
RJ3440 (40926) 4/5/82
Computer Science

ARMSTRONG DATABASES

Ronald Fagin

IBM Research Laboratory
San Jose, California 95193

Appeared in: 7th IBM Symposium on Mathematical Foundations of Computer Science, Kanagawa, Japan,
May 1982.

LIMITED DISTRIBUTION NOTICE

This report has been submitted for publication outside of IBM and will Probably be copyrighted if accepted for publication. It has been issued as a Research
Report for early dissemination of its coctents. In view of the transfer of copyright tti the outside publisher, its distribution Cutside of IBM prior to publication should
be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the
article (e.g., payment of royalties).

--- - --- - - - - - - - - -- - - --- - - - --- Research Division
--me- -- -. - Yorktown Heights, New York 0 San Jose, California 0 Zurich, Switzerland

Copies may be requested from:
I 6 M Thomas J. Watson Research Center
Distribution %rvtces
Posr Office Box 21 8
Yorktown Heigllts, New York 10598

RJ3440 (40926) 4/5/82
Computer Science

ARMSTRONG DATABASES

Ronald Fagin

IBM Research Laboratory
San Jose, California 95193

ABSTRACT: An Armstrong database is a database that obeys precisely a given set of sentences (and
their logical consequences) and no other sentences of a given type. This paper surveys history and
results on Armstrong databases.

Key words and phrases: Armstrong relation, Armstrong database, relational database, implicational
dependency, embedded dependency, functional dependency, multivalued dependency, join dependency,
template dependency, direct product, faithfulness, logical consequence, mathematical logic.

CR categories: 4.33, 5.21

Appeared in: 7th IBM Symposium on Mathematical Foundations of Computer Science, Kanagawa, Japan,
May 1982.

1

1. INTRODUCTION

We begin by discussing Armstrong relations, which are special cases of Armstrong databases

(where the database consists of a single relation.) For simplicity, we further restrict our attention

initially by considering only functional dependencies, or FD’s [Co].

We need some basic definitions. We assume a finite set U of attributes. A tuple (over U) is a

mapping with domain U, and a relation (over U) is a set of tuples (over U). If XSU, and if t is a

tuple over U, then we denote the restriction of t to X by t[X]. If r is a relation over U, then

r[X]=(t[X]: tcr). If A is an attribute of U, and if t is a tuple over U, then we may refer to t[A] as an

entry, in the A column.

A functional dependency (over U) [Co] , or an FD, is a statement, or sentence, X-mY where X,

Y-CU. A relation r over U obeys the FD X-cY if wherever tl, tZ are tuples of r with tl[X]=t2[X], then

tl[Y]=tz[Y]. We also say then that the FD holds for r. If the FD does not hold for r, then we say that

the FD fails in r, or that r violates the FD. (Similar comments apply to other sentences besides FD’s.)

Let 2 be a set of sentences, such as FD’s, let a be a single sentence. When we say that I:

logically implies a or that a is a logical consequence of 2, we mean that whenever every sentence in I:
holds for a relation r, then also u holds for r. That is, there is no “counterexample relation” or

“witness” r such that every sentence in 2 holds for r, but such that u fails in r. We wiite Z k u to

mean that Z logically implies u (and we write Z F L T to mean that X does not logically imply u.) For

example, (A-B, B-cC) t A-cC. Let Z be a set of FD’s, and let Z* be the set of all FD’s that are

logical consequences of Z. For each FD u not in Z*, we know (by definition of t) that there is a

relation ru (a witness) such that ro obeys 2 but not a. An Armstrong relation for I: is a relation (a

global witness) that can simultaneously serve the role of all of the To’s. That is, an Armstrong relation

is a relation that obeys Z* and no other FD’s.

As an example [Fa4], let Z be the set (EMP-cDEPT, DSPT-cMGR), containing two FD’s. Then

Z* contains the FD’s in Z, along with, for example, the FD EMP+MGR. It is easy to verify (by

considering all possible FD’s involving only EMP, DEPT, and MGR) that the relation (call it r) in

Figure 1.1 is an Armstrong relation for 2, that is, that it obeys every FD in I:* and no others. For

example, the FD MGR-mDEPT is not an FD in Z*, and indeed, r does not obey this FD, since Gauss

is the manager of two distinct departments (Math and Physics).

A closely related concept to Armstrong relations in traditional mathematics is the free algebra

with countabiy many generators [Gr], which obeys just a specified set of equations and their logical

consequences, and no other equations. (However, although the free algebra just mentioned is unique

.
2

to within isomorphism, Armstrong relations are not [Fa4].) In ordinary first-order logic (where

arbitrary first-order sentences, and not just FD’s are allowed), there can be no Armstrong relations.

For example, let Z be the empty set 0. Assume that r were a relation that obeyed just Z* (that is,

just’ihe tautologies), and no other first-order sentences. Let u be an arbitrary first-order sentence

such that neither u nor - u is a tautology. Clearly, r must obey one of u or lu; thus, r obeys a

nontautology. This is a contradiction. Thus, there is a witness for u (a relation that shows that u is

not a tautology), and a witness for - u (a relation that shows that -u is not a tautology), but there is

no global witness (a relation that simultaneously shows that u is not a tautology and that lu is not a

tautology.)

It is common to speak of a relation obeying an “accidental” dependency, that is, a dependency

that is not a logical consequence of the collection of “specified” dependencies. Thus, each specified

dependency is supposed to hold “for all time,” that is, for every “snapshot” (instance) of the

database, whereas an accidental dependency is one that happens to hold in some snapshot of the

database, but may fail in other snapshots. An Armstrong relation is precisely one that obeys every

specified dependency and no accidental dependency.

In Section 2, we present some applications of Armstrong databases. In Section 3, we describe

their history, and in Section 4, we discuss techniques for constructing then. In Section 5 , we discuss

the size of Armstrong relations (for sets of functional dependencies). In Section 6, we discuss the

issue of finite versus infinite Armstrong relations. In Section 7, we present conclusions.

2. Applications of Armstrong databases

We begin with an interesting “practical” application for Armstrong relations. Silva and Melka-

noff [SM] have developed a database design aid, in which the database designer inputs a set of FD’s

and MVD’s (multivalued dependencies) [Fa2]. The design aid then presents him with an Armstrong

relation, that is, a “sample relation” that obeys just those dependencies that are logical consequences

of those that he has inputted. (Armstrong relations exist in the presence of FD’s and MVD’s, and this

is the case in which Silva and Melkanoff were interested.) Let us say, for example, that the designer

gives as input the set (EMP-DEPT, DEPT-cMGR) of FD’s. The database design aid would then

present the designer with an Armstrong relation, such as relation r in Figure 1.1, for +his set of

dependencies. The designer wouid then inspect the sample relation, and might observe, for example,

“Here is a manager, namely Gauss, who manages two different departments. Therefore, the dependen-

cies that I inputted must not have implied that no manager can manage two different departments.

Since I want this to be a constraint for my database, I’d better input the FD MGR-DEPT”.

3

In this example, the designer did not have to explicitly think about the dependency MGR+DEPT

and whether or not it was a consequence of the dependencies that he input; rather, by seeing the

Armstrong relation, and thinking about what it said, he simply noticed that the FD MGR-cDEPT

hided. Thus, Silva and Melkanoff’s approach is a partial solution, in the spirit of Query-by-Example

[Zl], to the problem of helping a designer think of what dependencies should be included.

We now mention two theoretical applications of Armstrong databases that are in the literature. A

kcy of a relation is a set K of attributes such that the FD K+U holds in the relation but such that for

every proper subset K’ of K, the FD K’+U does not hold in it. A key gives a minimal unique

identifier for each tuple in a relation. Been, Dowd, Fagin, and Statman [BDFS] use Armstrong

relations to generalize a result, obtained by Demetrovics [De] using quite complicated methods, about

the possible sets of keys for a relation. Specifically, they show that that if J is an arbitrary nonempty

collection of kcomparable subsets of a finite set U, then there is a relation with attributes U for which

the set of keys is precisely J (Demetrovics proved that there is such a relation in the special case

where J is the set of all subsets of U that contain precisely Ln/2J members, where LxJ is the

greatest integer not exceeding x.)

Finally, Casanova, Fagin, and Papadimitriou [CFP] make use of an Armstrong database to help

show that for each k, there is no k-ary complete axiomatization for functional dependencies and

inclusion dependencies together (we shall discuss inclusion dependencies later.)

3. History

In 1974, Armstrong wrote one of the first papers [Ar] in database theory. In it, he presented a

The followiag is a set of set of deduction rules (commonly called Armstrong’s axioms) for FD’s.

deduction rules equivalent to those of Armstrong:

Arm1 (reflexivity): If Y EXEU, then X+Y.

Arm2 (augmentation): If X+Y and ZGU, then XZdYZ.

Arm3 (transitivity): If X-Y and Y+Z, then X-cZ.

By XZ in (Arm2) above, we mean XuZ, and similarly for YZ.

We now discuss the concept of a proof. Let I: be a set of FD’s, and let u be a single FD. A

proof of (I from Z is a finite sequence of FD’s, where (1) each FD in the sequence is either a member

of 2 , or else follows from previous FD’s in the sequence by an application of the deduction rules

(Arml)-(Arm3), and where (2) u is the last FD in the sequence. We write Z F a to mean that there is

a proof of u from Z. If Z ku, then we may say that u is provable from 2. Let us denote by Z+ the

4

set of FD’s that are provable from Z. Thus, Z+ = (a: Z k u] . By contrast, recall that Z* = (a:

t a l .

The main result in Armstrong’s paper is the following.

Armstrong’s Theorem [Ar]. For each set X of FD’s, there is a relation that obeys precisely the

FD’s in Z+.

Armstrong proved this result by explicitly constructing a rather complicated relation with the

desired property.

For the sake of later discussion, we now state a possible generalization of Armstrong’s Theorem.

We assume (a) a set 9 of sentences and (b) a set of deduction rules for sentences in 9. In the case

of Armstrong’s Theorem, 9 is the (finite) set of all FD’s over attributes U. Later, we shall consider

cases in which 9 is infinite. We define proof (and provable) as before. We assume that the deduction

rules are sound, that is, we assume that if u is provable from Z using the deduction rules, then u is a

logical consequence of 2 . As before, if Z E 9 and if U E ~ , then we write Z k u if there is a proof of IJ

from Z using the deduction rules, and we define Z+ to be the set of members u of 9 such that Z k u .

A possible generalization of Armstrong’s Theorem is:

(1) For each set Z: of members of 9? there is a relation that obeys precisely the members of 8 in Z+.

If 9 is a set of sentences, and if 2 G 9, then Z * is the set of all sentences u in 9 such that Z k u.
An Armfrong relation for Z (with respect to 9) is a relation that obeys every member of Z* and no

other sentence in 9. For later reference, we record the following possible statement:

(2) For each set Z of members of 9, there is a relation that obeys precisely the members of 9‘ in Z*.

Statement (2) says precisely that each subset X of 9 has an Armstrong relation (with respect to 9.) If

(2) holds, then we may say that 9 enjoys Amstrong relations. It is easy to see that if 9%9, and if 9

enjoys Armstrong relations, then so does T.

The soundness of a set of deduction rules for sentences in 9 says that Z+CZ*. Consider the

following statement:

(3) For each set Z of members of 9, necessarily Z+=Z*.

Statement (3) says precisely that the deduction rules are complete, that is, that a member of 9 is

provable from Z if and only if it is a logical consequence of 2.

5

Proposition 3.1. Let 9 be fixed. Then (1) is equivalent to (2) and (3) together.

Proof: It is obvious that (2) and (3) together imply (1). Conversely, assume that (1) holds. We

shall soon show that (3) holds. Since (1) ‘ u d (3) together clearly imply (2), it follows that (2) holds.

So, we need only show that (3) holds. We already noted that the inclusion X+ E Z* follows from

soundness of the deduction rules. Let us now consider the opposite inclusion Z* E Z+. Assume that

urZ*; we must show that o e 2 + . Let r be a relation, guaranteed to exist by (1), that obeys precisely

the members of 9 in Z+. Then r obeys 2, since Z ,C X+, by our definition of a proof (in fact, for

each member of Z there is a “one-line” proof.) Now Z k u , since aeX*. Since also r obeys 2, it

follows that r obeys u. Since r obeys precisely the members of 9 in X+, and since r obeys u, it

follows that u E Z+. This was to be shown. 0

The proof we just presented was given by Fagin [Fa31 in 1977 (in the special case where 9 is the

set of FD’s over a given set U of attributes.)

Also in 1977, Beeri, Fagin, and Howard [BFH] gave a set of deduction rules for FD’s and MVD’s

together. Let 9 be the set of FD’s and MVD’s (over a given set of attributes.) They proved (3), that

is, completeness of their rules, and they also proved (1). They called (1) strung completeness.

In 1980, Fagin [Fa41 defined the concept of an Amstrong relation, based on (2). Thus, property

(1) above, the concept of strong completeness (where Armstrong’s Theorem is the special case for

FD’s) has been “decomposed” into two orthogonal concepts: (a) Armstrong relations (as in property

(2) above), and (b) completeness (property (3) above). Completeness is a proof-theoretic concept,

that deals with the power of some set of deduction rules. However, the Armstrong relation concept

has nothing to do with deduction rules, but is instead a pure model-theoretic concept.

4. Techniques for constructing Armstrong databases

In this section, we discuss various techniques for constructing Armstrong databases (and the

limitations of these techniques).

a. Disjoint union

This approach was fist suggested by Beeri. Fqin, and Howard [BFH]. We begin by discussing it

in the context of FD’s only.

The disjoint union of a collection of relations (all with the same attributes) is obtzined by first

replacing each relation by an isomorphic copy, in such a way that no entry in one relation equals any

6

entry in any of the other relations; then a new relation is formed by taking the union of all of the

tuples in all of the relations.

Let 2 be a set of FD’s (over a set U of attributes), and let ul, ..., ak be those FD’s (over U) that

are not logical consequences of Z. By definition of logical consequence, there are relations rl, ..., rk,

where ri obeys Z but not ui (l s i s k) . Let r be the disjoint union of rl, ..., rk. We now show that the

relation r we have just formed is “almost” an Armstrong relation for 2. Since a subset of the tuples

of r (namely, the isomorphic copy of ri) violates ui, it follows easily that r violates ai (I s i l k) . If r

were to.obey every member of 2, then it would follow immediately that r would be an Armstrong

relation for 2. Although r does not necessarily obey every member of Z , something almost as strong

is true. Let us call an FD 0 + Y , in which the “left-hand side” is the empty set, a nonstandard FD

(and other FD’s standard FD’s.) Let X--Y be a standard FD in Z. We now show that r obeys X-cY.

Thus, r obeys every standard FD in 2 . Let tl and t2 be two tuples of r such that tl[X] = tq[X]; we

must show that tl[Y] = t2[Y]. Since t,[X] = t2[X], we know (by disjointness) then tl and t2 are in

(the isomorphic copy of) ri for some i. Since ri obeys the FD X--Y, it follows that tl[Y] = t2[Y].

This was to be shown.

The proof we just presented shows that if 9 is the set of all standard FD’s over U, then (2)

above holds. This proof is due to Been, Fagin, and Howard [BFH], who neglected to “patch” the

proof to deal with nonstandard FD’s. There is a fairly simple patch ([BDFS]; see also [AD].)

The proof we just gave (with a slightly more complicated patch) can be used to show that FD’s
and MVD’s enjoy Armstrong relations (that is, if 9 is the set of all FD’s and MVD’s over a given set

U of attributes, then (2) above holds.) In fact, this was the case of interest to Beeri, Fagin, and

Howard. Beeri [Be] showed that with an even more complicated patch, the prooP can be made to

work for FD’s and join dependencies [Ri]. Unfortunately, it does not seem that this technique can be

pushed much further. In particular, there does not seem to be a way to make such a proof work for

“embedded” dependencies, such as as embedckd MVD’s [Fa2].

b. Agreement sets

We now describe a characterization by Beeri, Dowd, Fagin, and Statman [BDFS] of Armstrong

relations for FD’s, and we show how they use their characterization to construct Armstrong relations.

Let Z be a set of FD’s, over the set U of attributes. A subset VGU is closed if for every FD

X--Y in Z for which XsV, also YsV. It is easy to see [Ar] that the intersection of closed sets is

closed. Note that the minimal dosed set containing X is X*, where X* is the set of all attributes A

such that Z CX+A.

. -

7

Let M be a family of subsets of a finite set, closed under intersection. Then M contains a unique

minimal subfamily M‘ such that the members of M’ generate M by intersection [AD]. Thus, M’ is the

smallest set such that M = IS, n ... n sk: k10 and S,, ..., sk E M‘). The members of M‘ are the

intersection generators of M . In fact, it is not hard to see that a member V of M is in M’ if and only if

V is properly contained in the intersection of the members of M that properly contain V. For a given

set of 2 of FD’s, denote by CL(Z) the family of closed sets defined by Z. As we noted, CL(Z) is

closed under intersection. Denote by GEN(Z) the intersection generators of CL(Z). Note that U is

in CL(X) but not in GEN(Z), since by convention, U is the intersection of the empty collection of

sets.

Let t, and t2 be tuples, and let X be a set of attributes. We say that t l and t2 agree exactly on X
if tl[X]=t2[X], and if tl[A]#t2[A] for each attribute A not in X. If r is a relation, then define agr(r)

to be {X: there is a pair of distinct tuples in r that agree exactly on X). The following characteriza-

tion of Armstrong relations for sets of FD’s is quite useful.

Theorem 4.1 [BDFS]. Let Z be a set of FD’s and let r be a relation. Then r is an Armstrong

relation for Z if and only if GEN(Z)Gagr(r)GCL(Z).

Theorem 4.1 can be utilized [BDFS] to give an algorithm for obtaining an Armstrong relation,

given a set I: of FD’s. The construction is very similar to that of Gold [Go]. Let n be the number of

attributes. The algorithm first cycles through each of the 2n subsets of attributes; and checks which

are closed (with respect to I:). Let S be the collection CL(Z) of closed sets. (We could get away

with using GEN(Z) instead of CL(Z) as S in the construction that follows, but we do not wish to

spend the time to prune out the nongenerators.) Assume that the distinct members of S are S , , ..., S,.
Let ti (l<i<r) be a tuple where t[A]=O if A is an attribute in Si, and where t[A]=i for each of the

other attributes.

(l l i l r) . By Theorem 4.1, it follows easily that as long as GEN(Z)SSGCL(Z), this construction

produces an Armstrong relation for 2.

The desired relation contains a tuple of all O’s, along with each of the tuples

It is clear that this algorithm has an exponential running time (exponential in the number of

attributes), since the size of Z is at most exponential in the number of attributes, and checking

whether a set X is closed can be done in time linear in the size of Z and the set X [BB]. There is no

algorithm with fasrer than an exponentiai running time, since [BDFS] tkere is a set of FD’s such that

the number of tuples in the smallest Armstrong relation for Z is exponential in the cumber of

attributes, and so an exponential amount of time is required just to write down the relation. (The

formal statement of this result on the worst-case size of an Armstrong relation appears in Section 5

below.)

8

c. Direct products

Let <ri: icI> be a (finite or infinite) family of relations, each with the same set U of attributes.

We =ow define the direct product @<ri: ieI>. The direct product has the same set U of attributes as

does each of the ri’s. In particular, the direct product maps a family of d-ary relations into a d-ary

relation (with the same arity d as each of the ri’s.) For notational convenience, let us assume that U

contains precisely three attributes ABC. (It is obviocs how to generalize the definition from this

special case.) The tuple (<ai: icI>, <bi: icI>, <ci: iaI>) is a tuple of the direct product if and only

if (ai, bi, ci) is a tuple of ri, for every i. For example, the direct product of the first two relations in

Figure 4.1 is the third relation in Figure 4.1.

Fagin [Fa41 defined a class of sentences, which he called embedded implicational dependencies (or

EID’s). Beeri and Vardi [BV2] and Yannakakis and Papadimitriou [YP] have also independently

defined this class. Beeri and Vardi call them (many-sorted, or typed) tuple-generating and equality-

generating dependencies, and Yannakakis and Papadimitriou call them algebraic dependencies. The class

of ED’S includes all functional dependencies, multivalued and embedded multivalued dependencies,

join and embedded join dependencies, and many others [Fa4]. We shall define EID’s at the end of

this subsection.

Fagin called a sentence u faithful if whenever <ri: ie l> is a nonempty family of nonempty

relations, then u holds for @<ri: icI> if and only if u holds for every ri. He showed [Fa41 that every

E D is faithful. It follows easily that EID’s enjoy Armstrong relations. For, much as before, let I: be

a set of EID’s (all involving the same relation symbol R), and let al, u2, ... be those EID’s (involving

R) that are not logical consequences of 2. By definition of logical consequence, there are relations rl,

r2, ... where ri obeys Z but not ui, for each i. Each ri is nonempty (i=1,2, ...), or else it would obey ui

(EID’s are derined in such a way that an empty relation obeys every EID.) Let r be the direct product

@ai: i=1,2, ... >. We now show that the relation r we have just formed is an Armstrong relation for

2. We must show that r obeys Z (and hence Z*), but that r violates each ui (i=1,2, ...). Since each ri

obeys 2, it follows by faithfulness that r obeys Z. Further, since ri violates ui, it follows again by

faithfulness that r violates ui (i=1,2, ...). This was to be shown.

An advantage of this direct product approach is that it is capable of yielding a finite Armstrong

relation (one with a finite number of tuples), if we restrict o w attention to a finite subset Y of EID’s.

Thus, if 9 is a finite set of EID’s (such as the set of all functional, multivalued, and join dependencies

and embedded multivalued and join dependencies over a given set of attributes), then 9 enjoys finite

Armstrong relations. (We remark that in considering finife Armstrong relations, it is necessary to deal

with tfi, rather than with /=, where 2 tfin a if every finite relation that obeys Z also obeys 6.) If 9

. -

9

contains embedded dependencies, then it is unknown whether the direct product approach is construc-

tive. For, one step of the approach involves finding dependencies u that are not logical consequences

of 2 ; however, no decision procedure is known for deciding if Z kfin u (or if Z t u) when Z can

contain embedded dependencies, such as embedded multivalued dependencies. Note also that a

constructive approach for producing finite Amstrong relations would provide a decision procedure,

since to decide if I: bfin u, we can simply check some finite Armstrong relation for Z to see whether u

holds for it.

Hull [Hu] observed that Amstrong’s [Ar] original construction, which showed that FD’s enjoy

Armstrong relations, is a special case of the direct product construction.

By making use of McKinsey’s Theorem (see [Sh, p. 95, exercise 7e]), Vardi [Va3] has recently

obtained a new proof of the existence of Armstrong relations in the presence of EID’s. This approach

is distinct from, but related to, the direct product approach. For details, see Vardi [Va3].

We now wish to. discuss databases, rather than just relations. We need some more conventions.

We assume that we are given a fixed finite set of relation symbols R (usually called relation names in

practice), and a positive integer, called the arity, associated with each relation symbol. A database is a

mapping that associates a relztion (of the proper arity) with each relation symbol. When it can cause

no confusion, we may speak of the collection of relations themselves as the database. We can write

first-order sentences about databases, just as we earlier wrote first-order sentences about single

relations. Let 9 be a class of sentences about R, and assume that ZW‘. An Armstrong database (with

respect to 9) is a database that obeys precisely those members u of 9 such that Z u.

The direct product construction can sometimes be used to produce an Armstrong database, even

in the presence of inter-relational dependencies. The direct product of databases is the result of

taking the direct product relationwise. Thus, if R is a relation name, then the R relation of the direct

product is the direct product of the R relations. Let us assume that the only sentences of interest

(that is, the members of 9) are inclusion dependencies [CFP] and standard FD’s. Recall that a

standard FD is an FD for which the left-hand side is nonempty. What are inclusion dependencies? As

an example, 3n inclusion dependency can say that every MANAGER entry of the R relation appears

as an EMPLOYEE entry of the S relation. In general, an inclusion dependency is of the form

where R and S are relation names, and where the 4 ’ s and Bi’s are attributes. The inclusion depen-

dency (4.1) holds for a database if each tuple that is a member of the relation corresponding to the

left-hand side of (4.1) is also in the relation corresponding to the right-hand side of (4.1). Fagin and

10

Vardi [FV] show that if the sentences of interest are inclusion dependencies and standard FD’s, then

there is always an Armstrong database for each set 2 of sentences. They use a direct product

construction identical to that used for EID’s (except that they take the direct product of databases,

rather than of relations.)

If, however, the sentences of interest are not inclusion dependencies and standard FD’s, but

rather, inclusion dependencies and (unrestricted) FWs, then the construction may fail. For, Fagin and

Vardi [FV] show that in this case, there need not exist an Armstrong database. However, in this case,

the direct product construction does produce what Fagin [Fa41 calls an Armstrong-like database, which

is closely related to an Armstrong database.

We close this subsection by defining EID’s. We need a few preliminary concepts. Let R be a

relation symbol that represents the relation of interest. (When we deal with inter-relational const-

raints, then several relation symbols are needed.) We assume that we are given a set of individual

Variables (which represent entries in a relation.) Assume that R represents a d-ary relation. Then the

atomic formulas are those that are either of the form Rz 1...zd (where the zi’s are individual variables),

or else of the form x=y (where x and y are individual variables.) We call atomic formulas Rz 1...zd

relational formulas, and atomic formulas x=y equalities.

Formulas (which can involve Boolean connectives and quantifiers) and sentences (formulas with

no free variables) are defined as usual (see any standard textbook in logic, for example, Enderton [En]
Oi Shoenfield [Sh].) We sometimes abbreviate Vxl ... Vx,+, where each is universally quantified, by

(Vx l...xn)+. Similarly, we sometimes abbreviate 3y ,... 3y,+, where each yi is existentially quantified, by

@Y*...Yrh.

A formula is said to be typed if there are d disjoint classes, or types, of variables (where d is the

arity, or degree, of relation symbol R, and where we say that a variable in the ith class is of type i) ,

such that (a) if the relational formula Rzl. . .Zd appears in the formula, then zi is of type i (lSiSd),

and (b) if the equality x=y appears in the formula, then x and y have the same type.

In a typed formula, no individual variable can represent an entry in two distinct columns. Thus,

if Rxy appears in a typed formula (where x and y are individual variables), then Rzx cannot also

appear. since if it did, then x would represent an entry la both the first and second columns.

An embedded implicational dependency (or EID) is a typed sentence of the form

!Vx l...x,)((Al A ... A A,) =r (3y, ...y,)(B, A ... A EST)), (4.2)

11

where each A, is a relational formula and where each Bi is atomic (either a relational formula or an

equality.) We assume also that each of the xj’s appears in at least one of the Ai’s, and that rill, that

is, that there is at least one A,. We assume that r 2 0 (if r=O then there are no existential quantifiers),

and that s>_ l (that is, there must be at least one Bi.)

d. The chase

Let us define a dependency [BV2] to be a sentence of the form (4.2) above, where each 4 is a

relational forinula and where each B, is atomic (either a relational formula or an equality.) As in the

case of EID’s, we assume also that each of the xj’s appears in at least one of the Ai’s, and that n2 1,

that is, that there is at least one Ai. So far, everything that we have said holds for both EID’s and for

the more general class of dependencies. For EID’s, we made the further assumptions that the sentence

is typed and uni-relational (that is, not inter-relational.) For the general case of dependencies, we do

not make either assumption. Dependencies, as we have defined them, are slightly more general than

Fagin’s XEID’s (extended embedded implicational dependencies [Fa4]), since for XED’S, the

left-hand side A, A ... A A, is typed and uni-relational.

Let Z be a set of dependencies, over relation symbols R. We define Z* to be the set of all

dependencies u over R such that Z k u . An Armstrong dutubase for Z (with respect to dependencies

over R) is a database that obeys every member of I:* and no other dependency over R. Grant and

Jacobs [GJ] present a technique which, given a set I: of dependencies, will produce an Armstrong

database for I: if there is one. We shall describe this technique shortly. We note that their technique

tends to produce an infinite Armstrong database, even though there may exist a finite Armstrong

database.

Although Grant and Jacobs did not do so, it is convenient for us to describe their technique in

terms of the chase ([BVl],[MMS],[SU]). Also, Grant and Jacobs restricted their attention to their

“generalized dependency constraints”, each of which is a fulI dependency. (A full dependency is one

with no existential quantifiers.) We shall not make this restriction.

Let I: be a set of dependencies (over relation symbols R), and, 2s before, let X* be the set of all

dependencies (I over R such that I: ku . Let ul, u2, ... be all dependencies over R not in Z*. By

consistently renzclizg individual variables, we can assume that no individual variable that appears in u:

also appears in aj, if if j.

We now define an initial database Do, where the tuples are those that appear on the left-hand

side of the q ’ s . What we mean by this should be clear by an example. If one of the q ’ s is. say,

12

(Vxyzw)((Pxy A Pyz A Qxww) + 3vPvx), (4.3 1

then we put the tuples (x,y) and (y,z) into the P relation of Do, and we put the tuple (x,w,w) into the

Q relation of D,. (We are treating the variables like constants.)

Our final database is obtained by “chasing” ([BVl],[MMS],[SU]) the initial database Do, using

the dependencies in I:. This chase process can cause new tuples to be added, and it can cause some

constants to be equated (identified). We refer the reader to the literature ([BVl],[MMS],[SU]) for

precise definitions of the chase process. We simply give two examples. In both examples, we assume

that the P relation contains, possibly among other tuples, the tuples (x,y) and (y,z), and that the Q

relation contains, possibly among other tuples, the tuple (x,w,w). (One reason that these tuples might

be present is if the dependency (4.3) is not in Z*; then the tuples would be put into the initial

database Do, as described earlier.) Assume now that Z contains the dependency

(Vrstu)((Prs A Qrtu A Qrut) 3 3q(Quqs A Pqq)). (4.4)

By letting r,s,t,u in (4.4) be, respectively, x,y,w,w, the chase process would then add the tuple (w,q,y)

to the Q relation, and the tuple (q,q) to the P relation, where q is a new symbol that does not appear

as an entry in the database yet. If I: were to contain the dependency

(Vrstu)((Prs A Qrtu A Urut) + r=u), (4.5)

then by letting r,s,t,u in (4.5) be, respectively, x,y,w,w, the chase process would identify x and w (say,

by replacing every occurrence of x in the database by w.) Let us call the final database that is the

result of the chase process Dchase.

The next theorem is a slight generalization of a theorem of Grant and Jacobs (the dependencies

that they considered were all full dependencies.) The proof is a minor modification of a proof by

Vardi [Va3].

Theorem 4.2. Let I: be a set of dependencies over relation symbols R. Assume that there is an

Armstrong database for Z (with respect to dependencies over R.) That is, assume that there is a

database that obeys precisely those dependencies u over R such that I: k u. Then Dchase is also such

an Armstrong database.

Proof: Let al, a2, ... be the dependencies over R that are not in X*. Say ai is Vq(#Ji 3

where # J ~ and t)i are conjunctions of atomic formulas, and where 3, yi are strings of individual

variables, for each i. As before. we assume that xi and xl have no variables in comaon. if i# j .

13

Assume that there is an Armstrong database D for 2. This database simultaneously obeys I:,

lu l , -a2, Thus, there is a model (in the usual logical sense [En]) for

where the free variables are being treated as constants. In other words, there is a database D and an

assignment of the free variables to entries in the database (where two distinct free variables may be

assigned the same entry in the database) such that (4.6) holds.

Assume now that Dchase is not an Armstrong database for 2; we shall derive a contradiction. By
the theory of the chase, we know that Dchase obeys 2. Since Dchase is not an Armstrong database for

2, it must obey some ai, say u l . By our construction of Dchase, it is not hard to see that this means

that

But (4.7) contradicts the fact that there is a database D that obeys (4.6). This concludes the proof.

0

Let I: be a set of dependencies. By Theorem 4.2, we know that if I: has an Armstrong database,

then the chase process will produce one. Given 2 , can we decide whether or not I: has an Armstrong

database? Vardi [Val] has shown that we cannot, even if we restrict our attention to sets of

uni-relational dependencies, all involving the same relation symbol.

Theorem 4.3 [Val]. The problem of deciding whether a given finite set of uni-relational

dependencies, all involving the same relation symbol, has an Armstrong relation is undecidable.

Theorem 4.4 [Val]. The problem of deciding whether a given finite set of uni-relational

dependencies, all involving the same relation symbol, has a finite Armstrong relation is undecidable.

e. Random relations: an approach that doesn’t work

It is natural to conjecture that “almost all” relations obeying a given set of FWs are Armstrong

relations for that set of FD’s. If this were true (which, as we shall see, it is not), then an easy way to

obtain an Armstrong relation for Z would be to randomly select a relation that obeys Z; with high
probability, Ire vouid obtain an .Armstrong ralation for Z after only 3 few sucfi random choices.

What do we mean by “almost all”? Let us hold fixed a set U of attributes. Let A,, be the set of

all relations with attributes U such that every entry of the relation is a member of {l , ..., n]. Thus, d,

contains 2nU members. where u is the number of attributes (that is, the size of U.) If 9 i s a property

14

of relations, then we say that “almost all relations have property 9” (or “a random relation has

property 9”) if the fraction of members of d,, with property 9 converges to 1 as n+w. Fagin [Fall

showed that if 9 is a first-order property of relations, then either almost all relations have property 0

or almost all relations violate property 9’. From his characterization, it follows easily that for each

nontrivial FD u, almost all relations (over the appropriate attributes) violate u. Since there are only a

finite number of FD’s over a given set of attributes, it follows that almost all relations simultaneously

violate every nontrivial FD. Thus, almost all relations are Armstrong relations (with respect to FD’s)

for the empty set of FD’s. If 9 and P are properties of relations, then we say that “almost all

relations with property 9 have property 9” if the number of members of dn with both properties 9

and 9 divided by the number with property 9 converges to 1 as n-cm.

A natural conjecture is that almost all relations that obey a given set I: of FD’s is an Armstrong

relation for Z (with respect to FD’s.) As we noted earlier, the conjecture is true when Z is empty.

Beeri, Dowd, Fagin, and Statman [BDFS] show that the conjecture is false in general. In fact, they

show that if the attributes U are (A,B,C,Dj, then almost all relations obeying the FD A--BCD also

obey the FD BCD-A, and so are certainly not Armstrong relations for (A-BCD).

5. The size of Armstrong relations

Beeri, Dowd, Fagin, and Statman [BDFS] give various results on the size and structure of

Armstrong relations for FD’s. In particular, they prove the following theorem, where S(n) is the
n

, and where 1 x J is the greatest integer not exceeding x. Note that by
(Ln/2J)

biriomial coefficient

Stirling’s formula, it follows that S(n) is asymptotic to (2/~)’/*2”n-~/*.

Theorem 5.1 [BDFS]. There is a constant c such that for each set Z of FD’s involving n attributes,

there is an Armstrong relation €or I: with less than S(n)(1 +(c/n”*)) tuples. For each positive Integer

n, there is a set Z of FD’s involving n attributes such that each Armstrong relation for Z contains

more than S(n)/n2 tuples. Thus, if p(n) is the maximum (over all sets I: of FD’s involving n
attributes) of the minimum number of tuples (over all Armstrong relations for Z), then

S(n)/n2<p(n) <S(n)(l +(c/n’/*)).

6. Finite Armstronq relations

*

If 9 is a finite set of EID’s (such as the set of all functional, multivalued, and join dependencies

and embedded multivalued and join dependencies over a given set of attributes), then as we noted, 9

enjoys finite Armstrong relations. What if 9 is infinite? Fagin’s direct product argument still works,

to shov that there is an Armstrong relation (possibly infinite). However. he @ves an example

15

(involving EID’s) to show that a finite Armstrong relation need not exist. Fagin, Maier, Ullman, and

Yannakakis [FMUY] give such an example involving only template dependencies, or TD’s. A TD is an

EID, as in (4.2), where s = l (that is, where the right-hand side consists of only one formula B1), and

where this formula B, is a relational formula, rather than an equality. Thus, there is a finite set 2 of

TD’s such that there is no relation that obeys precisely those TD’s u for which Z bfin u. (Recall that

Z bfin u if every finite relation that obeys Z also obeys u. Fagin, Maier, Ullman, and Yannakakis

[FMUY] showed that p and kfin are distinct for TD’s.) This result on the nonexistence of finite

Armstrong relations can also be obtained by using Vardi’s result [Va2] that there is a single finite set

Z of TD’s such that the set of all TD’s u for which Z kfin u is not recursive. This result implies that

there is no finite Armstrong relation for 2, since we could test whether or not Z bfin u by simply

checking whether or not the finite Armstrong relation obeys u. Vardi also showed [Va3] that there is

a finite set of full TD’s with no finite Armstrong relation.

Although there is a finite set 2 of TD’s that has no finite Armstrong relation, there are certainly

some sets Z of TD’s that do have a finite Armstrong relation. For example, if Z is the set of all TD’s,

then Z has a finite Armstrong relation, namely, any one-tuple relation; also [FMUY!, if Z is the empty

set, then Z has a finite Armstrong relation. Fagin, Maier, Ullman, and Yannakakis [FMUY] give

several characterizations (Theorem 6.1 below) of those sets Z of TD’s that have a finite Armstrong

relation. If Z is a set of TD’s, then define &, to be (a: u is a TD and Z bfin u). Thus, xih is the

set of all TD’s that hold in every finite relation obeying Z. By a finite Armstrong relotion for Z we

then mean, of course, a finite relation that obeys Z,, but no other TD’s.

Theorem 6.1 [FMUY]. Let Z be a set of TD’s. The following are equivalent.
*

(a) There is a finite relation that obeys Zfin and no other TD’s (“2 has a finite Armstrong

relation”.)

(b) There is a finite set B of TD’s, disjoint from Z;,,, such that for each TD T not in Xii,

there is a TD T’ in B where T b T’.

(c) There is a finite set B of TD’s, disjoint from Z&,, such that T C V(T‘: T’cg) for each

TD T not in xih.
(d) There is a finite set T of TD’s, disjoint from 2;in, such that VCT: Tf Z&

V(T’: TIES’).

is equivalent to

Note that (T’: So, (d) is a kind of

compactness result, that says that a certain set has a finite subcover (that is, it says that a finite

number of disjuncts of V(T: T p &] “covers” ail of it.)

TIES‘) in (d) is a finite subset of {T: T f Ziin) in (d).

16

Fagin and Vardi recently observed two consequences (Theorem 6.2 and Corollary 6.3 below) of

Theorem 6.1. A (finite) elementary class, or (finite) EC [En] is the class of all (finite) relations that

obey a given uni-relational first-order sentence u. A (‘finite) generalized elementary class, or (‘finite)

EC, [En] is the class of all (finite) relations that obey a given set of uni-relational first-order

sentences u, all involving the same relation symbol. Let T: be a fixed finite set of TD’s, and let d be

the class of all (finite) Armstrong relations for 2. It is clear that d is a (finite) ECA, since d is the

class of all (finite) relations that obey Z, lul, -u2, ..., where ul, u2, ... are all of the TD’s that are not

logical consequences of Z. Is d not just an ECA, but even an EC? In the case where we restrict our

attention to finite relations, Fagin and Vardi have observed that the answer is “yes”.

Theorem 6.2 Let Z be a finite set of TD’s. The class of all finite Armstrong relations for Z is a

finite elemefitary class. That is, there is a first-order sentence uz such that whenever r is a finite

relation, then r is a finite Armstrong relation for Z if and only if r obeys ax.

Proof: If Z has no finite Armstrong relation, then take uz to be a sentence that is logically false,

such as 3x(x#x). So assume that Z has a finite Amstrong relation. By the equivalence of (a) and (d)

in Theorem 6.1, we know that (d) holds. Let B be as in (d), and let r be the first-order sentence

V(T’: TIES‘). Assume for definiteness that X = {ul , ..., uk). Let u be the sentence ul A ... A uk A

l ~ . It is easy to see that this sentence u can be taken to play the role of uz as called for in the

statement of Theorem 6.2.

Corollary 6.3 Let Z be a fixed finite set of TD’s. The problem of determining, given a finite

relation r, whether or not r is a finite Armstrong relation for Z is decidable.

Proof: Let uz be as in Theorem 6.2. The decision procedure consists of determining whether or

not r obeys u ~ . 0

Note that the decision procedure we have given in the proof of Corollary 6.3 is not “uniform” in

2. Thus, it i s an open problem as to the decidability of determining, given a finite set Z of TD’s and a

finite relation r, whether or not r is a finite Armstrong relation for Z.

7. Conclusions

r h e concept of Amstrong databases is cf interest in relational database theory and in mathemati-

cal logic. It is

(hopefully!) premature to be writing a history of Armstrong databases, since they have been studied

explicitly for only a few years. The author hopes that this survey paper will inspire others to study

this fascinating topic.

In this paper, history and results about Armstrong databases are discussed.

17

8. Acknowledgments

The author is grateful to Moshe Vardi for helpful comments.

BIBLIOGRAPHY

[Ar] W. W. Armstrong, Dependency structures of database relationships.

Holland (1974), 580-583.

Proc. IFIP 74, North

[AD] W. W. Armstrong and C. Delobel, Decompositions and functional dependencies in relations,

ACM Trans. on Database Systems 5,4 (Dec. 1980), 404-430.

[Be] C. Been, personal communication.

[BB] C. Been and P. A. Bernstein, Computational problems related to the design of normal form

relational schemas. ACM Trans. on Database Systems 4,l (March 1979), 30-59.

[BDFS] C. Beeri, M. Dowd, R. Fagin, and R. Statman, On the structure of Armstrong relations for

functional dependencies. IBM Research Report RJ 2901 (Sept. 1980).

[BFH] C. Been, R. Fagin, and J. H. Howard, A complete axiomatization for functional and multiva-

lued dependencies in database relations. Proc. 1977 ACM SIGMOD (ed. D.C.P. Smith), Toronto,

47-61.

[BY11 C. Beeri and M. Y. Vardi, A proof procedure for data dependencies. Hebrew University of

Jerusalem Technical Report (August 1980).

[BV2] C. Beeri arid M. Y. Vardi, The implication problem for data dependencies.

Workshop (Stony Brook, NY, June 1980).

Appeared in: Lecture Notes in Computer Science 115, Springer-Verlag (1981), 73-85.

Proc. XP1
Also in Proc. 8th ICALP, Acre Israel (July 1981).

[CFP] M. A. Casanova, R. Fagin, and C. Papadimitriou, Inclusion dependencies and their interaction

with functional dependencies. Proc. First ACM SIGACT-SIGMOD Principles of Database Systems

(1952), 17 1 - 176.

[Co] E. F. Codd, Further normalization of the data base relational model.

Science Symposia 6: Data Base Systems, May 24-25, 1971, R. Rustin, editor, Prentice Hall, 33-64.
In Courant Computer

'J

[De] J. Demetrovics, On the number of candidate keys. Inf. Proc. Letters 7,6 (Oct. 19781, 266-269.

18

[En] H. B. Enderton, A Mathematical Introduction to Logic. Academic Press (1972).

[Fall R. Fagin, Probabilities on finite models. J. Symbolic Logic 41,l (Mar. 1976), 50-58.

[Fa21 R. Fagin, Multivalued dependencies and a new normal form for relational databases.

Trans. on Database Systems 2,3 (Sept. 1977), 262-278.

ACM

[Fa31 R. Fagin, Functional dependencies in a relational database and propositional logic. IBM J. Res.

& Devel. 21,6 (November 1977), 534-544.

[Fa41 R. Fagin, Horn clauses and database dependencies. Proc. 1980 ACM SIGACT Symposium on

Theory of Computing, pp. 123-134. Also, to appear, J. ACM.

[FMUY] R. Fagin, D. Maier, J. D. Ullman, and M. Yannakakis, Tools for template dependencies. To

appear, SIAM J. Computing.

[FV] R. Fagin and M. Y. Vardi, Armstrong databases for functional and inclusion dependencies. To

appear.

[Go] E. M. Gold, Axiomztization of attribute dependencies. To appear, J. ACM.

[GJ] J. Grant and B. E. Jacobs, On the family of generalized dependency constraints. To appear, J.

ACM.

[Gr] G. Gratzer, Universal Algebra. Springer, 1973.

[Hu] R. Hull, Implicational dependency and finite specification. Univ. of Southern California

Technical Report (1 98 1).

[MMS] D. Maier, A. Mendelzon, and Y. Sagiv, Testing implications of data dependencies.

Trans. on Database Systems 4,4 (Dec. 1979), 455-469.

ACM

[Ri] J. Rissanen, Theory of relations for databases - a tutorial survey. Proc. 7th Symposium on Math.

Found. of Comp. Science, Lecture Notes in Corn?. Science. 64. Springer-Verlag, 537-55 1.

[SU] F. Sadri and J. D. Ullman, A complete axiomatization for a large class of dependencies in

relational databases. Proc. 1980 ACM SIGACT Symposium on Theory of Computing, 117-122.

[Sh] J. R. Shoenfield, Mathematical Lo@c. Addison-Wesley (1967).

19

[SM] A. M. Silva and M. A. Melkanoff, A method for helping discover the dependencies of a relation.

In Advances in Data Base Theory, Vol. 1, ed. H. Gallaire, J. Minker, and J-M. Nicolas, Plenum

Publishing, NY, 1981.

[Val] M.Y. Vardi, Global decision problems for relational databases.

Foundations of Computer Science, 198-202.

Proc. 1981 IEEE Symp. on

[Va2] M. Y. Vardi, The implication and finite implication problems for typed template dependencies.

Proc. First ACM SIGACT-SIGMOD Principles of Database Systems (1982), 230-238.

[Va3] M. Y. Vardi, On the existence of Armstrong relations for sets of data dependencies. To appear.

[YP] M. Yannakakis and C. Papadimitriou, Algebraic dependencies.

Found. of Computer Science, 328-332.

Proc. 1980 IEEE Symp. on

[Zl] M. M. Zloof, Proc. 1975 AFIPS National Computer Conference, vol. 44, AFIPS Press, Arlington,
Va., 431-438. ..

20

E \ l P

11 i lbert

P? thagorus

Tur ing

Einstein

DEPT

>i:ith

> la th

Computer Science

Physics

F i g u r e 1.1

\1GR

Gauss

Gauss

von Neurnann

(33 uss

2 1

A

a2
a2

B C

b2 c2

b; c2

C

Figure 4 . 1

