universally quantified variables where each U1-variable is
assigned 0 (the only possible choice in I3), and the m U2-variables are each assigned a different member of {3, . . . ,m + 2}.
The min occurs when the assignment to the universally quantified variables is t0 , since (a) for this choice of assignment

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.18 (1-26)

18 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
to the universally quantified variables, no equality u1 = u2 holds for distinct U2-variables u1 and u2, (b) we do not have
y = u holding for any universally quantified variable u, and (c) for both j = 1 and j = 2, every atomic formula involving a
U j-variable u that holds under the assignment t0 also holds for every other assignment of u to a member of D j . Hence,
the weight for L(0, 1) is the weight for α1 ∨ . . . ∨ αk when x = 0, y = 1, and the universally quantified variables have
the assignment t0. Similarly, the weight for L(0, 2) is the weight for α1 ∨ . . . ∨ αk when x = 0, y = 2, and the universally
quantified variables have the assignment t0.

We now show that if αi holds in Im+2
3 both (a) for y = 1 with the assignment t0 to the universally quantified variables,

and (b) for y = 2 with the assignment t0 to the universally quantified variables, then αi has the same weight in both cases.
This is because an existentially quantified variable z can appear in αi in only 4 contexts: either (i) D1(z) (where there is
only one choice for z, namely 0), (ii) D2(z) (where there are m + 2 choices for z, and if one choice for z succeeds, then
so do the other choice for z), (iii) R(z, v) for some v (where there is only one choice for z, namely 0), or (iv) R(v, z) for
some v (where there is only one choice for z, namely 2).

From what we just showed, and from the fact that L(0, 2) has a strictly higher weight in Im+2
3 than L(0, 1), there must be

some disjunct αi0 that has a positive weight under t0 when y = 2 but has weight 0 under t0 when y = 1. Now αi0 contains
no equalities involving y, since (1) y = u is false under t0 for each universally-quantified variable u, as is y = x, and (2) we
showed that we can assume that there are no equalities involving existentially-quantified variables and no equality y = y.
We know that αi0 must contain y in some context other than D2(y), or else αi0 would take on the same weight for y = 1
and y = 2. The only feasible choice is R(v, y) where v is either x or a U1-variable or an existentially quantified variable. So
αi0 contains R(v, y) where v is either x or a U1-variable or an existentially quantified variable.

Now let us consider Im+2
2 . Similarly to before, the weights for L(0, j), for 1 ≤ j ≤ m +2, are obtained when the universally

quantified variables have the assignment t0. Assume that some disjunction αi holds for x = 0, y = j (for some j), and the
assignment t0. Now αi is ∃ziφi . Let t′ be an assignment to the variables zi that makes φi hold in Im+2

2 when x = 0,
y = j, under the assignment t0 to the universally quantified variables. Let t′

0 be the result of extending t0 to include the
assignment t′ . We now show that φi holds in Im+2

2 also when x = 0 and y = 2 under the assignment t′
0. To see this, let us

consider the syntactically possible contexts in which y can appear in φi .

• It cannot appear in an equality, as we noted.
• It can appear in the form D1(y).
• It can appear in the form D2(y).
• It can appear in the form R(v, y) where v is a variable.
• It can appear in the form R(y, v) where v is a variable.
• It can appear in the form S(v, y) where v is a variable.
• It can appear in the form S(y, v) where v is a variable.

In all of these cases, if φi holds in Im+2
2 when x = 0 and y = j, under the assignment t′

0, then φi holds in Im+2
2 when

x = 0 and y = 2, under the assignment t′
0.

Therefore, αi (in particular, when i �= i0) has at least the same positive weight when x = 0 and y = 2 under the as-
signment t0 as when x = 0 and y = j under the assignment t0. We now show that there is an additional positive weight,
obtained from αi0 , when x = 0 and y = 2, but no additional positive weight when x = 0 and y = j for j �= 2. Since (a) αi0

holds in Im+2
3 when x = 0, y = 2, and when the universally quantified variables are assigned values according to t0 , and

(b) Im+2
3 is a sub-instance of Im+2

2 , it follows that αi0 holds in Im+2
2 when x = 0, y = 2, and the universally quantified

variables are assigned values according to t0. So αi0 gives positive weight when x = 0, y = 2, and the universally quantified
variables are assigned values according to t0. However, αi0 gives no positive weight when x = 0 and y = j for j �= 2, since
αi0 contains R(v, y) for some variable v , and R(a, j) does not hold in Im+2

2 for any a.
Let s j be the weight for α1 ∨ . . . ∨ αk in I2 when x = 0 and y = j and the universally quantified variables are assigned

values according to t0. We just showed that s2 > s j for j �= 2. But from what we said before, we know that s j is the weight
for L(0, j) in Im+2

2 . Therefore L(0, 2) has a strictly higher weight in Im+2
2 than L(0, j) for j �= 2. Hence, L(0, 2) is a certain

link for Im+2
2 , which is a contradiction. �

Appendix B. Proof of Theorem 5

Theorem 5. There is a finite set � of preference constraints such that the corresponding framework (L0, S0, P�) is not subsumed by
the entity-linking framework (L0, S0, V0) of maximum-value solutions.

Proof. Because of the length and complexity of the proof, we break it into subsections. �
B.1. The instance In+4,n

Let � be the following constraints:

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.19 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 19
• L(x, y) → R(x, y)

• FDs L : X → Y and L : Y → X
• L[X | ⊆ R[X]
• L[Y | ⊆ R[Y]

Further, we take the following set � of three preference constraints:

L(x, y) ∧ L(x′, y′) ∧ W i(x, y) ∧ ¬W i(x′, y′) → L(x, y) ≥ L(x′, y′),
for 1 ≤ i ≤ 3.

Let E be the entity-linking specification given by the constraints � and the preferences �.
Define the instance Im where m is a positive integer that is a multiple of 4, to consist of the following facts:

• R(2i, 2i + 1) for 0 ≤ i ≤ m
• R(2i, 2i − 1) for 1 ≤ i ≤ m
• W1(4i, 4i + 1) for 0 ≤ i ≤ m

4• W1(4i + 2, 4i + 1) for 0 ≤ i ≤ m
4 − 1

• W1(4i, 4i − 1) for m
4 + 1 ≤ i ≤ m

2
• W1(4i, 4i + 1) for m

4 + 1 ≤ i ≤ m
2• W2(4i, 4i + 1) for 0 ≤ i ≤ m

4• W2(4i + 2, 4i + 3) for 0 ≤ i ≤ m
4 − 1

• W2(4i, 4i − 1) for m
4 + 1 ≤ i ≤ m

2
• W2(4i + 2, 4i + 1) for m

4 ≤ i ≤ m
2 − 1

• W3(4i + 2, 4i + 3) for 0 ≤ i ≤ m
4 − 1

• W3(4i, 4i − 1) for 1 ≤ i ≤ m
4• W3(4i + 2, 4i + 1) for m

4 ≤ i ≤ m
2 − 1

• W3(4i + 2, 4i + 3) for m
4 ≤ i ≤ m

2 − 1

Define the instance I ′n just as we defined Im , except that we replace m by n (another positive integer), and we make use
of primed positive integers i′ instead of the corresponding positive integer i. For example, the condition “W1(4i, 4i + 1) for
0 ≤ i ≤ m

4 ” would be replaced by “W1(0, 1′) and W1((4i)′, (4i + 1)′) for 0 < i ≤ n
4 ”. So the only entry that Im and I ′n have in

common is 0.
Now define the instance Im,n to be the union of the facts in Im and I ′n . We assume throughout this proof that m = n + 4,

so that both m and n are positive integers divisible by 4. The instance K used in the rough sketch of the proof of Theorem 5
in the body of the paper is In+4,n .

B.2. Type of links

Let us now consider what the preferences are, based on the preference constraints. The only situation where links
L(a1, b1) and L(a2, b2) conflict where R(a1, b1) is a fact in Im and R(a2, b2) is a fact in I ′n is the conflict between L(0, 1)

and L(0, 1′). But the preference constraints give us no preference in this conflict.
Let us call a link L(a, b), where R(a, b) is a fact of Im,n , a (+, +, −) link if W1(a, b) holds (this is represented by the

first +), W2(a, b) holds (this is represented by the second +), and W3(a, b) fails to hold (this is represented by the −).
Assume throughout the rest of this paragraph for illustrative purposes that m ≥ 12. Thus, L(0, 1), L(4, 5), and L(8, 9) are
(+, +, −) links. Call a link L(a, b) a (+, −, −) link (or a link of type (+, +, −)) if W1(a, b) holds (this is represented by
the +), W2(a, b) fails to hold (this is represented by the first −), and W3(a, b) fails to hold (this is represented by the
second −). Thus, L(2, 1), L6, 5), and L(10, 9) are (+, −, −) links. Similarly, there are two other types of links: the (−, +, +)

links, which include L(2, 3), L(6, 7), and L(10, 11), and the (−, −, +) links, which include L(4, 3), L(8, 7), and L(12, 11).
The preference constraints tell us that for two distinct links L(a1, b1) and L(a2, b2), we have L(a1, b1) ≥ L(a2, b2) if

(1) L(a1, b1) and L(a2, b2) are conflicting (that is, either a1 = a2 or b1 = b2), (2) L(a1, b1) is a (c1, c2, c3) link (where each
c j is either + or −), (3) L(a2, b2) is a (d1, d2, d3) link, and (4) for some j, we have that c j = + and d j = −.

In the sequence of possible links, namely

L(0,1), L(2,1), L(2,3), L(4,3), . . . , L(2m,2m − 1), L(2m,2m + 1), (B.1)

the pattern (+, +, −), (+, −, −), (−, +, +), (−, −, +) of types repeats over and over, with one exception: after L(m, m + 1)

(which is of type (+, +, −)) we skip the type (+, −, −), so that the link following L(m, m + 1), namely L(m + 2, m + 1), is
of type (−, +, +) instead of (+, −, −). The next link L(m + 2, m + 3) is of type (−, −, +,), just like other links that follow
a link of type −, +, +). Then the pattern (+, +, −), (+, −, −), (−, +, +), (−, −, +) of types again repeats over and over
(ending with a link of type (+, −, −)). The same comment about the pattern of types, except with m replaced by n, applies
to the sequence

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.20 (1-26)

20 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
L(0,1′), L(2′,1′), L(2′,3′), L(4′,3′), . . . , L((2n)′, (2n − 1)′), L((2n)′, (2n + 1)′). (B.2)

B.3. The sets Si and S ′
i

Define the set S1 to consist of the single link L(0, 1); the set Si to consist of the two links L(2i − 2, 2i − 3) and
L(2i − 2, 2i − 1) for 1 < i ≤ m

2 ; the set S m
2 +1 to consist of the three links L(m, m − 1), L(m, m + 1) and L(m + 2, m + 1); the

set Si to consist of the two links L(2i − 2, 2i − 1) and L(2i, 2i − 1) for m
2 + 2 < i ≤ m; and Sm+1 to consist of the single link

L(2m, 2m + 1). For the sets Si with more than one member, we refer to the member of Si that appears first in (B.1) as the
first member or top member of Si , the member of Si that appears second in (B.1) as the second member of Si , and (in the
case i = m

2 + 1, where Si has three members) the member of Si that appears third in (B.1) as the third member of Si . The
last member or bottom member is the second member if Si is of size 2, and is the third member is Si is of size 3. Note that
the first, second, and (if it is there) third member of Si are consecutive in (B.1). The far left column in Fig. 1 shows the link
pattern for I16. To the right of each link is its type. For example, L(0, 1) has type (+, +, −). The column to the right of the
column of link types in Fig. 1) shows the link pattern for I ′12. To the left of each link is its type. For example, L(0, 1′) has
type (+, +, −). Later we shall explain the meanings of A1, A2, High, Middle, and Low, and of the last two columns of links.

Note that for each Si of size 2, either (1) the first member �1 of Si has type (+, −, −) and the second member �2 has
type (−, +, +), or (2) �1 has type (−, −, +) and �2 has type (+, +, −). Hence, in both cases, �1 ≥ �2 and �2 ≥ �1. For the
set S m

2 +1 with three members, the first member �1 has type (−, −, +), the second member �2 has type (+, +, −), and the
third member �3 has type (−, +, +). Thus, �1 ≥ �2, �2 ≥ �1, �2 ≥ �3, and �3 ≥ �2.

The only possible preferences between different Si ’s can arise for adjacent Si ’s, since only then can we have a link in
one be in conflict with a link in the other. And in fact, as we now show, between every adjacent pair of Si ’s there is indeed
a preference, with the bottom element �1 of Si (or only element �1 of Si , when i = 1) being strictly preferred to the top
element �2 of Si+1 (or only element �2 of Si+1, when i = m). That is, in all of these cases, we have �1 > �2, which means
�1 ≥ �2 but not �2 ≥ �1. This is because in all of these cases, either (1) �1 is of type (+, +, −) and �2 is of type (+, −, −),
or (2) �1 is of type (−, +, +) and �2 is of type (−, −, +). See Fig. 1.

From the transitive closure of ≥, we obtain exactly those strict inequalities > that can be inferred by transitivity of >
from the following, where S j > S j+1 means that for each �1 in S j and each �2 in S j+1, we have �1 > �2:

S1 > S2 > · · · Sm > Sm+1 (B.3)

Similarly, we define the set S ′
1 to consist of the link L(0, 1′), and we define the sets S ′

j for 2 ≤ j ≤ n + 1 just as we
defined S j , except that we replace m by n, and we replace positive integers k in the links with k′ . Then just as before, we
have:

S ′
1 > S ′

2 > · · · S ′
n > S ′

n+1 (B.4)

There is no preference relationship between a member of an Si and a member of an S ′
j .

If S(a, b) is a fact, define U (S(a, b)) to be the fact S(b, a), where a and b are new values (“U” stands for “underline”). If S
is a binary relation, define U (S) to be the relation obtained by replacing every fact S(a, b) by U (S(a, b)). If I is an instance
(a set of relations) where each relation is binary, define U (I) to be the result of replacing every relation S of I by U (S). The
instance we shall focus on in this proof is In+4,n ∪ U (In+4,n). The links of U (I16,12) are shown in the last two columns of
Fig. 1.

B.4. Finding the certain links

Recall that the weight of a link � is defined recursively to be Val(�) plus the sum of the weights of all of the links �′
such that � > �′ . Since Val(�) = 1 for E , the weight of a link � is 1 plus the sum of the weights of all of the links �′ such
that � > �′ .

Let D be the domain of In+4,n . Thus, D = {
0, . . . ,2n + 9,1′, . . . (2n + 1)′

}
. Let D ′ be the domain of U (In+4,n). By con-

struction, D and D ′ are disjoint. Let N be a maximum weight repair (with respect to � and w�,� on 〈I, I∗〉, where
I = In+4,n ∪ U (In+4,n). We shall now investigate the links L(a, b) of N . Since a and b are both in D or both in D ′ , and
since D and D ′ are disjoint, it follows that the presence or absence in N of links derived from In+4,n have no effect on the
presence or absence in N of links derived from U (In+4,n), and vice versa. Therefore, N is of the form M ∪ M ′ , where M is
a maximum weight repair with respect to � and w�,� on 〈I, I∗〉, where I = In+4,n , and where M ′ is a maximum weight
repair with respect to � and w�,� on 〈I, I∗〉, where I = U (In+4,n). Therefore, if Xn is the set of certain links for In+4,n (and
so, by symmetry, U (Xn) is the set of certain links for U (In+4,n)), we know that the set of certain links for In+4,n ∪ U (In+4,n)

is Xn ∪ U (Xn). Therefore, we now determine Xn .
We first show that L(0, 1) is a certain link for In+4,n Assume not; we shall derive a contradiction. Let M be a maximum

weight repair that does not contain L(0, 1). For each i, let si be the weight of each member of Si (all members of Si have
the same weight). For example,

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.21 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 21
Fig. 1. The link structure for I16,12 ∪ U (I16,12).

s1 = 1 + 2s2 + · · · + 2s n
2 +2 + 3s n

2 +3 + 2s n
2 +4 + · · ·2sn+4 + sn+5.

The term 2s2 comes from the fact that S2 contains 2 members, both dominated by the member L(0, 1) of S1; the term
3s n

2 +3 comes from the fact that S n
2 +3 contains 3 members, all dominated by L(0, 1); and so on. Similarly, for each j, let s′

j

be the weight of each member of S ′
i . Now M cannot contain two members of the same Si if Si is of size 2, or two members

of the same S ′
j if S ′

j is of size 2, because this would violate an FD. For the same reason, for the sets S n
2 +3 and S ′

n
2 +1 of

size 3, we know that M can contain at most 2 members of each.
Let A = s2 + s3 + · · · + sn+5 + s′

1 + · · · + s′
n+1. From what we have said, and since also M does not contain the only

member of S1, it follows that the weight of M is at most A + s n
2 +3 + s′

n
2 +1 (we are adding in s n

2 +3 + s′
n
2 +1 since M could

possibly have two members in S n
2 +3 and two members in S ′

n
2 +1). Now s′

j < s j+2 for 1 ≤ j ≤ n + 1, since, intuitively, we add
from the bottom up, and since for each j with 1 ≤ j ≤ n + 1, the size of S ′

j is at most the size of S j+2 (in particular, the set
S ′

j of size 3 occurs when j = n
2 + 1, and the set S j of size 3 occurs when j = n

2 + 3). Therefore A is less than

s2 + 2s3 + 2s4 + · · · + 2sn+3 + sn+4 + sn+5 (B.5)

Now s2 > 2s n
2 +3 > s n

2 +3 + s′
n
2 +1, where the first inequality follows from the construction of the weight of the Si ’s, and the

second inequality follows from the fact shown earlier that s′
j < s j+2 for 1 ≤ j ≤ n + 1. Therefore, the weight of M , which we

noted is less than A + s n
2 +3 + s′

n
2 +1, is less than the weight in (B.5) plus s2, that is,

2s2 + 2s3 + 2s4 + · · · + 2sn+3 + sn+4 + sn+5 (B.6)

But (B.6) is less than the weight of the link L(0, 1) by itself, which contradicts the assumption that M is a maximum weight
repair. So indeed, L(0, 1) is a certain link.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.22 (1-26)

22 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
We now show that every maximum weight repair M for In+4,n contains some member of each Si except possibly the last
one (Sn+5). Later we shall show that M contains also the (unique) member of Sn+5. We already showed that M contains
the (unique) member L(0, 1) of S1. Assume that M contains no member of Si for some i with 2 ≤ i ≤ n + 4. In particular,
M does not contain the bottom member of Si . This must be prevented by a conflict with the top member of Si+1 (since
the conflict cannot be with the other member of Si , because by assumption Si contains no member of M). Form M ′ by
removing the top member of Si+1 and replacing it by the bottom member of Si . Then M ′ is a repair, and it has strictly
higher weight than M , since M ′ was obtained from M by replacing a member of Si+1 by a member of Si . This is our desired
contradiction. Therefore, M contains a member of every Si , except possibly Sn+5.

Now M cannot contain the top member of S2, since that conflicts with the only member L(0, 1) of S1. So M must
contain the second member of S2. Therefore, M cannot contain the top member of S3, and so it must contain the bottom
member of S3. This process continues, to show us that M must contain the bottom member of S n

2 +2. So M cannot contain
the top member of the 3-element set S n

2 +3. Therefore, it must contain the second or the third member. If it were to contain
the third member, then M would have to contain the bottom member of S n

2 +4, and so on down the line to containing the
bottom member of Sn+4. So it could not contain the only member of Sn+5. But if M were to contain the second member of
the 3-element set S n

2 +3, then it could contain a member of every Si . Therefore, each maximum weight repair must contain
the second member of the 3-element set S n

2 +3, the top member of every succeeding 2-element Si , and the only member
of Sn+5.

Since M was taken to be an arbitrary maximum weight repair for In+4,n we now know that L(0, 1), L(2, 3), . . . , L(2n + 8,

2n + 9) are certain links. Let us now see what the certain links are among S ′
1, . . . , S ′

n+1.
No maximum weight repair M can contain the only member L(0, 1′) of S ′

1, since it conflicts with the certain link L(0, 1).
By an argument like that above, we see that every S ′

i , except S ′
1 (which, as we have said, is forbidden) and possibly S ′

n+1,
must contain a member of M . If a maximum weight repair were to contain the (only) member of S ′

n+1, then it would need
to contain the top member of S ′

i for n
2 + 2 ≤ i ≤ n. But then it could not contain the third member of S ′

n
2 +1, and so could

contain only one member of S ′
n
2 +1, along with one member of every remaining S ′

i except for S ′
1 (which is forbidden). Since

the weight of a link is higher in S ′
n
2 +1 than in S ′

n+1, the highest weight we could possibly attain is by having the first and
third links in S ′

n
2 +1

and one member of every remaining S ′
i except for S ′

1 and S ′
n+1. There is exactly one way to attain this,

by taking L(2′, 1′), L(4′, 3′), . . . , L((2n)′, (2n − 1)′).
Let S be

{
L(0,1), L(2,3), . . . , L(2n + 8,2n + 9), L(2′,1′), L(4′,3′), . . . , L((2n)′, (2n − 1)′

}
.

We showed that every member of S is a certain link of In+4,n No other link can be a certain link for In+4,n , since any other
link (which is necessarily of the form L(a, b) where R(a, b) holds) would conflict with a member of S . Therefore, S is the
set of certain links for In+4,n . As before, we denote this set of certain links by Xn . As noted earlier, it follows that the set of
certain links for In+4,n ∪ U (In+4,n) is Xn ∪ U (Xn).

B.5. The strength of allowing preferences

We now show that there is no entity-linking specification E ′ in the framework (L0, S0, V0) of maximum-value solutions
that is certain-link equivalent to E . Assume that there were; we shall derive a contradiction. We consider two choices
for I , where in both cases we take J = I∗ . Our first choice is I = {R(0, 1)}. Since L(0, 1) is a certain link in E on 〈I, J 〉
when I = {R(0, 1)} and J = I∗ , we must have L(0, 1) as a certain link in E ′ on 〈I, J 〉. From this we see that the inclusion
dependencies for E ′ are L[X | ⊆ R[X] and L[Y | ⊆ R[Y].

We now consider our main choice of instances. Let r be as in Theorem 6, where the role of E is played by E ′ . For
convenience, we assume without loss of generality that r ≥ 3. Let n = 4r, so n ≥ 12. We then take I to be In+4,n ∪ U (In+4,n)

and J = I∗ . We showed that in E , the certain links are Xn ∪ U (Xn), and so by certain-link equivalence, this holds also for E ′ .
To show that both FDs L : X → Y and L : Y → X are constraints of E ′ , we will make use of Theorem 6 (the Locality

Theorem). To do so, we first make an observation. If a is an integer, then let v(a) = a, and if a is of the form k′ where k is
an integer, then let v(a) = k. Now every fact in In+4,n is of one of the forms R(a, b), W1(a, b), W2(a, b), or W3(a, b), where
|v(a) − v(b)| = 1. We therefore have the following simple fact, which we denote by (*):

(*) If c is in Nr(a, b), then either |v(c) − v(a)| ≤ r or |v(c) − v(b)| ≤ r.

Throughout the rest of this proof, for each source instance I we write simply Nr for N I
r . We now show that In+4,n �

Nr(0, 1) and In+4,n � Nr(0, 1′) are isomorphic under the isomorphism f where f (0) = 0, and where f (i) = i′ and f (i′) = i for
each positive integer i. The first place in the sequence (B.1) of links (where m = n + 4) that the pattern (+, +, −), (+, −, −),
(−, +, +), (−, −, +) of types fails to repeat is just after the very middle link L(n +4, n +5) (that is, L(4r +4, 4r +5)) and the
first place in the sequence (B.2) of links that the pattern (+, +, −), (+, −, −), (−, +, +), (−, −, +) of types fails to repeat
is just after the very middle link L(n′, (n + 1)′)) (that is, L((4r)′, (4r + 1)′)). By (*), we see that no entry of these middle

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.23 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 23
links is in Nr(0, 1) or Nr(0, 1′), so In+4,n � Nr(0, 1) and In+4,n � Nr(0, 1′) are indeed isomorphic under the isomorphism f .
Hence, by Theorem 6, we know that L(0, 1) and L(0, 1′) have the same weights in E ′ .

We now show that both FDs L : X → Y and L : Y → X are constraints of E ′ . Assume not; we shall derive a contradiction.
Assume first that the FD L : Y → X is not a constraint of E ′ . Now L(0, 1′) is not a certain link for I in E ′ , since it is not a
certain link for I in E . So let M be a maximum weight repair that does not contain L(0, 1′). Then of course M contains the
certain link L(0, 1). As we just showed, L(0, 1) and L(0, 1′) have the same weight in E ′ , and in particular L(0, 1′) satisfies
the matching constraint for E ′ . Form M ′ by replacing L(0, 1) by L(0, 1′). Then M ′ satisfies the inclusion dependencies, the
only possible FD L : X → Y , and the matching constraint. Furthermore, M ′ has the same weight as M , since L(0, 1) and
L(0, 1′) have the same weight, and so M ′ is a maximum weight repair. But this is a contradiction, since M ′ is a maximum
weight repair that does not contain the certain link L(0, 1). So the FD L : Y → X is a constraint of E ′ . The proof that
the FD L : X → Y is a constraint of E ′ is almost the same, except rather than replacing the certain link L(0, 1) in a
maximum weight repair by L(0, 1′), we instead replace the certain link L(1, 0) by L(1′, 0). So indeed, both FDs L : X → Y
and L : Y → X are constraints of E ′ .

There are now two cases, depending on whether or not L((2n + 1)′, (2n +1)′) satisfies the matching constraint for E ′ (this
link of course does not satisfy the matching constraint for E , since the tuple ((2n + 1)′, (2n + 1)′) is not in the R relation).
Consider first the case where L((2n + 1)′, (2n + 1)′) satisfies the matching constraint for E ′ . Let M be a maximum weight
repair for E ′. By certain-link equivalence, we know that M contains Xn ∪ U (Xn). According to the inclusion dependency for
L[X], and the FD L : X → Y , the only possible first entry (x value) for a tuple that is not already in Xn ∪ U (Xn) is (2n + 1)′ .
Similarly, the only possible second entry (y value) for a tuple that is not already in Xn ∪ U (Xn) is (2n + 1)′ . So the only
possible fact in M other than those in Xn ∪ U (Xn) is L((2n + 1)′, (2n + 1)′). Let M ′ = Xn ∪ U (Xn) ∪ {

L((2n + 1)′, (2n + 1)′)
}

.
Then M ′ satisfies the inclusion dependencies, FDs, and matching constraint, and is the unique maximum weight repair (in
particular, M = M ′). Therefore, L((2n + 1)′, (2n + 1)′) is a certain link in E ′ . But this is a contradiction, since E and E ′ are
certain-link equivalent, and L((2n + 1)′, (2n + 1)′) is not a certain link in E .

In the second case (which we consider for the rest of the proof), L((2n + 1)′, (2n + 1)′) does not satisfy the matching
constraint for E ′ , and so from what we have just discussed, it follows that Xn ∪ U (Xn) is the unique maximum weight repair
for E ′ .

B.5.1. Defining Highi , Middlei , Lowi , A1 , and A2
We now define some sets of links for In+4,n . Define High1 to consist of the “highest links” L(0, 1) and L(0, 1′); define

High2 to consist of the “second from the highest” links L(2, 1) and L(2′, 1′); define High3 to consist of the “third from
the highest” links L(2, 3) and L(2′, 3′); and so on. Let c be such that Highc = {

L(n
2 , n

2 + 1), L((n
2)′, (n

2 + 1)′)
}

, that is (since
n = 4r),

{
L(2r,2r + 1), L((2r)′, (2r + 1)′)

}
. Let High = ∪c

j=1High j . Note that by construction, for each i both members of
Highi have the same type ((+, +, −), etc.).

Define Middle0 to consist of the very middle links L(n + 4, n + 5) (that is, L(4r + 4, 4r + 5)) and L(n′, (n + 1)′)
(that is, L((4r)′, (4r + 1′)). These are the links that are the middle links of the 3-element sets S n

2 +3 and S ′
n
2 +1. Define

Middle−1 to consist of the links just before the very middle links, namely L(n + 4, n + 3) (that is, L(4r + 4, 4 + 3)) and
L(n′, (n − 1)′) (that is, L((4r)′, (4r − 1′)). Let e1 be such that Middle−e1 = {

L(n
2 + 6, n

2 + 5), L((n
2 + 2)′, (n

2 + 1)′)
}

, that is, {
L(2r + 6,2r − 5), L((2r + 2)′, (2r + 1)′)

}
. Define Middle1 to consist of the links just after the very middle links, namely

L(n + 6, n + 5) (that is, L(4r + 6, 4 + 5)) and L(n + 2)′, (n + 1)′) (that is, L((4r + 2)′, (4r + 1)′)). Let e2 be such that Middlee2 ={
L(3n

2 + 4, 3n
2 + 3), L((3n

2)′, (3n
2 − 1)′)

}
, that is,

{
L(6r + 4,6r + 3), L((6r)′, (6r − 1)′)

}
. Let Middle = ∪e2

j=−e1
Middle j . We now

show that for each i both members of Middlei have the same type. This is true for i = 0, since both members of Middle0
have type (+, +, −). It is then true by forward induction for i > 0, and by backward induction for i < 0.

Define Low1 to consist of the lowest links L(2n + 8, 2n + 9) (that is, L(8r + 8, 8r + 9)) and L((2n)′, (2n + 1)′) (that is,
L((8r)′, (8r +1)′)). Define Low2 to consist of the second from the lowest links L(2n +8, 2n +7) (that is, L(8r +8, 8r +7)) and
L((2n)′, (2n − 1)′ (that is, L((8r)′, (8r − 1)′)), and so on. Let d be such that Lowd =

{
L(3n

2 + 8, 3n
2 + 9), L((3n

2)′, (3n
2 + 1)′)

}
,

that is,
{

L(6r + 8,6r + 9), L((6r)′, (6r + 1)′)
}

and let Low = ∪d
j=1Low j . We now show that for each i both members of Lowi

have the same type. This is true for i = 1, since both members of Low1 have type (+, −, −). It is then true by induction for
i > 0.

By construction, the sets High, Middle, and Low are pairwise disjoint, and every link for I ′n is in exactly one of High,
Middle, and Low.

There are eight links in (B.1) that are not in High, Middle, or Low: four of these lie between High and Middle (these are
labeled as A1 in Fig. 1), and four of these lie between Middle and Low (these are labeled as A2 in Fig. 1).

B.5.2. Neighborhoods avoiding High1 , Middle0 , and Low1
The last link in (B.1) that is in High is the link L(2r, 2r + 1) of Highc . Therefore, by the fact (*) above we know that the

r-neighborhood Nr(2r, 2r + 1) corresponding to the last link in (B.1) that is in High does not contain either entry of the
very first link L(0, 1) if 2r − 1 > r, that is, r > 1. Identically, the r-neighborhood Nr((2r)′, (2r + 1)′) corresponding to the last
link in (B.2) that is in High does not contain either entry of the very first link L(0, 1′) if 2r − 1 > r, that is, r > 1. Since we

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.24 (1-26)

24 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
are assuming that r ≥ 3, it follows that no r-neighborhood Nr(a, b) corresponding to a link L(a, b) not in High contains any
entry of a member of High1.

The first link in (B.1) that is in Middle is the link L(2r + 6, 2r + 5) of Middle−e1 . The very middle link in (B.1) is L(4r + 4,

4r + 5). Therefore, by the fact (*) above, we know that the r-neighborhood Nr(2r + 6, 2r + 5) corresponding to the first link
in (B.1) that is in Middle does not contain either entry of the very middle link L(4r + 4, 4r + 5) if (4r + 4) − (2r + 6) > r,
that is, if r > 2. Similarly, the r-neighborhood Nr(6r + 4, 6r + 3) corresponding to the last link in (B.1) that is in Middle
does not contain either entry of the very middle link L(4r + 4, 4r + 5) if (6r + 3) − (4r + 5) > r, that is, if r > 2. Therefore,
since we are assuming that r ≥ 3, we know that for each link L(a, b) in (B.1) that is not in Middle, the r-neighborhood
Nr(a, b) corresponding to the link L(a, b) does not contain either member of Middle0, the set of the very middle links.
Since the number of links in Middle that are in (B.2) is the same as the number of links in Middle that are in (B.1), the
same phenomenon holds when we consider links in (B.2).; that is, for each link L(a, b) in (B.2) that is not in Middle, the
r-neighborhood Nr(a, b) corresponding to L(a, b) does not contain either entry of Middle0. So no r-neighborhood Nr(a, b)

corresponding to a link L(a, b) not i in Middle contains any entry of a member of Middle0.
The first link in (B.1) that is in Low is the link L(6r + 8, 6r + 9) of Lowd . Therefore, by the fact (*) above, we know that

the r-neighborhood Nr(6r + 8, 6r + 9) corresponding to the first link in (B.1) that is in Low does not contain either entry of
the very last link L(8r + 8, 8r + 9) if (8r + 8) − (6r + 9) > r, that is, r > 1. Since the number of links in Low that are in (B.2)
is the same as the number of links in Low that are in (B.1), the same phenomenon holds when we consider links in (B.2).
So no r-neighborhood Nr(a, b) corresponding to a link L(a, b) not i in Low contains any entry of a member of Low1.

B.5.3. Equality of weights of links within each Highi , within each Middlei , and within each Lowi
As before, let f be the function where f (0) = 0, and where f (i) = i′ and f (i′) = i for each positive integer i. If L(a1, b1)

and L(a2, b2) are the two links in Highi0
, where 1 ≤ i0 ≤ c, then as we noted in Subsection B.5.2, neither Nr(a1, b1) nor

Nr(a2, b2) contains any member of Middle0, and so by an argument similar to that in Subsection B.5 involving the repeating
pattern of types, we see that f is an isomorphism between In+4,n � Nr(a1, b1) and In+4,n � Nr(a2, b2) with f (a1) = a2 and
f (b1) = b2. By our choice of r, we know from Theorem 6, where the role of E is played by E ′ , that the links L(a1, b1) and
L(a2, b2) have the same weight.

Before we consider links in Middle and Low, we need an intermediate notion. Let us say that a link L(a, b) not in High1
is left-matching if the previous link in the sequence (B.1) or (B.2) is of the form L(a, x) for some x, and right-matching if
the previous link in the sequence (B.1) or (B.2) is of the form L(x, b) for some x. Thus, a link L(a, a + 1) or L(a′, (a + 1)′) is
left-matching, and a link L(a, a − 1) or L(a′, (a − 1)′) is right-matching. Note that the links alternate: after a right-matching
link is a left-matching link, after that is a right-matching link, and so on.

Let L(a1, b1) and L(a2, b2) be the two links in Middlei0 , where −e1 ≤ i0 ≤ e2. We assume that L(a1, b1) is in (B.1) and
that L(a2, b2) is in (B.2). We now show that L(a1, b1) and L(a2, b2) have the same weight in E ′ . Let f be the mapping that
maps j to (j − 4)′ for each j in Nr(a1, b1). Then f is an isomorphism between In+4,n � Nr(a1, b1) and In+4,n � Nr(a2, b2)

with f (a1) = a2 and f (b1) = b2, because (i) L(a1, b1) is left-matching if and only if L(a2, b2) is left-matching, (ii) from what
we have shown, neither Nr(a1, b1) nor Nr(a2, b2) contains an entry of a link in High1 (the very highest links) or any entry
of a link in Low1 (the very lowest links), (iii) as we noted in Subsection B.5.1, the members of Middlei0 have the same type,
and (iv) in both neighborhoods Nr(a1, b) and Nr(a2, b2) there is the same pattern of repeating types of links. So again, by
our choice of r, we know that the links L(a1, b1) and L(a2, b2) have the same weight.

Now let L(a1, b1) and L(a2, b2) be the two links in Lowi0 , where 1 ≤ i0 ≤ d. We assume that L(a1, b1) is in (B.1) and
that L(a2, b2) is in (B.2). We now show that L(a1, b1) and L(a2, b2) have the same weight in E ′ . Let f be the function
that maps j to (j − 8)′ for each j in Nr(a1, b1). Thus, f associates the last link L(2n + 8, 2n + 9) in (B.1) and the last link
L((2n)′, (2n + 1)′) in (B.2). Again, f is an isomorphism between In+4,n � Nr(a1, b1) and In+4,n � Nr(a2, b2) with f (a1) = a2
and f (b1) = b2, because (i) L(a1, b1) is left-matching if and only if L(a2, b2) is left-matching, (ii) from what we have shown,
neither Nr(a1, b1) nor Nr(a2, b2) contains an entry of a link in Middle0, (iii) as we noted, the members of Lowi0 have the
same type, and (iv) in both neighborhoods Nr(a1, b) and Nr(a2, b2) there is the same pattern of repeating types of links. So
again, by our choice of r, we know that the links L(a1, b1) and L(a2, b2) have the same weight.

B.5.4. Contradiction via showing there is another maximum weight repair
Let M = Xn ∪ U (Xn). Let M ′ consist of all of the links L(a, b) where R(a, b) is a fact of In+4,n ∪ U (In+4,n) but L(a, b) is

not in Xn ∪ U (Xn). Thus, M ′ is the union of

L(2,1), L(4,3), . . . , L(2n + 8,2n + 7), L(0,1′), L(2′,3′), . . . , L((2n)′, (2n + 1)′)

and

L(1,2), L(3,4), . . . , L(2n + 7,2n + 8), L(1′,0), L(3′,2′), . . . , L((2n + 1)′, (2n)′).

Note that both M and M ′ have 4n + 10 links.
We already noted that M is the unique maximum weight repair. We shall show shortly that M ′ is also a maximum

weight repair, which gives us our desired contradiction.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.25 (1-26)

D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 25
We now show that every member of each Highi has one member of M and one member of M ′ . This is certainly true
of High1, which contains L(0, 1), which is in M , and L(0, 1′), which is in M ′ . Since M contains every other member of the
sequence (B.1) starting with L(0, 1), and since M contains every other member of the sequence (B.2) starting with L(2′, 1′),
we see inductively that indeed, every member of each Highi has one member of M and one member of M ′ .

We now show that every member of each Middlei has one member of M and one member of M ′ . This is certainly true of
Middle0, which contains L(n′, (n + 1)′), which is in M , and L(n + 4, n + 5), which is in M ′ . Again by induction (going forward
in the sequence (B.1) starting with L(n + 4, n + 5), and forward in the sequence (B.2), starting with L(n′, (n + 1)′)), and by
reverse induction (going backward in the sequence (B.1) starting with L(n + 4, n + 5), and backward in the sequence (B.2)
starting with L(n′, (n + 1)′)), we see that indeed, every member of each Middlei has one member of M and one member
of M ′ .

We now show that every member of each Lowi has one member of M and one member of M ′ . This is certainly true
of Low1, which contains L(2n + 8, 2n + 9), which is in M , and L((2n)′, (2n + 1)′) which is in M ′ . By backward induction
(going backward in the sequence (B.1), starting with L(2n + 8, 2n + 9), and backward in the sequence (B.2), starting with
L((2n)′, (2n + 1)′)), we see that indeed, every member of each Lowi has one member of M and one member of M ′ .

We just showed that each Highi , each Middlei , and each Lowi consists of a member of M and a member of M ′ . We
also showed earlier that both members of each Highi have the same weight, both members of each Middlei have the same
weight, and both members of each Lowi have the same weight. Therefore, the sum of the weights of the links in M that
are in High ∪ Middle ∪ Low equals the sum of the weights of the links in M ′ that are in High ∪ Middle ∪ Low. By symmetry,
the sum of the weights of the links in M that are in U (High) ∪ U (Middle) ∪ U (Low) equals the sum of the weights of the
links in M ′ that are in U (High) ∪ U (Middle) ∪ U (Low).

We now consider the remaining links (the links that are not in High ∪ Middle ∪ Low ∪ U (High) ∪ U (Middle) ∪ U (Low)).
We call these missing links. What are they? As we noted earlier, every link for I ′n is in exactly one of High, Middle, and Low,
and there are 8 links in (B.1) that are not in High, Middle, or Low: 4 missing links that are consecutive links in the top
portion of (B.1), and 4 missing links that are consecutive links in the bottom portion of (B.1.) These 4 missing links in the
top portion form the set

A1 =
{

L(
n

2
+ 2,

n

2
+ 1), L(

n

2
+ 2,

n

2
+ 3), L(

n

2
+ 4,

n

2
+ 3), L(

n

2
+ 4,

n

2
+ 5)

}
,

and the 4 missing links in the bottom portion form the set

A2 =
{

L(
3n

2
+ 4,

3n

2
+ 5), L(

3n

2
+ 6,

3n

2
+ 5), L(

3n

2
+ 6,

3n

2
+ 7), L(

3n

2
+ 8,

3n

2
+ 7)

}
.

Again, see Fig. 1. Similarly, the links in U (A1) and U (A2) are missing links (the only remaining missing links). So the links
we have not studied (the links that are not in High ∪ Middle ∪ Low ∪ U (High) ∪ U (Middle) ∪ U (Low)) are the 4 links in A1,
the 4 links in A2, the 4 links in U (A1), and the 4 links in U (A2).

For ease in description, let us refer to links of type (+, +, −) as being of Type 1, links of type (+, −, −) as being of
Type 2, links of type (−, +, +) as being of Type 3, and links of type (−, −, +) as being of Type 4. Of course, a link L(b, a))

in U (A1) ∪ U (A2) has the same type as the link L(a, b) in A1 ∪ A2, and L(b, a)) is in M if and only if L(a, b) is in M . Note
that the links in A1 ∩ M are of types 1 and 3, but (and this is the reason that we skipped a type in the middle) the links
in A2 ∩ M are of types 2 and 4. Since the links in A1 are consecutive, A1 has exactly one link of each of the 4 types, and
similarly for A2. Since the links in A1 ∩ M are of types 1 and 3, it follows that the links in A1 of types 1 and 3 are in M ,
and the links in A1 of types 2 and 4 are in M ′ . Similarly, since the links in A2 ∩ M are of types 2 and 4, it follows that the
links in A2 of types 1 and 3 are in M ′ , and the links in A2 of types 2 and 4 are in M .

We extend the notion of left-matching and right-matching to U (A1) ∪ U (A2) in the natural way: a link L(b, a) in U (A1) ∪
U (A2) is left-matching if the previous link is of the form L(b, x) for some x, and right-matching if the previous link is of
the form L(x, a) for some x. Again, the links alternate between left-matching and right-matching. Note that the link L(b, a)

of U (A1) ∪ U (A2) is left-matching if and only if the link L(a, b) of A1 ∪ A2 is right-matching.
The link of type 1 in A1, namely the link L(n

2 + 2, n2 + 3), is left-matching. For ease in notation, let us denote this
link by L(a1, b1). Because of the skip in link types just after the very middle link, the link in A2 of type 1, namely the link
L(3n

2 +6, 3n
2 +5), is right-matching. For ease in notation, let us denote this link by L(a2, b2). So the link L(b2, a2) of type 1 in

U (A2) is left-matching. We just showed that the link in A1 of type 1 is left-matching, and the link in U (A2) of type 1 is also
left-matching (in fact, this is why we introduced U (In+4,n)). From what we showed earlier, we know that neither Nr(a1, b1)

nor Nr(b2, a2) contains any entry of a member of High1, Middle0, or Low1. It follows that there is an isomorphism f
between (In+4,n ∪ U (In+4,n)) � Nr(a1, b) and (In+4,n ∪ U (In+4,n)) � Nr(b2, a2) with f (a1) = b2 and f (b1) = a2, because in
both neighborhoods Nr(a1, b) and Nr(b2, a2) there is the same pattern of repeating types of links. So by Theorem 6, the
weight of the type 1 link in A1 equals the weight of the type 1 link in U (A2). By the same argument, it follows that the
weight of the type i link in A1 equals the weight of the type i link in U (A2), for 1 ≤ i ≤ 4. When we combine this with
the fact that the link of type i in A1 is in M if and only if the link of type i in U (A2) is in M ′ , we see that the sum of the
weights of the links in M that are in A1 ∪ U (A2) equals the sum of the weights of the links in M ′ that are in A1 ∪ U (A2).
By symmetry, the sum of the weights of the links in M that are in U (A1) ∪ A2 equals the sum of the weights of the links
in M ′ that are in U (A1) ∪ A2.

JID:YJCSS AID:3187 /FLA [m3G; v1.243; Prn:1/10/2018; 12:30] P.26 (1-26)

26 D. Burdick et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
When we combine this with the facts we have shown that the sum of the weights of the links in M that are in
High ∪ Middle ∪ Low equals the sum of the weights of the links in M ′ that are in High ∪ Middle ∪ Low, and the fact that the
sum of the weights of the links in M that are in U (High) ∪ U (Middle) ∪ U (Low) equals the sum of the weights of the links
in M ′ that are in U (High) ∪ U (Middle) ∪ U (Low), we see that the total sum of the weights of the links in M equals the total
sum of the weights of the links in M ′ . Now M ′ is a repair, since (i) from what we have shown, every link in M ′ has the
same weight as a link in M , and so the matching constraint is satisfied for the links in M ′ , (ii) M ′ satisfies the inclusion
dependencies, and (iii) M ′ does not violate either FD. But then M ′ is a maximum weight repair, which is a contradiction,
since we showed that M is the unique maximum weight repair. This contradiction shows that E ′ does not exist. �
References

[1] Arvind Arasu, Christopher Re, Dan Suciu, Large-scale deduplication with constraints using Dedupalog, in: ICDE, 2009, pp. 952–963.
[2] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Consistent query answers in inconsistent databases, in: PODS, 1999, pp. 68–79.
[3] Stephen H. Bach, Hinge-Loss Markov Random Fields and Probabilistic Soft Logic: A Scalable Approach to Structured Prediction, PhD thesis, University

of Maryland, 2015.
[4] Stephen H. Bach, Matthias Broecheler, Bert Huang, Lise Getoor, Hinge-loss Markov random fields and probabilistic soft logic, CoRR, http://arxiv.org /abs /

1505 .04406, 2015.
[5] Zeinab Bahmani, Leopoldo E. Bertossi, Nikolaos Vasiloglou, ERBlox: combining matching dependencies with machine learning for entity resolution, Int.

J. Approx. Reason. 83 (2017) 118–141.
[6] Leopoldo E. Bertossi, Solmaz Kolahi, Laks V.S. Lakshmanan, Data cleaning and query answering with matching dependencies and matching functions,

Theory Comput. Syst. 52 (3) (2013) 441–482.
[7] Indrajit Bhattacharya, Lise Getoor, Collective entity resolution in relational data, ACM Trans. Knowl. Discov. Data 1 (1) (2007).
[8] Matthias Bröcheler, Lilyana Mihalkova, Lise Getoor, Probabilistic similarity logic, in: UAI 2010, Proceedings of the Twenty-Sixth Conference on Uncer-

tainty in Artificial Intelligence, Catalina Island, CA, USA, July 8–11, 2010, 2010, pp. 73–82.
[9] Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang-Chiew Tan, A declarative framework for linking entities, ACM Trans. Database

Syst. 41 (3) (2016) 17. Preliminary version appeared in ICDT, 2015, pp. 25–43.
[10] Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, Wang Chiew Tan, Expressive power of entity-linking frameworks, in: 20th International

Conference on Database Theory, ICDT 2017, March 21–24, 2017, Venice, Italy, 2017, 10.
[11] Jan Chomicki, Jerzy Marcinkowski, Minimal-change integrity maintenance using tuple deletions, Inf. Comput. 197 (1–2) (2005) 90–121.
[12] Xin Dong, Alon Y. Halevy, Jayant Madhavan, Reference reconciliation in complex information spaces, in: SIGMOD, 2005, pp. 85–96.
[13] Jianfeng Du, Guilin Qi, Yi-Dong Shen, Weight-based consistent query answering over inconsistent SHIQ knowledge bases, Knowl. Inf. Syst. 34 (2) (2013)

335–371.
[14] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, Vassilios S. Verykios, Duplicate record detection: a survey, IEEE Trans. Knowl. Data Eng. 19 (1) (2007)

1–16.
[15] Wenfei Fan, Dependencies revisited for improving data quality, in: PODS, 2008, pp. 159–170.
[16] Ivan P. Fellegi, Alan B. Sunter, A theory for record linkage, J. Am. Stat. Assoc. 64 (328) (1969) 1183–1210.
[17] Haim Gaifman, On local and non-local properties, in: Proc. Herbrand Symp. – Logic Colloquium ’81, 1982.
[18] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, Cristian-Augustin Saita, Declarative data cleaning: language, model, and algorithms, in:

VLDB, 2001, pp. 371–380.
[19] Mauricio A. Hernández, Georgia Koutrika, Rajasekar Krishnamurthy, Lucian Popa, Ryan Wisnesky, HIL: a high-level scripting language for entity inte-

gration, in: EDBT, 2013, pp. 549–560.
[20] Mauricio A. Hernández, Salvatore J. Stolfo, The merge/purge problem for large databases, in: SIGMOD, 1995, pp. 127–138.
[21] Hanna Köpcke, Erhard Rahm, Frameworks for entity matching: a comparison, Data Knowl. Eng. 69 (2) (2010) 197–210.
[22] Hanna Köpcke, Andreas Thor, Erhard Rahm, Evaluation of entity resolution approaches on real-world match problems, Proc. VLDB Endow. 3 (1) (2010)

484–493.
[23] Nick Koudas, Sunita Sarawagi, Divesh Srivastava, Record linkage: similarity measures and algorithms, in: SIGMOD, 2006, pp. 802–803.
[24] Leonid Libkin, Logics with counting and local properties, ACM Trans. Comput. Log. 1 (1) (2000) 33–59.
[25] Leonid Libkin, Elements of Finite Model Theory, Texts in Theoretical Computer Science. An EATCS Series, Springer, 2004.
[26] Andrei Lopatenko, Leopoldo E. Bertossi, Complexity of consistent query answering in databases under cardinality-based and incremental repair seman-

tics, in: ICDT, 2007, pp. 179–193.
[27] Matthew Richardson, Pedro Domingos, Markov logic networks, Mach. Learn. 62 (1–2) (2006) 107–136.
[28] Slawek Staworko, Jan Chomicki, Jerzy Marcinkowski, Prioritized repairing and consistent query answering in relational databases, Ann. Math. Artif.

Intell. 64 (2–3) (2012) 209–246.

http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4465647570616C6F673039s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib44424C503A636F6E662F706F64732F4172656E617342433939s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib426163683135s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib426163683135s1
http://arxiv.org/abs/1505.04406
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4261686D616E6942563137s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4261686D616E6942563137s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib424B4C3133s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib424B4C3133s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib436F6C6C65637469766545523037s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib42726F6368656C65724D473130s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib42726F6368656C65724D473130s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4275726469636B464B50543136s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4275726469636B464B50543136s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4275726469636B3137s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4275726469636B3137s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib43686F6D69636B694D3035s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib5265666572656E63655265636F6E63696C696174696F6Es1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib447551533133s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib447551533133s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib44424C503A6A6F75726E616C732F746B64652F456C6D616761726D696449563037s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib44424C503A6A6F75726E616C732F746B64652F456C6D616761726D696449563037s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib46616E3038s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib44424C503A6A6F75726E616C732F416D53742F466553753639s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib476169666D616E3832s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib416A6178s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib416A6178s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib48494C6564627432303133s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib48494C6564627432303133s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4D657267655075726765s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4B6F70636B65523130s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4B6F70636B6554523130s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4B6F70636B6554523130s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib44424C503A636F6E662F7369676D6F642F4B6F7564617353533036s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4C69626B696E544F434C3030s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4C69626B696E3034s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4C6F706174656E6B6F423037s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4C6F706174656E6B6F423037s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib4D4C4E3036s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib537461776F726B6F3132s1
http://refhub.elsevier.com/S0022-0000(18)30809-2/bib537461776F726B6F3132s1
http://arxiv.org/abs/1505.04406

	Expressive power of entity-linking frameworks
	1 Introduction and summary of results
	2 Background on declarative entity linking
	2.1 The language L0 and entity-linking speciﬁcations based on L0
	2.2 Maximum-value solutions

	3 Entity-linking frameworks
	3.1 Weighted repairs and consistent answers
	3.2 Certain links and entity-linking frameworks
	3.3 Entity-linking frameworks based on L0
	3.4 Collective entity-linking frameworks

	4 Comparing the expressive power of entity-linking frameworks
	5 Adding preference constraints
	6 Concluding remarks
	Acknowledgments
	Appendix A Proof of Theorem 3
	Appendix B Proof of Theorem 5
	B.1 The instance In+4,n
	B.2 Type of links
	B.3 The sets Si and S'i
	B.4 Finding the certain links
	B.5 The strength of allowing preferences
	B.5.1 Deﬁning Highi, Middlei, Lowi, A1, and A2
	B.5.2 Neighborhoods avoiding High1, Middle0, and Low1
	B.5.3 Equality of weights of links within each Highi, within each Middlei, and within each Lowi
	B.5.4 Contradiction via showing there is another maximum weight repair

	References

