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Abstract. It has been argued that knowledge is a useful tool for designing and analyzing complex

systems. The notion of knowledge that seems most relevant in this context is an external,
zrzforrnatzorr-based notion that can be shown to satisfy all the axioms of the modal logic S5. The
properties of this notion of knowledge are examined, and it is shown that they depend crucially.
and in subtle ways, on assumptions made about the system and about the language used for
describing knowledge. A formal model is presented in which one can capture various assumptions
frequently made about systems, such as whether they are deterministic or nondeterministic,
whether knowledge is cumulative (which means that processes never “forget”), and whether or
not the “environment” affects the state transitions of the processes. It 1s then shown that under

some assumptions about the system and the language, certain states of knowledge are not
attainable and the axioms of S5 do not completely characterize the properties of knowledge; extra

axioms are needed. Complete axiomatlzations for knowledge in a number of cases of interest

are provided.
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1. Introduction

A fundamental problem in many branches of artificial intelligence (AI)

and computer science (including distributed systems, robotics, and planning)

is to design, analyze, and understand complex systems composed of

interacting parts. An increasingly useful tool in this design and analysis process
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is the concept of knowledge. In the study of protocols in distributed systems, it

has long been common to argue informally about knowledge, with statements

such as “processor 1 cannot safely commit at this point, since it does not yet

know whether processor 2 knows that processor 3 is still up”. Although notions

of knowledge have frequently been used in informal descriptions, traditional

formal analyses of distributed protocols avoid any explicit mention of knowl-

edge. Recent work has shown that these informal arguments can be completely

formalized (see [3], [11], [22], and [26] for some detailed examples).

In AI, there have been two approaches to ascribing knowledge to machines

or components of systems. The classical AI approach, which has been called

the interpreted-symbolic-structures approach [25], ascribes knowledge on the

basis of the information stored in certain data structures (such as semantic

nets, frames, or data structures to encode formulas of predicate logic; cf. [1]).

The second, called the situated-automata approach, can be viewed as ascribing

knowledge on the basis of the information carried by the state of the machine

[25]. This second approach describes the way knowledge is ascribed to proces-

sors in a distributed system, in the papers mentioned above.

Since we concentrate on the second approach in this paper, we describe the

intuition in more detail. Imagine a system of sensors taking readings, or a

distributed system composed of processors, robots, or people, each of which

may be in various states (although we talk here about systems, everything we

say goes through perfectly well for a machine composed of various compo-

nents). At any point in time, the system is in some global state, defined by the

local states of the components and the state of other objects of interest, which

we refer to as the “environment.” We say that a process of component p knows

a fact p at some point where the global state is s if p is true at all points in

the system where p has the same local state as it does in s.

This notion of knowledge is external. It need not involve any cognitive

activity on the part of the process or component. It is a notion meant to be

used by the system designer in reasoning about the system.

If we are to use this notion of knowledge to analyze systems, then it becomes

important to understand its properties. It is easy to show that it satisfies all the

axioms of the classical modal logic S5 (we discuss this in more detail in Section

5; an overview of S5 and related logics of knowledge and belief can be found in

[12]). Indeed, the abstract models most frequently used to capture this notion

(e.g., [251) have been variants of the classical Kripke-style possible-worlds
model for S5 [16]. But, a priori, it is not the least bit clear that this is the

appropriate abstraction for the notion of knowledge in which we are interested.

Does each state of an S5 Kripke structure really correspond to some “knowl-

edge situation” that the system can be in? As we shall show, the answer to this

question depends crucially, and in surprising ways, on the assumptions made

about the system and about the language used for describing knowledge.

In order to explain our results, it is helpful to briefly review some

material from [8], which directly inspired our work here. In [8], a

very restricted type of system is considered, which intuitively can be
viewed as one where robots observe their external environment and then

communicate about their observations. These robots are assumed never to

forget information they have learned. In addition, messages are assumed to be

honest; for example, if Alice sends Bob a message p, then it must be the case

that Alice knows q. Under these assumptions (and, as we shall see, under
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several more that are implicit in the model), it is shown that certain states of

knowledge are not attainable. In particular, suppose we let p be a fact that

characterizes the environment at a given time (e.g., if all we care about is

whether or not it rained in San Francisco on January 1, we could take p to be

“It rained in San Francisco on January l.”). Suppose also that we have a

system with exactly two robots, which we shall call Alice and Bob. Consider a

situation where Alice does not know whether p is true or false, and Alice

knows that either p is true and Bob knows that p is true, or p is false and Bob

does not know that p is false. Alice’s state of knowledge can be captured by

the formula

lKA/CCe P A lKAll CClP ‘KAlzce (( PAKB@) V(=PA 7KBOb1P))0 (1)

Although this formula is perfectly consistent with S5, it is not attainable

under the assumptions of [8].

To see that it is not attainable, it is convenient to consider the notion of

distributed knowledge’ introduced in [11] and studied in [2], [3], [8], [22], [23],

and [26]. Roughly speaking, a group has distributed knowledge of a fact if by

putting all their information together, the members of the group could deduce

that fact. In the class of systems considered in [8], distributed knowledge obeys

a certain consenwtion principle-it can neither be lost nor gained. Suppose now

that the above state of knowledge was attainable. Then, we can reason as

follows:

Suppose p is false. Then Alice’s state of knowledge implies that neither

Alice nor Bob knows that p is false. But Alice could then receive a message

from Bob saying “I (Bob) don’t know p.” Then, since Alice knows that either

(a) p is true and Bob knows that p is true, or (b) p is false and Bob does not
know that p is false, it follows that Alice would know that p must be false.

But originally Alice and Bob did not have distributed knowledge that p is

false. It follows that it is impossible for Alice and Bob to discover that p is

false, since that would contradict the conservation principle for distributed

knowledge. So p must be true. And since this argument holds for all states

where Alice has this same information, Alice knows p. But this contradicts

the assumption that Alice does not know p.

In [8], a formal proof is given that the above state of knowledge is unattain-

able for the class of systems considered. In order to show the subtlety of the

assumptions required to make the proof go through, we now give four situa-

tions where the state of knowledge is attainable. For the first case, suppose p

is now the statement “the communication line between Alice and Bob is up. ”

Suppose p is true and Alice sends Bob the message “Hello,” which Bob

receives (since, after all, the communication line is up]. At this point, Bob

knows p (since he received the message) and Alice does not know whether p is

true or false (since she does not know whether Bob received her message). But

lIn [11], a previous version of this paper [6], and other papers, what we are now calbng distributed
knowledge was called wnpkclt knowledge. We have changed the name here to avoid conflict with
the usage of the term “imphcit knowledge” in papers such as [5] and [19].
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Alice does know that either p is true and Bob knows that p is true, or else p is

false and Bob does not know that p is fake (since if p is false, Bob will have

no way of knowing whether he did not receive a message because the line was

down or because Alice did not send one in the first place). Thus. we have

exactly the state of knowledge previously shown to be unattainable!

Actually, there is nothing wrong with either the proof of impossibility in [8]

or with the counterexample just given. The proof of impossibility breaks down

in the counterexample because of Alice’s seemingly innocuous assumption that

Bob could send her (and she could receive) a message saying “I don’t know p.”

If p is false in the counterexample, then she could never receive such a

message because the communication line would be down. Implicitly, there is an

assumption in model of [8] that the primitive propositions are determined by

some external environment and that this environment has no impact on the

possible transitions of the system. In particular, a primitive proposition cannot

say that a communication line is down or a message buffer is full.

Now suppose we slightly modify the counterexample so that there is a

communication link from Alice to Bob and a separate one from Bob to Alice.

Further suppose that the link from Bob to Alice is guaranteed to be reliable.

Let p say that the communication link from Alice to Bob is up. Just as before,

suppose Alice sends Bob a message saying “Hello,” which Bob receives. The

same reasoning as above shows that we have again attained the “unattainable”

state of knowledge. But in this case, Bob can send Alice a message saying “I

don’t know p,” and Alice would be guaranteed to receive it. So now where does

the reasoning in the proof of impossibility that we gave above break down?

This time it is in the claim that Alice could not discover that p is false if Alice

and Bob do not have distributed knowledge that p is false beforehand, which

we inferred from the conservation principle for distributed knowledge. Al-

though Alice and Bob do not have distributed knowledge as to whether p is

true or false before any messages are sent, if p is true then they can obtain

distributed knowledge that p is true by communication, and if p is false, then

they can obtain distributed knowledge that p is false by communication, Thus,

if p is true (and so the communication link from Alice to Bob is up), then

Alice can send Bob a message, and upon receipt of the message Bob will know

that p is true; hence, distributed knowledge that p is true is gained. Similarly,

if p is false, and if Alice attempts to send Bob a message, and then Bob sends

Alice a message saying that he does not know that p is true (and so, in

particular, Bob did not receive Alice’s message), then Alice knows that p is

false, and so distributed knowledge that p is false is gained. Why does the

conservation principle hold for the systems of [8] but not in this counterexam-

ple? In the systems of [8], the primitive propositions are determined by some

external environment and this environment has no impact on the transitions of

the system. This assumption, which does not hold in this counterexample, is

sufficient to prove that distributed knowledge of propositional facts does not

increase with time.

The other half of the conservation principle, which says that distributed
knowledge of propositional facts does not decrease with time, follows from

another critical assumption from [8], namely, that neither robot forgets (i.e.,

their knowledge is cumulative). This maybe reasonable when we are consider-

ing a scenario that lasts only a few rounds. However, no forgetting requires

an unbounded number of states in general; thus, this is certainly not an
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assumption to take lightly. Once we drop this assumption, we can construct yet

a third counterexample where the “unattainable” state of knowledge is at-

tained.

In the proof of impossibility it is implicitly assumed that if at some point

neither Alice nor Bob knows that p is false, then they never had any

knowledge about p beforehand. But if knowledge is not cumulative, then it

may have been the case that Bob knew that p was false, imparted a piece of

this knowledge to Alice, and then forgot about it. For example, let p be the

statement “Bob has a perfect memory.” In particular, Alice knows that if Bob

knows p, then p is true,2 so Bob has a perfect memory, and so Bob never

forgets that he knows p. In addition, Alice knows that if Bob knows ~ p, then

p is false, and so Bob does not have a perfect memory, and so Bob might forget

that he knows m p. Suppose in fact that p is true and Bob knows this, and Bob

sends Alice two messages. The first one says “either I know p or I know 1 p”

(i.e., K~O~ p V K~O~ 1 pl and the second says “1 don’t know 1 p“ (i.e.,
1 K~O~ 7 p). At this point. Alice knows that either p is true and Bob knows

that p is true, or that p is false and Bob does not know that p is false (Bob

knew that p was false and then forgot). Again, we have shown that the

“unattainable” state of knowledge is attainable!

Our final counterexample shows how properties of the language can affect

the properties of knowledge. In particular, this counterexample shows that our

assumption that the primitive proposition p characterizes the environment at a

given time was another crucial assumption in our proof of impossibility. Up to

now, we have made this assumption. Thus, in our Alice and Bob example, we

assumed that the environment is characterized by whether or not it rains in

San Francisco, and we let p be “It rained in San Francisco on January 1.“ For

our final counterexample, we now assume instead that the environment is

characterized both by whether it is rainy or dry and whether the temperature is

cold or warm. We thus assume that there are twu primitive propositions p and

q, where p is “It rained in San Francisco on January l,” and q is “It was cold

in San Francisco on January l.” Assume that Alice knows that either (a) it was

rainy and cold (i.e., p and q are both true), or else (b) it was dry and warm (i. e.,

p and q are both false). Assume that Bob knows that it was rainy and cold (i.e.,

he knows that p and q are both true). Assume that Bob tells Alice that either

(a’) he knows that h was rainy and cold (which is the actual situation), or else

(b’ ) he knows that h was warm but does not know whether it was rainy (i.e., he
knows that q is false but does not know whether or not p is true). After Alice

receives this information from Bob, she still does not know whether it was

rainy or dry. She knows that jf it was rainy, then case (a) occurred, so it was
cold, so case (b’) is impossible, so case (a’) occurred, so Bob knows that it was

rainy. Thus, Alice knows that if p is true (it was rainy), then Bob knows that p

is true. Further, she knows that if it was dry, then case (b) occurred, so it was

warm, so case (a’) is impossible, so case (b’) occurred, so Bob does not know

whether it was rainy. Thus, Alice knows that if p is false (it was dry), then Bob

does not know that p is false. So, yet again, we have attained the “unattaina-

ble” state of knowledge!

‘A basic property of knowledge (as opposed to belzef ) is that everything that is known 1s
necessarily true.
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What goes wrong with the proof of impossibility this time? After receiving

Bob’s message above that (a’) or (b’) holds, Alice knows that if p is false, then

they have distributed knowledge that p is false. This is because Alice knows

that if p is false, then she still of course knows that either p and q are both

true or both false, and Bob knows that q is false. Therefore, it would be

possible to infer by combining their information that p is false, and so it would

be distributed knowledge. But the impossibility proof depends in a crucial way

on the fact that Alice and Bob do not have distributed knowledge at the

beginning that p is false, and that they can never discover that p is false.

The above discussion should convince the reader that the properties of

knowledge depend in a subtle way on assumptions made about a system and

the language. The main contribution of this paper is to isolate precisely a

number of parameters of interest when analyzing systems, to show how these

parameters can be described formally, and to discuss the effects of various

combinations of these parameters on the properties of knowledge in the

system. Some choices of parameters are more common in AI applications than

distributed systems applications, and vice versa. Typical parameters include:

– Are the initial states of the processes a (possibly nondeterministic) function

of the environment? This would be the case if the system consists of sensors

observing nature, and the “environment” is a description of nature.

– Is the knowledge of the process cumulative? Many papers that consider

reasoning about knowledge over time implicitly assume that knowledge is

cumulative. Indeed, this is one of the major reasons that Moore [21] consid-

ers knowledge rather than belief. As Moore points out, “If we observe or

perform a physical action, we generally know everything we knew before, plus

whatever we have learned from the action.” For example, when considering a

robot learning a telephone number, we don’t worry about the robot forget-

ting the number a few steps later. A similar assumption is often made in the

distributed systems literature (cf. [21, [3], [101, [111, [181, and [231). This

assumption is, of course, an idealization, since cumulative knowledge in

general requires unbounded memory. Bounded memory is a more realistic

assumption (and has been used in papers such as [4] and [26]). But note that

for limited interactions, knowledge can be cumulative even with bounded

memory. We remark that Halpern and Vardi have shown that the assumption

that knowledge is cumulative has a drastic effect on the complexity of the

decision procedure for validity of formulas involving knowledge and time [13,

14].

– Is the system deterministic or nondeterministic? The answer to this question

might depend partly on the granularity of our analysis. A system that seems

deterministic at one level of analysis may seem nondeterministic if we get

down to the level of electrons. Note that even if the individual processes or

components of the system are deterministic, the system as a whole may be

nondeterministic, since we may decide to ignore certain components of the

system (such as a message buffer or a particular and-gate) in doing our
analysis.

– Is the system synchronous? That is, is there a “global clock” that every

process can “see”, so that every process “knows the time”?

– Are process state transitions independent of the environment’? In the case of

processes or sensors observing an external environment and then communi-



334 R. FAGIN ET AL.

eating about it, the possible state transitions of the processes usually depend

only on the local states of the processes, and not on the state of the

environment. On the other hand, if the “environment” includes a description

of the weather, then the presence of a heavy thunderstorm could affect

communication, and so affect the transitions in the system. Thus, in this

latter case, the possible state transitions of the processes would depend also

on the state of the environment. As another example, if the environment

describes the status of various message buffers in a distributed system, then

process state transitions would not be independent of the environment.

What do the primitive propositions talk about? In our Alice and Bob

example, the primitive proposition p that Alice and Bob communicate about

describes what “nature” was like at some fixed time, namely whether it

rained in San Francisco on January 1. Similarly, in a distributed systems

application, the primitive propositions might describe the initial values of

certain registers. In both of these cases, we might say that “the primitive

propositions are determined by the initial global state.” In our Alice and Bob

example, the primitive proposition in fact is determined by the initial envi-

ronment, and we indeed assume that it characterizes the initial environment.

The list of parameters mentioned above is not meant to be exhaustive. In

fact, we shall discuss a number of other parameters of interest, and there are

still other interesting parameters that we do not discuss. The interesting point

for us is the subtle interplay between such parameters and the states of

knowledge that are attainable. For example, if (1) the initial states of the

processes are a (possibly nondeterministic) function of the environment, (2)

knowledge is cumulative, (3) process state transitions are independent of the

environment, and (4) the primitive propositions characterize the initial environ-

ment, then it turns out that the states of knowledge that are attainable are

completely characterized by the axiom systems ML- of [8], which has strictly

more axioms than S5. That is, if we consider only systems that satisfy these four

properties, then ML- is a sound and complete axiomatization. If we assume

that the initial states of the processes are a deterministic function of the

environment, rather than just a nondeterministic function of the environment,

then yet another axiom is required. On the other hand, for systems that satisfy

only three of these four conditions, every state of knowledge is attainable (i.e.,

S5 then provides a complete characterization of the attainable states of

knowledge). To us, the moral of this story is that a reasonable analysis of a

system in terms of knowledge must take into account the relationship between

the properties of the system and the language for discussing knowledge (i.e.,

what the primitive propositions “talk about”). In this paper, we do such an
analysis.

The rest of the paper is organized as follows: In Section 2, we describe our

abstract model and show how various assumptions we would like to consider

can be captured in the model. In Section 3, we introduce a language of

primitive propositions, and consider various assumptions about what the primi-

tive propositions talk about. In Section 4, we define our semantics, and

introduce the notion of a “knowledge situation.” In Section 5, we characterize

what knowledge situations are attainable under a number of different reason-

able assumptions about systems and about what the primitive propositions talk

about. In Section 6, we give our conclusions. In the appendix, we prove the

results stated (and those alluded to) in the body of the paper.
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2. The Model

In modeling a system, the first task is to decide which features are relevant for

the application at hand. If we wanted, we could call every component of

interest a “process.” However, it is often natural instead to select certain

components of the system and call them “processes,” and to lump everything

else together into an “environment” component. For example, in a distributed

system of communicating processors, it might be natural to consider the
processors as the processes of the system, and to keep track of other salient

features by considering them as part of an environment component. Such

features would include which messages have been sent but not delivered, and

information as to whether the communication links are up or down. There are

other times when we might wish, for example, to consider the message buffer

as one of the processes, where the state of the message buffer would reflect

which messages have not yet been delivered.

Thus, we consider systems with n processes (or components), along with an

environment, which represents other things that are relevant. Essentially, the

environment can be viewed as just another process, but one that we can often

ignore, since we are not usually interested in what the environment knows. We

assume that at any given time, each process is in some “local state,” and the

environment is also in some state. We think of the “global state” of the system

at a given time as a description of the local states of the processes and the state

of the environment. Thus, the global state describes the state, at a given time,

of what we are focusing on. For example, in a message-based distributed

system, the local state of a process might reflect all of the messages that have

been sent or received by that process, and the state of the environment might

reflect which messages are in message buffers. In our Alice and Bob example,

the “environment” is a description of an external “nature” that is being

observed by the processes.

We consider the system to be evolving over time. A description of one

particular way that the system could have evolved is a run. Thus, for each

system, we assume that there is a finite set of processes, which, for conve-

nience, we shall usually take to be the set {1, . . . . n}, if n is the total number of

processes. We assume also that there is a set L of local states that the

processes can take on, and a set E of enuiromnent states. The set G of global

states consists of tuples (e, 11, ..., 1,1),with e~Eandll GLfori=l,..., n. A

global state consists of those things that we choose to focus on; it need not

represent all aspects of the system. For example, in a model of a distributed

system we often choose to ignore several aspects of the underlying hardware. A

run is a function r: N - G that associates with each time m a global state

r(m).3 We may refer to r(0) as the initial global state of the run r, or simply the

initial state. Following [11], we may refer to a pair (r, m) consisting of a run r

and a time m as a point. Points, rather than global states, are our “possible

worlds.” Thus, we shall define what it means for a formula to be true at a

point, rather than what it means for a formula to be true at a global state.

Finally, a system is a set ~ of runs.

3We chose to model time by the set N of the natural numbers. This assumption is not crucial; we
could just as well have chosen to model time by the set R of the real numbers. We do, however,
want to make the assumption that in each run, only a finite number of events (which correspond
to changes in the global state) happen up to any given time. This assumption is automatically true

when time is modelled by N.
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Note that we have made no commitment here as to how the transitions

between global states occur. There is no notion of messages or communication

in our model, as there is, for example, in the model of [10]. While it is easy to

incorporate messages and have the transitions occurring as a result of certain

messages being received or sent, transitions might also be a result of physical

interactions or events (perhaps random!) internal to some process.

If @ is a system (a set of runs), then we say that s = (e, 11,..., 1,,) is a global

state of ~ if s = r(m) for some run r = W and some time m; we call e the

environment component of s and (11, . . ., 1,,) the process component. Let s =

(e,ll,..., lm)ands’ = (e’,1~,..., l:) be two global states in ~. We say s and s‘

are indistinguishable to process i, written s W, s‘, if 1, = l;. If (r, m) and ( r‘, m‘)

are points, then we say that (r, m ) and (r’, m‘) are indistinguishable to process

i, written (r, m) -1 (r’, m’), if r(m) N, r ‘(nz ‘). If s and s‘ are two global states

(or two points), and if s -, s‘ for every process i, then we say s and s‘ are

process equivalent, written s - s‘. Thus, two global states s and s‘ are process

equivalent precisely if they have the same process component. Process i’s

histov in run r z~p to time m is the sequence ( SI, ..., Sk) of states that process i

takes on in run r up to time m, with consecutive repetitions omitted. For

example, if from time O through 4 in run r process i goes through the sequence

(1, 1,1’,1, ~) of states, its history in run r up to time 4 is just (1, 1’. 1).

The main thrust of this paper is to consider natural conditions that certain

systems satisfy, to show how they can be formalized in our model, and to

consider the effect that some of these conditions (along with conditions as to

what the primitive propositions talk about) have on the properties of knowl-

edge. We begin by giving some possible conditions on the set of global states

that can serve as initial states.

If Y? is a system, then the set of initial states in ~ is the set of global states

Y(O) for r = W. One natural condition on the set of initial states of J% might be

that the initial local states of tize processes a~zd the initial state of the environment

are all independent of each other. This means that there is a set E environment

states and a set IN1~ of local states for each process i such that the set of

initial states of R is {(e, 11, . . . , l,,)le = E and 1, = INI~ for each i}. An

interesting special case occurs when tlzere is a unique initial global state (which

means that E and each lNIT, are singleton sets).

A slightly less restrictive condition on the set of initial global states arises in

many applications, such as our Alice and Bob example, where the processes’

initial states are a function of observations made of “nature.” We can assume

that the state of nature is modelled as part of the environment. Thus, in this

example, we can take the processes’ initial state to be some function of the

initial state of the environment. This function is in general not deterministic;
that is, for a given state of the environment, there may be a number of initial

local states that a given process can be in. Formally, we say that tize enLliron-

ment determines the initial states in @ if there is a set E of environment states

and a set INI~ , of local states for each e = E and each process i, such that

the set of initial’ states of # is {(e, L’l,. ... l~)le ~ E and 1, c INI~,C for each i}.

Intuitively, lN1~,, is the set of states that i could be in initially if the

environment is in state e. If we imagine that i is a sensor observing an external

environment e, then the states in INI~, ~ represent all the ways i could have

partial information about e. For example, if facts p and q are true in an

environment e, we can imagine a sensor that would be in four possible distinct
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local states, depending on which of p and q itobserves. Thus, the four possible

local states correspond to the situations where (a) it observes that both p and

q are true, (b) it observes that p is true but does not observe that q is true, (c)

it observes that q is true but does not observe that p is true, and (d) it does not

observe that p is true and does not observe that q is true. Note that our

definition assumes that there is initially HO interaction between the observa-

tions of different processes. That is, if in a given environment state e it is

possible for process i to make an observation that puts it into state 1, and for j

to make an observation that puts it into 11, then it is possible for both of these

observations to happen simultaneously. This assumption precludes a situation

where, for example, exactly one of two processes can make a certain observa-

tion.

An interesting special case where the environment determines the initial

states occurs when the initial state of the processes is a dete~ministic function

of the environment. In our example above of sensors placed in some external

environment, this corresponds to the case where the sensors operate in a

completely deterministic fashion. We say that the erwironment uniquely deter-

mines the initial state if there are no two distinct initial states with the same

environment component.

We now describe some natural conditions on state transitions.

The knowledge of the processes is said to be cumulative if the process

“remembers” the entire history of the various local states it has been in during

the course of a run. Thus, if two points (r, m) and (r’, m‘) are indistinguishable

to the process i, and if the knowledge of the processes is cumulative, then it

must be the case that process i had the same history in run r up to time m as

it did in run r‘ up to time m‘. It is easy to see that if the knowledge of the

processes is cumulative, this limits the combinations of state transitions that

can occur. For example, it would not be possible for process i to be able to

enter local state s immediately after being in local state s‘ and also immedi-

ately after being in local state s“ # s‘, since this would mean that in state s

process i has “forgotten” what its previous state was. Formally, we say that

knowledge is cumulative if for all processes i, all runs r, r‘, and all times m, m‘,

if r(m) WI r ‘(m ‘), then process i’s history in run r up to time m is identical to

its history in run r‘ up to time m‘. That is, knowledge is cumulative if each

process always knows its history. Note that cumulative knowledge requires an

unbounded number of local states in general, since for each possible history

there must be a state that encodes it. In particular, the knowledge of finite-state

machines will not in general be cumulative.

The notion of cumulative knowledge that we just discussed corresponds to

“no forgetting. ” The dual notion is “no learning.” Let us say that process i

considers run r‘ possible at point (r, m) if there is m‘ such that r(m) -, r ‘(m ‘);

otherwise, we say that process i considers run r‘ impossible at (r, m). Now “no

forgetting” implies that if at some point (r, m ) process i considers run r‘

impossible, then at every point (r, m‘) with m‘ > m process i considers run r‘

impossible. Similarly, “no learning” implies that if at some point (r, m) process

i considers run r‘ possible, then at every point (r, m‘) with m‘ > m process i

considers run r‘ possible. It is not hard to verify that knowledge is cumulative

in a system %’ iff for all runs r, r‘ c= and times m, m’, k, if (r, m) -, (r’, m’)

and k s m, then for some time k’ with k’ s m’ we have (r, k) -, (r’, k’).

Dually, we now say that processes do not learn if for all runs r, r‘ ● 3 and
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times m, m’, k, if (r, m) -, (r’, m’) and k > m, then for some time k’ with

k’ > m‘ we have (r, k) -1 (r’, k ‘). Thus, if no forgetting means that the set of

possible runs does not increase with time, no learning means that the set of

possible runs does not decrease with time. This notion was introduced by

Ladner and Reif [17], who viewed it as a situation where each player’s strategy

is preordained and cannot be changed over time (and thus is rzonadaptfie), and

studied further by Halpern and Vardi [13, 14].

In a syrzci%-onou,s system, every process has access to a global clock that ticks

at every instant of time, and the clock reading is part of its state. Thus, in a

synchronous system each process always knows the time. Note that in particu-

lar, this means that in a synchronous system processes have unbounded

memory. More formally, we say that a system is synchronous if for all processes

i and runs r, r’, if r(m) =1 r‘( m ‘), then m = m‘. An easy proof shows that in a

synchronous system where knowledge is cumulative, if ~(m) ~, r ‘(m) and

O s k < m, then r(k) -, r’(k).

In general, the set of global states that a system could be in at time m + 1

can depend on the whole history up to time m, and not just on the global state

at time m. However, there are many situations where the current global state

contains enough information that “what can happen next” is completely

determined by the current global state. Formally, we say that a system is histo)y

independent if whenever r, r‘ G Y are two runs such that r(nz) = r’(m’), then

there is a run r“ G ~ which has the same prefix as r up to time m and

continues as r’ (i.e., r“(k) = r(k) if k < m, and r“(k) = r’(m’ + k – m) if

k > nz).~ Intuitively, if global states contain all the relevant information, and if

up to time m the situation is as in run r, then it could have been the case that

from time m on we could have continued as in run r‘. If a system is history

independent, then there are “no hidden components. ” An example where this

would not be the case would be a distributed system where we choose not to

represent the message buffers of the system by any of the components of the

processes or by the environment component. Thus, in such a system, it could be

possible that there is a run r where no messages are ever sent and a run r‘

where a message is sent at time 3 and received at time 5, and such that r and

r‘ are in the same global state at time 4 (the process that sent the message at

time 3 in run r ‘ “has forgotten” by time 4 that it ever sent a message).

Although r(4) = r ‘(4), there is no run r“ with the same prefix as r up to time 4

and that continues as r‘, since then in r“ a message would be received that was

never sent. Intuitively, the environment component does not in general repre-

sent “everything else” (i.e., everything other than the local states of the

processes), but rather “everything else that we choose to focus on.” When the

environment component does not represent “everything else,” we should not

except the system to be history independent.

We now consider another condition that is closely related to history indepen-

dence. We say that process state transitions are independent of the enrironrnent

if, whenever r, r‘ = @ are two runs such that r(m) - r‘( m ‘), then there is a

run r“ G ~ that, when we ignore the environment component, has the same

prefix as r up to time m and continues as r‘ (i.e., r“ (k) N r(k) if k < m, and

r“(k) w r’ (m’ + k – m) if k > m). Intuitively, this condition says that process
state transitions depend only on the current states of the processes.

4Such a run r“ is said to be m the jhvon closure of r and r‘ [4, 24].
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There are situations where a slightly weaker condition holds. In a distributed

systems application where the environment represents the state of message

buffers, process state transitions are not independent of the environment.

However, if the message buffers are initially empty, then it would be natural to

assume that process state transitions are independent of the initial environ-

ment. This means that whenever we have two process-equivalent initial states,

then the same sequence of transitions of states of the processes is possible

from each of them. This new condition is obtained from our previous condition

by letting m = O. Thus, process state transitions are independent of the i~litial

environment if whenever s and s‘ are initial states where s - s 1, and r is a run
with initial state s (i.e., r(0) = s), then there is a run r‘ with initial state s‘ such

that r(m) N r’ (m) for all times m (this run r‘ corresponds to the run r“ in the
previous definition). In our Alice and Bob example where the environment is

“nature” that is being observed by Alice and Bob, process state transitions are

independent of the initial environment. However, in our modification of the

example where the environment could describe whether the communication

line between Alice and Bob is up, it is not the case that process state

transitions are independent of the initial environment.

We say that a system is deterministic if the initial state completely determines

the run; that is, the system is deterministic if whenever r and r‘ are runs with

Y(O) = r ‘(0), then r = r‘. A natural way to strengthen this condition would be

to say that the “next” global state is uniquely determined. Formally, let us say

that a system is strongly deterministic if for all runs r, r‘ and times m, m‘, if

r(m) = r’(m’), then r(m + 1) = r’(m’ + 1). We leave to the reader the verifi-

cation that a system is strongly deterministic if and only if it is deterministic

and history independent. We note also that in a deterministic system where

process state transitions are independent of the initial environment, the initial

process component completely determines the process components in the run

at every time; that is, if r and r‘ are runs where r(0) N r ‘(0), then r(nz ) - r ‘(m)

for every time m.

We have outlined a few natural conditions on possible initial states and on

state transitions, Certainly it is possible to come up with others. The main point

we want to make here is that many reasonable conditions on systems can be

easily captured within our model. In the next section, we shall discuss some

natural conditions on what the primitive propositions talk about.

3. Introducing a Language

In order to reason about a system, we select certain basic facts of interest and

consider how each process’s knowledge of these facts changes over time. In our

Alice and Bob example, the fact of interest was whether or not it was raining

on January 1; as Alice and Bob communicate, their knowledge about this fact,

along with their knowledge about each other’s knowledge, etc., changes as a

result of the messages they send and receive.

We can represent these basic facts of interest by primitive propositions. We
assume that the number of basic facts of interest is finite, so that the set of

primitive propositions is finite, say {p ~,..., p~} (we see later that this a crucial

assumption). We define an interpreted system to be a pair (92, rr ), where @ is a

system (a set of runs), and where n- is a function that maps each point (r, m)

onto a truth assignment W(V, m) on the set {pi, . . . . p~}. Thus, T(r, m)(p, ) =
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{true, false} for each j, so that T(Y, m)(p,) tells us whether the fact represented

by p, is true at the point (r, m).

Just as we considered certain natural conditions on systems, we can consider

also other natural conditions on interpreted systems by making various as-

sumptions about what the primitive propositions talk about.

In our definition of interpreted systems, T is a function on points, not on

global states. Thus, w has as its argument the point (r, m) rather than the

global state r(m). We say that the primitile propositions are determined by the

current global state if whenever (r, m) and (r’, nz’) are points where r(m) =

r’(m’), then n(r, m) = m(r’, m“). Thus, in this case the truth of the facts of

interest are determined completely by the current global state. A related but

contrasting situation is where the primitil)e propositions are determined by the

initial global state; that is, whenever r(0) = r ‘(O), then T( r, m) = m-(r‘, m‘) for

all r, r’, m, m’. An example of this latter condition is when the primitive

propositions talk about whether some variables were initially zero.

Instead of just talking about the current (respectively, initial) global state,

the primitive propositions might talk about just some portion of the global

state. We say that the primitile propositions are determined by the current states of

the processes if whenever r(m) - r ‘(m’), then m(r, m) = fi(r’, m’) for all

r, r‘, m, m‘. Similarly, we say that the primitive propositions are determined by the

initial state of the processes if whenever r(0) - r ‘(0), then n-( r, rn ) = w(r’, m‘)

for all r,r’, rn, m’. As an interesting special case, we say that each piinzitiue

proposition is determined by tlze current (respectively, initial) state of some process

if for each primitive proposition p there is a process i such that whenever

r(m) W, r’(m’) (respectively, r(0) -, r’(0)), then (m(r, m))(p) =

(n(r’, m ‘))(p). A situation where each primitive proposition is determined by

the current (respectively, initial) state of some process occurs when for each

primitive proposition p there is a process i such that p talks about the current

(respectively, initial) value of some variable local to process i.

It is straightforward to see that if the primitive propositions are determined

by the initial states of the processes, and if knowledge is cumulative, then the

primitive propositions are determined by the current states of the processes.

Intuitively, this is because the current states of the processes uniquely deter-

mine the initial states of the processes when knowledge is cumulative. Simi-

larly, if each primitive proposition is determined by the initial state of some

process, and if knowledge is cumulative, then each primitive proposition is

determined by the current state of some process.

Instead of the primitive propositions talking only about the processes, there

are situations where the primitive propositions talk about the environment.
Formally, we say that the prim itize propositions are determined by t?ze current

(respectively, initial) emironment if whenever r(m) and r ‘(m’) (respectively,
r(0) and r ‘(0)) have the same environment component, then m(r, m) =

T( r‘, m‘ ). In our Alice and Bob example, the primitive propositions are

determined by the initial environment.

In fact, in our Alice and Bob example, it is the case that the primitive

propositions characterize the initial environment. We can modifj all of our

definitions we have just given about primitive propositions “being determined

by” something into definitions where they “characterize” something. For

example, we say that the primitive propositions characterize the current (respec-

tively, initial) en~ironment if r(nz) and r ‘(m’) (respectively, r(0) and r ‘(O)) have

the same environment component if and o~21Yif n(r, m) = n(r’, m’).
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In this section, we have given certain natural conditions on the language. As

in the previous section, our goal is not to be exhaustive but rather to

demonstrate the point that many natural conditions can be captured easily

within our framework.

4. Knowledge Situations

We wish to reason not only about basic facts, but about each process’s

knowledge of basic facts, and a process’s knowledge of another process’s

knowledge of the basic facts, etc. In order to do so, we first augment

the language so that we can explicitly talk about the knowledge of

processes. In this section, we give this semantics, which is based on the familiar

Kripke semantics.

Once we have defined the syntax and semantics of the language, we can

define the state of knowledge at a point in an interpreted system to be simply

the set of formulas true at the point. This definition is syntactic in nature, and

will depend on the particular language chosen. In this section, we define a

semantic analogue to the state of knowledge at a point, which we call the

knowledge situation at a point in an interpreted system. This will later allow us

to describe a correspondence between the knowledge situations that are

“attainable” in an interpreted system and the axioms for knowledge that hold

in that interpreted system.

We start by giving a formal syntax. Let @ be the finite set of primitive

propositions. Let Z,(O) be the set of formulas that results when we take @
and close under negation, conjunction, and the modal operators K], . . . . K,l, so

that if p and p‘ are formulas, then so are ~ q, p A p‘, and K, p, for
i=l n. The formula K, q is interpreted as “process i knows q”. Let

_%’~($i “b: defined like _&~(@), but where we also let Dp be a formula when p

is. The formula Dp represents distributed knowledge of ~. Intuitively, dis-

tributed knowledge (which is formally introduced in [11] and has also been

used in [2], [3], [8], [22], [23], and [26]) is the knowledge that can be obtained

when the members of a group pool their knowledge. Put differently, it is what

someone who had all the knowledge that each member in the group had could

infer.

We shall soon give the semantics that tells us when a formula is true at a

point in an system. Since our semantics is based on the standard Kripke

semantics [16], we begin by reviewing the Kripke semantics for the truth of a

formula at a state of a Kripke structure (where we follow Halpern and Moses

[12] in the definition of the truth of a formula involving distributed knowledge).
A Krzpke structure is a tuple (S, m, %1,..., %.), where S is a set of “states,”

where m(s) is a truth assignment to the primitive proposition in @ for each

s G S, and where each ~ is a binary relation on S. Intuitively, if s and s‘ are

states with (s,s’) = ~, then in state s it is consistent with process i’s informa-

tion that state s‘ is possible. We are interested only in S5 Kripke structures,

where each ~ is an equivalence relation on S (i.e., a reflexive, symmetric, and
transitive binary relation on S). Such a Kripke structure satisfies the S5

properties of knowledge, which we shall discuss in the next section.
We now define when a formula p of &~(@) is satisfied (or holds, or is true)

at a state s of Kripke structure M, written (M, s) + p. Intuitively, the formula

K, p (“process i knows p“) is satisfied at a state s precisely if q is satisfied at

every state s‘ that process i “cannot distinguish” from state s. Also intuitively,
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the formula Ilq (“p is distributed knowledge”) is satisfied at a state s precisely

if p is satisfied at every state s‘ that no process can distinguish from state s.

(M,s) Rp, where p is a
primitive proposition, if p is true under the truth assignment W(s)

(&f,s)RTp if (M, s) !# q

(~, s) 1= ql A yJz if (M, s) I= PI and (M, s) 1= Pz

(M, s) + K,YJ if (M, s’) R q for all s’ such that (s, s’) EZ

(M, s) > Dp if (M, s’) + q for all s’ such that (s, s’) ~

n:= l%.

To define the truth of a formula at a point in an interpreted system, we

associate each interpreted system (%, m) with a Kripke structure Kr(=, m) =

(S, m, Z,,..., ~1), where the states of Kr(xZ, m) are the points (r, m) of the

interpreted system, and where for each i we have that ((r, m),(r’, m‘ )) ~ ~ iff

i’(m) -, r’(m’). Thus, if r(m) = (e, 11, . . ..l.l) and r’(m’) = (e’, 1~, . . ..l~l). then

((r, m),(r’, m’)) = ~ iff 1, = 1;. It is easy to see that Kr(JZ’, m) is an S5 Kripke

structure.

We now say that a formula p of $7’~(@) is satisfied (or holds, or is true) at a

point (r, m) in an interpreted system Y = (~, rr ), written (~, r, m) k p, if it is

satisfied at the corresponding state of the associated Kripke structure Kr( W, m).

In particular,

(Y>r, m) > Klq iff (Y, r’, m’) 1= p for all r’, m’

such that r(m) -, r’(rn’)

(J,r,m) +Dq iff (=, r’, m’) + p for all r’, m’

such that r(m) - r’(m).

As we did for Kripke semantics, we describe the intuition behind the

definition of i== for K,q and Dq to hold. Let ~(r, m) = {(r’, nz’)lr(m) -,

r’(m’)}. Intuitively, (r’, m‘ ) = Y(Y, m) precisely if at time m in run r, h is

possible, as far as process i is concerned, that it is time m‘ in run r‘. It is easy

to verify that K, p holds at time m in run r precisely if p holds at every point

in ~(r, m). Let V(r, m) = n :=l~(r, m). Intuitively, (r’, m’) = V(r, m) pre-

cisely if at time m in run r, if all of the processes were to combine their

information then they would still consider it possible that it is time m‘ in run

r’. It is easy to verify that r(m) - r’(rn’) precisely if (r’, m’) c V(r, m). Thus,
D~ holds at time m in run r precisely if q holds at every point in P’( r, m).

If & is a class of interpreted systems, then we say that a formula ~ is ualid

(or sound) with respect to % if (~, r, m) k q for all interpreted systems

Y = ‘%, runs r of Y, and times m.

We are almost ready to define the semantic notion of the “knowledge

situation” of a point in an interpreted system. We first need a few preliminar-

ies.

It is sometimes convenient to consider a truth assignment a to the rimitive
B

propositions pl,..., P~ aS a formula in the languages %,(@) and ~.(~), by
taking it to be an abbreviation for the conjunction p{ A . . . A p;, where p,’ is

p, (respectively, 1p,) if p, is true (respectively, false) under the truth assign-
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ment a. We shall often find it convenient to refer to a, whether it is thought

of as a truth assignment or as a formula, as a p}imitiue state. Note that we

could not identify a primitive state with a formula in our language if we did not

take @, the set of primitive propositions, to be finite.

We now need to define the notion of an “interpreted state.” Assume that

there is some fixed set of primitive propositions and fixed set of local states.

We then define an interpreted state to be a tuple (11, . ...1., a), where a is a

primitive state and each 1, is a local state. We call a the primitive state

component and (11, . . . . l.) the process component. Note that there is no

environment component. The reason we omit the environment component is

that, while that component may play a role in the evolution of runs, it plays no

role, as we shall see, in determining the truth or falsity of formulas. Let

S=(lI, ..., l., a) and s’ = (l;, . ...1:, a‘) be interpreted states. By analogy to

our definition for global states, we write s N~ s‘ if 11= l;. Again as before, we

say that s and s‘ are process equivalent, written s - s‘, if s N, s‘ for every

process i, that is, if s and s‘ have the same process component. Given an

interpreted system (~, n), there is a natural interpreted state associated with

the point (r, m). Namely, if r(m) = (e, 11,..., 1.) and m(r, m) = a, then we

define ?(m), the inteqweted state at the point (r, m), to be the tuple (11, . . ..l.t, a!).

We then say that ?(m) is an interpreted state in (@, n). We refer to ;(0) as an

initial interpreted state, or simply an initial state if it is clear that we are

discussing interpreted states.

If S is a set of interpreted states and s = S, then we can define what it

means for the pair (S, s) to satisfy a formula q, written (S, s) R q, by

associating with S a Kripke structure (S, n, Sl, . . ., ~,). The set of states of the

Kripke structure is S itself. We let W(ll,. ..,1,,, a) be a, and we let ~ be the

set of all pairs (.s, s‘) such that s,s’ = S and s ~, s‘. Once again, it is easy to

see that this gives us an S5 Kripke structure. If q is a formula in L?:(Q), then

we define (S,s) != p to hold if p is satisfied at the corresponding state of the

associated Kripke structure. In particular,

(s>s) ~qp iff (S, s’) > p for all s’ = S such that s W, s’

(s, s) RD(p iff (S, s’) I= pfor all s’ ~S such that s -s’.

If S is a set of interpreted states and if s,s’ = S, then we say that s‘ is

reachable in S from s if there exist Sl, . . . . Sk in S and (not necessarily distinct)

processes ii,..., i~_l such that s =.s[, s’ = s~, and SJ -,, Sj+l for j = 1,. ...

k – 1. In other words, s‘ is reachable from s in S if the pair (s,s’) is in the

reflexive, transitive closure of I.J ~=~~. A set S of interpreted states is con-

nected if every member is reachable in S from every other member. By a

similar definition, if s,s’ are poi~ts in an interpreted system = or states in a

Kripke structure, we define what it means for s‘ to be reachable in ~ from s;

we similarly define connectedness in these cases.

We are now ready to define a “knowledge situation.”

Definition 4.1. A knowledge situatiorz is a pair (S, s) where S is a connected

set of interpreted states with s ● S. If > is an interpreted system and (r, m) is

a point in >, then (S,s) is the knowledge situation at (Y, r, m) (and (S,s) is

attainable in ~) if s = ?(m) and S is the set of all ? ‘(m’) such that (r’, m‘) is

reachable in > from (r, m).
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In our definition, the knowledge situation of an interpreted system Y’ at a

point (r, m) depends only on the points reachable in Y from (r, nz). This

reflects the fact that in our formal semantics, the truth of a formula at time m

in run r depends only on points reachable in ~ from (r, m).

The following proposition, whose straightforward inductive proof is left to

the reader, shows that our definition of the satisfaction of a formula in a

knowledge situation (S,s) is equivalent to our definition of the satisfaction of

the formula at a point in an interpreted system.

PROPOSITION 4.2. Let (S,s) be the knowledge situation at (~, r, m) and let p

be a formula. Then (>, r, m) > q if and only if (S,s) k p.

In particular, Proposition 4.2 justifies our earlier statement that the environ-

ment component has no effect on the satisfiability of a formula at a point in an

interpreted system.

If M is an S5 Kripke structure and s is a state of M, then we can similarly

define the knowledge situation at (M, s). Not surprisingly, the analogue to

Proposition 4.2 still holds.

5. The Properties of Knowledge

Our goal is to consider some combinations of the parameters we have dis-

cussed, and to analyze the resulting properties of knowledge. Thus, we consider

some classes $3’ of interpreted systems (where % consists of those interpreted

systems that satisfy certain combinations of the conditions we have discussed)

and analyze the properties of knowledge for the class %. We shall not try to

give here a complete taxonomy of the properties of knowledge for each choice

of parameters that we have discussed. Instead, we discuss a few illustrative

cases, with a view towards showing the subtlety of the interaction between the

properties of the interpreted system and the properties of knowledge.

It is often convenient for us to refer to the extension of the classical axiom

system S5 to a situation with n “knowers” as S5~. It is well-known that the

axiom system S5,, captures the properties of knowledge in S5 Kripke structures

with n knowers (which is, of course, why we call them S5 Kripke structures);

that is, S5. is sound (all the axioms and rules of inference are valid) and

complete (all valid formulas are provable); cf. [12]. The axioms of S5,, are

(where i = 1,..., n):

There are two rules of inference:

Ill. Modus ponens. From PI and p, + Pz infer Pz.

R2. Knowledge generalization. From p infer K, p.

In the sequel, we consider several extensions of S5~, by additional axioms.
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If we allow also distributed knowledge (i.e., if we consider the language

-%’:(Q) rather than ~,(~)), then we need additional axioms. Following Halpern

and Moses [12], we define the axiom system S5D~ by taking S5~ and adding

axioms that say that D acts like a knowledge operator (i.e., all the axioms

above hold with K, replaced by D) and the following additional axiom, which

we name “KD” for later reference:

KD. K, (p =- Dp.

Furthermore, if n = 1, then we add the additional axiom

(This axiom is needed to guarantee that knowledge and distributed knowledge
coincide when there is single process.)

Halpern and Moses [12] state without proof that S5D,, is sound and complete

in S5 Kripke structures for the language &~(0). We give a proof in the

appendix.

If we put no conditions on interpreted systems, then there is an exact

correspondence between knowledge situations in our model and those in S5

Kripke structures. For each S5 Kripke structure M, it is straightforward to find

an interpreted system (~, n) such that Kr(9?, w) = M. The following result

then follows easily:

PROPOSITION 5.1. S5. (respectively, S5D,,) is a sound and complete axiomati-

zation with respect to inteqweted systems of n processes for the language %,(@)

(respectiue&, J%’~(@)).

For various reasons, philosophers have argued that S5 is an inappropriate

axiom system for modelling human knowledge. For example, axiom A2 seems

to assume perfect reasoners that know all logical consequences of their

knowledge, while A5 seems to assume that reasoners can do negative introspec-

tion, and know about their lack of knowledge. Although these axioms may be

controversial for some notions of knowledge, they clearly hold for the external,

information-based notion that we are concerned with here. Thus, they are

sound for interpreted systems. But of course, under some of the conditions that

we discussed earlier on interpreted systems and on what the primitive proposi-

tions talk about, they may no longer be complete.

In our Alice and Bob example, what assumptions were really needed to show

that the state of knowledge defined by formula (1) in the introduction is not

attainable? As the counterexamples given in the introduction suggest, we need

to assume that knowledge is cumulative (i.e., that there is “no forgetting”), that

process state transitions are independent of the initial environment, and that

the primitive propositions characterize the initial environment. Also implicit in

the story is that Alice and Bob initially study nature independently and that

this determines their initial states, so we also need the assumption that the

environment determines the initial states. It turns out that these conditions are

sufficient to show that formula (1) is not attainable, as we shall see below.

Our first step is to get a semantic characterization of the attainable knowl-

edge situations under these assumptions.
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Definition 5.2. A set of S of interpreted states

if whenever

(1) s~,.. .,sn, t’ Es,
(2) a is the primitive state component of s,,

(3) t’ =, s,, for i=l,..., n,

R. FAGIN ET AL.

satisfies the pasting condition

for i=l,..., n, and

then there exists t G S such that t --t‘and a is the primitive state component

of t.The knowledge situation (S,s) is said to obey the pasting condition if S

does.

Thus, S satisfies the pasting condition precisely if whenever

S,=(l,, ”,..., ”,a)=s,

s2=(.,12, .,. ... a)cs, s,

sn=(”>...+”>ln>~=s,s,
t’=(ll, . . ..l.,, ”)=s,

then t=(ll, ..., l., a) c S. (Each “ represents a value we do not care

about.) We have called this condition the “pasting condition,” since it

says that if certain interpreted states are in S, then another interpreted

state which is the result of “pasting together” these interpreted states is

also in S.

Similarly, we can modify the definition in the obvious way to define what it

means for a ICripke structure to satisfy the pasting condition.

We shall show that the conditions we have discussed that hold for our Alice

and Bob example (or other natural conditions) are sufficient to guarantee that

every attainable knowledge situation satisfies the pasting condition.

Not surprisingly, the fact that the pasting condition holds affects the proper-

ties of knowledge. Neither S5,, nor S5D~ is complete. Consider the following

axiom in the language J%:(O), where a is a primitive state and {1, . . . . n} is the

set of processes:

A6. D~a*Kl~av...vK~~a.

This new axiom says that if it is distributed knowledge that the primitive state

is not a, then the stronger fact is true that some process knows that the

primitive state is not a. Axiom A6 is not a consequence of S5Dn; however, as

we shall see, it follows easily from the pasting condition. We remark that

formula (1) discussed in the introduction is a consequence of S5DZ + A6,

where the two processes are Alice and Bob (provided we assume that the

primitive proposition p in formula (1) is a primitive state; recall that we said

that it characterizes the initial environment).

Even in the language &~(@), which does not have the distributed knowledge

operator D in it, we can get an axiom that captures some of the intuition

behind the pasting condition. We define a pure knowledge formula to be a

Boolean combination of formulas of the form K, q, where q is arbitrary. For

example, K? p V (Kl -I KS p A 1 Kz 1 p) is a pure knowledge formula, but

p A 1 Ki p is not. Consider the following axiom, where a is a primitive state
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and ~ is a pure knowledge formula:

A6’. pAKt(p+ T~)=(K1m~V... VK,, TLZ).

Since ~ is a pure knowledge formula, we can think of ~ as describing certain

knowledge of the processes. So axiom A6’ says that if the processes have

certain knowledge, and if some process knows that such knowledge would be

incompatible with the primitive state a, then some process knows that the

primitive state a is impossible. For historical reasons we refer to S5~ + A6’

(respectively, S5D. + A6) as ML; (respectively, ML.), where “ML’ stands for
“Message Logic” [8]. It turns out that ML,, implies ML;, that is, axiom A6’

can be proven in ML. (we shall prove this in the appendix in the proof of

Proposition 5.3 below). However, the converse is not true.

The next proposition says that in a precise sense, the pasting condition

corresponds to the new axiom A6 if distributed knowledge is in the language,

and to A6’ if it is not.

PROPOSITION 5.3. Let i% be a class of interpreted systems with n pro-

cesses. If eve~ attainable knowledge situation in euery member of i% satisfies the

pasting condition, then ML,; (respectively, ML,,) is sound with respect to $%.

Conversely, if evey knowledge situation that satisfies the pasting condition is

attainable in some mef?Lber of %’, then ML; ( respectil~ely, ML. ) is complete with

respect to F for the language %,(@) (respectiL’e@, =.%;(O)).

PROOF. In the case of &~(@), the proof of the theorem proceeds by

showing that a set S of interpreted states satisfies the pasting condition

if and only if (S, s) satisfies every instance of axiom A6 for every s = S. In

the case of ~l(@), the proof is somewhat more delicate. The details are in the

appendix. ❑

The first part of Proposition 5.3 tells us that if > is an interpreted system

where every attainable knowledge situation satisfies the pasting condition, then

the new axioms A6 and A6’ are guaranteed to be satisfied at every point of Y.

The second part of Proposition 5.3 tells us that if every knowledge situation

that satisfies the pasting condition is attainable in some member of the class $3’

of interpreted systems, then no new axioms other than A6’ (respectively, A6)

are required to prove every formula of 5.(0) (respectively, S’;(@)) that is

sound with respect to %.

Before we give our first application of Proposition 5.3, we consider the

assumptions that we have noted were implicit in our Alice and Bob example,

and show (among other things) that these conditions guarantee the pasting

condition.

PROPOSITION 5.4. If > is an interpreted system where (1) the environ-

ment determines the initial states, (2) knowledge is cumulatil’e, (3) process

state transitions are independent of the initial enl)ironment, and (4)

the primitive propositions characterize the initial erulironment, then all

the knowledge situations attainable in Y satisfy the pasting condition.

Conversely, if a knowledge situation satisfies the pasting condition, then it is
attainable in some interpreted system z satisjjing these four- assumptions.

PROOF. See the appendix. ❑

Note that the assumptions of Proposition 5.4 are not unreasonable. They

hold for “ideal” sensors or robots observing and communicating about an

external environment.
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The next theorem is an immediate consequence of Propositions 5.3

and 5.4.

THEOREM 5.5. ML; (respectize~, ML.) is a sound and complete axiomatiza-

tion with respect to interpreted systems of n processes where (1) the environment

determines the initial states, (2) knowledge is cumulative, (3) process state transi-

tions are independent of the initial erwironment, and (4) the primitiue propositions

characterize the initial ern~ironment, for the language %,( cD) (respectively, J?’:(O)).

Soundness and completeness theorems for ML; and ML,, are also proven

by Fagin and Vardi [8], but in a rather different setting from ours. The model

in [8] is much more concrete than the model here; in particular, there is in

their model a particular notion of communication by which processes change

their states. Here, we have an abstract model in which, by analyzing the

implicit and explicit assumptions in [8], we have captured the essential assump-

tions required for the pasting property (and hence axiom A6) to hold. Although

soundness in [8] follows easily from soundness in the model here, the complete-

ness proof is much more difficult there.

Recall from our Alice and Bob example in the introduction that the

assumptions we made all seemed to be necessary. The following theorem,

which is proven in the appendix, confirms this fact. It shows that if we drop any

one of the assumptions of Theorem 5.5, then all knowledge situations are

attainable, and S5,, (respectively, S5D~ ) becomes complete.

THEOREM 5.6. Let M be a proper subset of the four conditions of Theorem 5.5,

and let % be the class of all inteqmeted systems that satisjj the conditions d. Then

each knowledge situation is attainable in a member of %. Thus, S5,, ( respective~,

S5D,, ) is a sound and complete axiom atization with respect to % for the language

Ji7~(@) (respectilelv, ~~(@)).

Theorems 5.5 and 5.6 show that we have captured those conditions that

cause an extra axiom to hold in our Alice and Bob example. This provides an

excellent example of how special properties of an interpreted system can cause

extra properties of knowledge to hold.

We now comment briefly on how our results would change if the set @ of

primitive propositions were infinite. As we noted earlier, a primitive state a

could not then be identified with a formula in our language, since each truth

assignment would require an infinite description. Hence, the axioms A6 and

A6’ would not even be formulas in our language. However, it is still a priori

conceivable that there could be other “extra axioms” for knowledge situations

that satisfy the pasting condition. We note that interestingly enough, this is not

the case; if @ is infinite, then we can replace ML: (respectively. ML,, )
everywhere in Proposition 5.3 and Theorem 5.5 by S5. (respectively, S5D. ). Put

differently, there are no new axioms if we have infinitely many propositions in

our language.5

We remark that in Proposition 5.4 and Theorem 5.5 we assumed that the

environment determines the initial states. If we make the stronger assumption

5The idea of the proof is as follows: Let q be a formula that is consistent with S5D,,. Assume that
~ 1s the (fimte) set of pnm]twe propositions that appear in p. Let M be an S5 Kripke structure

over the primltwe propositions in V such that q is satisfiable in M. It is easy to show that there is
an S5 Kripke structure M‘ over all of @ that satisfies the pasting condition, and is identical to M
when restricted to !P. The result then follows.
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that the environment uniquely determines the initial state, then a smaller set of

knowledge situations is attainable, and again knowledge has extra properties.

This is discussed in detail in the appendix.

A natural condition for distributed systems applications that is sufficient to

guarantee the pasting condition (and hence axiom A6) is that each primitive

proposition is determined by the current state of some process. For example,

the primitive propositions can talk about the current values of various variables

local to individual processes. As we noted earlier, the condition that each

primitive proposition is determined by the current state of some process holds

also if each primitive proposition is determined by the initial state of some

process, and if knowledge is cumulative.

In fact, if each primitive proposition is determined by the current state of

some process, then not only is the Axiom A6 sound, but even more, the

stronger Axiom A7 below is sound, where a is a primitive state and {1,. . . . n}

is the set of processes.

A’7. TaAKITaV...VKnTa.

Axiom A7 indeed implies A6, since D T a + = a.

We now explain why Axiom A7 is sound when each primitive proposition is

determined by the current state of some process. Let a‘ be the current

primitive state. Assume that a is false; hence, a # a‘. Then there is some

primitive proposition p whose truth value is different under a than under a‘.

Since each primitive proposition is determined by the current state of some

process, there is some process i such that the primitive proposition p talks

about the current state of process i. Then process i knows that a is not the

current primitive state.

We note that when we consider the class of interpreted systems where each

primitive proposition is determined by the current state of some process, then
although S5,, + A7 is sound, it is not complete; further axioms are required.

For example, if q is of the form either p or 1 p for some primitive proposition

p, then we have the axiom

q +Klq V “.” VK~q.

Let us now consider the slightly more general situation where the

primitive propositions are determined by the current states of the proc-

esses. Recall that this means that whenever r(m) N r‘( m ‘), then d r, m) =

W(Y’, m ‘). It is easy to see that this condition is not sufficient to guarantee the

pasting condition. However, in this case, every knowledge situation that is

attainable satisfies the following condition.

Definition 5.7. The process component uniquely determines the primitive state

in a set of S of interpreted states if whenever t and t‘are members of S where

t N t‘,then t = t‘.The process component uniquely determines the primitil~e state

in the knowledge situation (S, s) if the process component uniquely determines

the primitive state component in S.

We have the following proposition, which is completely analogous to

Proposition 5.4.

PROPOSITION 5.8. If Y is an interpreted system where the primitiL)e proposi-

tions are determined by the current states of the processes, then in euey knowledge
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situation attainable in 3, the process component uniquely determines the primitille

state. Com)ersely, each knowledge situation where the process component uniquely

determines the primitive state is attainable in some inteqx-eted system where the

primitile propositions are determined by the current states of the processes.

PROOF. See the appendix. ❑

What is the analogue to Proposition 5.3? That is, what new axiom corre-

sponds to the condition that the process component uniquely determines the

primitive state? This condition can be characterized by the following axiom:

A8. p + Dp.

The converse to Axiom A8, namely Dp + q, which says that everything that

is distributed knowledge is true, is one of the axioms of S5D.. Axiom A8 says

that everything that is true is distributed knowledge. The following axiom,

where a is a primitive state, is of course a special case of Axiom A8:

A8*. a * Da.

As we shall show in the appendix, S5D. + A8 is equivalent to S5D,, + A8*.

We note also that clearly Axiom A8 (where we take p to be 1 a) along with

Axiom A6 imply Axiom A7. These axioms hold in the situation where each

primitive proposition is determined by the current state of some process.

We have just said that if the process component uniquely determines the

primitive state, then Axiom A8 (in the language L?’~(@)) is sound. What new

axiom is needed in the language ~,(@)? Somewhat surprisingly (and in

contrast to the situation in Theorem 5.5), it turns out that if we restrict our

attention to .JZ.(@), then S5. is a complete axiomatization. No new axioms are

required!b Thus, we have the following analogues to Proposition 5.3 and

Theorem 5.5:

PROPOSITION 5.9. Let ~ be a class of interpreted systems with n >2 pro-

cesses. If for elle~ attainable knowledge situation in every member of i%, the

process component uniqueij determines the plimitiue state, then S5,, (respectively,

S5D,, + A 8) is sound with respect to $%’.Corwerseh, if elle~ knowledge situation

where the process component uniquely determines the prim itil’e state is attainable in

some member of E, then S5~ (respectively, S5D,, + A 8) is complete with respect

to & for tlze language ~,(@) ( respectilelv, J7’~( 0)).

PROOF. See appendix. ❑

THEOREM 5.10. S5,, (respectile~, S5D,, + A8) is a sound and complete

axiomatization with respect to interpreted systenls of n > 2 processes where the
primuiL1e propositions are determmed by the current slates of the processes, for the

language L2~(@) ( respectilelj, _%’~(@)).

PROOF. This follows immediately from Propositions 5.8 and 5.9. ❑

In the case of $,(cII ), this theorem shows that there are cases where the

language may not be sufficiently powerful to capture the fact that not all

knowledge situations are attainable.

6Actually, m the degenerate case n = 1, where there is exactly one process, there is a new axiom,
namely p = K1 p. For slmpliclty, in the remaining results of this section we consider only the case
where n > 2.



W7zat Can Machines IGZOW? Distributed Systems 351

If the primitive propositions are determined by the initial states of the

processes, and if knowledge is cumulative, then as we have noted, the primitive

propositions are determined by the current states of the processes. So from

Theorem 5.10, we know that if the primitive propositions are determined by the

initial states of the processes, and if knowledge is cumulative, then S5D~ + A8

is sound. In fact, it is also complete. Thus, Proposition 5.8 and Theorem 5.10

both hold when we replace every occurrence of “the primitive propositions are

determined by the current states of the processes” by “the primitive proposi-

tions are determined by the initial states of the processes and knowledge is

cumulative.” In particular, we have

THEOREM 5.11. S5~ (respectively, S5D~ + A8) is a sound and complete

axiomatization with respect to interpreted systems of n > 2 processes where the

primitive propositions are determined by the initial states of the processes and

knowledge is cumulative, for the language ~z(@) (respectioeij, J%’:(O)).

The proofs of these results can be found in the appendix.

6. Conclusions

We have presented a general model for the knowledge of processes in a system

and shown how the properties of knowledge may depend on the subtle

interaction of the parameters of the system and on what the primitive proposi-

tions talk about. Although we have isolated a few parameters of interest here,

we clearly have not made an exhaustive study of the possibilities. Rather, we

see our contributions here as (1) showing that the standard S5 possible-worlds

model for knowledge may not always be appropriate, even for the external

notion of knowledge which does satisfy the S5 axioms, (2) providing a general

model in which these issues may be examined, (3) isolating a few crucial

parameters and formulating them precisely in our model, and (4) providing

complete axiomatizations of knowledge for various cases of interest.

An interesting direction in which to extend the line of research of this paper

is to consider the effect of adding to the language common knowledge and/or

time.7 By results of [11] (since reproved and generalized in [2] and [9]), we

know that under certain natural assumptions, common knowledge will not be

attainable. For example, if at most one process changes its state at any given

time, then no common knowledge is gained beyond the common knowledge

that the processes already had in the initial state. So this assumption, along

with suitable assumptions about the initial states, will cause extra axioms to

hold beyond the standard S5 axioms for common knowledge (see [12] and [18]

for a discussion of the S5 axioms of common knowledge). We expect to find yet

other complexities if we allow the language to talk explicitly about time by

adding temporal modalities (as is done in [13], [14], [18], and [26]). Results of

[13] and [14] imply that under certain combinations of our parameters, there is

no complete, recursively enumerable axiomatization in a language that includes

both common knowledge and time. For example, knowledge being cumulative
is by itself enough to cause this unpleasant phenomenon.

7A formula p is common knowledge if Ekq holds for every k >1, where Efi is an abbreviation for

A ~., Kl 4 and Ekp is E(Ek - lP). Namely, p is common knowledge if every process knows p,
every process knows that every process knows q, etc.
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Appendix

In this appendix, we prove the results stated (and those alluded to) in the body

of the paper.

Al. Completeness of S5D~

In this section, we shall prove that S5D~ is a sound and complete axiomatiza-

tion with respect to S5 Kripke structures of n processes, for the language

J%’:(~). This result was stated without proof in [12]. We shall also develop some

general tools that will be useful later in the paper; indeed, we feel that these

tools will be useful in other contexts in the future.

We begin by sketching a completeness proof for S5. for the language S.(O),

since our later proofs will be in the same spirit. (The completeness result was

proved by Kripke [16] and Hintikka [15] for S5, and extended by Halpern and

Moses to S5fl [12]. The “maximal consistent sets” construction that we use is

due to Makinson [20].)

THEOREM A. 1. S5n is a sound and complete axiomatization with respect to S5

Kr@ke structures of n processes, for the language Y.(@).

SKETCH OF PROOF. Soundness is straightforward, as usual, so we focus on

completeness.

A formula ~ is said to be inconsistent if its negation 7 p can be proven in

S5~. Otherwise, p is said to be consistent. A set Z of formulas is said to be

inconsistent if there is a finite subset {ml, . . . . m~} c X such that the formula

~1 A .-” A u~ is inconsistent; otherwise, Z is said to be consistent. A maximal

consistent set of formulas is a consistent set V of formulas such that whenever *

is a formula not in V, then V U {+} is inconsistent. Let MMXCON be the set

of all maximal consistent sets of formulas.

Let us say that a formula p =~~(~) is satisfiable if there is an S5 Kripke

structure M and a state s of M such that (M,s) 1= p. In order to prove

completeness, we must show that every valid formula is provable, or equiva-

lently, that every consistent formula is satisfiable. We shall now construct a

certain S5 Kripke structure M’, called the “canonical Kripke structure, ” such

that for every consistent formula p = S.(O), there is a state s such that

(M’,s) F p. This is sufficient to prove completeness.
If V is a set of formulas and i is a process, define V/KZ to be { plK, p = V}.

For each V E JL4XCON, we define a new, distinct state Sv, and let S =

{St,lV G ALOXXXV}. Let ~ = {(sv,, Sv,)lvl, Vz G wcOX and vl\Kz c Vz},
for each process i. By making use of the axioms, it is not hard to verify that

each ~ is an equivalence relation. As an illustration, we show that each ~ is

symmetric. Assume that (sv,, Sv, ) G ~; we must show that (s~,,, SV,) E ~. That
is, assume that VI /K1 c Vz; we must show that Vz/Kl G VI. Assume not; then

there is some formula ~ such that K, p G Vz but p @ V1. If K, p ● VI, then

9 c Vl, since K, p + p is one of the axioms, and since VI is a maximal
consistent set. Therefore, K, p E VI. Since K, p @ VI and V, is maximal, it

follows that ~ K,p ● ~. So K, 1 K,p ~ Vl, since 1 Klp = K, 1 Klp is one of

the axioms, and since VI is a maximal consistent set. Therefore, since

VI /K1 c Vz, itfollows that 1 K, p = Vz. But by assumption, K, p E Vz. So Vz

is inconsistent, a contradiction.

We define rr by letting W(sv) be the truth assignment where the primitive

proposition p is true if p = V, and false if p @ V. Let M’ be the S5 Kripke
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structure (S, w,%l, . . ., ~,). It can be shown (see, e.g., [20] or [12]) that for

every formula q in &~(@), we have (Mc, Sv ) i= q iff p e V. Since every

consistent formula is contained in some maximal consistent set, this shows that

every consistent formula is satisfiable, as desired. ❑

Before we prove completeness of S5D~, we need some preliminary defini-

tions and results, which will prove to be useful again later on.

Assume that S5D,l g A? CS?~(@)j that is % is a subset of _Y~(@) that

contains all instances of consequences of S5D~. We shall typically take AZ’ to be

the set of all instances of some set of axioms. A formula q is said to be

@-inconsistent if its negation ~p can be proven in ~. Otherwise, q is said to

be @-consistent. We define what it means for a set of formulas to be

@’-consistent or to be a maximal @’-consistent set of formulas just as we did

earlier for consistency. A &7-Kripke structure is an S5 Kripke structure M such

that (M,s) 1= + for every state s of M and every ~ =@.

A pseudo- fiipke structure M* = (S, T, WI,. . . . ~,, SD) is an S5 Kripke struc-

ture (of n + 1 processes) where D is considered just another process. Further,

if n = 1 (i.e., if there is exactly one process), and if M* = (S, m, %1, %~), then

we demand that SD = ml. If s = S, we define what it means for ( M*,s) to

pseudo-sutisjj a formula p = ~~(~), written (M*,s) R “~, just as we ordinarily

define satisfaction for Kripke structures, except that (M*,s) != *D4 iff

(M*,s’) t=”~ for all s‘ such that (s,s’) c %~. Thus, pseudo-satisfaction is

defined for pseudo-Kripke structures by treating D as just another process,

rather than as “distributed knowledge.” A ZZ7-pseudo-Kripke structure is a

pseudo-Kripke structure M* such that (M*,s) 1=** for every state s of M*

and every # E=.

Let us say that a formula q =&~(@) is ~-satisfiable if there is a @?-Kripke

structure M and a state s of M such that (M,s) > p. We may then say that p

is @-satisfiable in M. We say that p is satisfiable (in M) if q is S5DH-satisfiable

(in M). Define p to be S-pseudo-satisfiable if there is a @-pseudo-Kripke

structure M* and a state s of M* such that (M *,s) k *qJ. We may then say

that p is @-pseudo-satisfiable in M*.

We shall prove the following two facts:

(1) If p is @-consistent, then p is @-pseudo-satisfiable.

(2) If P is ~-pseudo-satisfiable, then p if =-satisfiable.

Putting these two facts together, it follows that if p is &27-consistent, then p

is E7-satisfiable. Therefore, by letting U7 = S5D~, we immediately obtain

completeness of S5D,,.

We begin by proving the first fact.

PROPOSITION A.2. Assunze that q =%~(@) and S5D~ c U? G.&~(@). If p

is @’-consistent, then p is @-pseudo-satisfiable.

PROOF. The proof follows by using the maximal consistent sets construction

as in the proof of Theorem A. 1, where we use @-consistency instead of

consistency. The construction gives us a pseudo-Kri ke structure M*, with
$

states Sv for every maximal @i?-consistent set V c-!%’. (0), such that (M’, s. )

k*+ iff + E V. In particular, since it is easy to see that every maximal

@-consistent set contains ~, it follows that M* is a @7-pseudo-Kripke struc-

ture. Actually, there is one remaining point to verify: If n = 1 (i.e., if there is

exactly one process), and if M* = (S, m, WI, %j ), then we must show that
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%’ = XI. In this case, 47 contains the axioms KI $ + D* and D$ ~ KI ~, for

every formula ~. It follows easily from the construction that therefore %~ = XI.

Note that the only place in the proof where we use the fact that @ contains

every axiom of S5D. occurs in the case n = 1. ❑

Our next step towards the proof of completeness of S5D,, is to show that if q

is @-pseudo-satisfiable, then p is ~-satisfiable. Before we can prove this, we

need further preliminary results.

Let M be an S5 Kripke structure of n processes, and let s be a state of M.

We define the ~,(~)-~pe of (M,s) to be the set of formulas p ● ~.(~) such

that (M,s) > p.

Let M = (S, n-, %l,.. ., fin) be a Kripke structure, and let s, t be states

(members of S). We call a sequence (u,, i,, z,, i,,..., i,_l, ~,) where k >1 a

path from s to t (in M) if

(1) L’l = s,

(2) .u~ = t,

(3) u,,..., VL are states,

(4) il,..., ik - ~ are processes, and
(5) (~,,~)+1) =~,, for 1 <j <k.

The reduction of a path ( Ul, il, LIZ, iz, ..., i&~, vk ) is obtained by replaCing

each maximal consecutive subsequence ( u~, i~, Uq+ ~i~ +,, ..., i,_,, u,) where

i~ =i~+l = ““” =i, _l by(u~,i~,L, ) ). The reduction of a path from s to t is a

path from s to t,by transitivity of the ~’s. A path is said to be reduced if it

equals its own reduction. Thus, a path ( z~l, il, L’2, i2, ..., i~ _ ~, Uk ) is reduced

precisely if i] # i]., for 1< j < k. We say that M is tree-like if whenever s and

t are states of M, then there is at most one reduced path from s to t in M.

Note in particular that if M is tree-like and s and t are distinct states of M

such that (s, t)●3f and (s, t) =%, then i = j.

PROPOSITION A.3. Let M be an S5 Kripke structure of n processes. There is an

S5 Kripke structure M’ of n processes such that

(1) M’ is tree-like, and

(2) M and M’ have precisely the same S.( @)-@pes. That is,

(al For eve~ states of M there is a state s’ of M’ such that the Z.(@) -@pes of

(M,s) and (M’, s’) are the same.

(b) For eve~ states’ of M’ there is a states of Msuch that the ~.(@) -ppes of

(M,s) and (M’, s’) are the same.

PROOF. Intuitively, we shall “unwind” the Kripke structure M =

(s,77, %1,..., %n) into a forest (not necessarily a tree, since the structure we

create is not necessarily connected). Our approach is to create states at various

“levels.” The first level TI contains precisely S, the set of states of M. Assume

inductively that we have defined the set T~ of states at level k. Then, for each
s E S, each L) E Tk, and each process i, we define a new, distinct state Z$ ~,,.

We may refer to z,,,,,, as an i-child of u, and to v as the parent of z.,,,,. The’ set

T~+ ~ of states at level k + 1 consist of all these states z~ ~,~. Let T =

U{TJk > 1}. Define g: T e S by letting g(s) = s if s G Tl, and ‘g(z,, U,l) = s

for z, ~ , = T~ Where k > 2. Intuitively, we shall construct M’ with state space,>
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T such that the state s ● T “mimics” the state g(s) G S (by “mimics,” we

mean that the ~~( @)-types of (M’,s) and (if, g(s)) will be the same).

Define %; for each process i by letting (s, t) be in %; iff t is an i-child of s

and (g(s), g(t)) ● ~. Let %; be the reflexive, symmetric, transitive closure of

%: (that is, the smallest equivalence relation that contains X;). In order to

give a useful characterization of %;, we need some more definitions.

If s,t = T, we call a sequence (ul, il, z]z, iJ, . . ..ik_l. u~) where k > 1 a

primitille path from s to t if

(1) L’l = s,

(2) VA = t,

(3) ~ll,...,U~GT
(4) ii,..., i~ _, are processes, and

(5) either (~j,~j+l) =27; or (~j+l, uj) =%;, for 1 <j < k.

We call the primitive path an i-primitive path if i, = i for 1< j < k. We say

that a primitive path (~)1, il, L’2, i2, . . . . ik _ ~, LIL ) is nonredundant if there is no j

such that L; = ZIJ+ ~ and iJ = i]+ ~. Thus, in a nonredundant path, there is no

“ ) where intuitively, we go forwardconsecutive subsequence (VI, i], v]+ 1, 1], VI ,

along some edge and then Immediately backward along the same edge. Since

every state has at most one parent, and since the only $; edges are between

adjacent levels, it is easy to see that whenever s, t G T, then there is at most

one nonredundant primitive path from s to t.

It is straightforward to see that (s, t) E%: iff there is an i-primitive path

from s to t.Using this fact and the fact that ~ is an equivalence relation, it

follows fairly easily that if (,s, t)G%;, then (g(s), g(t)) c ~.

Define m‘ by letting rr ‘(s) = ~(g(s)) for each s ● T. Let M’ be the S5

Kripke structure (T, m‘, %!,..., %~,).

We now show that M’ is tree-like. Let P = (Z’l, il, L’z, iz,..., iA_l, L’~) and

P’ = (u{, i~, u~, ij, ..., i~_,, u~ ) be reduced paths from s to t. Since

(L\, L)+, ) G%;,, for 1< j < k, itfollows as we noted earlier that there is an

ii-primitive path from q to u]+ ~, and hence a nonredundant i,-primitive path

from Llj to UJ+,. Let ~ be the primitive path from s to t obtained from

P by “splicing in” a nonredundant i,-primi~ive path from 1) to u,+ ~ in place of

( l>, i], L). ~), for 1 s j < k. Note that P is nonredundant, and when W:

think of P as a path rather than a primitive path, P is the reduction of P.

Similarly, let ~ be a nonredundant primitive path from s to t with reduction

P‘. By uniqueness of nonredundant primitive paths from s to t, we know that
A—

P = P‘. So the reductions of ~ and ~ are the same, that is, P = P‘. Hence,

M’ is tree-like.

We now show that the ~l(@)-types of (M’,s) and (M, g(s)) are the same.

We prove, by induction on the structure of p = ~.(@), that

(M’, s) 1= (0 iff (M, g(s)) 1= p. (2)

If p is a primitive proposition, this follows from the fact that m ‘(s) = n(g(s)).
The case where ~ is a Boolean combination of formulas is immediate. We now

consider the interesting case, where P is of the form K,*. Assume first that

(M’,s) 1# K,*. Thus, there is a state t of M’ such that (s, t)e%; and

(M’, t)K +. As we showed above, (g(s), g(t)) =z. Since (M’, t)1#+, it
follows by inductive assumption that (M, g(t)) i# ~. So (M, g(s)) i+ K, ~, as
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desired. Assume now that (A4, g(s)) % K,*. Therefore, there is a state w of A4

such that (g(s), w) G ~ and (kf, w) # +. By construction, z,,, S , G T. Further,

(S,zw,,,, ) G %:, since g(z}v ,, ) = w and (g(s), w) =x. Therefore, (s, ZW,,,,) c
%:. By inductive assumption, since (M, w) k y!I, also (AI’,zW,,,, ) % *. So

(M’,s) 1# K,*, as desired.

We just showed that the ~l(@)-types of (M’, s) and (M, g(s)) are the

same. Then 2(a) in the statement of the proposition holds by letting

‘ = s, since S = TI c T and g(s) = s for s ● S. Also, 2(b) holds, by letting

: = g(s’). ❑

The next proposition shows how to convert pseudo-satisfaction into satisfac-

tion. As we noted earlier, we shall use it in our completeness proof of S5D~.

PROPOSITION A.4. Assume that q G5’~(@) and S5D~ g@ cJ?:(0). If p

is @-pseudo-satisfiable, then p is @-satisfiable.

PROOF. Assume that q = J2?R(@). Consider first the case where the number

n processes is one. Assume that p is pseudo-satisfiable in the &Y-pseudo-Kripke

structure M* = (S, m-,% ,WD). Let M be the S5 Kripke structure (S, m, %l).
Since M- is a pseudo-Kripke structure, %~ = WI. Therefore, it is easy to show

by induction on the structure of formulas that for every ~ ● Y:(cP) and for

every state s of M*, we have (M*, s) R*D4 iff (M, s) != Kl~ iff (M, s) k Dq!J.

Since p is pseudo-satisfiable in M *, it therefore follows that q is satisfiable in

M. Furthermore, since M* is a &i9-pseudo-Kripke structure, M is a S@-Kripke

structure. So q is ~-satisfiable.

Now consider the case n z 2. By Proposition A.3, we can assume without

loss of generality that there is a tree-like ~-pseudo-structure M * and a state s

such that (M*, s) + p. Let M* be (S, T,%r, . . . . %~,~~). Define ~, for

1 s i s n, to be the transitive closure of %; U8~. Let M = (S, w,%,... ,x,).

Note that M and M* have the same state space S and the same n. Since Z:

and X: are reflexive and symmetric, it follows easily that ,% is an equivalence

relation. Therefore, M is an S5 Kripke structure. We now show, by induction

on the structure of formulas y G S~(@), that

(M, s) I= y iff (M*, s) l= *y. (3)

Since p is @-pseudo-satisfiable in M*, this is clearly sufficient to prove the

lemma. If y is a primitive proposition, then (3) is immediate, since M and M*

have the same rr. The case where y is a Boolean combination of formulas for

which the analog of (3) holds is immediate. We now consider the case where y
1s of the form K, ~.

Assume first that ( M*,s) k *K, ~. Thus, there is a state t = S such that

(s, t)G%: and (M*, t) i+”+. Since X: c%, we have (s, t)e~. By inductive
assumption, (M, t) & ~. So (M,s) & K,+.

Assume now that (M*, s) 1=*K,*. To show that ( M,s) + K,*, we must show

that (M, t) ~ $ whenever (s, t) = ~. Assume that (s, t)= S,. Since ~ is the

transitive closure of %,* U Z:, there are u,, . . . . LIk ~ S such that
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We now show, by induction on j (where 1< j < k) that (M*, v~) 1=*K,*.

The case j = 1 is by assumption. Assume inductively on j that (M*, ~,)

% “Kl 4 (for some j where 1 s j s k – 1); we must show that (M*, u,+, )

>*Kl~. Since (M*, u,) I=*Kl~, it follows that (&f*, ~{) K*K,K,~. We know

that either ( Uj, u] + ~) =%: or (uJ, Uj+ ~) =X:. In the first case, since (M*, UJ)

1=*K, K, ~, itfollows that (M*, u,+,) %*K , ~, as desired. In the second case,

since the formula K, K, 4 = DK, ~ is an instance of axiom KD, it follows that

(~’, ~,) ~ *(K,K,t ~ DK, Y), and so (J1’, u]) E *DKC~. Hence, since
(~’1, u~+ ~) ~%;, it follows again that (M*, u~+ ~) & *KI V. This completes the
induction. It follows that (M*, t)K *K, y. Therefore, (M*, t) R *~. So by induc-

tive assumption, (ill, t)> *. This was to be shown.

Finally, consider the case where y is of the form D+. Assume, first that

(M”,,s) !#*D~. Thus, there is a state t G S such that (s, t)c%: and (M*, t)

1#*+. By inductive assumption, (M, t)1#*. Since %: G% for each i (with

1< i s n), itfollows that (s, t)GZ for each i, and so (M,s) k D$.

Assume now that (M,s) !# D+. Thus, there is a state t = S such that

(s, t) •~, for 1< i < n, and (M, t) w +. So (M*, t) w*+ by inductive as-

sumption. &nce (s, t) =%1, there 1s a path PI = (ul, 11, v~, lZ, ..., z&~, Uh)
from s to t in M*, such that each i] is either 1 or D. By taking the reduction,

we can assume that PI is reduced. Similarly, there is a reduced path

Pz = (L1l, il, L12, i2, . . ..ik_~. Z)k ) from s to t in M“, such that each i, is either 2

or D (recall that by assumption, n > 2). Since M* is tree-like, there is at

most one reduced path from s to t in M*. Therefore, PI = Pz. So every i~ in

PI is D. Since PI is reduced, the length k of the path is 1. Thus, (s, t) G X3.

Since (M”, t)w*+, it follows that (M*,s) W* D+. This completes the

proof. ❑

The following theorem now follows immediately from Propositions A.2 and

A.4:

THEOREM A.5. ~ssurne that p 6Ji?~(@) and S5D~ g~ c_%~(@). If q is

~-consistent, then p is $%’-satisjiable.

As we noted earlier, completeness of S5D,, follows almost immediately from

Theorem A.5.

THEOREM A.6 [12]. S5D,Z is a sound and complete axiomatization with respect

to S5 Kripke structures of n processes, for the language L2’~(@).

If we study our completeness proof for S5D,,, we see that we actually proved

something stronger than “if p E &’~(@ ) is consistent, then q is satisfiable. ”

Our proof shows that if q EL?;(O) is consistent, then q is satisfiable in a

Kripke structure of n processes. If we were willing to settle for the weaker

statement “if p = s:(O) is consistent, then p is satisfiable in a Kripke

structure of n + 1 processes,” we could give a simpler proof that does not

make use of Proposition A.4 (or of Proposition A.3, which was used in the

proof of Proposition A.4). Instead we use only the relatively simple Proposition
A.2 (and its proof) and a little bit more. From Proposition A.2, there is a

pseudo-Kripke structure M* = (S, m-,%1,...,%., %~) such that q is pseudo-

satisfiable in M*. In fact, in the construction, it turns out that %~ G (1 {~11 <

i s n}, as we now show. Assume that (sv, s~) 6 %~; we must show that

(sv, SW) ~ ~, for each process i. Thus, by definition of %~ and ~, we assume
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that V/D c W’, and we must show that V/K, G W’. Let ~ be an arbitrary

member of V/K,; we must show that ~ = W’. Since ~ G V/K,, by definition

K,@ E V. Since K, $ = Do is an instance of axiom KD, it follows by maximal-

ity of V that D~ E V. So, since V\D c W, it follows that ~ E W, as desired.

The idea now is to let D play the role of the (n + I)st process, More

formally, letAZ,+l =%~, and let M = (S, W,%l,. ,. ,%., %.,l). For each $ =

L?’;(O), let * be the result of replacing every occurrence of D in o by K., ~.

Since p is pseudo-satisfiable in M *, it follows immediately from the definition

of pseudo-satisfaction that @ is satisfiable in M. Since %1+ ~ =

%D G n{~ll < i s n}, it follows immediately that (,s, t) =X.+ ~ iff (s, t) e%

for each i with 1 s i s n + 1. Therefore, for every v ● JZ’~(@ ), and every state

s of M, we have (M,s) > D* iff (M,s) > K.+ ~~. It follows easily that for

every + GJZ7~(@), and every state ,s of M, we have (M,s) R v iff (M,s) R ~.

Therefore, since @ is satisfiable in M, so is p.

A2. The Pasting Condition

L~~~A A.7. Let S be either a set of interpreted states or an S5 Kripke

structure. Then S satisfies the pasting condition if and only if ( S,s ) satisfies evey

instance of Axiom A6 for evey state s of S.8

PROOF. We prove the result when S is a set of interpreted states; the proof

when S is an S5 Kripke structure is almost identical and is left to the reader.

Assume first that S satisfies the pasting condition and s G S, but (S,s) does

not satisfy D-a= K1lav ..” vK~Ta. Let s be (/1, . . ..l~. a’). By as-

sumption, (S,s) 1= D m a and (S,s) > 1 K, 1 a, for each process i. Since

(S, S) ~ T K, -I II, We know that S contains interpreted states of the form

(n, ”,... a), (”,lz, ”,”, ”,a),,, (”,.., (”,..., ”,lm, a). Since Salsocontainss=

(ll,.. ., 1,,, a ‘), it follows from the pasting condition that S contains

(ll,.. .,1., a), which is process equivalent to s. So (S, s) ~ 1 D 1 a, a contra-

diction.

Conversely, assume that (S, s) satisfies every instance of Axiom A6 for every

s G S but that S does not satisfy the pasting condition. Since S violates the

pasting condition, S contains some S1 = (ll,., . . . . “ , a), Sz = (“, lZ, “, . . . . “ ,

a), . . ..s~ =..,...,., 1,1, a), t’=(ll, ....ln.a’), but not t=(ll, ....l.l,a).

Since t 6 S, it follows that (S, t’)> D - a. Since s, G S, it follows that

(S,t”) k T K, 7 a, for each process i. So (S, t’) does not satisfy D ~ a a
K1l CYV... V K. 1 a, an instance of Axiom A6. This is a contradiction. ❑

We now prove Proposition 5.3, which we restate here for convenience,

PROPOSITION 5.3. Let W be a class of interpreted systems with n p~ocesses. If

euety attainable knowledge situation in eue~y member of E satisfies the pasting

condition, then ML; (respectively, ML,, ) is sound with respect to E. Conversely, if

eoev knowledge situation that satisfies the pasting condition is attainable in some

member of 87, then ML; (respectively, ML. ) is complete with respect to i% for the

language S.(O) (respectively, L2’~(@)).

PROOF. We first consider soundness. Let % be a class of interpreted

systems with n processes, such that every attainable knowledge situation in

‘We are assuming that the set {1, . . . . n) of processes and the set E of primitive states are fixed.

So the set of “instances” of Axiom A6 is (D ~ a - K1 ~ a v . V K. ~ ala ● E}.
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every member of % satisfies the pasting condition. By Lemma A.7 (along with

Proposition 4.2), it follows that every instance of Axiom A6 is sound with

respect to %. Hence, ML. is sound with respect to %, as desired. To prove that

ML; is sound with respect to ‘i%’,we now need only show that every instance of

Axiom A6’ can be proven in ML.. Thus, let a be a primitive state, let ~ be a

pure knowledge formula, and let m be ~ A K,( p = ~ a) - (Kl ~ a v o.. v

K. 1 a). We must show that o can be proven from ML,. It is not hard to show

that since ~ is a pure knowledge formula, the formula ~ + D~ is provable in

ML. (we leave this to the reader). An axiom of ML. says that K, q =+ Dq for

every formula p, and in particular Ki( P - 1 a ) + D( B = 1 a). So it is

provable in ML. that the left-hand side of o implies D~ A 1)( ~ = ~ a),

from which in turn it is provable in ML. that D - a, from which in turn it is

provable in ML. (using Axiom A6) that (Kl ~ a v . . . v K. ~ a). It follows

that u is provable in ML,,, as desired. This completes the proof of soundness.

We now consider completeness. Assume that every knowledge situation that

satisfies the pasting condition is attainable in some member of $27;we must

show that ML; (respectively, ML.) is complete with respect to $%’ for the

language %.(O) (respectively, &~(@)). We consider first the case of L?;(O).

Assume that p = L7~( @) is consistent with respect to ML.; we must show that

p is satisfiable in some member of %. Let AZ7be the set of all axioms of ML..

Since p is ~-consistent, it follows from Theorem A.5 that q is satisfiable in a

A7-Kripke structure M. By Lemma A.7, we know that M satisfies the pasting

condition.

Let s be a state of M such that (M,s) R p, and let (S,s) be the knowledge

situation at (M, s). Then (S,s) + q. Since M satisfies the pasting condition, it

is easy to see that so does S. Hence, by assumption, (S,s) is attainable in some

member of %’. So p is satisfiable in some member of ‘%, as desired.

We have proven completeness in the 1%’~(@) case; we now prove complete-

ness in the S.(@) case. Thus, assume that every knowledge situation that

satisfies the pasting condition is attainable in some member of %; we must

show that ML; is complete with respect to %? for the language ~f@).

Although the pasting condition is characterized (in the sense of Lemma A.7)

by Axiom A6, it is not characterized by Axiom A6’. Therefore, we must work

harder to prove completeness in the S~(@) case than we did in the s~(~)

case. In particular, let M– be the analogue of the canonical structure M’ in

the proof of Theorem Al, where “consistency” is now with respect to ML;.

We must look closely at M-, and show that because of the details of how it is

constructed, it obeys the pasting condition. Note that unlike before, we do not

“unwind” M- to a tree-like pseudo-Kripke structure; the purpose of the

unwinding was to deal with the distributed knowledge operator, which is not in

ML; .

Let MAXCON- be the analogue of MAXCON, thus, every member of

h&lXCON- contains every axiom of ML;. We define %1-,..., ~,- analo-

gously to how we defined %1,..., %. in the proof of Theorem Al. The states

of M- are {sv IV = MAXCON-}; we denote this set by S-. As before, for each
formula ~ = S~(@) and each V c IVL4XCON-, we have

In particular, (M-, Sv) satisfies every instance of Axiom A6’ for every

V G AL4XCON’. Further, as before, if p is consistent, then q is satisfiable in
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M-. If we can show that M- satisfies the pasting condition, then the complete-

ness proof for ~1(~) is completed just like the completeness proof for JZ’~(@).

Assume that M- is (S-, n-, %l-, . . . ,%~-). Assume that Sv,, . . . . ,Sv~,

Sv c S-, and that for each process i, we have W-(sv, ) = a and (sv, ,sV,) =%-.

To show that M- satisfies the pasting condition, we must show that there is

some SW = S- such that (sv, SW) =%- for each process i, and ~-(,sw) = a.

Let VP be the pure knowledge formulas in V. We first show that P’p U {a} is

consistent.

Assume not. Now a set is inconsistent iff some finite subset is inconsistent.

Therefore, there is some finite subset Z of VP such that Z u {a} is inconsist-

ent. Let ~ be the pure knowledge formula, which is the conjunction of the

members of Z. So ~ + 7 a is provable. Therefore, by the knowledge general-

ization rule, the formula K,( ~ + T a) is provable. Therefore, the formula

~,( ~ ~ - a) is in V. Since Z c VP c V, we know also that ~ ~ P’. Since the

formulas ~ and K,( ~ + ~ a) are both in V, as is the formula ~ A ~1( ~ =.

-la!) -( K17a!v . . . v Kn ~ CY) (which is an instance of Axiom A6’), it

follows that the formula (Kl ~ a v -.. V K. ~ a) is also in V. So by Fact A

above, (M-, ,sV) R (Kl T a v . . . v K,, T a). But this is a contradiction, since

for each process i, we have T-(,sv, ) = a and (,sv, s;.,) =~-.

Therefore, VP U {a} is consistent. Thus, there is W e TL4XCON- such that

P’p U {a} c W. We now show that V\K, g W for each process i. If p ● V/KI,

then K, p E V, so K, p = Vp, so K, q = W, so p = W (because of the axiom

K, q + q). This shows that V/Kl c W for each process i, as desired. So by

construction, (sv, s~ ) = K; for each process i. Further, since a G W, it
follows from Fact A above that (M-, SW) k a. Hence, n-( ,sW) = a. Therefore,

the pasting condition is satisfied, as desired. ❑

We are about to prove Proposition 5.4, which gives some natural conditions

that guarantee the pasting condition. First, we need another definition and a

lemma.

Definition A.8. If s and t are interpreted states of an interpreted system

(~, ~), then s is said to be an initial ancestor of t if there is a run y e ~ and a
time m such that s = ?(0) and t = ?(m).

Note that an interpreted state may have more than one initial ancestor, since

it may appear in more than one run.

The next lemma follows immediately from our definitions.

LEMMA A.9. Let SI and Sz be inteqmeted states of an interpreted system where

knowledge is cumulative. Let s; (respectively, s;) be an initial ancestov of SI
(respectively, Sz). Ifsl -, Sz, then s: N, s;.

We can now prove Proposition 5.4, which we restate here for convenience.

PROPOSITION 5.4. If > is an interpreted ~stem where (1) the environment

determines the initial states, (2) knowledge is cumulative, (3) process state transi-

tions are independent of the initial environment, and (4) the primitiL)e propositions

characterize the initial environment, then all the knowledge situations attainable in

3 satisjj the pasting condition. Converse~, if a knowledge situation satisfies the

pasting condition, then it is attainable in some interpreted system Y satisfying these

four assumptions.
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PROOF. Assume that (S, s) is a knowledge situation attainable in an inter-

preted system > that satisfies the four assumptions above. Since the primitive

propositions characterize the initial environment, it follows immediately that

the primitiue state neuer changes; that is, for every run r there is a primitive state

a such that m(r, m) = a for all times m. Since the environment determines

the initial states and the primitive propositions characterize the initial environ-

ment, it follows immediately that the primitive state determines the initial

intepeted states; that is, for each process i and each primitive state a, there is

a subset IiVIT,, ~ of local states such that the set of initial interpreted states

with primitive state component a is {(11, ..., 1., a )11, ● INIT,, .}. Since process

state transitions are independent of the initial environment, and the primitive

propositions characterize the initial environment, it follows that process state

transitions are independent of the primitive state, that is, whenever s and s‘ are

initial interpreted states where s - s‘, and also r is a run with initial inter-

preted state s (i.e., ?(0) = s), then there is a run r‘ with initial interpreted state

s‘ such that ?(m) N ~(rn) for all times m.

We now show that (S,s) satisfies the pasting condition. Assume that

Sl=(ll ,”,...,”, a) =s,

S2=(” ,12,”,...,”, a) ●s,

sn=(”7.. >”7zn7~)’=’$7
t’=(ll, ....ln. a)=s=s.

We must show that (11, . . ..l~. a) = S. Let u’ = (l~,...,l~,, )’) be an initial

ancestor of t‘ (we have used the fact that the primitive state never changes),

and let u, be an initial ancestor of s,, for each process i. Since knowledge is

cumulative, and since t‘ W, S,, itfollows from Lemma A.9 that u‘ -1 u,. Thus,

Ul=(”, . . ..”. lo,”,”,.,”, a), where we have once again used the fact that the

primitive state never changes. Since the primitive state determines the initial

states, and since UI, ..., u,, are initial states, it follows that u = (l;, ..., l:, a) is

an initial state. Since u‘ is an initial ancestor of t‘,there is a run r‘ and a time

m such that 7(O) = u‘ and ~(m) = t‘. Since u and u‘ are process-equivalent

initial states, and since process state transitions are independent of the

primitive state, it follows that there is a run r with initial state u such that

t = ?(m) is process equivalent to t’= F(m). Since t’ = (11,..., 1., a ‘), it

follows that t = (11, . ...1,,, a) (the primitive state component is a, since the

primitive state component of u = ?(0) is a and the primitive state never

changes). We have shown that t = (11,. . .,1,,, a) is an interpreted state of >.

Further, t = S, since S consists of all interpreted states reachable in & from s

(clearly t is reachable in S from s, since t is obviously reachable in> from t‘,

and t‘ is reachable in W from s because t‘ = S). This was to be shown.

Conversely, let (S,s) be a knowledge situation that satisfies the pasting

condition. We now define an interpreted system > satisfying the four assump-
tions of Proposition 5.4 such that (S, s) is a knowledge situation attain-

able in Y.

Ift=(ll,. ... 1,,, a) is an interpreted state, then we say that the primitive

state a and the local states 1, appear in t.For each primitive state a, we define

a distinct environment state e.. The set of environment states of the inter-
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preted system > we are constructing contains precisely those environment

states ea such that the primitive state a appears in some member of ~. Let LO

be the set of local states that appear in some member of S. Let LI and Lz be

sets with the same cardinality as LO, such that LO, L ~, and Lz are pairwise

disjoint. Define the set L of local states of the interpreted system Y to be

LO u LI u Lz. Let ~1 (respectively, ~z ) be a one-to-one map from LO onto

LI (respectively, onto Lz). Let T = {(ea, fl(ll),... ,fl(l.)) 1(11,..., 1., a) G S}.

Let T’={(e, ll,...,l~) l(e, lo, .,...,. )~Tand(e, .,12,...).) ~T and . . .

and (e, ., ...,”, l.) E T}. Intuitively, T‘ is the result of closing T off under

Cartesian product for each fixed environment state e. The set of initial states

of our interpreted system Y is precisely T‘. It follows easily that in X, the

environment determines the initial states.

We now define the set W of runs in Y. There is one run r. for each w G T‘,

where rW(0) = w. It is clear that every member of T‘ is of the form (e,

f,(l,),..., fl(l. )). Assume that w = (e, fl(ll),..., fl(l. )) ● T’. Let us say that w
is of type 1 if (11, . . . . ln, ~ ) G ~ for some ~ (where possibly, but not necessar-

ily, e = e~ ). Otherwise, we say that w is of @pe 2. If w is of type 1, then let

rW(m) = (e, 11, . . ., 1,,) for each m >1. If w is of type 2, then let rW(rn) = (e,

f2(l,),..., f,(i,l)) for each m >1.
We define w in the obvious way: If the environment component of the global

state r(m) is ea, then we let m-(r, m) = a. It is easy to see that the primitive

propositions characterize the initial environment.

To show that knowledge is cumulative, we must show that the local state

of each process uniquely determines its history. If 1 ● LO is the local state,

then it is easy to see that the history is (f ~(1), 1). If 1 G L ~ is the local

state, then 1 is of the form fl(l ‘), and the histo “~ !s simply (i). If 1 G L, is the
local state, then 1 is of the form fz(l ‘), and the history is ( ~1(1 ‘), fz(l ‘)). Thus,

knowledge is cumulative.

We now show that process state transitions are independent of the initial

environment. Assume that w and w‘ are process-equivalent initial states. Like

all initial states in our interpreted system >, the initial state w is of the form

(e, .fI(ll), . . ., fl(l,,)). Since w - w’, there is e’ such that IV’ =

(e’, flu,..., fl(ln)). It is clear that w and w‘ are either both of type 1 or both
of type 2. In either case, it is easy to see that rW(rn) N rW,,(m) for every time m.

Since rw is the only run with initial state w, and since r., has initial state w‘, it

follows immediately that process state transitions are independent of the initial

environment.

We have shown that Y satisfies each of the four assumptions of Proposition

5.4. We conclude by showing that (S, s) is a knowledge situation attainable in
.3

First, every member of S is an interpreted state of >. This is because if

~= (~1, . . ..lfl. a) ● S, then w = (ea, fl(ll), . . .. fl(l~)) is of type 1, and so

rW(1) = t.Therefore, we are done if we can show that the only interpreted

states that are reachable in > from a member of S are in S. Assume that

t=(ll> . . . , 1,,, a) is an interpreted state that is reachable in & from a member

of S; we must show that t G S.We must have t = ~(m) for some run rW of q

and some time m. By definition of m, we know that rW(m) = (ea, /1, . . . . 1,,).

Since LI and Lz are disjoint from LO, and since t is reachable in = from a

member of S, it follows from our construction that w is of type 1 and

w = (ea, fl(ll), . . ., fl(l,l)). Since w is of type 1, there is a‘ such that t‘=
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(l,,.. .,1,,, a‘) E S. Since w E T’, it follows by construction of T‘ that for each

process i, there is some global state s; = (ea, “,..., “, ~1(1,), “,..., ” ) = T. So,

by construction of T, we know that for each process i, there is some s, =

(,..., ”,ll,”,”, a)~Sa Since sl,esl, . . . . Sn, t‘ G S, it follows from the pasting

condition that t = (11,...,in,a) G S, as desired. This was to be shown. ❑

We note that the interpreted system ~ constructed in the above proof is

deterministic. Further, by an easy modification of the proof, we could have

made = synchronous. Thus, the converse of Proposition 5.4 can be strength-

ened to say that if a knowledge situation satisfies the pasting condition, then it

is attainable in some deterministic, synchronous interpreted system > satis&-

ing the four assumptions of Proposition 5.4.

We now prove Theorem 5.6, which again we restate for convenience.

THEOREM 5.6. Let d be a proper subset of the four conditions of Theorem 5.5

(or of Proposition 5.4), and let %7be the class of all interpreted systems that satisjj

the conditions .ti. Then each knowledge situation is attainable in a member of %’.
Thus, S5,, (respectively, S5D,,] is a sound and complete axiomatization with

respect to F for the language ~~(~) (respectively, JZ:( 0)).

PROOF. It is clear that we need only consider the four possible subsets ti

consisting of precisely three of the four conditions. Let (S,s) be an arbitrary

knowledge situation. We shall show that for each of the four candidates for J%,

it is the case that (S,s) is attainable in some interpreted system Y satisfying @.

In each case, the set E of environment states is {eU [ the primitive state a

appears in some member of S}.

Case 1. Knowledge is cumulative, process state transitions are independent

of the initial environment, and the primitive propositions characterize the

initial environment.

For each t = (11,.. .,1,,, a) ~ S, there is one run r,, where rf(nz) =

(ea,ll,..., l.) for all times m. If the primitive state component of t is a, then

let ~(r,, m) = a for all times m. It is easy to see that the resulting interpreted

system X satisfies each of the three conditions of Case 1, and (S,s) is

attainable in Y.

Case 2. The environment determines the initial states, process state transi-

tions are independent of the initial environment, and the primitive propositions

characterize the initial environment.

Let LO be the set of local states that appear in some member of S. Let LI be

a set that is disjoint from LO and that contains a new local state s. for every

primitive state a that appears in some member of S, The set L of local states

is L,, u L1. There is one run rf for each t ● S. If t = (11,....1,1,a), then let

rt(0) = (ea, sa, ..., sa), and let rt(rn) = (ea, 11, ..., ln) for m > 1.As before, if

the primitive state component of t is a, then let ~(rt, nz) = a for all times m.

Again, the primitive propositicms characterize the initial environment. The

environment determines the initial states, since no two distinct initial states
have the same environment component (thus, using our terminology, the

environment even uniquely determines the initial state). Process state transi-

tions are independent of the initial environment, since no two distinct initial

states are process equivalent. Finally, ( S,s) is a knowledge situation attainable
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in Y, since every member of S is an interpreted state of J, and the only

interpreted states that are reachable in Y from a member of S are members of

s.

Case 3. The environment determines the initial states, knowledge is cumu-

lative, and the primitive propositions characterize the initial environment.

Let Lo, Ll, Lz, L, fl, f2, T, T’ be as in the proof of Proposition 5.4. As in the
proof of Proposition 5.4, the set of initial states of our interpreted system J is

precisely T‘, and as before, the environment determines the initial states.

We now define the set @ of runs in y. There is one run rW for each w ● T‘,

where r,v(0) = w. It is clear that every member w of T‘ is of the form

(e, fl(l, ),..., fl(ln)). Assume that w = (e, fl(ll),..., f,(ln)) G T’. If w = T,

then rW,(m) = (e, 11, . . . . l.), for m > 1. If w @ T, then rW(m) =

(e, f2(11),..., f2(ln)), for m >1. It is perhaps useful to comment on how this
construction differs from that of Proposition 5.4. Assume that e = ea. In the

construction of Proposition 5.4, for r},(m) to be (e, 11, ..., 1.), rather than rW(m)

being (e, f2(11),..., f,(l,,)), form >1, itwas necessary that w be of type 1 (and
so for (ii, . . . ,1,,, P ) ~ S for some ~, not necessarily ~ = a). However, in the
current construction, for rW(m) to be (e, 11, ..., l.), rather than rw(m) being

(e, f,(l,) ,..., f,(ln)), for m >1, it is necessary that w be in T (and so for

(1,,..., 1., a) ~ S). In particular, unlike the construction of Proposition 5.4, it
turns out that process state transitions will not necessarily be independent of

the initial environment.

By the identical argument to that in the proof of Proposition 5.4, knowledge

is cumulative. We define w as in the proof of Proposition 5.4, and again it is

clear that the primitive propositions characterize the initial environment.

We now show that (S,s) is a knowledge situation attainable in Y. First, every

member of S is an interpreted state of =. This is because if t = (11, . . . . l., a )

= S, then ~(l) = t,where w = (ea, fl(ll) ,..., fl(l,l)). Since L, and Lz are
disjoint from Lo, itfollows from our construction that the only interpreted

states that are reachable in Y from a member of S are members of S. So (S,s)

is a knowledge situation attainable in 7, as desired.

Case 4. The environment determines the initial states, knowledge is cumu-

lative, and process state transitions are independent of the initial environment.

For each t = S, we define a new, distinct environment state e,. For each

t G S, there is one run rt, where rt(m) = (et, 11, ..., 1,,) for all times m. If the

primitive state component of t is a, then let m(rr, m) = a for all times m. It is
easy to see that the resulting interpreted system > satisfies each of the three

conditions of Case 4, and (S, s) is attainable in >. ❑

A3. Equivalence of S5D,, + A8 and S5D~ + A8*

As we promised in the body of the paper, we now prove that S5D~ + A8 is

equivalent to S5D,, + A8*. Recall that A8 and A8* are as follows, where p is

an arbitrary formula and where a is a primitive state:

A8. (p * Dp.

A8*. a + Da.
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PROPOSITION A.1O. S5D~ + A8 is equivalent to S5D,l + A 8*.

PROOF. Since A8* is a special case of A8, it is clear that every formula that

can be proven in S5Dn + A8* can also be proven in S5Dn + A8. We now prove

the converse. We shall show, by induction on the structure of formulas p, that

P - DP and (1 p) + D 1 p are each provable in S5D,, + A8*.

(1) q is propositional. Since by assumption, there are only a finite number of

primitive propositions, it follows that q is logically equivalent to a formula

al v “”s V aL, where each al is a primitive state. Since al * Dal is an

axiom for each j, it follows by propositional reasoning (i.e., using axiom Al

and modus ponens) that the following formula is provable:

((XIV ... v ak) == (Dal V ... VDak). (4)

Using the axiom Dql A D( PI = Pz) * Dpz, where PI is a, and Pz is

al v “o. V a~, we see by propositional reasoning that the following formula

is provable for each j (1 < j < k):

Dal =D(al V . . . V ak) (5)

(we also used the fact that p, + Pz is a propositional tautology, and so
provable, and hence D( PI * qz) is provable by distributed knowledge

generalization). Putting together (4) and the k instances of (5), we see by

propositional reasoning that the following formula is provable:

((XIV ... v ak) -D(al V . . . V ak). (6)

Since p is logically equivalent to a, V “”” v ak, the following formula is

provable:

pe(alv”””vak). (7)

From (6) and (7), we see that the formula q = Dp is provable, as desired.

Since 1 p is also a propositional formula, an identical argument shows that

( 7 q) ~ D 1 p is provable. This concludes the case where p is proposi-

tional.

(2) q is T *. This case follows immediately from our inductive assumption.

(3) q is pi A $oZ:

(a) By indudive assumption, 91 *@, and q, + DP2 are each provable.
Also, we see from the axioms that (Dql A Dqq) + D( PI A Pz) is

provable. By propositional reasoning, we then see that (PI A Pz) =

D( PI A p2) is provable, that is, p + Dp is provable.

(b) We now must show that ~ q = D ~ q is provable. It is provable that
1 q implies 7 PI v 192. From 1 PI v T qz we can infer that

D ~ PI V D ~ qz (since by inductive assumption 1 p, + D m p, for

j ~ 1,2). From D 1 PI V D 7 Pz we can infer that D(q PI V 1 Pz)

(since for j = 1,2, the fact that 1 p, - 1 PI v 192 is provable shows
that D 7 pj + D( 7 QI v 1 P2) k provable). From D( 7 ~1 V 1 P~)

we can infer that D - ~.

(4) p is K,@:

(a) It is provable that K, ~ implies KIKl *, from which DKl + is provable.

Hence, K, ~ = DK, * is provable.
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(b) It is provable that ~ K, ~ implies K, ~ K, ~, from which D ~ K, 4 is

provable. Hence, ( - K, ~) = D( v K, ~ ) is provable.

(5) p is DO. D4 + DD4 is one of the axioms, as is ( - D+) =
D-D*. ❑

A4. The Process Component Uniquely Detemnines the Primitiue State

In this section, we prove the results stated earlier that deal with the situation

where the process component uniquely determines the primitive state. We first

restate and prove Proposition 5.8.

PROPOSITION 5.8. If Y is an interpreted system where the p~imitiue proposi-

tions are determined by the current states of the processes, then in euery knowledge

situation attainable in 3, the process component uniquelv detemtines the primitil~e

state. Corwersely, each knowledge situation where the process component uniquely

determines the primitile state is attainable in some interpreted system ~vhere the

primitive propositions are determined by the current states of the processes.

PROOF. First, let > be an interpreted system where the primitive proposi-

tions are determined by the current states of the processes, and let (S, s) be a

knowledge situation attainable in Y. Let t and t‘ be members of S where

t- t‘.Since the primitive propositions are determined by the current states of

the processes, it follows immediately that t = t‘.Hence, the process compo-

nent uniquely determines the primitive state.

Conversely, let (S, s) be a knowledge situation where the process component

uniquely determines the primitive state. Let the interpreted system Y be

constructed as in Case 1 of the proof of Theorem 5.6. Because the process

component uniquely determines the primitive state in (S, s), it follows easily

that the primitive propositions are determined by the current states of the

processes in >. ❑

We claimed in the body of the paper that Proposition 5,8 and Theorem 5.10

both hold when we replace every occurrence of “the primitive propositions are

determined by the current states of the processes” by “the primitive proposi-

tions are determined by the initial states of the processes and knowledge is

cumulative. ” We first show that Proposition 5.8 holds after this replacement.

PROPOSITION A. 11. If> is an interpreted system where the primitile proposi-

tions are determined by the initial states of the processes and knowledge is

cumulatil~e, then in evey knowledge situation attainable in 3, the process compo-

nent unique@ determines the primitiL’e state. Conversely, each knowledge situation

where the process component uniquely determines the primitiue state is attainable in
some interpreted system where the primi~iue propositions are detemlined by the

initial states of the processes and knowledge is cumulative.

PROOF. The first part of the proposition follows from the first part of

Proposition 5.8 and the fact that if the primitive propositions are determined

by the initial states of the processes and knowledge is cumulative, then the

primitive propositions are determined by the current states of the processes.

The second part follows from the proof of the second part of Proposition 5.8

and the fact that in the interpreted system Y constructed there, the primitive

propositions are determined by the initial states of the processes and knowl-

edge is cumulative. ❑
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Theorem 5.11 is the result of replacing every occurrence of “the primitive

propositions are determined by the current states of the processes” by “the

primitive propositions are determined by the initial states of the processes and

knowledge is cumulative.” Theorem 5.11 follows immediately from Proposi-

tions 5.9 and All.

Before we prove the proposition that relates Axiom AS to interpreted

systems where the process component uniquely determines the primitive state,

we need a lemma that is completely analogous to Lemma A.7. The definition

of” the process component uniquely determines the primitive state in a Kripke

structure” is obtained by modifying the definition of “the process component

uniquely determines the primitive state in a set S of interpreted states” in the

obvious manner.

LEMMA A. 12. Let S be either a set of interpreted states or an S5 Kripke

structure. The process component uniquely determines the primitil)e state in S if and

only if (S,s) satisfies eue~ instance of Axiom A8 for eve~ state s of S.

PROOF. We shall prove the result when S is a set of interpreted states; the

proof when S is an S5 Kripke structure is almost identical.

Because of Lemma A.1O, it follows easily that (S,s) satisfies every instance

of Axiom A8 if and only if ( S,s) satisfies every instance of Axiom A8 *. So we

need only show that the process component uniquely determines the primitive

state in S if and only if (S, s ) satisfies every instance of Axiom A8* for every

state s of S.

Assume first that the process component does not uniquely determine the

primitive state in S. So, there are members s and s‘ of S that are process

equivalent but that have distinct primitive state components. Let a be the

primitive state component of s. Then (S,s) E a, but (S,s) i= T Da. So (S,s)

does not satis& the instance a = Da of Axiom A8. The converse is very

similar. ❑

We now prove Proposition 5.9, which says the following:

PROPOSITION 5.9. Let $7 be a class of interpreted systems with n z 2 pro-

cesses. If for el)ery attainable knowledge situation in euev member of ~, the

process component unique~ determines the primitive state, then S5~ (respectively,

S5D,, + A8) is sound with respect to Z?. Coruersely, if every knowledge situation

where the process component uniquely determines the primitil)e state is attainable in

some member of t?, then S5,, (respectively, S5D,l + A 8) is complete with respect

to ~ for the language ~,(@) (respectively, JZ’~(@)).

PROOF. Lemma A.12 can be used to prove soundness and completeness of

S5D~ + A8 in the same way as Lemma A.7 was used to prove soundness and

completeness of ML. (in the proof of Proposition 5.3).

We now show completeness of S5,, in the language S.(O) for f? (we already

know S5. is sound, by Proposition 5.1). Let P be a formula of ~1(~) that is

consistent with S5,,. To show completeness, we need only show that q is
satisfiable in some member of ‘%. Since q is consistent with S5~, we know by

Theorem A. 1 that p is satisfiable. It then follows immediately from Proposi-

tion A.3 that q is satisfiable in an S5 Kripke structure M = (S, w, XI, ..., ~,)

that is tree-like. Let (S,s) be a knowledge situation attainable in M that

satisfies p. As we noted earlier, one consequence of M being tree-like is that
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if tl and t2are distinct states of M such that (t~,f,)G ~ and (tl, tz) = ~, then

i = j. So, since n > 2, it follows that if two states-in S are process equwalent,

then they are identical. Therefore, in S the process component uniquely

determines the primitive state. So by assumption, ( S,s) is attainable in some

member of %7.Therefore, q is satisfiable in some member of %. This was to be

shown. ❑

A5. The Em?ironment Uniquely Determines the Initial State

In Proposition 5.4 and Theorem 5.5, one of our assumptions is that the

environment determines the initial states. We claimed in Section 5 that if we

make the stronger assumption that the environment uniquely determines the

initial state, then a smaller set of knowledge situations is attainable, and again

knowledge has extra properties. We now discuss and prove this claim.

Thus, we are interested in considering interpreted systems where (1) the

environment uniquely determines the initial state, (2) knowledge is cumulative,

(3) process state transitions are independent of the initial environment, and (4)
the primitive propositions characterize the initial environment. As before, our

first step is to get a semantic characterization of the attainable knowledge

situations under these assumptions.

Definition A.13. A set S of interpreted states satisfies the matching co~zdi-

tion if whenever

(1) S,,..., sn,s{,, s;es,; es,
(2) a is the primitive state component of SJ, for j = 1,..., n,

(3) a‘ is the primitive state component of s,’, for j = 1,..., n, and

(4) s, * ,s,’, forj=l,. ... n,

then for each t‘ = S with primitive state component a‘, there is t ● S with

primitive state component a such that t - t‘.The knowledge situation (S, s) is

said to satisfy the matching condition if S does. ❑

Thus, S satisfies the matching condition if whenever

S,=(ll, ”,. ... CY)ES, S,

S2=(”,12”, . . .. CI)=S. S,

s,, = (“...>” ,ln, a) =s,

S;=(ll,. ,..., a,)es, s,

S;=(”,12 ,”,...,”, a’) es,

S:=(., . . ..ln.a, )cs, s,

t’=(l; ,.. .,l:, )es, s,

then t=(l~, ..., l;, a) = S. As we shall see, the matching condition implies the

pasting condition.
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Similarly, we can modify the definition in the obvious way to define what it

means for a Kripke structure to satisfy the matching condition.

PROPOSITION A.14. If> is an interpreted system where (1) the environment

uniquely determines the initial state, (2) knowledge is cumulative, (3) process state

transitions are independent of the initial environment, and (4) the primitive

propositions characterize the initial environment, then all the knowledge situations

attainable in & satisjj the matching condition. Conversely, if a knowledge situation

satisfies the matching condition, then it is attainable in some inteqveted system

satisjjing these four assumptions.

PROOF. Assume first that (S,s) is a knowledge situation attainable in an

interpreted system ~ = (J%?, m) that satisfies the four assumptions; we must

show that S satisfies the matching condition. As in the proof of Proposition 5.4,

we see that the primitive state never changes, and process state transitions are

independent of the primitive state. Furthermore, since the environment

uniquely determines the initial state and the primitive propositions character-

ize the initial environment, it follows that the primitiL’e state uniquely determines

the initial interpreted state, that is, there are no two distinct initial interpreted

states with the same primitive state component.

Letsl,. ... s,,, s~,..., s;, t‘ G S be as in Definition A.13. Let w be an initial
ancestor of SI. Since the primitive state never changes and a is the primitive

state component of SI, it follows that w is an initial interpreted state of= with

primitive state component a. Since the primitive state uniquely determines the

initial interpreted state, w is the unique initial interpreted state of ~ with

primitive state component a. Similarly, there is a unique initial interpreted

state w‘ with primitive state component a‘. So w (respectively, w‘) is the

unique initial ancestor of sl, . . ..s. (respectively, s ~, ..., s:). Since knowledge is

cumulative, and since S, WI s;, it follows from Lemma A.9 that w W, w‘ for

each process i. So w w w‘. Since t‘ has primitive state component a‘, its

(unique) initial ancestor is w‘. Since process state transitions are independent

of the primitive state, and since w w w‘, it follows that there is an interpreted

state t with initial ancestor w such that t N t‘.Since (S,s) is a knowledge

situation of X and since t‘ G S, it follows that t G S. Also, t has a as its

primitive state component (since w does, and since the primitive state never

changes). Hence, we have constructed t with all the desired properties.

Conversely, let (S,s) be a knowledge situation that satisfies the matching

condition. We now define an interpreted system Y satisfying the four assump-

tions, such that (S,s) is a knowledge situation attainable in Y.

For each primitive state a, we define a distinct environment state em. As

before, the set of environment states of the interpreted system > we are

constructing contains precisely those environment states e. such that the

primitive state a appears in some member of S. Let Lo be the set of local

states that appear in some member of S. For each process i and each primitive

state a that appears in S, we define new, distinct elements t,,..For each i, we

form certain equivalence classes of the t,, .’s, by putting t,,.and t,,.~ in the
same equivalence class iff ~ contains interpreted states s, and s: such that

s, -, s: and the primitive state of s, (respectively, s:) is a (respectively, a ‘).

We denote the equivalence class of t,,.by [t,,.1. We let LI = {[t,, WI I i is a

process and a is a primitive state appearing in S}. The set L of local states is

then LO U L1.
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We now define the set q of runs in Y. There is one run rW for each w = S.

Assume that w = (11,.. .,1,,, a). Then rW(0) = (ea, [tl, a], . . . ,[t~, a]), and rW,(m)

=(ee,ll,..., l.) for m >1.

We define m in the obvious way, as before: If the environment component of

the global state r(m) is ea, then we let ~(r, m) = a. Again, the primitive

propositions characterize the initial environment.
By construction, the primitive state uniquely determines the initial inter-

preted state, and so (since the primitive propositions characterize the initial
environment), the environment uniquely determines the initial state.

We now show that knowledge is cumulative. Assume that rW(m) W, rW,(m ‘).

We must show that process i’s history in run rW up to time m is the same as

process i’s history in run rW, up to time m‘. If either m or m‘ is O, then by

construction we know that both are, and the history is simply ( rW(0)). So

assume that neither m nor m’ is O. Let w = (11, ..., l., a) and WJ’ =

(1:, . ...1:, a‘) (where we know that 1, = l:). Then process i’s history in run rW

up to time m is ([t, ~], 11), and process i’s history in run r; up to time m‘ is

([t,, ~~], 1: ). Since w ‘=, w‘ and the primitive state of w (respectively, w‘) is a

(respectively, a ‘), it follows from our definition of the equivalence classes that

[t,, ~] = [t, ~~]. Since also 1, = l;, it follows that process i’s history in run r,v up
to time m’ is the same as process i’s history in run r,v, up to time m‘. Thus,

knowledge is cumulative.

We now show that process state transitions are independent of the initial

environment. Thus, assume that u and LL’ are initial states where u - u‘ and

that r is a run with initial state u; we must show that there is a run r‘ with

initial state u‘ such that r(m) N r’(m) for all times m >1. Since r’(m) = r’(l)
for each run r‘ and for each m‘ > 1, we need only show that there is a run r‘

with initial state u‘ such that r(l) N r‘ (1). If LL = u’, then let r’ = r. So assume

that u # u‘. Assume that the environment state of LL (respectively, u‘) is eu

(respectively, eaj). Since u - u‘, it follows that for each process i, we have

[t,, al = [t,, al. That is, t,, a and t, ~, are in the same equivalence class for each

process i. By definition of the equivalence classes, this means that for each

process i, the set S contains primitive states s, and s; such that s, N, s; and

the primitive state of s, (respectively, s;) is a (respectively, a‘ ). Since the

primitive state component of r(l) is a and since S satisfies the matching

condition, it follows that there is some w G S with primitive state component

a‘ such that w N r(l). Then rw is the run r‘ that we have been seeking, since

7-W(1) = w’.

Finally, (S, s) is a knowledge situation attainable in Y, since every member

of S is an interpreted state of >, and the only interpreted states that are

reachable in > from a member of S are members of S. ❑

We now define a condition that, taken together with the pasting condition, is

equivalent to the matching condition.

Definition A. 15. A set S of interpreted states satisfies the weak matching

condition if whenever

(1) ~l,..., s,,,s;,s;=s,;=s,
(2’) a is the primitive state component of s], for j = 1,..., n,

(3) a‘ is the primitive state component of s;, for j = 1,..., n, and

(4) s, - ,sj’, forj=l, . . ..n.
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then for each t‘ = S with primitive state component a‘ and for each process i,

there is some t G S with primitive state component a such that t W, t‘.The

knowledge situation (S, s) is said to satisfy the weak matching condition if S

does. ❑

Thus, S satisfies the weak matching condition if whenever

Sl=(ll ,”,...,”, a) es,

s2=(”,12, ”,. ... ”,a!)G s,

S,, =(”, . . ..”. l,,, a!) es,

Sj=(ll, .,...,., a’) es,

sj=(”,12 ,”,...,”, a’) =s,

S:=(., . . ..ln.a, )=s, s,

t;=(. ..,l; ,a. .,a’) Es,

then

t,=( ....l.,..., (X)GS.

Similarly, we can modifi the definition in the obvious way to define what it

means for a Kripke structure to satisfy the weak matching condition.

LEMMA A. 16, The matching condition is equivalent to the pasting condition

along with the weak matching condition.

PROOF. Let S be a set of interpreted states that satisfies the matching

condition. It is clear that S satisfies the weak matching condition. We now

show that S satisfies the pasting condition. ln the definition of the matching

condition, let

S,=(l,,. ,..., a),),

s2=(”,12, ”,. ... ”, a),

Sn=(”, . . ..ln.a ),),

SJ’— 1 a’)forj=l, . . ..n.t’ =(1,,..., ~,

The matching condition then tells us that if SI, ..., s,,, t‘as above are all in S,

then so is t = (11,..../n,a).Therefore, the pasting condition is satisfied.



372 R. FAGIN ET AL.

Conversely, assume that the weak matching condition and the pasting

condition are both satisfied. Assume that

S,=(ll, ” . . . ..”. a)=s.

S2=(”,12, ”,. ... ”, C2)CS,

Sn = (“>...>”>~,ll~)=~,

S;=(ll, ”,.., ”,a’)=s,

S;=(”,12, ’,. ... ”, C)G)G s,

By the weak matching condition, we know that for each process i there is

some t,G S where t, = ( . . ..1.,..., a). Since tl, . . .. f.l, t’ EES. it follows from

the pasting condition that t = (1{,...,I:,a ) E S. Therefore, the matching

condition is satisfied, as desired. ❑

Assume that the processes are 1,..., n. Let Eq be a shorthand for KI p

A “”. ~ K,, q, that is, “Every process knows p.” Let EO~ be p, and let Ehp

abbreviate EEk -‘~ for k > 1. p is common knowledge (written Cp) if Ekp

holds for every k. If S is a set of interpreted states, and if s. t G S, then we say

t is distance at most k from s in S if there are SI, ..., sh+ 1 ~ S and processes

il, . . ..i~ where

(1) s, =s,

(2) Sk+ ~ = t, and

(3) s, ‘, s,+l. for 1 <j <k.

The following simple lemma, whose proof is left to the reader, will be useful

later.

LEMMA A.17. Let S be a set of interpreted states. (S,s) + E$p iff (S, t) & q

for e[eg t at most distance k from s in S.

Consider the following axiom (which involves common knowledge), where a

and a‘ are primitive states, and {1, . . . . n} is the set of processes.

A9*. (Q’~K, ~cY)* vC(a’-K,1a)
,=]

Intuitively, (the contrapositive of) A9* says that the weak matching condition

holds. This is because the contrapositive says that if there are states s,’ (for

l<j<n)wherear = K, 7 a fails (that is, where a‘ holds and where there is

s, such that a holds and such that SJ - , s;), then it is not possible for there to
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be a state t‘where a‘ holds and where there is no t,such that a holds and

t,-, t‘.Since we do not have common knowledge in the languages Y.(cD) and

-%~(~) that we are considering, we make use of the following axiom instead of

A9*, where a and a‘ are primitive states, {1,..., n} is the set of processes, and

k is a positive integer:

A9. (a’AK,-a)s ~Ek(a’ *KJ 1a)
,=1

(The contrapositive of) this new axiom says roughly that within a ball of
radius k, the weak matching condition holds. The next lemma, which is

analogous to Lemmas A.7 and A.12, makes the correspondence between the

weak matching condition and Axiom A9 precise. Note that unlike Lemmas A.7

and A. 12, we need to assume in the next lemma that S is connected. Of course,

for knowledge situations (S,s) it is always the case (by assumption) that S is

connected.

LEMMA A.18. Let S be either a connected set of interpreted states or a

connected S5 Kiipke structure. Then S satisfies the weak matching condition if and

only if (S,s) satisfies every instance of Axiom A9 for elle~ state s of S.

PROOF. We shall prove the result when S is a connected set of interpreted

states; the proof when S is a connected S5 Kripke structure is almost identical.

Assume first that S satisfies the weak matching condition, but that there is

t‘ = S such that (S, t‘)does not satisfy some instance of Axiom A9, say the

instance

It follows that

(S, t’)i=(Ci’AK, TCi) (8)

and that for every process j,

(S, t’) I#E~(a’ *KJ~a). (9)

By (9) and by Lemma A.17, we know that for each process j there is s,’ = S

(where s; is distance at most k from t‘)such that (S, s;) % a‘ -K, - a.

Hence, for each j we know that (S, s;) k a‘ and that there is some s, such that

s, N, s; and (S, Sj) i= a. It follows immediately that the four conditions of

Definition A.15 hold. By (8) we know that the primitive state component of t‘

is a‘. So by the weak matching condition there is t = S with primitive state

component a such that t W, t‘.Hence, (S, t‘)1= T K, - a. But this contradicts

(8).
Conversely, assume that (S,s) satisfies every instance of Axiom A9 for every

state sof S. Letsl, . . ..sH. s(, ..., s:, t‘ be as in Definition A. 15. Since S is

connected, there is k such that each of s(, ..., s~l is distance at most k from t‘.

It is straightforward to veri@ that for every process j, we have (S, s]’) 1# ( a‘ *
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KJ 1 a). So by Lemma A. 17, for each process j we know that (9) above holds.

Since (S, t‘)satisfies Axiom A9, and since (9) holds for every j, it follows that

(S, t’) & (a’ AK, 1 a). But (S, t’) R a’, andso(S, t’) l#K1 m a. Hence, there

is t = S with primitive state component a such that t -, f‘.Therefore, the

weak matching condition is satisfied. ❑

The next lemma is immediate from the equivalence of the matching condi-

tion with the pasting condition and the weak matching condition (Lemma

A. 16), along with the characterizations of the pasting condition by Axiom A6

(Lemma A.7) and the weak matching condition by Axiom A9 (Lemma A.18).

L~NtiwA A. 19. Let S be either a connected set of interpreted state~ or a

connected S5 Kripke wnlcture. Then S satisfies the matching condition if and only

if (S, s) satisfies eue~y instance of Axioms A6 and A9 for evety state s of S.

We now prove the analogue to Propositions 5.3 and 5.9.

PRO~OsIT1oN A.20. Let 27 be a class of interpreted systems with n processes. If

el’ery attainable knowledge sitllation in elery member of E satisfies the matching

condition, then S5,, + A6’ + A9 (respectiL’ely, S5D~ + A6 + A 9) is sound with

respect to F. Coruerseij, if el’e~ knowledge situatio~z that satisfies the matching

condition is attainable in some member of %-, then S5~ + A6’ + A9 ( respectil ’ely,

S5D,, -t A6 + A9) is complete ~ith respect to E for the language Y.(Q 1 (respec-

ti[’ely, J%:(O)).

PROOF. Lemma A. 19 can be used to prove soundness and completeness of

S5D,, + A6 + A9 in the language &’#(@ ) in the same way as Lemma A.7 was

used to prove soundness and completeness of ML,, (in the proof of Proposition

5.3). We now consider soundness and completeness of S5,, + A6’ + A9 in the

language Y,,(@). The soundness of A6’ follows from the soundness of A6, as

we showed in the proof of Proposition 5.3. Therefore, the soundness of

S5,, + A6’ + A9 follows from the soundness of S5D~ + A6 + A9, which we

already showed, We now consider completeness.

Let M be the canonical Kripke structure as constructed in the proof of

Theorem A. 1, except that “consistency” is now with respect to S5~ + A6’ + A9

rather than S5~. Since every maximal consistent set contains every instance of

Axiom A9, it follows as before that ( M,s) satisfies every instance of Axiom A9

for every state s of M. It then follows from Lemma A. 18 that every connected

component of M satisfies the weak matching condition. Also, the techniques

given in the proof of Proposition 5.3 can be carried over to show that M (and

hence every connected component of M) satisfies the pasting condition. So by
Lemma A. 16, every connected component of M satisfies the matching condi-

tion.

Assume now that p G&.(0) is consistent with respect to S5,, + A6’ + A9.

Then there is a state s of M such that (M, s) 1= p. Let (S, s) be the knowledge

situation at (M, ,s). Then, (S, s) + P. Since, as we noted above, every connected

component of M satisfies the matching condition, it follows that S does also

(recall that ,S’ is connected, by definition of a knowledge situation). Hence, by

assumption, (S, s) is attainable in some member of %. So q is satisfiable in

some member of %. This proves completeness. ❑

The next theorem is immediate from Propositions A.14 and A.20,
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THEOREM A.21. S5n + A6’ + A9 (respectiL’ely, S5D~ + A6 + A9) is a sound

and complete axiomatization with respect to interpreted systems of n processes

where (1) the em~ironment uniquely determines the initial state, (2) knowledge is

cumulati[’e, (3) process state transitions are independent of the initial environment,

and (4) the primitiL~e propositions characterize the initial environment, for the

language &~(@) (respectively, JZ~(@)).
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