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Abstract. We provide a model for reasoning about knowledge and probability together. We allow
cxplicit mention of probabilities in formulas, so that our language has formulas that essentially
say “according to agent i, formula ¢ holds with probability at least b~ The language 15 powerful
cnough to allow reasoning about higher-order probabilities, as well as allowing explicit compar-
isons of the probabilities an agent places on distinct cvents. We present a general framework for
mterpreting such formulas, and consider various properties that might hold of the interrelation-
ship between agents’ probability assignments at different states. We provide a complete axiomati-
zation for reasoning about knowledge and probability, prove a small model property, and obtain
decision procedures. We then consider the effects of adding common knowledge and a probabilis-
tic variant of common knowledge to the language.
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1. Introduction

Reasoning about knowledge has become an active topic of investigation for
researchers in such diverse fields as philosophy [Hintikka, 1962], economics
[Aumann, 1976], and artificial intelligence [Moore, 1985]. Recently the interest
of theoretical computer scientists has been sparked, since reasoning about
knowledge has been shown to be a useful tool in analyzing distributed systems
(see Halpern [1987] for an overview and further references).
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In many of the application areas for reasoning about knowledge, it is
important to be able to reason about the probability of certain events as well as
the knowledge of agents. In particular, this arises in distributed systems
applications when we want to analyze randomized or probabilistic programs.
Not surprisingly, researchers have considered knowledge and probability be-
fore. Indeed, all the publications in economics on reasoning about knowledge,
going back to Aumann’s seminal paper [Aumann, 1976], have probability built
into the model. However, they do not consider a logical language that explicitly
allows reasoning about probability. In this paper, we consider a language that
extends the traditional logic of knowledge by allowing explicit reasoning about
probability along the lines discussed in a companion paper [Fagin et al., 1990].

In the standard possible-worlds model of knowledge (which we briefly review
in the next section), agent i knows a fact ¢, written K, ¢, in a world or state s if
¢ is true in all the worlds the agent considers possible in world s. We want to
reason not only about an agent’s knowledge, but also about the probability he
places on certain events. In order to do this, we extend the language consid-
ered in [Fagin et al., 1990], which is essentially a formalization of Nilsson’s
probability logic [Nilsson, 1986]. Typical formulas in the logic of Fagin et al.
[1990] include w(¢) = 2w(y) and w(¢) < 1/3, where ¢ and  are proposi-
tional formulas. These formulas can be viewed as saying “¢ is twice as
probable as ¢ and “¢ has probability less than 1/37, respectively. Since we
want to reason about the probability that agent i places on events, we modify
their language to allow formulas such as w,(¢) > 2w,(¢). We also allow ¢ and
Y here to be arbitrary formulas (which may themselves contain nested occur-
rences of the model operators w, and K,) rather than just propositional
formulas. This gives us the power to reason about higher-order probabilities
(see Gaifman [1986] for more discussion on this subject, as well as added
references) and to reason about the probability that an agent knows a certain
fact.

In order to give semantics to such a language in the possible-worlds frame-
work, we assume that, roughly speaking, at each state, each agent has a
probability on the worlds he considers possible. Then a formula such as
w(¢) = 2w,(if) is true at state s if, according to agent i’s probability assign-
ment at state s, the event ¢ is twice as probable as . For technical and
philosophical reasons, we find it convenient to view the probability as being
placed on an arbitrary set of worlds, rather than the set of all worlds that the
agent considers possible in a given state. As we shall show by example,
different choices for the probability space seem to correspond to different
assumptions about the background context.

Despite the richness of the resulting language, we can combine the well-
known techniques for reasoning about knowledge with the techniques for
reasoning about probability introduced in [Fagin et al., 1990] to obtain an
elegant complete axiomatization for the resulting language. Just as there are
different assumptions we can make about the relationship between the worlds
that agent i considers possible, leading to different axioms for knowledge (see
Halpern and Moses [1992] for an overview), there are also different assump-
tions about the interrelationships between agents’ probability assignment spaces
at different states, which also can be captured axiomatically. We discuss these
assumptions and their appropriateness, and show how these assumptions can
effect the complexity of the decision procedure for the language.
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This paper is related to a number of other works. We give a brief overview of
the related literature here. Propositional probabilistic variants of temporal
logic [Hart and Sharir, 1984; Lehman and Shelah, 1982] and dynamic logic
[Feldman, 1984; Kozen, 1985] have also been studied, with the goal of analyzing
probabilistic programs. Probabilistic temporal logic papers have traditionally
limited the language so that the only probabilistic statements that can be made
are Boolean combinations of formulas of the form ¢ occurs with probability
one.” The logics studied in [Feldman, 1984; Kozen, 1985] do bear some
superficial resemblance to ours in that explicit probability statements are
allowed, as well as linear combinations of statements. Indeed, the probability
logic considered in [Fagin et al., 1990], where the only formulas in the scope of
the modal operator w are propositional formulas, is a fragment of Feldman’s
logic. However, there are some fundamental differences as well, which arise
from the fact that the main object of interest in these other logics are
programs. As a result, our language and those used in [Feldman, 1984] and
[Kozen, 1985] are incomparable. The languages used in [Feldman, 1984] and
[Kozen, 1985] are richer than the one we consider here in that they allow
explicit reasoning about programs, but poorer in that they can talk about the
probability of only a restricted class of formulas. Moreover, there are signifi-
cant technical differences in the semantics of knowledge operators (our K ’s)
and the program operators of [Feldman, 1984] and [Kozen, 1985].

As we mentioned above, probabilistic knowledge has been an issue of great
interest in the economics community. Although they have not considered
formal languages containing knowledge and probability, their models can be
viewed as a special case of the models we discuss in this paper. In a recent
paper [Monderer and Samet, 1989] in the economics literature, Monderer and
Samet investigate probabilistic common knowledge, a topic that shall also
concern us here. We compare our framework to theirs in more detail when we
discuss probabilistic common knowledge.

The framework developed in this paper has also been applied to distributed
systems and cryptography in some recent papers [Fisher and Zuck 1987, 1988:
Halpern et al., 1988; Halpern and Tuttle, 1993], where the issues raised here
have been examined more carefully in the context of these applications areas.

Finally, we should mention two other papers that consider reasoning about
knowledge and uncertainty in a possible worlds framework somewhat similar to
our own. Halpern and McAllester [1989] consider a language that allows
reasoning about knowledge and likelihood, but their notion of likelihood, based
on the logic of likelihood of [Halpern and Rabin, 1987] considers only a
qualitative notion of likelihood, rather than explicit probabilities. Although this
may be appropriate for some applications, it is not useful for an analysis of
protocols. Ruspini [1987] discusses certain relations that hold between knowl-
edge and probability in the one-agent case. and relates this in turn to Demp-
ster—Shafer belief functions [Shafer, 1976].

The rest of this paper is organized as follows: The next section contains a
brief review of the classical possible-worlds semantics for knowledge and a
discussion of how knowledge can be ascribed to processes in a distributed
system. In Section 3, we describe the extended language for knowledge and
probability and discuss some assumptions that can be placed on the interrela-
tionships between agents’ probability assignments at different states. In Section
4, we give results on complete axiomatizations and decision procedures. In
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Section 5, we extend the language to allow common knowledge and probabilis-
tic common knowledge. In Section 6, we give our conclusions.

2. The Standard Kripke Model for Knowledge

In this section, we briefly review the standard S5 possible-worlds semantics for
knowledge. The reader is referred to Halpern and Moses [1992] for more
details.

In order to reason formally about knowledge, we need a language. Suppose
we consider a system with n agents, say 1, ..., n, and we have a nonempty set
® of primitive propositions about which we wish to reason. (For distributed
systems applications, these will typically represent statements, such as “The
value of variable x is (”’; in natural language situations, they might represent
statements of the form “It is raining in San Francisco.”) For convenience, we
define frue to be an abbreviation for the formula p vV — p, where p is a fixed
primitive proposition. We abbreviate —true by false. We construct more
complicated formulas by closing off ® under conjunction, negation, and the
modal operators K, for i = 1,...,n (where K, ¢ is read “agent i knows ¢”).

We give semantics to these formulas by means of Kripke structures [Kripke,
1963], which formalize the intuitions behind possible worlds. A Kripke structure
for knowledge (for n agents) is a tuple (S, 7, .%|,...,%,), where S is a set of
states (thought of as states of affairs or possible worlds), 7(s) is a truth
assignment to the primitive propositions of & for each state s € S (e,
7(s)( p) € {true, false} for each primitive proposition p € ® and state s € §),
and %, is an equivalence relation on the states of §, for i = 1,...,n. The %
relation is intended to capture the possibility relation according to agent i:
(s,t) €% if in world s agent i considers ¢ a possible world.! We define
F(s) = {s'l(s,s") €7}

We now assign truth values to formulas at a state in a structure. We write
(M, s) = o if the formula ¢ is true at state s in Kripke structure M.

(M,s) =p (forpe ®) iff w(s)(p) = true
(M,s) EoAy iff (M,s)kE ¢ and (M,s) =y
(M,s)E =@ iff (M,s)¥ o

(M,s) =K,¢ iff (M,1) = ¢ forall reZ(s).

The last clause in this definition captures the intuition that agent i knows ¢ in
world (M, s) exactly if ¢ is true in all worlds that i considers possible.

Given a structure M = (S, 7,7, ...,.%,), we say that a formula ¢ is valid in
M, and write M & o, if (M,s) = ¢ for every state s in S, and say that ¢ is
satisfiable in M if (M, s) = ¢ for some state s in S. We say that a formula ¢ is
valid if it is valid in all structures, and it is satisfiable if it is satisfiable in some
structure. It is easy to check that a formula ¢ is valid in M (respectively, valid)
if and only if — ¢ is not satisfiable in M (respectively, not satisfiable).

"We could take %, to be an arbitrary binary rclation, but for distributed systems applications,
taking it to be an equivalence relation seems most appropriate (see Halpern [1987] for further
discussion of this point). Our results could easily be modified to deal with the general case where
%, is an arbitrary binary relation.
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We are often interested in characterizing by an axiom system the set of
formulas that are valid. An axiom system AX is said to be sound for a language
&' with respect to a class .# of structures if every formula in . provable in
AX is valid with respect to every structure in .#. The system AX is complete
for 7" with respect to .# if every formula in . that is valid with respect to
every structure in .# is provable in AX. We think of AX as characterizing the
class .# if it provides a sound and complete axiomatization of that class.
Soundness and completeness provide a connection between the syntactic no-
tion of provability and the semantic notion of validity.

It is well known that the following set of axioms and inference rules, which
goes back to Hintikka [1962], provides a sound and complete axiomatization for
the logic of knowledge just defined with respect to the class of Kripke
structures for knowledge (see Halpern and Moses [1992] for a proof).

K1. All instances of propositional tautologies.

K2. (K, A K¢ = ) = K, .

K3. K, ¢ = o

K4. K 0 = K K, .

KS. - K,o=K - K, ¢

R1. From ¢ and ¢ = ¢ infer s (modus ponens).
R2. From ¢ infer K, ¢ (knowledge generalization).

We remark that this axiom system for the case of one agent has traditionally
been called S5. Philosophers have spent years debating the appropriateness of
this set of axioms and, indeed, of this whole approach for capturing the notion
of knowledge as applied to human reasoning (see Lenzen [1978] for a review of
the pertinent literature). Other axiom systems for knowledge have been consid-
ered. We mention two here, since they will arise in our later discussion: the
axiom system K, consisting of K1, K2, R1, and R2, and the axiom system KIDD45,
consisting of K1, K2, K4, K5, R1, R2 and the axiom — K ( false). The system S5
has proved particularly useful in distributed systems applications. We now
briefly review how knowledge is ascribed to processes in distributed systems.
More discussion and details on the model can be found in Halpern [1987].

A distributed system consists of a collection of processes, say 1,...,n,
connected by a communication network. We think of these processes as
running some protocol. At any time in the execution of such a protocol, the
system is in some global state, which is a tuple of the form (s,,s,,...,s,).
where s, is the local state of process i, and s, is the state of the environment.
We think of the global state as providing a “snapshot” of the state of the
system at any time. The environment includes everything that we consider
relevant to the system that is not described in the state of the processes. A run
of a system is just a function from the natural numbers to global states.
Intuitively, a run describes a possible execution of a system over time (where
we think of the time as ranging over natural numbers). We identify a system
with a set of runs (these can be thought of as the possible runs of the system
when running a particular protocol). We often speak of a pair (r. m), consisting
of a run r and a time m, as a point. Associated with any point (7, m) we have
r(m), the global state of the system at this point. We can define equivalence
relations ~,, for i = 1,....n, on points via (r, m) ~ (', m') iff process i has
the same local state at the global states r(m) and r'(m7).
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Suppose we fix a set @ of primitive propositions. In distributed systems
applications, we can think of these propositions as saying things like “the value
of variable x is 07, “process 1’s initial input is 3”, and so on. We define an
interpreted system .# to be a pair (%, ), where % is a system (set of runs),
and 7 is a truth assignment to the primitive propositions of @ at every point in
. With this definition, it is easy to view an interpreted system as a Kripke
structure, where the points play the role of states and the .7, relation is given
by ~,. Truth is now defined with respect to a point (r, m) in an interpreted
system .#. In particular, we have

(Fr.m)EK e iff (7,0, m) = ¢ foral (+,m')
such that (#', m') ~, (r,m).

Since ~, is an equivalence relation, it is easy to check that all the axioms of

1

S5 hold for this interpretation of knowledge.

3. Adding Probability

The formula K, ¢ says that ¢ is true at all the worlds that agent i considers
possible. We want to extend our language to allows formulas such as w,(¢) > b,
which intuitively says that “according to agent i, formula ¢ holds with
probability at least b.” In fact, it turns out to be convenient to extend the
language even further. Specifically, if ¢,,..., ¢, are formulas, then so is
awle) + - +awl¢g) = b, where a,,...,a,,b are arbitrary rational num-
bers, and k = 1. We call such a formula an i-probability formula (or simply a
probability formula, if we do not wish to specify /). An expression of the form
aw(@,) + - +a,w(p,) is called a term. Allowing arbitrary terms in i-prob-
ability formulas, rather than just formulas of the form w,(¢) > a, gives us a
great deal of flexibility in expressing relationships between probablhtles of
events. Notice we do not allow mixed formulas such as w () + w, () > b2
We use a number of abbreviations throughout the paper for readablhty For
example, we use w({¢) > w,(i) as an abbreviation for w(e) — wi(y) =
wle) < b for —w @)= —b, w(e) <b for =(w,(¢) > b), and w(e) =b for
(wlep)=b) Awle) <b). We also use Kb((p) as an abbreviation for
K (w (@) = b). Intuitively, this says that “agent i knows that the probability of
@ is greater than or equal to b.” It might seem that the formula w (@) > b
should already say that “agent i knows that the probability of ¢ is greater than
or equal to b”, even without the K, operator. This is not the case under our
semantics. In a given state s, the formula w{¢) denotes the probability of ¢
according to agents i’s probability distribution in state s. Although it may at
first seem counterintuitive, it is useful to allow agent i not to know what
probability distribution is being used to calculate w,(¢). For example, if agent i
knows that one of two distributions governs ¢, and according to one, the
probability of ¢ is 1,/2 and according to the other, the probability of ¢ is 3 /4,
then we can model this by saying that there are two states of the world that i
cannot distinguish, such that w (¢) = 1/2 in one, and w(¢) = 3/4 in the
other. In such a situation, it would be the case that K,(w,(¢) > 1/2) holds.

>There would be no difficulty giving semantics to such formulas, but some of our results on
decision procedures and axiomatizations seem to require that we not allow such mixed formulas.
We return to this point in the next section.
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The language used here extends that considered in [Fagin et al., 1990] in two
ways. First, rather than having just one “probability modality”” w, we have a
modality w, for each agent i, in order to allow us to reason about the
probability assigned by different agents to the same event. Secondly, rather
than restricting the formulas that appear in the scope of the probability
modality to be propositional, we allow them to be arbitrary. In particular, we
allow higher-order probability formulas such as w(w (¢) = b)) > c.

Before we give formal semantics to this language. we briefly review some
material from probability theory (see Halmos [1950] for more details). A
probability space is a tuple (2,2, w) where € is a set, called the sample space,
2’ is a o-algebra of subsets of ) (i.e., a set of subsets containing () and closed
under complementation and countable union), whose elements are called the
measurable sets, and a probability measure p defined on the elements of 2~
Note that p does not assign a probability to all subsets of (), but only to the
measurable sets. One natural way of attaching a weight to every subset of () is
by considering the inner measure . induced by p; it A C {1, we have

wy(A) =sup{ u(B)|B € A and B € 2.

Thus, the inner measure of A is essentially the measure of the largest
measurable set contained in 4. The properties of probability spaces guarantee
that u, is well defined, and that if 4 is measurable, then u,(A) = u(A).>
Given a structure M = (S, 7,.%,,...,%,), in order to decide whether a proba-
bility formula is true at a state s in M, we need to associate with each state s a
probability space. Thus, we take a Kripke structure for knowledge and probability
(for n agents) to be a tuple (S, 7,.7,...,.%,, #), where P is a probability
assignment, which assigns to each agent /i< {l,...,n} and state s€§ a
probability space 2(i,s) = (S, , 2, , u, ), where S, € §. We shall usually
write (i, s) as &, ,. Intuitively, the probability space &, , describes agent i’s
probabilities on events, given that the state is s. We allow §,  to be an
arbitrary subset of S. It might seem reasonable to take S, , =.(s), thus
requiring that the agent places probability on precisely on the set of worlds he
considers possible; however, as we shall see below, there are good technical
and philosophical reasons to allow §, | to be distinct from Z(s). It is often
natural to require at least that S, , be a subset of Z(s); we consider the
consequences of this assumption below.

We can give semantics to formulas not involving probability just as before.
To give semantics to i-probability formulas, assume inductively that we have
defined (M, s) E ¢ for each state s € S. Define §, (@) ={s'€ S, (M,s)F
¢}. Then, the obvious way to define the semantics of a formula such as
w¢) = b is

(M) Ewle)=b iff u (S (o) =0b.

The only problem with this definition is that the set S, (¢) might not be
measurable (i.e., not in 27 ), so that g, (S, (¢)) might not be well defined.
We discuss this issue in more detail below (and, in fact, provide sufficient
conditions to guarantee that this set is measurable), but in order to deal with

*We remark that there is also a dual notion of outer measure; the outer measure of A, denoted
u*(A4), 1s essentially the measure of the smallest measurable set containing A. It is easy to see
that u*(A4) = 1 — u,(A), so that the outer measure is expressible in terms of the inner measure.
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this problem in general, we use the inner measures (pu, ), rather than u, .
Thus, w(¢) = b is true at the state s if there is some measurable set
(according to agent i) contained in S, (¢) whose measure is at least b. More
generally, we have

(M.s) =awle) + - +awle)=b

i @, ) (S, (@) + o +a( ) (S, (o)) = b,

This completes the semantic definition for the whole language.

Before we discuss the properties of this language, it is helpful to consider a
detailed example. This example illustrates some of the subtleties involved in
choosing the probability spaces at each state.

Suppose we have two agents. Agent 2 has an input bit, either 0 or 1. He then
tosses a fair coin, and performs an action g if the coin toss agrees with the
input bit, that is, if the coin toss lands heads and the input bit is 1, or if the
coin lands tails and the input bit is 0. We assume that agent | never learns
agent 2’s input bit or the outcome of his coin toss. An easy argument shows
that according to agent 2, who knows the input bit, the probability (before he
tosses the coin) of performing action a is /2. There is also a reasonable
argument to show that, even according to agent 1 (who does not know the
input bit), the probability that the action will be performed is 1 /2. Clearly from
agent 1’s viewpoint, if agent 2’s input bit is 0, then the probability that agent 2
performs action a is 1/2 (since the probability of the coin landing heads is
1/2); similarly, if agent 2’s input bit is 1, then the probability of agent 2
performing action a is 1/2. Thus, no matter what agent 2’s input bit, the
probability according to agent 1 that agent 2 will perform action a is 1/2.
Thus, it seems reasonable to say that agent 1 knows that the a priori probability
of agent 2 performing action a is 1/2. Note that we do not need to assume a
probability distribution on the input bit for this argument to hold. This is a
good thing: We do not want to assume that there is an input on the probability
distribution, since none is provided by the problem statement. Of course, if
there were a probability distribution, then this argument would hold indepen-
dent of the actual probability distribution.

Now suppose we want to capture this argument in our formal system. From
agent 1’s point of view, there are four possibilities: (1, ), (1, 1), (0, 2),(0, 1) (the
input bit was 1 and the coin landed heads, the input bit was 1 and the coin
landed tails, etc.). We can view these as the possible worlds or states in a
Kripke structure. Call them s, s,, 55, and s, respectively; let S be the set
consisting of all four states. Assume that we have primitive propositions 4, H,
T, B, and B, in the language, denoting the events that action a is performed,
the coin landed heads, the coin landed tails, agent 2’s input bit is 0, and agent
2’s input bit is 1. Thus, H is true at states s, and s, A4 is true at states s, and
s4, and so on. What should agent 1’s probability assignment be? We now
describe three plausible answers to this question.

(1) We can associate with each state the sample space consisting of all four
states, that is, all the possible worlds. This might seem to be the most
natural choice, since we are taking the probability space at each state s to
be #\(s), so that at each state, agent 1 is putting the probability on the set
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of states that he considers possible. Because we assume that there is no
probability on the event ““the input bit is 0” (respectively, “the input bit is
1), the only candidates for measurable sets (besides the whole space and
the empty set) are {s,, 55} (which corresponds to the event “the coin landed
heads”) and {s,,s,} (“the coin landed tails”). Each of these sets has
probability 1/2. Call the resulting Kripke structure M,. Notice that the
events {s,} and {s,} cannot both be measurable, for then the event {s;, 5.},
which corresponds to “the input bit is 17, would also be measurable.
Similarly, we cannot take {s,, s,}, which corresponds to the event “action a
is performed”, to be measurable. This is because if it were measurable,
then, since the set of measurable sets is closed under finite intersection and
complementation, each of {s,}, {s.}. {s;}. and {s,} would have to be
measurable.

(2) We can associate with states s, and s,. where the input bit is 1, the sample
space consisting only of s, and s,, with {s,} and {s.} both being measurable
and having measure 1/2. Similarly, we can associate with states s, and s,
the sample space consisting only of s, and s, with {s,} and {s,} each having
measure 1/2. Thus, when the input bit is I, we take the sample space to
consist of only those states where the input bit is 1, with the obvious
probability on that space, and similarly for when the input bit is 0. Call this
Kripke structure M.

(3) Finally, we can make the trivial choice of associating with each state the
sample space consisting of that state alone, and giving it measure 1. Call
the resulting Kripke structure M,.

Of the three Kripke structures above, it is easy to see that only M, supports
the informal reasoning above. It is easy to check that we have (M|, s) = K /24,
for every state s € S. On the other hand, in every state of M,, we have either
w(A4) =1 (in states s, and s,) or w(A4) = 0 (in states s, and s,). Thus,
for every state s € S, we have (M,,s) E K,((w,(A4) = 1) V (w,(A) = 0)) and
(M,,s) E = K|/?A. Finally, in M, the event A4 is not measurable, nor does it
contain any nonempty measurable sets. Thus, we have (M, s) = K,(w,(A) = 0)
(where now w, represents the inner measure, since A is not measurable).

Does this mean that M, is somehow the “right” Kripke structure for this
situation? Not necessarily. A better understanding can be attained if we think
of this as a two-step process developing over time. At the first step, *‘nature”
(nondeterministically) selects agent 2’s input bit. Then agent 2 tosses the coin.
We can think of M, as describing the situation after the coin has landed. It
does not make sense to say that the probability of heads is 1/2 at this time
(although it does make sense to say that the a priori probability of heads is
1/2), nor does it make sense to say that the probability of performing action a
is 1/2. After the coin has landed, either it landed heads or it didn’t; either a
was performed or it wasn’t. This is the intuitive explanation for why the
formula K ((w(A4) =1) vV (w(A4) =0) is valid in M,. M, describes the
situation after nature has made her decision, but before the coin is tossed.
Thus, agent 1 knows that either the input bit is | or the input bit is 0 (although
he doesn’t know which one). As expected, the formula K,(w/(B,) = 1) Vv
(w((B;) = 0)) holds in this situation. An (admittedly weak) argument can be
made that M, describes the initial situation, before nature has made her
decision. At this point, the event “the input bit is 0” is not measurable and we
cannot attach a probability to it.
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We can capture these intuitions nicely using runs. There are four runs, say
1., Fa, T3, 1y, corresponding to the four states above. There are three relevant
times: 0 (before nature has decided on the input bit), 1 (after nature has
decided, but before the coin is tossed), and 2 (after the coin is tossed). Agent
I’s local state contains only the time (since agent 1 never learns anything about
the coin or the input bit); agent 2’s local state contains the time, the input bit
(at times 1 and 2), and the outcome of the coin toss (at time 2). We can omit
the environment from the global state; everything relevant is already captured
by the states of the agents. Thus, at time 1 in run ry, agent s local state is 1
(since the time is 1), while agent 2’s local state is the pair (1,0), since the time
is 1 and the input bit is 0. Thus, ry(1) = (1,(1,0)). Similarly, we have that
ry(2) = (2,(2,0,h)). We now interpret the propositions 4, H, etc. to mean
that the action a has been or eventually will be performed, heads has been or
eventually will be tossed, etc. Thus, proposition A is true at the point (r], k) if
the action a is performed at (r,,3). Similarly, H is true at (r,, k) if heads is
tossed in run I and so on.

Clearly at each time k = 0, 1,2, agent 1 considers the four points (7, k),
J =1,2,3.,4, possible. At time 0, we can define the probability space at each
state to make this look like M. At time 1, defining the probability spaces so
that we get Kripke structure M, seems to be appropriate, while at time 2,
Kripke structure M, seems appropriate. Thus, although it seems that, in some
sense, agent 1’s knowledge about the input bit and the outcome of the coin toss
does not change over time, the probability assignments used by agent 1 may
change. For example, after the coin has been tossed, the probability assignment
should change to reflect the fact that, although agent 1 has not learned
anything about the outcome of the coin flip, he does know that the coin has
been tossed.

But why and how should the fact that the coin has been tossed affect the
probability assignment used by agent 1? This question is perhaps best answered
in the framework discussed in [Halpern and Tuttle, 1989], where the point of
view is taken that the choice of probability assignment should reflect the
agent’s view of the adversary it is playing against or, more accurately, the
knowledge of the adversary it is playing against. Different choices of probabil-
ity assignment correspond to playing adversaries with different knowledge.
Suppose we play an adversary with complete information about all that has
happened in the past, but who does not know the outcome of probabilistic
events that will take place in the future. Thus, at time 1, the adversary does not
know the outcome of the coin toss, while at time 2, he does. As shown in
[Halpern and Tuttle, 1989], when agent i is playing against such an adversary,
the probability assignment used by agent i should reflect what the adversary
knows as well as what agent i knows. Technically, this amounts to taking the
intersection of the set of possible words describing agent i’s knowledge with
the set of possible worlds describing the adversary’s knowledge. Thus, when
playing against an adversary with complete information about the past, the
assignment described by M, is appropriate at time 1, while the assignment
described by M, is appropriate at time 2. (See Halpern and Tuttle [1989] for
details of the arguments regarding appropriateness.) Interestingly, the proba-
bility assignment described by M,—which initially may have seemed to be the
most reasonable choice of probability assignment—does not correspond to
playing against an adversary in the framework of Halpern and Tuttle [1989]. In
retrospect, it is the hardest probability assignment to justify.
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Even in this simple example, we can already see that the decision of how to
assign the probability spaces is not completely straightforward. In general, it
seems that it will depend in more detail on the form of the analysis. This
example already shows that in general at a state s, we do not want to take
S, s =%(s). Note that S,  =.%(s) only in M, above; in particular, in M|,
where we can carry out the informal reasoning which says that action a occurs
with probability 1,2, we have S, | as a strict subset of 7(s).* Although in this
example, we do not want S, | J(s) we do want S, | g//(s) This is quite a
natural condition. Without it, it is possible that an agent can place positive
probability on a fact that he knows to be false; for example, the formula
K, = p Aw(p)> 0is consistent. We would view an agent who places positive
probability on an event he knows to be false as inconsistent. Thus, we term the
following condition CONS (for consistent).

CONS. Forall i and s, if 7, =(S, .2 . ). then S, <F(s).

IS R 1L,s =

Note that CONS does not imply that s € §, ,; an agent is not required to view
the state that he is in as one of the set of states in his probability space.
Although it may seem unusual, there are times (in particular, when analyzing
asynchronous distributed systems), when it turns out to be appropriate not to
require that s € S, | [Halpern and Tuttle. 1989].

In some applications, although the agents have different sets of points they
consider possible, it is useful to model them as agreeing on what the probabil-
ity space is at each point. In this case, we say that the probability assignment is
objective. This is a quite natural assumption in contexts where all the proba-
bilistic events are common knowledge, for example, if there is a global coin.
Alternatively, in the framework of Halpern and Tuttle [1989], it is appropriate
if the agents are viewed as all playing the same adversary, who has at least as
much knowledge as each of the agents individually. Note that, under this
assumption, the intersection of the set of states describing agent i’s knowledge
with the set of states describing the adversary’s knowledge is the same for all i.
This means that, according to the framework of Halpern and Tuttle [1989], the
agents should all use the same probability assignment. Note that this assump-
tion is appropriate, for example, if the agents all play an adversary who has
complete information about the global state of the system, they would agree on
what the appropriate probability space should be.’

In the context of a Kripke structure for knowledge and probability, having an
objective probability assignment corresponds to the following condition:

OBJ. 7, =+  forall i j, and s.

L

Note that if we had required that S, | = %(s) for each agent i and each state s,
then OBJ could hold only in Kripke structures where %(s) =.%(s) for all
agents I and j and all states s.

*The example presented here 15 a simplification of onc given by Mark Tuttle. It was Mark who
hrst pointed out to us that it is not always appropriate to take S, | =27 (s).

*Mark Tuttle and Yoram Moses first pointed out to us that in dlstrlbuted systems applications, an
appropriatc choice is often an objective probability with the probability space consisting of all the
points with the same global state. This approach was first taken in [Halpern, 1988]. See Fisher and
Zuck [1988] and Halpern and Tuttle [1989] for further discussion on the approprate choice of
probability assignment 1n distributed systems.
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We now consider some other assumptions about the interrelationship be-
tween an agent’s probability assignments at different states. A rather natural
assumption to make on the choice of probability space is that it is the same in
all worlds the agent considers possible. In the context of distributed systems,
this would mean that an agent’s probability space is determined by his local
state. We call this property SDP (state-determined probability). Formally, we
have:

SDP. For all i, s, and ¢, if 1 €.%(s), then &, =2, ,.

Of the three Kripke structures we considered above, only M, satisfies SDP.
As the discussion in [Halpern and Tuttle, 1989] shows, SDP is most natural in
situations where no nondeterministic (or, perhaps better, nonprobabilistic)
choices are made by “nature”. (In our example, the choice of the agent’s input
bit is nonprobabilistic; the outcome of the coin toss is probabilistic.) SDP is an
assumption that has often been made. Indeed, it is implicitly assumed in much
of the economists’ work (e.g., [Aumann, 1976; Cave, 1983]). In these papers, it
is assumed that each agent initially defines a probability space over the sample
space of all worlds. Thus, for each agent i, we have a probability space
P =S, 2, ), where S is the set of all worlds.” Agent i’s probability of an
event e at a state s is taken to be the conditional probability of e given agent
i’s set of possible worlds. This means that £, = (#(s),2] , i, ), where
2, ={ANZNA €2}, and p, (A NF(5) = w(A)/p(7(s)).” Note that
the resulting Kripke structure has the SDP property.

Although M, and M, in our example above do not satisfy SDP, they do
satisfy a weaker property that we call uniformity. Roughly speaking, uniformity
holds if we can partition .%(s) into subsets such that at every point in a given
subset 7, the probability space is the same. Formally, we say uniformity holds
if:

UNIF. For all i, s, and ¢, if & =(§, .2 ,m ) and t €S, . then
P, =P

1t s

Notice that UNIF does not require that S, , C.%{(s); thus, in order to be able
to partition .Z(s) into subsets such that at every point in a given subset 7', the
probability space is the same, we require both UNIF and CONS. Uniformity
arises in a natural way when considering appropriate probability assignments in
distributed systems. Each subset of S, , turns out to correspond to the result of
“nature” making a particular nonprobabilistic choice, just as is the case in the
structure M, in our example (see Halpern and Tuttle [1989] for details).
Uniformity also has some interesting connections with a well-studied principle
regarding higher-order probabilities called Miller’s principle [Miller, 1966;
Skyrms, 1980]; we comment on this in a little more detail below. Note that
CONS and SDP together imply UNIF, and that all the structures in our
example above satisfy UNIF.

There is one last property of interest to us, which seems to have been
assumed in all previous papers involving reasoning about probability, and that

®Aumann actually assumes that there is an objective probability on the whole space. so that
&, =, for all agents i and j. This corresponds to the agents having a common prior distribution.
"This approach runs into slight technical difficulties if .%(s) is not measurable, or has measure 0.
However, it is always assumed that this is not the case.
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is that all formulas define measurable sets. As shown in [Fagin et al., 1990]
(and as we shall see again below), reasoning about probability is simplified if
we assume that all formulas define measurable sets. More precisely, we say
that formulas define measurable sets in M if

MEAS. For all i and s and for every formula ¢, the set S, (¢) €2, ..

(Recall that S, (@) ={s' €5, (M,s) E ¢})

Clearly if primitive propositions define measurable sets, then all proposi-
tional formulas define measurable sets. However, there is no particular reason
to expect that a probability formula such as w,(p) + w(q) = 1/2 will define a
measurable set (in fact, it is easy to show that in general it will not). Let
PMEAS be the property which says that all primitive propositions define
measurable sets. (Note that PMEAS does not hold in M, but does hold in M,
and M,.) The following lemma describes sufficient conditions for MEAS to
hold.

LEMMA 3.1.  If M is a structure satisfying CONS, OBJ, UNIF, and PMEAS,
then M satisfies MEAS.

PROOF. A straightforward induction on the structure of formulas ¢ shows
that S, ,(¢) is measurable for all formulas ¢. The assumptions CONS and OBJ
together imply that for all agents 7 and j, we have S, | C.7(s), so it is easy to
see that S, (K, ¢) is either S, | or . In either case, it is measurable. Similarly,
we can show that OBJ and UNIF together imply that for any probability
formula ¢, we have that S, (¢) is either S, or &. [J

It seems that OBJ, UNIF, and PMEAS are often reasonable assumptions in
distributed systems applications, so this lemma is of more than just pure
technical interest.

We close this section by briefly considering one more property of probabili-
ties that has appeared in the literature. Miller’s principle is an axiom that
connects higher-order probabilities (that is, probabilities on probabilities) with
probabilities on formulas [Miller, 1966; Skyrms, 1980]. It says:

w, (@) = bww,(p) = b).

It is easy to see that, in general, this axiom does not hold in structures for
knowledge and probability. However, it is not hard to show that our condition
UNIF implies this axiom. In systems satisfying UNIF, we have either (a)
(w (@) = b) is false at state s, in which case UNIF implies that w (w,(¢) > b)
= 0 at state s, or {b) (w(¢) = b) is true at state s, in which case UNIF implies
that w,(w,(¢) > b) = | at state s. In either case. it is easy to see that Miller’s
principle holds. It turns out that there is a precise sense in which Miller’s
principle completely characterizes uniform structures; see Halpern [1991] for
details.

4. Complete Axiomatizations and Decision Procedures

We now describe a natural complete axiomatization for the logic of probability
and knowledge. The axiom system can be modularized into four components.
The first component allows us to do propositional reasoning, the second allows
us to reason about knowledge, the third allows us to reason about inequalities
(so it contains axioms that allow us to deduce, for example, that 2x = 2y
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follows from x > y), while the fourth is the only one that has axioms and
inference rules for reasoning about probability.

I. Axiom and rule for propositional reasoning
Axiom K1 and rule R1 from Section 2

II. Axioms and rule for reasoning about knowledge
Axioms K2-KS5 and rule R2 from Section 2

For reasoning about inequalities, we need a system that allows us to prove all
valid formulas about linear inequalities; one particular system that will do the
trick is given in [Fagin et al., 1990]. We repeat it here.

1. Axioms for reasoning about linear inequalities

IL (aw(@) + - +aw(e) = b) o (awle) + - +awle) + 0w e, . )
> b) (adding and deleting 0 terms).

2. (awle) + - +awle) = b) = (a,wle) + - +awle) = b), if
Ji»-+-»Ji 18 @ permutation of 1,..., k (permutation).

B. (awl(e) + - +awle) =b) AMdwle) + - +awle,)=b) =
(a, +aDwle)+ - +(a +a)w g) = (b +b') (addition of coefficients).

4. (aw(¢) + - +aw(e,) > b)Y & (daw(e) + -+ +daw(e,) > db) if
d > 0 (multiplication of nonzero coefficients).

I5. (¢t = b) v (1 < b) if ¢ is a term (dichotomy).

16. (t > b) = (¢t > ¢) if ¢ is a term and b > ¢ (monotonicity).

Finally, we need axioms for reasoning about probability. The axioms we take
are also given in [Fagin et al.,, 1990]; they are simply a translation of the
standard axioms for probability in finite domains to our language.

IV. Axioms for reasoning about probabilities

W1. w(¢) > 0 (nonnegativity).

W2. w,(true) = 1 (the probability of the event frue is 1).

W3. wle A ) +wle A =) = w(e) (additivity).

W4, w (o) = w/(i)if ¢ « ¢ is a proposition tautology (distributivity).
W5. w,(false) = 0 (the probability of the event false is 0).}

Axiom W3 corresponds to finite additivity. Although we allow infinite
domains, as noted in [Fagin et al., 1990], we do not need an axiom that
corresponds to countable additivity. Indeed, we could not even express such an
axiom in our language. Roughly speaking, we can get away with finite additivity
because we can show that if a formula is satisfiable at all, it is satisfiable in a
finite domain.

Things get more complicated if we drop the measurability assumption. It is
easy to check that in this case, W3 is no longer sound. As shown in [Fagin
et al., 1990}, there is another axiom with which we can replace W3 to get a
complete axiomatization. This axiom is also the key axiom that characterizes

fAxiom W5 is actually redundant. It is included, since it will be needed later when we replace
axiom W3 by another axiom in the nonmeasurable case.
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belief functions in the Dempster—Shafer approach to reasoning about uncer-
tainty.

W6. w o V Vo)=Y k= DITIWIA L ).

Although this axiom may appear somewhat mysterious, note that if we replace
> by =, then in the measurable case, this becomes an instance of the
well-known inclusion-exclusion rule for probabilities [Feldman, 1984].

It turns out that if we replace W3 by W6, we get a complete axiomatization
for i-probability formulas in the nonmeasurable case. (See Fagin et al. [1990]
for more details, as well as proofs of soundness and completeness.)

Let AX ;g a5 consists of K1-KS, I1-16, W1-W5, and R1-R2. Let AX be the
result of replacing W3 in AX,z.s by W6. The following theorem says that
these axiomatizations are sound and complete.’

THEOREM 4.1.  AX (respectively, AX,,, ,¢) is a sound and complete axiomati-
zation for the logic of knowledge and probability (respectively, for structures
satisfving MEAS).

PROOF. Soundness is straightforward, as usual, so we focus on complete-
ness. We sketch the proof for the measurable case; the nonmeasurable case
follows the same lines.

In order to prove completeness, we need only show that if the formula ¢ is
consistent with AX,.s. then ¢ is satisfiable in a Kripke structure for
knowledge and probability satistying MEAS. Let Sub(¢) be the set of all
subformulas of ¢, and let Sub™(¢) be the set of subformulas of ¢ and their
negations.

Let s be a finite set of formulas, and let ¢, be the conjunction of the
formulas in 5. We say that s is consistent if it is not the case that AX zas -
-1 ¢,, where as usual, we write AX g F ¢ if the formula ¢ is provable in
the axiom system AXygas. The set s is a maximal consistent subset of
Sub* (@) if it is consistent, a subset of Sub*(¢), and for every subformula ¢ of
¢, includes one of  or — . (Note that it cannot include both, for then it
would not be consistent.) Following Makinson [1966] (see also Halpern and
Moses [1992]), we first construct a Kripke structure for knowledge (but not
probability) (S, 7,.7,,...,.%,) as follows: We take S, the set of states, to consist
of all maximal consistent subsets of Sub*(¢). If s and ¢ are states, then
(s,1) €.% precisely if s and ¢ contain the same formulas of the form K, . We
define 7 so that for a primitive proposition p, we have w (s} p) = true iff p is
one of the formulas in the set s. Our goal is to define a probability assignment
& such that if we consider the Kripke structure for knowledge and probability
M=(S,7.%,..... Z,..7), then for every state s € § and every formula ¢ &
Sub*(¢), we have (M, s) = ¢ iff ¢ €.

We now sketch the techniques from Fagin et al. [1990] required to do this. It
Is easy to see that the formulas ¢, are provably mutually exclusive for s € S
that is, AXyras F @, = — ¢, for s # t. Indeed, the proof uses only proposi-
tional reasoning, namely K1 and R1. Moreover, again using only propositional
reasoning, we can show that AXypas = e V  cgycqe, for all ¢ e

"The proofs of the technical results m this section presume familiarity with the results of Fagin
et al. [1990]. and with standard proofs of completeness and complexity for modal logics (cf.
[Halpern and Moses. 1992; Ladner, 1977]).



Reasoning about Knowledge and Probability 355

Sub*(¢). Using these observations, we can show, using W1-W5, that p,() =
T e s e 5 @) is provable in AX g, (cf. [Fagin et al., 1990, Lemma 2.3).)°
Using this fact together with I1 and I3, we can show that an i-probability
formula ¢ € Sub™(¢) is provably equivalent to a formula of the form
Y. cs¢, m,(@) = b, for some appropriate coefficients c,.

Fix an agent i and a state s € S. We now describe a set of linear equalities
and inequalities corresponding to i/ and s, over variables of the form x,,, for
s’ € §. We can think of x,,, as representing u, (s'), that is, the probability of
state s' under agent i’s probability distribution at state s. We have one
inequality corresponding to every i-probability formula ¢ in Sub*(¢). Assume
that i is equivalent to X,  gc, u,(¢,) = b. Observe that exactly one of ¢ and
— i is in s. If ¢ € s, then the corresponding inequality is

Z CoXygy = b.

ses

If = € s, then the corresponding inequality is

Z CoXigy <b.

ses

Finally, we have the equality

Z Xy = 1.

s'es

As shown in Theorem 2.2 in Fagin et al. [1990], since ¢, is consistent, this set
of linear equalities and inequalities has a solution x7..s" € §.

For each i and s, we solve the corresponding set of inequalities separately.
We now define 2 so that &2 = (5,25 u, ), where if 4 € S, then p, (A) =
Yoo X% Since ¥, o x%, = L, it is easy to see that g, is indeed a probabil-
ity measure. Note that, in the probability space &, , every set is measurable.
This probability assignment does not necessarily satisfy CONS; it may well be
the case that there are sets disjoint from #(s) that are assigned positive
measure under u, ..

As we said above, we now want to show that for every formula € Sub™(¢)
and every state in s, we have (M, s) = ¢ iff 4 € s. The proof proceeds by
induction on . If  is a primitive proposition, the result is immediate from
the definition of 7. The cases where ¢ is a negation or a conjunction are
straightforward and left to the reader. The case where ¢ is an i-probability
formula follows immediately from the arguments above, since the appropriate
inequality corresponding to ¢ is satisfied by u, . Finally, if ¢ is of the form
K ', the proof proceeds using well-known arguments from modal logic (cf.
[Hughes and Cresswell, 1968; Halpern and Moses, 1992]). We sketch a few of
the details here. If Ky’ € s, then, by construction of .7, for all 1 € #(s), we
have K,i' € t. Since ¢ is a maximal consistent subset of Sub™(¢), it must be
the case that one of ¢ or — ' is in ¢. From Axiom K3, it follows that it must
in fact be . By the induction hypothesis, we have that (M, 1) & 4. Since this
argument holds for all ¢ € %(s), we have that (M, s) & K, '

“Note that this proof makes crucial use of W3; this formula is not provable using the axiom
system AX.
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Now suppose that (M, s) = K,i'. We want to show that K, ¢' € s. Let s' be
the subset of s consisting of all formulas in s of the form K,¢" or — K, ¢".
Notice that, in particular, s’ includes one of K,¢" or - K,¢’; we plan to show
that in fact it must include K,¢’. We claim that

AXygas E op = . (D

For suppose not. Then ¢, A — ' is consistent. Thus, there is a maximal
consistent subset of Sub*(¢), say ¢, that includes s' U {— ’}. But then, by
construction of .7, we have (s,¢) €%, and by the induction hypothesis,
(M, t) & = ¢/'. But this contradicts our assumption that (M, s) = K, . Thus,
(1) holds.

By R2, from (1), we have

AXypas F K (@, = ¢'). (2)
Using A2 and propositional reasoning, it follows that
AXyeas Ko = K ' (3)

Every conjunct of ¢, is of the form K" or — K,¢". Thus, if o is one of the
conjuncts of ¢,., using either Axiom A4 or A5, it follows that

AXypas - 0= K,o. (4)

It is well known (and can be proved using K1, K2, R1, and R2) that for any
formulas o, and o,, we have

AXypas F K (o) A oy) © Koy ANK,0,.
Thus, from (4), it foliows that
AXypas oo = K . (3)
From (3) and (5), we now get
AXppas ooy = Ky

Since ¢,, and hence ¢,., is consistent, it now follows that — K,i' cannot be one
of the conjuncts of ¢,., and hence that K, € s, as desired.

If ¢ is consistent, it must be in one of the maximal consistent subsets of
Sub* (). Thus, it follows that if ¢ is consistent, then it is satisfiable in the
structure M. This complete the proof in the measurable case.

Note that the proof shows the modularity of the axiom system. In order to
deal with i-probability formulas, we just need the axioms for reasoning about
probability and inequalities (together with propositional reasoning); the axioms
for reasoning about knowledge play no role. Similarly, in order to deal with
knowledge formulas, we just used the axioms for reasoning about knowledge.

This modularity is important when it comes to dealing with the nonmeasur-
able case. We must now replace the arguments above for constructing & by
analogous arguments from Theorem 3.8 of Fagin et al. [1990] for the nonmea-
surable case. As these arguments show, it is not quite the case that we can
construct a Kripke structure satisfying ¢ whose set of states is the set .§ above
consisting of maximal consistent subsets of Sub™( ¢). Rather, we need to make
copies of each of the maximal consistent sets. Thus, for each maximal consis-
tent set s, there will be states s,,..., s, (as shown in [Fagin et al., 1990], we can
take 1 < |Sub(¢))). We can now define a probability assignment . on this set;
it will no longer be the case that in the probability space <2 _, all sets are
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measurable. Modulo this change to &, we can construct a Kripke structure M
for knowledge and probability such that for each state s, corresponding to a
maximal consistent set s and each formula ¢ € Sub*(¢), we have (M, s,) =
iff ¢ € 5. The proof follows identical lines to that of the measurable case. The
only change comes in dealing with i-probability formulas. Again, this is done by
constructing a collection of linear equalities and inequalities that g, ; must
satisfy, in the proof of Theorem 3.7 of Fagin et al. [1990]. We omit further
details here. O

We can also capture some of the assumptions we made about systems
axiomatically. In a precise sense (as we shall see), CONS corresponds to the
axiom

W7. K, = (w(¢) = 1).

This axiom essentially tells us that the set of states that agent i considers
possible has measure 1 (according to agent i).
OBJ corresponds to the axiom

W8. (awle) + - taw (o) = b) = (awle) + - +awle) = b).

Axiom W8 says that each i-probability formula implies the corresponding
J-probability formula. This is clearly sound if we have an objective probability
distribution.

UNIF corresponds to the axiom

W9. ¢ = (w,(¢) = 1) if ¢ is an i-probability formula or the negation of an
i-probability formula.

Since a given i-probability formula has the same truth value at all states where
agent {’s probability assignments is the same, the soundness of W9 in struc-
tures satisfying UNIF is easy to verify.

SDP corresponds to the axiom:

W10. ¢ = K, ¢ if ¢ is an i-probability formula or the negation of an i-prob-
ability formula.

Since SDP says that agent i knows the probability space (in that it is the same
for all states in Z/(s)), it is easy to see that SDP implies that in a given state,
agent { knows all i-probability formulas that are true in that state. Axioms W7
and W10 together imply W9, which is reasonable since CONS and SDP
together imply UNIF.

The next theorem proves our claims about correspondence between various
properties and various axioms.

THEOREM 4.2. Let & be a subset of {CONS, OBJ, UNIF, SDP} and let A be
the corresponding subset of (W7, W8 W9, W10}. Then AX U A (respectively,
AXypag Y A) is a sound and complete axiomatization for the logic of knowledge
and probability for structures satisfying .« (respectively, MEAS U .%7)."!

PROOF. Again, soundness is straightforward, so we focus on completeness.
We obtain completeness in each case by a relatively straightforward modifica-
tion of the proof of Theorem 4.1. We just sketch the details here.

llAlthough it is straightforward to extend Theorem 4.1 to the case where we have mixed formulas
of the form w(¢) + w /() = b (with appropriate modifications to axioms I1, 12, I3, and 14), the
situation seems much more complicated in the presence of the properties UNIF and SDP. It is
duc to these complexities that we do not allow such mixed formulas in our language.
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First, consider the relationship between CONS and axiom W7. Assume that
W7 is included as an axiom. In this case, it is easy to see that we can modify
our constructlon in the proof of Theorem 4.1 so that we can take
(8, ,.22] s, 1, ;) such that S, | .7 (s). We sketch the details in the measurable
case. Recall that in this Case in the proof of Theorem 4.1, we took &
(8,25, u, ), so that all sets were measurable, and i, was defined in terms of a
solution to a set of linear equalities and mequahtles Now we claim that in the
presence of W7, we can show that if s € § and s' & . 7(s), then ¢, = (u(e,)
= () is provable. To see this, observe that ¢, = K,(— ¢,) is provable using K4
or K5. Thus, applying W7, we have that ¢, = (u (= ¢,) = 1) is provable.
Finally, by using W2, W3, and W4, it is not hard to show that ¢, = ( u(¢,) = 0)
is provable. As a consequence, we can augment the linear system of equalities
and inequalities defining p, , by adding x,, . = 0 for s' & 7(s). The proof that
shows that the consistency of ¢, implies that the original linear system was
satisfiable can easily be extended to show that the augmented system must now
be satisfiable in the presence of W7. Again, we can use the solution to this
system to define u, . Since x,,,, = 0 for 5" &.7(s), we can take S, | C.Z(s), so
that CONS is satisfied. Note that if W7 is the only additional axiom, then we
can take §, | to be #(s); as we shall see, some of the other axioms may force
S, . to be a strict subset of Z(s).

Now consider the relationship between OBJ and axiom W8. Assume that W8
18 included as an axiom. It is easy to see that the subscripts in i-probability
formulas can then be ignored (i.e., we can think of w(¢) as simply w(¢)).
Thus, we can easily modify the construction of Theorem 4.1 so as to take
=, . This guarantees that the Kripke structure for knowledge and
probdblhty that we construct satisfies OBJ.

Next, consider the relationship between UNIF and axiom W9. Assume that
W9 is included as an axiom. Let 7,(s) be the set of states that contain precisely
the same i-probability formulas and negations of i-probability formulas as s.
Just as we showed that the presence of W7 allowed us to assume without loss
of generality that S, | is a subset of 7(s). we show that the presence of W9
allows us to assume that §, | is a subset of 7(s). Again, we consider only the
measurable casc here. Suppose that 5" & T,(s). Then s and s’ disagree on some
i-probability formula, say . Without loss of generality, ¢ € s and & s'. Thus,
¢, =t and y = — @, are both provable. Since. by W9, ¢ = ( () = 1) is
provable, it easily follows using the axioms of probability and propositional
reasoning that ¢, = (u,(¢,) = 0) is provable. Thus, we can augment the linear
system of equalmee and inequalities defining u, , by adding x,,, = 0 for
s" & T/(s). Just as in our proof of the relationship between W7 and CONS, we
can now show that we can take 7,(s) to be a subset of S, ,. Now note that for
cach t € §, . we must have T,(s) = T,(¢). Since, as the proof of Theorem 4.1
shows, the definition of w,, depends only on the i-probabilitv formulas and
negations of i-probability at state ¢, it follows that we can take -7, , =%  for
all t € T/(s). Thus, UNIF holds. We remark that if our only addltlonal ax10m is
WO, then we can actually take S, | = T,(s); however, if we have both W7 and
W9, then by combining the arguments used in each case, we can show that we
can take S, , to be 7 (s) N T.(s).

Fmally comlder the relanonshlp betwecen SDP and axiom W10. Assume that
W10 is included as an axiom. We want to show that we can slightly modify the
construction of Theorem 4.1 so that if t+ €.%(s), then ¢t € T(s). This is trivial
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to do: We just change the definition of the .7 relation so that t € %7 (s) iff it is
the case both that ¢ € T,(s) and that s and ¢ contain all the same subformulas
of the form K, . With this change, we can assume without loss of generality
that if ¢ €.%(s), then & =2 ,, since, as we have already noted, the
definition of , , depends only on the i-probability formulas and negations of
i-probability formulas at state 7. Now for the structure M constructed in this
way, we still want to show (in the measurable case) that (M, s) = o iff ¢ € S.
The proof is almost identical to that given for Theorem 4.1. There is only one
case where we must be a little careful: when proving that if (M.s) E K, ',
then K,y’ € s. Rather than taking s' to be the subset of s consisting of all
formulas in s of the form K,4" or — K,¢", we now extend it to consist of all
these formulas together with all i-probability formulas or negations of i-prob-
ability formulas in s. With this change, the proof now proceeds as before. It is
still the case that for every formula o € s, we have that o = K, o is provable;
for formulas of the form K,¢” we use K4, for formulas of the form - K, "
we use K5, and if o is an i-probability formula or the negation of an
i-probability formula, we use W10.

Let . be a subset of {CONS,OBJ, UNIF,SDP)}, and let 4 be the corre-
sponding subset of {W7, W8, W9, WI10}. If A4 is included among the axioms,
then our discussion shows that given a consistent formula ¢, we can modify our
original construction of a Kripke structure for knowledge and probability
satisfying ¢ to get a Kripke structure that not only satisfies ¢, but also the
conditions in .&7. This proves completeness. [0

As is often the case in modal logics, the ideas in our completeness proof can
be extended to get a small model property and a decision procedure. In order
to state our results here, we need a few definitions. Recall that Sub(¢) is the
set of all subformulas of ¢. It is easy to see that an upper bound on the size
[Sub( @)l of Sub(¢) is the number of symbols in ¢, where we treat a rational
number as a single symbol. We also define the size of a Kripke structure
(S, 7..%,...,.%, ) to be the number of states in S. (Note that the size of a

n?

Kripke structure may be infinite.)

THEOREM 4.3. Let & be a subset of {MEAS, CONS, OBJ, UNIF, SDP}. The
formula ¢ is satisfiable in a Kripke structure satisfying & iff it is satisfiable in a
Kripke structure satisfying & of size at most |Sub( )25l (or just 215400 jf
MEAS € .«7).

PrROOF. We need only show that the Kripke structure for knowledge and
probability constructed in the proof of Theorem 4.2 is no bigger than the size
given in the statement of this theorem. If MEAS €., then the set of states is
simply the set of maximal consistent subsets of Sub™( ¢). Now a subformula of
¢ and its negation cannot both be in a maximal consistent subset, so the
cardinality of a maximal consistent subset is at most equal to [Sub(¢)|. Hence,
the number of states in the Kripke structure for knowledge and probability
constructed in the proof of Theorem 4.2 is at most 215P(¢)\

If MEAS ¢ ./, then, as we mentioned in the proof of Theorem 4.1, we
cannot take the states of the Kripke structure satisfying ¢ to be the maximal
consistent subsets of Sub*(¢). Rather, we must make copies of the sets. As
shown in [Fagin et al., 1990], we need to make at most [Sub( ¢)| copies of each
state, so the size of the resulting structure is at most [Sub( )25 O
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It can be shown that this result is essentially optimal, in that there is a
sequence of formulas ¢, ¢,,... and a constant ¢ > 0 such that (1) [Sub(¢,)l
< ¢k, (2) ¢, is satisfiable, and (3) ¢, is satisfiable only in a structure of size at
least 2*."* Indeed, this exponential lower bound holds even when there is only
one agent. However, if we assume that CONS and either UNIF or SDP hold,
then we can get polynomial-sized models in the case of one agent.

THEOREM 4.4, If the formula ¢ talks about the knowledge and probabilities of
only one agent and o is a subset of {MEAS, CONS, OBJ, UNIF, SDP} containing
CONS and either UNIF or SDP, then ¢ is satisfiable in a structure satisfying .«v iff
@ is satisfiable in a structure of size polynomial in |Sub( )| satisfying ./.

Proor. Let M = (S, 7.5, be a structure satisfying ./ where ¢ is
satisfiable. For each s € S, let #, = (S, .22} ,. u; ,). Since CONS is in .,
we know that §) | €7 (s) for each s € §. Without loss of generality, we can
assume that 7| is a single equivalence class, that is, that %, = S X S. (PROOF.
Suppose that (M,s) = ¢. Let M' = (S, 7',.%7], #'). where §’ is the equiva-
lence class of 7| that includes s, and let 7', %], and &' be the restrictions of
m. %, and 2, respectively, to §'. It is easy to see that (M, s) = ¢, and %] is a
single equivalence class by construction.) Since CONS and SDP together imply
UNIF, and since .7 contains CONS and either UNIF or SDP, it follows that M
satisfies UNIF. Observe that it follows that no two distinct probability spaces
P, have overlapping sample spaces; that is, if = (S, ,?] ,u,,) and
Pro=(8S 2 s py), and if o, #2,  then S, NS, ,=. This is be-
cause if u € §, (NS, ,, then by UNIF we have .7, A = and &, =2, .
SO Py ¢ =P .

We now describe a small probability space <] | (one whose sample space
has cardinality at most [Sub(p)]) that we shall later “replace” &, , with. For
each state s, let X, be the set of formulas o € Sub*(¢) such that (M, s) & o.
By techniques of Fagin et al. [1990] (sec Theorem 2.4 for the measurable case,
and Theorem 3.4 for the general case), for each state s, there is a probability
space 7| | = (S ,,27,, | ;) where

M s, cs,,

(2) the cardinality of S} is at most [Sub(e)® (in the measurable case,
1S7 ] < ISubl @)D

(3) if we interpret w,(¢s) to mean the inner measure of the set of states s
where ¢ € X, for each ¢ € Sub*(¢), then each of the i-probability
formulas and negations of i-probability formulas of T, is satisfied, and

(4) if MEAS is in &/, then every subset of §} , is measurable (i.¢., a member of
).

Sl
2
Lou ’/LA

Let s, € S be a state such that (M, s,) = ¢. For each formula o € X, of
the form — K¢, we select some state 7, such that (M,¢,) = — ¢ (there is
such a state 1, since (M, sy) = — K ). Let T consists of s, along with each
of these states 7,. Note that the cardinality of T is at most 1 + [Sub( ¢)|. Define
M' = (8.7, 7. %) by letting " be the union of the sample spaces of 7 |

" The idea 1s that ¢, forces a structure to contain a binary tree of depth k. In fact, the result
follows from the corresponding result for the modal logic K (cf. [Halpern and Moses, 1992:
Ladner, 1977]). Without any assumptions on the probability assignment, w,(¢) = 1 acts like the O
operator. We omit details here.
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for each s € T, by letting 7w’ be = restricted to S, by letting 7] = §’ X S,
and letting #'(1,s) =2, . Itis straightforward to show that (M, so) E ¢, that
M’ satisfies .o, and that M’ is of size polynomial in [Sub(¢). O

We now consider the complexity of decision procedures for the validity
problem. The difficulty of deciding whether ¢ is valid will be a function of the
length of ¢, written |¢l. In computing this length, we also include the length of
the coefficients in probability terms. (Since all coefficients are rational, the
length of the coefficient is just the sum of the lengths of the numerator and
denominator, written in binary.)

THEOREM 4.5. Let & be a subset of {MEAS, CONS, OBJ,UNIF, SDP}. If
CONS €., but it is not the case that UNIF or SDP is in </, then the validity
problem with respect to structures satisfying &/ is complete for exponential time
(i.e., that is an algorithm that decides if a formula ¢ is valid in all structures
satisfying & that runs in time exponential in ||, and every exponential time
problem can be reduced to the validity problem). If CONS & .« or UNIF or SDP is
in &, then the validity problem with respect to structures satisfying & is complete
for polynomial space.

ProoF. The proof requires combining techniques for proving upper and
lower bounds on the complexity of the validity problem for logics of knowledge
and logics of probability, as discussed in [Halpern and Moses, 1992] and [Fagin
et al., 1990], respectively. We briefly sketch the main ideas here, referring the
reader to [Halpern and Moses, 1992] and [Fagin et al., 1990] for further details.

The polynomial space lower bound follows from the polynomial space lower
bound for logics of knowledge alone [Halpern and Moses, 1992]. For the
exponential time lower bounds, let B,¢ be an abbreviation of w(¢) = 1. We
can view B, as a modal operator, just like K,. If UNIF or SDP is in ., then it
can be shown that B, satisfies the axioms of the modal system KD45, but
without these assumptions, B, is unconstrained (in particular, it satisfies only
the axioms of the modal system K). If CONS is in ., then everything
“reachable probabilistically” is also considered possible. More formally, sup-
pose we have a sequence of states 8055150+ +5 Sk such that s, is reachable
probabilistically from s,, as far as agent 1 is concerned that is, s, Is in S,
and s({S,+1}) > 0, for 0 <j < k — 1. Then CONS implies that (s, s;) ejfl
As a consequence, it is not hard to show that B, and K, can be used to
essentially simulate the [«] and [a*] operators in Proposmonal Dynamic Logic
(PDL). Since the validity problem for PDL is exponential-time complete
[Fischer and Ladner, 1979], we get the exponential time lower bound if CONS
is in .7, but neither UNIF nor SDP is. Note that the lower bound holds even
with only one agent.

In the cases, where we claim a polynomial space upper bound, this is shown
by proving that if a formula ¢ is satisfiable at all, it is satisfiable in a structure
that looks like a tree, with polynomial branching and depth no greater than the
depth of nesting of K, and w, operators in ¢. The result now follows along
similar lines to corresponding results for logics of knowledge.

Finally, the exponential time upper bound follows by showing that if a
formula is satisfiable at all, it is satisfiable in an exponential-size model, that
can be constructed in deterministic exponential time; the technique is similar
to that used to show that logics of knowledge with common knowledge are
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decidable in deterministic exponential time [Halpern and Moses, 1992], or that
PDL is decidable in deterministic exponential time [Pratt, 1979]. O

Again, if we restrict attention to the case of one agent and structures
satisfying CONS and either UNIF or SDP, then we can do better. In fact, the
complexity of the validity problem is no worse than that for propositional logic.

THEOREM 4.6. Let & be a subset of {MEAS, CONS, OBJ, UNIF, SDP} con-
taining CONS and either UNIF or SDP. For the case of one agent, the validity
problem with respect to structures satisfying .« is co-NP-complete.

ProoF. We show that the satisfiability problem is NP-complete. It follows
that the validity problem is co-NP-complete. The lower bound is immediate,
since clearly the logic is at least as hard as propositional logic. For the upper
bound, by Theorem 4.4, ¢ is satisfiable in a structure satisfying o iff ¢ is
satisfiable in a structure M of size polynomial in [Sub( )l satisfying .. It might
seem that this suffices to complete the proof: We simply guess a polynomial-
sized structure satisfying ¢. However, there is one additional subtlety: In order
to describe the polynomial-sized structure, we have to describe the probabili-
ties of all of its subsets. A priori, this might take us far more than polynomial
space.

By results of Fagin et al. [1990], we can assume without loss of generality that
M has the property that for each state s in M and agent i. the probability
assigned to every measurable subset of §, | in the probability space o7, | is a
rational number a /b, such that the length of ¢ and b is linear in |¢|. If MEAS
is in ., we can assume even more, namely that every subset of §, , is
measurable. This means we can describe the probability space »#, | by describ-
ing the probability of each point. I[f MEAS ¢ ./, then we cannot assume that
every subset of S, | is measurable. Instead, we describe the probability space
P, ; by describing the probabilities of the basis sets, that is, the nonempty
measurable sets none of whose proper nonempty subsets are a measurable set.
Since every measurable set is the disjoint union of basis sets, this again
completely describes #, . In either case, we get a polynomial-sized description
of the structure M. Thus, in order to check if ¢ is satisfiable, we just guess a
structure M with a probability-sized description that satisfies it. This gives us
an NP procedure for checking satisfiability. 0O

5. Adding Common Knowledge

For many of our applications, we need to reason not only about what an
individual process knows, but about what everyone in a group knows, or what
everyone in a group knows that everyone else in the group knows. Common
knowledge can be viewed as the state of knowledge where everyone knows,
everyone knows that everyone knows, everyone knows that everyone knows
that everyone knows, etc.

It is easy to extend our language so that we can reason about common
knowledge. We add modal operators E (where G is a subset of {1,...,n}) and
C¢» where E; ¢ and Cj; ¢ are read “everyone in the group G knows ¢” and “¢
is common knowledge among the group G, respectively.

(M,s) EE;p iff(M,s) =Ko foralicG,
(M.s) = Cge iff (M,s) =EELe forall k > 1,
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where Ej;¢ is an abbreviation for E; ¢, and ELT'e is an abbreviation for
EGEL .

It is well known (again, see Halpern and Moses [1992]) that we can get a
complete axiomatization for the language of knowledge and common knowl-
edge by adding the following axioms and rule of inference to the axiom system
described in Section 2:

Cl. Ego e A oK

C2. (Coo N Cole= ¢h)= Cyy
C3. Cioo=EqleAClo)

RC1. From ¢ = E; ¢ infer ¢ = C 0.

Axiom C3, called the fixed-point axiom, says that C, ¢ can be viewed as a
fixed point of the equation X & E (¢ A X). In fact, with a little work it can
be shown to be the greatest fixed point of this equation, that is, it is implied by
all other fixed points. For most of our applications, it is the fixed-point
characterization of common knowledge that is essential to us (see Halpern and
Moses [1990] for a discussion of fixed points). The rule of inference RC1 is
called the induction rule. The reason is that from the fact that ¢ = F, ¢ is
valid, we can easily show by induction on k that ¢ = EX ¢ is valid for all k. It
follows that ¢ = C ¢ is valid. In fact, the same proof can be used to show that
for any structure M, if ¢ = E; ¢ is valid in M, then ¢ = C; ¢ is valid in M
(see Halpern and Moses [1990] for further discussion of these points).

It is perhaps not surprising that if we augment AX s s With the axioms for
common knowledge, we get a complete axiomatization for the language of
knowledge, common knowledge, and probability for structures satisfying MEAS.
If we want to deal with nonmeasurable structures, we must use the axiom
system AX rather than AX,r¢. And again we get small model theorems and
an exponential-time complete decision procedure (regardless of what addi-
tional assumptions among MEAS, OBJ, UNIF, and SDP we make). The proofs
involve a combination of the techniques for dealing with common knowledge,
and the techniques for probability introduced in [Fagin et al., 1990] and the
previous section. We omit details here.

In [Halpern and Moses, 1990], it was observed that common knowledge is
often not attainable in practical distributed systems, but weaker variants of it
are. One obvious variant to consider is a probabilistic variant (indeed, this was
already mentioned as something to consider in [Halpern and Moses, 1990]).
Recall that we defined K/p to be an abbreviation for K, (w (@) = b). We now
extend our syntax to allow modal operators of the form E’ and CZ. We define

(M,s) EELg iff (M,s) =Ko forallieG.

By analogy to C, ¢, we want C%¢ to be the greatest fixed point of the
equation X < E2(¢ A X). The obvious analogue to the definition of Cg ¢,
namely, EZ ¢ A (EE)% A -+ does not work. For example, consider a structure
M for knowledge and probability defined as follows: There are four states in
M, say s, s,, S5, 5,. Agent 1 cannot distinguish s, from s, and cannot distin-
guish s; from s,, while agent 2 cannot distinguish s, from s; and cannot
distinguish s, from s,. Thus, %, is the reflexive symmetric closure of
{(5y.5,), (55, 8,)) (i.e., 7, is the least relation containing (s, s,) and (s5, s,) that
is reflexive and symmetric) while %, is the reflexive symmetric closure of
{(sy,5;),(s,,5,)}. We take the primitive proposition p to be true at s, and s,
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Fic. 1. The Kripke structure M. s 83
2 1

S 4—‘p

and false at s, and s, (so that 7(s,)(p) = false, etc.). The Kripke structure M
is sketched in Figure 1 (where reflexive loops between states are ignored).

We assume that M is an SDP structure (so that S, =.%(s)). We take
Py, =P, to be the probability space that assigns probability 1/2 to both s,
and s,. Similarly, ., =P, ,, 1s a probability space where both s, and s,
have probability 1,/2. On the other hand, we take P =P, and P, =
&, ,, to be such that the probability of s, is 1. Take G = {1,2}, and let ¢ be
the mfinite conjunction E/°p A EY?EY?p A ---. It is now easy to check that
(@) (M,s)) =y, (b) (M,s,) = = E{/?p, and (¢) (M,s;) = = EY?p. Since
(M, s,) ¥ p, it follows that none of s, s,, or s, satisfy p A E)/?p. Thus,
(M.s) ¥ EY*(p ANEY? D), so (M,s))# EYYp A ). In particular, this
means that ¢ does not satisfy the fixed-point equation X « EY?(p A X).

However, a slight variation does work. Define (F2)% = true and (F2)*+lp =
El(@ A (F2)p). Then, we take

(M,s) = Che  iff (M,s) = (F))'e forall k=1,

We remark that this actually is a generalization of the nonprobabilistic case.
The reason is that if we define Fl¢ = true and FA*'p = E (o A Ff¢), then
we get Flo = E£ ¢ (since both Ecle AN ) = Ego A Egy and E; @ = o are
valid). The analogous facts do not hold once we add probabilities, as we have
already observed.”

The following lemma shows that this definition indeed does have the right
properties:

LEMMA 5.1. Cle is the greatest fixed-point solution of the equation
X o Eg(gD A X).

PrROOF.  We first show that Cf ¢ is a fixed-point solution of the equation,
that is, that C ¢ < E2(@ A Cl ) is valid. One implication is straightforward:
if E¢(e A Cle) holds at (M,s), then so does EX(¢ A (Ff)p) for each k,
since Cf o = (F2)%p is valid. That is, (F2)** o holds for each k at (M, s), and
so Cf o holds at (M, s). As for the other implication, assume that Ct ¢ holds
at (M, s). Hence, (F{)* g, that is, E&(@ A (F2)%), holds at (M. s) for each k.
For each agent 7, let 4,  be the set of states in S, | where ¢ A (F2)% holds,
for k =1.2.... Since (M,s) &= E¢(e A (F2)%), it follows that (g, ), (A4, ,)

M1t is interesting to note that the mfinite conjunction Efo A (EZ)? A -+ is a solution to a
slightly difterent fixed-point equation, namely X < El¢ A E2X. This is the definition taken by
Monderer and Samet [1980). Both definitions are generalizations of the nonprobabilistic case,
since, as we vbserved above, E, (¢ A X) is equivalent to E; ¢ A E; X, 50 Ce e 15 also a solution
to the fixed-point cquation £, ¢ A E, X. The two definitions are quite similar. Which is the right
one to use scems to depend on the application. Our definition secms to be somewhat more
appropriate in analyzing probabilistic coordinated attack and Byzantine agreement protocols
[Halpern and Tuttle, 1993].
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> b, for each agent i and for all k. It is a standard result of probability theory
that there exists B, , € A, such that B, , is measurable and u, (B, ;) = b
[Halmos, 1950; Neveu, 1964]. It is straightforward to Ver1fy by induction on k,
that (F2)** o = (F} ”)k is valid. (PROOF. The case k = 0 is casy, since (F2)%

= osfrue. For the 1nduct1ve step, note that the validity of (F2)**lp (F )’”
implies the validity of EG((,D A (Fb)"“go) = El(o A (F2)X ) But this last
formula is precisely (F2)** % (Fb)k+ ) Thus, we have 4, , 2 A4,,24,,
Q . Without loss of generahty we can assume also that B, , 2 B, , D B )

(s1nce we can always replace B, , by the union of B, . for k' > k). The set

Bl » = N7-B, ; is a measurable set; it is easy to see that it must have measure
at least b. By construction, ¢ A C2(¢) holds at B, ... It thus follows that
EX(@ A CL(p)) holds at (M, s), as des1red

We now show that CZ ¢ is the greatest fixed pomt Assume that ¢ is a fixed
point in a structure M that is, that M = ¢ = EZ(¢ A ¢). We want to show
that M = = Cl¢. We first show, by induction on k, that M = ¢ = (F2)kp.
Since (F)% = true by definition, the result is immediate in the case of
k = 0. For the induction step, suppose M k= = (F2)"p. It follows easily that
M= Ei(o A ) = EL(o A (FL)"p). Hence, since M E i = EX(g A (l/), we
must also have M & = Eg(go A (F))"p). But (FO)"e =, Ele A
(FP™p). So M = i = (F2)"* . This completes the 1nduct1ve step. It now
follows that if (M, s) &= i, then (M, s) = (F))%p for all k, and hence that
(M,s) = Clo. Thus, M &= ¢ = CGgo This proves that Cl¢ is the greatest
fixed point of the equation X « E2(¢ A X). O

It is now easy to check that we have the following analogues to the axioms
for E; and C,,.

CPl. Eloe A, - K'.
CP2. C'bcp©Eb(<p/\C ®).
RCP1. From ¢ = E%(y A @) infer ¢y = Cl¢.

We remark that these axioms and rule of inference are sound in all
structures for knowledge and probability. And again, we can actually show the
following strengthening of RCP1: For any structure M, if ¢ = EZ(¢ A @) is
valid, in M then ¢ = CZ ¢ is valid in M.

It can be shown that these axioms and inference rule, together with the
axioms and inference rules C1-C3 and RC1 for common knowledge discussed
above and AX x¢ (respectively, AX) gives us a sound and complete axiomati-
zation for this extended language in the measurable case (respectively, in the
general case). Moreover, we can prove a small model theorem, and show that
the validity problem for all variants of the logic is complete for exponential
time. These proofs are quite difficult; we hope to provide the details in a later

paper.
6. Conclusions

We have investigated a logic of knowledge and probability that allows explicit
reasoning about probability. We have been able to obtain complete axiomatiza-
tions and decision procedures for our logic. We have also identified some
important properties that might hold of the interrelationship between agents’
probability assignments at different states.

It seems to us that the most important area for further research lies in
having a better understanding of what the appropriate choice of probability
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space is. Some discussion of this issue appears in [Fischer and Zuck, 1988]; a
more general treatment appears in [Halpern and Tuttle, 1993]. Using the ideas
in this paper together with Moses’ recent work [1988] on resource-bounded
reasoning, Moses, Tuttle, and Halpern have made progress on capturing
interactive proofs and zero knowledge [Goldwasser et al., 1989] in the framework
of knowledge and probability discussed in this paper. These results appear in
[Halpern et al., 1988]. The analysis in [Halpern et al.. 1988] is done using the
same style of probability assignment as in our examples in Section 3, that is,
they take S, , ,,, to consist of all points with the same global state as (r, m).
This probability assignment satisfies OBJ and UNIF, but not necessarily SDP.
Although this is not the only choice of probability assignment that is reason-
able in this context, there are good grounds for believing that no reasonable
choice will satisfy SDP. If there are nonprobabilistic events in a system as well
as probabilistic events, SDP seems inappropriate. As we said earlier, a general
framework for deciding which choice of probability assignment is appropriate,
presented in terms of adversaries, appears in [Halpern and Tuttle, 1993].

As this discussion may suggest, although our understanding of the subtle
interaction between knowledge and probability is increasing, more work needs
to be done in this area. It would be especially useful to have a larger body of
examples on which to test our ideas. The economics and game theory literature
may be a good source for such examples. We expect that further progress can
be made by combining the intuitions from both computer science and game
theory.
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