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1. Introduction

Epistemology, the theory of knowledge, has been a subject of philosophical

investigation for millennia. Reasoning about knowledge and knowledge repre-

sentation has also been an issue of concern in Artificial Intelligence for over

two decades (cf. [5. 24, 29] ). More recently, researchers have realized that

these issues also play a crucial role in other subfields of computer science,

including cryptography, distributed computation, and database theory, as well

as in mathematical economics (cf. [13, 14]).
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For example, a distributed protocol is often best analyzed in terms of the

states of knowledge of the processors involved. In a protocol such as Byzantine

Agreement [8, 33], it is essential that this analysis includes not only what a

processor knows to be true about the world, but also its knowledge about what

the other processors know. Such reasoning can, however, get very complicated.

As Clark and Marshall point out [6], while it may be somewhat difficult to keep

straight a pipeline of gossip such as “Dean knows that Nixon knows that

Haldeman knows that Magruder knows about the Watergate break-in, ” making

sense out of “Dean doesn’t know whether Nixon knows that Dean knows that

Nixon knows about the Watergate break-in” is much harder. Yet this latter

sentence precisely captures the type of reasoning that goes on in proving lower

bounds for Byzantine Agreement [8].

The need to formally model this type of reasoning is our motivation for

constructing a semantic model for knowledge. The first attempt to do so was

made by Hintikka [18], using essentially the notion of possible worlds.
Hintikka’s idea was that someone knows p exactly if p is true in all the worlds

he thinks are possible. Possible-world semantics has been formalized (cf. [36])

using Kripke structures [21]. In a Kripke structure for knowledge, the

“possible worlds” can be viewed as nodes on a graph that are joined by edges

of various colors, one corresponding to each “knower” or “agent”. Two

possible worlds are joined by an edge for agent i exactly if they are indistin-

guishable as far as agent i is concerned.

There are situations where Kripke structures clearly model the state of

knowledge. For example, assume that there is a set of processors, each with a

set of clearly defined local states. We then define a Kripke structure whose

states consist of the global states (which describe the local states of each of the

processors), where two global states are indistinguishable to a processor if it has

the same local state in both. This is the situated-automata approach, where

knowledge is ascribed on the basis of the information carried by the state of a

machine [34]. This approach has been used in a number of papers on distributed

systems, including [7], [10], [15], [31], and [35]. However, there are situations

where it is not clear how to use Kripke structures to model directly a state of

knowledge.

Example 1.1. Consider a system with two communicating agents where

message transmission is not guaranteed. Suppose two messages have been

exchanged: A message from agent 1 to agent 2 saying p (think of p as being

“the value is 3‘’), followed by an acknowledgement from agent 2 that is

received by agent 1. Thus, agent 1 knows p, agent 2 knows that agent 1 knows

p, agent 1 knows that agent 2 knows that agent 1 knows p, and this, in some

sense, is all that is known. While it is easy to construct Kripke structures where

the formulas KI p, Kz K1 p, and KIKZ KI p are all true (where Kip is read

“i knows p”), it is not the least bit obvious which one captures precisely this

simple situation, or even if there is one. (It follows from our results in Sections

3 and 4 there indeed is one, but that there is none with only finitely many

nodes. )

The difficulty in using Kripke structures to model directly knowledge states

also sheds doubt on their adequacy as semantic models for knowledge. To get

around this difficulty, various researchers have tried to characterize a state of

knowledge syntactically, by the set of formulas that are true of this state
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(cf. [18, 25, 30]). This method, however, requires infinitely many formulas to

characterize a state of knowledge, and still begs the question of what a model of

a state of knowledge is. A model to us is a description of the world, not a

collection of formulas. Describing a state by the formulas that are true in it

seems to avoid the issue of modeling altogether.

In this paper, we introduce knowledge structures, which are intended to

model states of the knowledge. We also use the idea of possible worlds, but in a

somewhat different way than in Kripke structures. Rough] y speaking, we

proceed inductively by constructing worlds of each depth. A depth O world is a

description of reality (in the propositional case, a truth assignment to all the

primitive propositions); a depth 1 world consists of a set of depth O worlds for

each agent, corresponding to the worlds that the agent thinks are possible; a

depth 2 world consists roughly of a set of possible depth 1 worlds for each
agent, etc.

Having modeled knowledge states. we can go back and examine Kripke

structures. It turns out that we can now justify the use of Kripke structures as

models for collections of knowledge states. More precisely, to every node in a

Kripke structure there corresponds a knowledge structure where the same

formulas are true, and conversely, for every knowledge structure we can build

a Kripke structure one of whose nodes will satisfy the same formulas as the

knowledge structure. This correspondence between knowledge structures and

Kripke structures enables us to immediately apply to knowledge structures

results concerning complete axiomatizations and decision procedures that have

already been proved for Kripke structures (cf. [16, 36]).

Although the same axioms characterize knowledge structures and Kripke

structures, knowledge structures are a much more flexible tool for examining

two concepts that seem to us fundamental—~irzite information and common
knowledge—and their interaction. (A fact p is common knowledge if everyone

knows that everyone knows that everyone knows “ “ “ that p. For a discussion

of the significance of common knowledge for distributed systems, see [15]. ) We

study two model-theoretic constructions, no-information and least-informa-
tion extensions, that capture the notion of finite information, and finite

information in the presence of common knowledge. An interesting corollary of

this investigation is that finite Kripke structures cannot model lack of common

knowledge.

Approaches similar to ours have been taken by van Erode Boas et al. [38],

and by Mertens and Zamir [26]. In [38] an epistemic model is used to analyze

the Conway Paradox. Like ours, that model captures an infinite hierarchy of

knowledge levels, but it does not have the expressive power of knowledge

structures. In [26], the framework is Bayesian; a world is not just possible or
impossible, but it has a probabdlty associated with it. Mertens and Zamir’s

infinite hierarchy of beliefs is the analogue of our knowledge structures in a

Bayesian setting. We have more comments later about the relationship between

these works and ours.

The rest of this paper is organized as follows: In the next section, we

formally describe knowledge structures and show how to use them to give

semantics to formulas involving knowledge. In Section 3, we describe the

correspondence between knowledge structures and Kripke structures, and show

how we exploit this correspondence. In Section 4, we show how to model finite

information. These results imply the surprisingly subtle fact that in many
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practical situations, there can be no nontrivial common knowledge. In this

section, we also show that finite Kripke structures cannot in general model

finite information. In Section 5, we deal with common and joint knowledge.

The theme in this section is that common and joint knowledge involve knowl-

edge of transfinite depth, and we develop appropriate tools to deal with it. In

Section 6, we compare our approach with the Bayesian approach to modeling

knowledge and we comment on the flexibility and utility of knowledge struc-

tures, by showing hcw they can be extended to deal with belief and time. We

conclude with some remarks in Section 7.

2. Knowledge Structures

In this section, we define knowledge structures, each of which models a state

of knowledge. We assume a finite set of agents. The first step in designing a

model of knowledge is to decide what the properties of knowledge should be.

The nature of knowledge and its properties has been a matter of great dispute

among philosophers. Rather than attempting to resolve these disputes here, we

concentrate on one set of properties that seems natural, and mention later

(in Section 6) how to modify the model to capture various others.

We take it to be a part of the definition of knowledge that anything that

someone knows is true. Although someone may believe false things, it is

impossible to have false knowledge. The motivation for the other properties of

knowledge that we assume comes from considering a system of idealized

rational agents, in which it is common knowledge that each agent is capable of

perfect introspection and logical reasoning. In such a system, an agent knows

exactly what he does and does not know, and knows also all the logical

consequences of his knowledge. Finally, he knows that these properties hold for

all the other agents’ knowledge. These properties are essentially the axioms that

characterize our notion of knowledge. Thus, our knowledge structures will be

defined in such a way that they satisfy the following axioms (recall that K, p
means “agent i knows p‘’):

(1) All substitution instances of propositional tautologies.

(2) K,p = p (“Whatever agent i knows is true’ ‘).

(3) Kl~ + K,K,P (“Agent i knows what he knows”).

(4) v K,P + K, 7 K,p (’‘Agent i knows what he does not know”).

(5) Ktpl A K,(P1 = Pz) + K,pz (” What agent i knows is closed under

implication”).

These axioms were first discussed by Hintikka [18]. The axioms, along with

the inference rules of modus ponens (‘’from P ~ and P ~ - PZ infer Pj”) and

knowledge generalization (” from p infer K, p”) imply that the agents are very

wise: each knows all tautologies and all of the consequences of his knowledge,

and each knows that all of the other agents are equally wise. It is well known

that Axiom 3 can be derived from the other axioms and inference rules [20]. It

is convenient to refer sometimes to Axiom 3 as describing positive introspec-
tion, and to Axiom 4 as describing negative introspection.

Before we formally define knowledge structures, let us discuss them infor-

mally. Assume first that there is only one agent. In this case, a knowledge

structure consists of two parts. The first part describes “reality. ” For simplic-

ity, in this paper, we take reality to be a truth assignment to a fixed set of
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primitive propositions. The second part of a knowledge structure describes a set

of “possible worlds, ” each of which is a truth assignment that the agent thinks

is possible.

Example 2.1. Assume that p, q, and r are the primitive propositions, and

that “reality” is the truth assignment p~r, which means that p is true, q is
false, and r is true. Assume that the agent knows that exactly one of p, q, or r
is false, but that he does not know which. Then, his set of “possible worlds” is

{ Pqr, Pqr. pq~}.

When there are two or more agents, then the situation becomes much more

complex, Not only can agents have knowledge about reality, but they can also

have knowledge about each other’s knowledge.

Example 2.2. Assume there are two agents, Alice and Bob, and that there

is only one primitive proposition p. At the ‘‘ Oth level” (‘’reality”). assume

that p is true. The 1st level tells each agent’s knowledge about reality. For

example, Alice’s knowledge at the 1st level could be “I (Alice) don’t know

whether p is true or false”, and Bob’s could be ‘‘1 (Bob) know that p is true”.

The 2nd level tells each agent’s knowledge about the other agent’s knowledge

about reality. For example, Alice’s knowledge at the 2nd level could be <6I

know that Bob knows whether p is true or false, ” and Bob’s could be <‘1 don’t

know whether Alice knows p.” Thus, Alice knows that either p is true and

Bob knows this, or else p is false and Bob knows this. At the 3rd level. Alice’s

knowledge could be “I know that Bob does not know whether I know about

P.” This can continue for arbitrarily many levels.

We now give the formal definition of a knowledge structure, and then explain

more of the intuition underlying it. We assume a fixed finite set of primitive

propositions, and a fixed finite set P of agents. A O th-order knowledge
assignment, fO, is a truth assignment to the primitive propositions. We call

(~0) a l-ar.v world (since its “length” is 1). Intuitive] y, a 1-ary world is a

description of reality. Assume inductively that k-ary worlds (or k-worlds, for

short) have been defined. Let WA be the set of all k-worlds. A kth-order
knowledge assignment is a function f~: p ~ 2 “L. Intuitive y, f~ associates

with each agent a set of “possible k-worlds”; the worlds in j~( i) are

“possible” for agent i and the worlds in WL – ~~( i) are “impossible” for

agent i. A (k + 1)-sequence of knowledge assignments is a sequence

(fo.. . . , f.), where f, is an ith-order knowledge assignment. A ( k + 1)-wor~d
is a ( k + 1)-sequence of knowledge assignments that satisfy certain semantic

restrictions, which we shall list shortly. These restrictions enforce the proper-

ties of knowledge mentioned above. An infinite sequence ( fn, f ~, fz, . . . ) is
called a knowledge structure if each prefix (f., . . . . f~ _, ) k a k-world for

each k. Thus, a k-world describes knowledge of depth k – 1, and a knowl-

edge structure describes knowledge of arbitrary depth.

Example 2.3. Before we list the restrictions on f~, let us reconsider

Example 2.2. In that example, Jo is the truth assignment that makes p true.

Also. f ,(Alice) = {p. D} (where by p (respectively, ~) we mean the l-world

(fO) (reSP.. (fi))> where fo (reSP., f:) iS the truth assignment that makes P
true (resp., false)), and f ,(Bob) = { p}. Saying f ,( Alice) = { p, j5} means
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that Alice does not know whether p is true or false. We can write the 2-world

(fO) f,) as

(p, (Alice= {p, P}, Bob~ {P})).

Let us denote this 2-world by w,. Let w~ be the 2-world

and let w~ be

(p, (Alice~ {p}, Bob~ {p})).

h Example 2.2, fz(Alice) = { WI, Wz}, since Alice thinks both WI (where p
is true and Bob knows this) and Wz (where p is false and Bob knows this) are

possible worlds. Similarly, fJBob) = { w,, W3}, since Bob thinks both w,

(where p is true and Alice does not know it) and Wa (where p is true and Alice

knows this) are possible worlds.

A (k + I)-world (fO, . . . , ~A) must satisfy the following restrictions for
each agent i:

(Kl) Correctness: (fO, . . ., f~-1) ~f~(i), if k ~ 1 (“The real k-world is
one of the possibilities, for each agent”). In our example, we see that indeed

p e f ~(Alice) and p e f ~(Bob). Furthermore, WI e ~z(Alice) and WI ● ~z(Bob),
where we recall that w, is the “real” 2-world ( fO, fl). Intuitively, this

condition says that knowledge is always correct (unlike belief, which can be

incorrect).

(K2) Introspection: If ( gO, . . . . g~-1) ~f~(i), and k > 1, then g~-l(i) =
f,&,( i) (’‘Agent i knOWS exactly what he knows”). Let us consider our
example. Alice thinks there are two possible 2-worlds, namely, W, and W2,

since fz(Alice) = { WI, Wz}. If we write Wz as ( gO, g ~), then indeed g ~(Alice)

= {P, P} = fl(Alice), as required. Intuitively, although Alice has doubts
about Bob’s knowledge, she has no doubts about her own knowledge. Thus, in

all 2-worlds she considers possible, her knowledge is identical, namely, she

does not know whether p is true or false. This condition implies that our agents

are introspective about their knowledge.

(K3) Extension: ( gO, . . . . gk-2) ~ fk-l(i) iff there is a (k – l)st-order
knowledge assignment gk_, such that (gO, . . . . g~_J, g~_ ~) c fk(i), if k > 1

(” i’s higher-order knowledge is an extension of i’s lower-order knowledge”).

In our example, since Alice thinks either p or ~ is possible, there is some

2-world she thinks possible (namely, w,) in which p is true, and there is some

2-world she thinks possible (namely, Wz) in which p is false. Conversely,

because she thinks WI and Wz are both possible, it follows that she thinks either

p or ~ is possible. Intuitively, this condition says that the different levels of

knowledge describing a knowledge world are consistent with each other.

We note that (Kl) implies that if ( fO, . . . . f~) is a (k + 1)-world, then

(f”>... >fj) is a (j + 1)-world, for all j such that O s j s k. We also note
that our three restrictions imply an apparent strengthening of (K2): namely, if

(go,..., g~-1) ~~~(i)t and k > 1, then {J(i) =~j(i) if 1 =j < k. Simi-
larly, our conditions imply that the “compatibility” between fk and fk _, as

expressed by (K3) implies that the same compatibility holds between fk and fj
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if O < j < k. Thus, i‘s higher-level knowledge determines his lower-level

knowledge (i. e., ~~( i) determines ~j( i) if O < j < k). So, higher-order knowl-

edge refines (i. e., adds more detail to) lower-level knowledge.

We have phrased (K3) as a necessary and sufficient condition, but it is easy to

see that one direction actually follows from (K 1) and (K2). Suppose that

(go,..., gk-z, g~-,) ~~k(i). Then, by (K2). g~_l(i) =~~-,(i). By (Kl),

(go, ~ ~ g~-~) = g~-~(i). If follows that (go, ..., g~-z) =~~-,(i). From
now on, whenever we have to verify that (K3) holds, we check only the

nontrivial direction.

It is not obvious that every world is the prefix of some knowledge structure.

J. McCarthy (personal communication) posed essentially this question as an

open problem in 1975 (in a different framework, of course). In fact, it may not

be obvious to the reader that there are any knowledge structures at all. As we

shall see in Section 4, there are many, and the answer to McCarthy’s question is

positive.

There are tempting ways to “simplify” knowledge structures. It turns out

that the alternative definitions are not expressive enough to model the full range

of possibilities that knowledge structures can model. For example, one may

want to define a kth-order knowledge assignment as an assignment to each

agent of the set of ( k – 1)th-order knowledge assignments (instead of a set of

k-worlds). This in fact is the approach taken by van Erode Boas et al. [38].

Unfortunately. with this definition we cannot describe the state of knowledge

where Alice knows that either p is true and Bob knows it or p is false and Bob

does not know it. Essentially, the simpler approach cannot model knowledge

about relationships between knowledge and reality, and, more generally,

it cannot model knowledge about relationships between different levels

of knowledge.

Let f be the knowledge structure (~., j,, . . . ). Define i’s view off, denoted

r,(f), to be the sequence (~1( i), ~z( i), . ., ). If f and f are knowledge struc-

tures, we say that f and f are i-equivalent, written f -, f’, if r,(f) = ~l(f’).

Thus, f and f are i-equivalent if agent i cannot distinguish between them.

At this point, we can imagine two notions of what it means for agent i to

think that a k-world w is possible. The first is the one we have been implicitly

using up to now: agent i thinks w is possib[e in a knowledge structure

f = (f., f,, . ..) if w c fk( i), We say that agent i thinks w is conceivable in
f if w is a prefix of some knowledge structure f’ such that f -1 f’; that is. w is

the prefix of a knowledge structure that agent i cannot distinguish from f. The

following theorem assures us that the two notions of “possible world” are

identical.

THEOREM 2.4. Agent i thinks that w is possible in f lff ugent i thinks

that w is conceivable in f.

PROOF. Assume first that agent i thinks w is conceivable in f, so w =

LJe.f . f~_,) is the prefix of a knowledge structure f’ = (f:, X, . . . . ),
-1 f’. In particular, we have fk(i) = f~(i). BY (Kl), (f:, . . . . f~-l) e

f;(i). Hence, w c fk( i), so agent i thinks w is possible in f.
Conversely, suppose agent i thinks w is possible in f, so that w =

/$3... , fi-i) ~fjJO. BY (K2), fi-l(d ‘f~-l(i). AS we commented ear-
it follows easily that fj( i) = fJ( i) if 1 s j s k – 1. Since

(f:: ~ ~ ., fi-,) G fk( i), it follows from (K3) that there is some fji such that
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(f:>... >fj- 1, f;) ~ fk+,( i). BY (K2), f~( i) = f~(i). Similarly, we can find

f~+,,f~+zt. . . Such that f -f’ = (f&, X,.. .). Since w is a prefix of f’, it
follows that w is conceivable in f. ❑

The set of formulas is the smallest set that contains the primitive proposi-

tions, is closed under the Boolean connective 1 and A, and contains K, p if it

contains p (in Section 5, we discuss richer languages). Boolean connective

such as V and = are defined as usual. We now define the depth of a formula

p, denoted depth(p).

(1) depth(p) = O if p is a primitive proposition;

(2) depth(l p) = depth(p);

(3) depth(pl A 92) = max(depth(p, ), depth( p,));
(4) depth(K, p) = depth(p) + 1.

We are almost ready to define what it means for a knowledge structure to

satisfy a formula. We begin by defining what it means for an ( r + 1)-world

(fO,... >f,) to satisfy formula p, written ( fO, . . . . f,) i= p, if r 2 depth(p).

(1) (fO, . . . . f,) = P, where p is a primitive proposition, if p is true under
the truth assignment fO.

(2) (foj. . . . f,) E1pif(fO, . . .. f.) *p.
(3) (fot . . . . f,)~p, Apzif(fO, . . .. f.) bpland(fO, . . .. f.)t=pz.
(4) (fo> . . . . f,) ~K,p if (gO, . . . .

f,(i).
g,-1) ~ p for each (gO, . . . . g,_l)e

Let us reconsider Example 2.2. Let w ~ and Wz be, as before, the two

2-worlds that Alice considers possible. Then w, I= K~o~ p, since according to

w,, the only 1-world Bob considers possible is (p). Similarly, W2 E KBOb 7 p.
Hence, both w ~ and Wz satisfy ( K~Obp v K~Ob 7 p). Since both of the 2-worlds

that Alice considers possible satisfy ( K~O~p V K~O~ 7 p), it follows that in our

example ( fo, f 1, fz) = ‘Allce ~KBob P V KBob 7 P).
The next lemma says that to determine whether a formula of depth k is

satisfied by a world, we need only consider the (k + 1)-ary prefix of the world.

LEMMA 2.5. Assume that depth(p) = k and r z k. Then, (fO, . . . . f,)

‘~iff(fo,...,fk)=p.

PROOF. The proof is by induction on formulas. The only nontrivial case is

when P is of the form K, ~, where we assume inductively that the lemma holds
when p is ~. Assume that (fO, . . . , f,) = K1~, and that depth(K,~) = k s r.
Let (go, . . . . gk- 1) be an arbitrary member of fk( i). It follows from (K3) that
there exist gk, . . . . g,-1 such that (go, . . . . g&l, ..., g,-l)~ f,(i). Since
(fo... > f,) * K,+, itfollows by definition that ( gO, . . . . g,_ ~) E ~. So, by
inductive assumption, (go, . . . , gk - 1) ~ 4. Thus, every member Of f~( i)
satisfies ~, and so (f., . . . , f~) = K,*) as desired. The proof of the converse
is similar. ❑

We say that the knowledge structure f = (fO, f ~, . ..) satisfies p, written

fbp, if(fO, . . . , f~) * p, where k = depth(p). This is a reasonable defini-
tion, since if w = (.fo, . . . . j,) is an arbitrary prefix of f such that r 2 k, then

it then follows from Lemma 2.5 that f != p iff w & q. We say that p is

satisfiable if it is satisfied in some knowledge structure, and valid if it is

satisfied in every knowledge structure.
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PRO~OSITTON2.6. All of the axionls are valid.

PROOF. (Kl) (which says (f,, . . . .f~-,) ~fk(i), if k ~ 1) causes the
axiom K,p = p to be valid. (K2) (which says that if (gO, . . . . gL_, ) e fk(i).

and k > 1, then g~ _,( i) = f~ _,( i)) can be viewed as a combination of two

restrictions, one with g~_ l(i) g fL _ l(i), and one with gL _ l(i) ~ fL_, ( i). The

former restriction causes the axiom K,p + K,K, P to be valid, and the latter

causes the axiom 7 K,p + K, 1 K[p to be valid. The remaining simple details

are left to the reader. ❑

THFORENI 2.7. f E Klp iff g E p whenever ~ -, g.

PROOF. Assume that depth(K(p) = k. We first show that if f = K, p and

f -, g,theng t=p. Let fbe(fO, fl, . . . ), and let w’ be the k-world that is a

prefix of g. By Theorem 2.4. we know that w c fA(i). Since f != K,p, it
follows by definition that every member of f~ ( i) (and, in particular, w)

satisfies p. Since w = p, it follows by definition that g t= p, as desired.

Conversely, assume that g E= p whenever f -, g. To show that f E K, p, we
must show that w E p for each ~’ e fL( i). Assume that w c fk( i). By Theorem

2.4, M’ is a prefix of some g such that f –, g. By assumption, g E p, and so bY

definition w = p. ❑

Thus, agent i knows p precisely if p holds in every knowledge structure that

i thinks possible. Theorem 2.7 is a powerful tool. It shows the equivalence of

two distinct notions of truth. The first notion of truth, which we can call

‘ 6internal truth”, says that K, p is true if p is true in every k-world that i
thinks is possible (where depth( K, p) = k). These k-worlds are obtained by

“looking inside” the knowledge structure (at level k). Thus, internal truth is a

finitistic notion. The other notion of truth, which we can call ‘ ‘external truth”,

says that K, p is true if p is true in each of the knowledge structures that i
thinks is possible, of which there can be uncountably many.

3. Knowledge Structures and Kripke Structures

Many previous attempts (cf. [25, 29, 36] ) to provide a semantic foundation for

reasoning about knowledge have made use of Kripke structures [21].
Suppose we have agents 1, . . . . H. The corresponding Kripke structure J%2is

a tuple (S, II-, 71, ..., fin), where S is a set of states. m(s) is a truth
assignment to the primitive propositions for each state s e S, and ,x’, is an

equivalence relation on S (i. e., a reflexive, symmetric, and transitive binary

relation on S). Intuitively, (s, r) e x, iff s and t are indistinguishable as far

as agent i’s knowledge is concerned. We now define what it means for a

formula p to be satisfied ata state s of &f, written ill, s I= p.

(1) M. s E p, where p is a primitive proposition, if p 1s true under the truth
assignment x-(s).

(2) ItZ. sE1pifiM, s$p.

(3) M,s Ltp1Ap2if M,s L plandiVf, sbp2.
(4) M. s 1= KIP if i$f, 1 E p for all t such that (s, t)e i’,.

It is not hard to show that with Kripke semantics. the modality K, also has all

the properties discussed in the previous section (see [16] and [36] for more

details). The reflexivity of Y, give: us K[~ - p, transitivity gives us K[p a
K, K, p, and symmetry and transltlvlty together give US 1 K, P + K, 1 K, ~.
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Even though Kripke structures give K, the desired properties, it is not clear

that they actually capture our intuition about knowledge. In particular, it is not

clear what state of knowledge corresponds to a state in a Kripke structure. The

following theorem clarifies this issue by providing an exact correspondence

between knowledge structures and states in Kripke structures.

We say that a state s of Kripke structure &l is equivalent to knowledge

structure f if ill, s E p iff f E p, for every formula p. That is, s and f are

equivalent if they satisfy the same formulas.

THEOREM 3.1. To every Kripke structure M and state s in M, there
corresponds a knowledge structure t’ *~ , ~ such that s is equivalent to ~~f ~.
Conversely, there is a Kripke structure M~ .<,,, such thaf for every knowl-
edge structure ~ there is a states~ in ML.0 ~ such that ~ is equivalent to s~.

PROOF. Suppose M is a Kripke structure. For every state s in M we

construct a knowledge structure f ~f, , = (f~l f:, ...) Firstj f: is just the truth
assignment m(s). Suppose we have constructed fj, f ~, . . , f; for each state s

in Al. Then, f~+l(i) = {(f;, . . . , f[): (s, t) e ~,}. We leave it to the reader
to check that M,,~O,,,, s E p iff fM, ~ E p.

For the converse, let A4LHOW = (SL,lO,,,, x-, 71, . . . . }’~), where SL,ZO,,, con-

sists of all the knowledge structures, T(f) = f., and (f, g) ~ Y, iff f -, g.

Now using Theorem 2.7, we can show Af~,ZO),, f I= p iff f = p. ❑

In [36] it is shown that the axioms of the previous section, with modus ponens

and knowledge generalization as the rules of inference, give a complete

axiomatization for the Kripke structure semantics of knowledge, while in [16] it

is shown, again with respect to Kripke structure semantics, that the question of

deciding if a formula is satisfiable is I?SPACE-complete (provided there are at

least two agents). From Theorem 3.1, it follows that these results also apply to

the knowledge structure semantics, so we get:

COROLLARY 3,2. The axioms of the previous section, together with
modus ponens and knowledge generalization as the rules of inference, give
a complete axion~atization for knowledge structures.

COROLLARY 3.3. The problem of deciding if a formula is satisfiable is
PSPA CE-complete ( provided there are at least two agents).

We note that in [11] it is shown how to obtain an elegant, constructive proof

of Corollary 3.2, by working only with knowledge structures and not making

use of the completeness theorem for Kripke structures.

Theorem 3.1 shows that knowledge structures and Kripke structures have the

same theory, but its implications are deeper. It shows that knowledge structures

and Kripke structures complement each other in modeling knowledge: knowl-

edge structures model states of knowledge and Kripke structures model collec-

tions of knowledge states.

4. Modeling Finite Information

4.1 THE ~0-iNFORMATION EXTENSION. A knowledge structure fully describes

a state of knowledge; that is, it describes arbitrarily deep levels of knowledge.

III reality, however, agents have only a finite amotmt of information. In this
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section, we study the knowledge states that arise from finite amounts of

information. Put different y, we study knowledge structures that have finite

descriptions.

Consider a variant of Example 1.1, where we have a system with three

communicating agents, Alice, Bob, and Charlie. Assume that Bob has sent no

messages and has received only one message, a message from Alice saying
“p” (i. e., p is true). For ease of exposition, let us also assume that p is the

only primitive proposition. Intuitively, all that Bob knows at this point is that

Alice knows p. But what state of knowledge does this correspond to?

The answer to this question depends in part on the underlying model of

knowledge acquisition (cf. [10, 12]). For example, is it possible as far as Bob is

concerned that Charlie knows that Bob knows p, even though Bob never sent

any messages? The answer may be yes if each agent stores the information he

has about primitive propositions and about the information he has received from

other agents in a database, and if databases are insecure, so that agents can read

each other’s databases (then Charlie can find out what information Bob has

received, without receiving any messages from other agents). It may also be yes

if messages are guaranteed to arrive in one round of communication, for in

that case, for all Bob knows, Alice may have sent Charlie a message (in the first

round) saying that she would also send Bob the message “p” in that round. On

the other hand, if message communication is not guaranteed and databases are

secure, then Bob knows that Charlie does not know that Bob knows p. Is it

possible that Alice knows that Bob knows that Alice knows p? Again, the

answer depends in part on whether communication is guaranteed. If there is a

chance that messages may not arrive, then it is not possible for Alice to have

such depth 3 knowledge at the end of the first round.

In order to characterize Bob’s knowledge state, we first consider the most

“permissive” situation, where we assume that agents have no knowledge about

how other agents acquire information. Thus, agents should allow for all

possibilities that are consistent with the information they have. Since Bob has

received a message from Alice saying p is true (and we assume that messages

are honest). Bob knows that Alice knows p. Of course, Bob also knows that he

himself knows p, but he has no idea whether Charlie knows p. Thus, there are

two 2-worlds that Bob thinks are possible:

(p, (Alice~ {p}, Bobw {p}, Charlie= {p}))

and

(p,(~lice~ {p}Bobw {p}, Charlie~ {p, ~})).

Let W be the set consisting of these two 2-worlds. What 3-worlds does Bob

think possible? Intuitively, Bob should consider a 3-world w = ( gO, g ~, gz )

possible if it is consistent with Bob’s information, that is, if ga(Bob) = W. Let

W’ be the set of 3-worlds that satisfy this condition. These are the 3-worlds that

Bob considers possible. This idea extends. The set of 4-worlds that Bob thinks
are possible consists of all the 4-worlds (go, g,. g~, g3 ) such that g,(Bob) =

W’. We shall generalize this idea shortly when we define the no-information

extension.

Let W be a set of ( k – 1)-worlds, and i an agent. Define the i-extension of
W to be the set of k-worlds given by {(go, . . . . g~_l): g~_l(i) = W}.
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Intuitively, this is the set of k-worlds w such that in w, agent i considers W as

the set of possible (k – 1)-worlds.

Definition 4.1. Letw=(fO, . . . , fk) be a (k + 1)-world. The one-step
no-information extension w q of w is the (k + 2)-world (fo, . . . ,.fL, fk+l),
where fk+ ~(i) is the i-extension of fk(i). Thus, fk+ l(i) = { (gO, . . . . gk):

gk(i) = fk(i)}.

In the above definition (and later), we use the convention that fo( i) is the

empty set for each agent i. Hence, ( fo) + = (f., f J, where f,(i) is the set of

all truth assignments, for each agent i. Intuitively, the one-step no-information

extension (f., . . . ,fk, fk+,) Of(fo>. . . , fk) describes what each agent knows
at depth k + 1, assuming that “all that each agent i knows” is already

described by fk( i) and given the underlying “permissive” model described

above. Thus, fk + 1(i) is the set of all k-worlds that are compatible with i‘s
lower-depth knowledge.

We can relate this definition to the notion of i-equivalence defined in the

previous section as follows. Let w = (fo, . . . . fk_, ) and W’ = (f:, . . . . f~_, )
be k-worlds. By analogy with our definition of i-equivalence for knowledge

structures, let us say that the worlds w and w’ are i-equivalent (written

-[ w?, if fj(i) = f;(i) for O < j < k. Then (as noted in Section 2), w -, w’

{f fk - 1(0 = fj_ l(O. SO, f~+l(i) is the i-extension of f~(i) if fk+ ~(i) =

{fgo..$gk)’ (gel,...,g~) -,( fo,..., fA)}.
The intention of the one-step no-information extension is that w+ describes

the knowledge of the agents one level higher than the description of their

knowledge in w, if w completely describes the information they have. How-

ever, a priori, it is not clear that w+ is even a world, since it may not satisfy

the three restrictions described in Section 2. Before removing this doubt, we

need some auxiliary machinery.

The following lemma, whose proof is left to the reader, shows that knowl-

edge assignments can be “mixed” together.

LEMMA 4.2. Let (fO, . . . . f~) and (gO, . . . . g~) be (k + 1)-worlds such
that (fo, . . .> fk-,) -[(go, ...> g~. ~). Let hk be a kth-order knowledge
assignment such that h~(i) = fk( i) and h~( j) = g~( j) for j # i. Then

(go,..., g~-1, h~) is a (k + I)-world.

Letw=(fo, . . . ,fk) be a (k + 1)-world and let (gO, . . . . gk_,) ef~(i).
The i-matching extension of ( gO, . . . . g~- I ) with respect to w is the sequence

(go>..., g&1. g~), where gJO = fk(i) and gk(j) is the j-extension of
gk-l(j) for j # i.

LEMMA 4.3

(1) Let (fo, . . . , f~.,) be a k-world. Then the one-step no-information
extension is a (k + 1)-world.

(2) Let w = (fo, . . . ,f~) be a (k + 1)-world and let (go, . . . . g~-l) e
fk(i). Then the i-matching extension of ( gO, . . . . gk_ ~) with respect to
w is a (k + 1)-worlci.

PROOF. We prove parts (1) and (2) simultaneously by induction on k. To
prove part (l), we consider a k-world w = (fo, . . . . fk_l). Let (fo. . . . . fk)
be the one-step no-information extension of w. We have to show that
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(fo. . ~~, fk) satisfies the restriction (Kl), (K2), and (K3). The case k = 1 is

immediate. For the inductive step, again the fact that (K 1) and (K2) hold

follows immediately from the definition of the one-step no-information exten-

sion. For (K3). suppose ( gO. . . . . gh -2) = fk- 1(0. Let ~’ be the ~-matchiw
extension of ( gO, . . . . g~_,) with respect to w. By the induction hypothesis, w’

is a k-world. By construction w -, w’, so by the definition of the one-step

no-information extension, w’ c f~ ( i). Thus. every element of fk( i) has an

extension in fk +, ( i), and (K3) holds.

To prove part (2), we consider first the one-step no-information extension

(go,..., g~) of (go, . . ~ , g~ - 1). BY the induction hypothesis, (go, ..., g~) is
a (k + 1)-world. Since (go, . . . , gk_l) e fk(i), we have that (fo, . . . , fk_l)

-Jg~,..., gk. I). The claim now follows by Lemma 4.2. ❑

Part (1) of Lemma 4.3 tells us that indeed, the one-step no-information

extension of a world is a world.

We now develop some machinery that justifies the name “no-information

extension. ” We have defined what it means for an (r + 1)-world (f., . . . . f,)
to satisfy formula p, written (f.. . . . . f,) t= p, if r z depth(p). We now give

an extension of this definition to formulas of greater depth. Let us say that a

world w must eventually satisfy p, written w E+ p, if for every knowledge

structure f with w as a prefix, f E P. For example, if the primitive proposition

p is true under the truth assignment f., then ( fo) 1=+ 1K11 p, since if p is
true, then it is not possible for an agent to know T p. Note that we cannot

replace F+ by E (in other words, it is not the case that ( fo) c 1 K, 1 p),
since the depth of the formula m K, 1 p is too big.

Say that a set Yi of formulas logically implies the formula a, written X E o,

if every knowledge structure that satisfies every formula of Z also satisfies o.

That is, X logically o if there is no ‘‘ counterexample” knowledge structure that

satisfies every formula of 2 but not o.

The next proposition justifies the name “no-information extension” by

characterizing when an agent i knows a formula p of depth at most k – 1 in
the one-step no-information extension of a k-ary world w = (f., . . . . fk _, ).
The proposition says that this happens precisely when the truth of the formula

K, p is already guaranteed by w anyway. There are two ways that we make

precise “the truth of the formula K, p is already guaranteed by w anyway”. In

the first sense (part (2) of Proposition 4,4 below), w E+ K, p; that is, w must

eventually satisfy K, p, as defined above. The second sense (part (3) of

Proposition 4.4) says that knowledge (and lack of knowledge) of agent i, as

described by w, is sufficient to logically imply K, p.

PROPOSITION4.4. Assume that i is an agent, w is a k-world. and p is a
formula of depth at most k – 1. The following are equivalent.

(1) w+!= K,p;
(2) w E+ K,p;
(3) Let 2 be the set of all formulas -y of depth at most k – 1 of the form

K, $ or ~ K,+ that are satisfied by w. Then, X I= K, p. [

‘ Note that If k = 1, then there are no formulas Y of depth O of the form K,+ or 1 K,*. Thus. ]f

k = 1, then S M the empty set
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PROOF. It is immediate that (2) implies (1), since w is a prefix of W+. We

now show that (3) implies (2). Assume that (3) holds. Let f be a knowledge

structure with w as a prefix. We must show that f E K, q. Since w satisfies Z,

so does f. Since ~ i= K, p, itfollows that f E K, p, as desired.

We now show that (1) implies (3). Assume that (1) holds. Let w+=

(f” ,.. .. fk). Let X be as in (3), and let f’ = (f~, fi, . . .) be a knowledge
structure that satisfies E. We must show that f’ = K, q. That is, let u =

(go,... ! gk. 1) be an arbitrary member of fi( O; we must show that u ~ P.
Since f’ satisfies X, so does its k-ary prefix ( f~, . . . . f,j _, ). It therefore

follows from Lemma A 1 of the appendix that fk. 1(i) = f: _,( i). Since u =

(go,., g~- 1) G fi(i)t it follows from (K2) that .gk- l(i) = f;- l(i). Hence>
c!?k-l(i) = fk-l(i). Therefore, by definition of the one-step no-information

extension, u e f~(i). Since w+= (fo, . . . , fk) E Klp, it follows that u = p.

This was to be shown. El

We now define the no-information extension of a world w to be the result

of repeatedly taking one-step no-information extensions. l?ormally, the no-
infornmtion extension W* of w = (f ~, . . . , fk) is the sequence

(fO>. ~~,fk, fk+,,. ..), where (fo, . . . t fwl + ~) is the one-step no-information
extension of (f., . . . . f,,,) for each m > k. Intuitively, the no-information

extension W* is a knowledge structure that describes the knowledge of the

agents, if w completely describes the information they have.

We might hope that an analogous proposition to Proposition 4.4 would hold

for the (full) no-information extension. However, this is not the case. To

understand why, let us denote the twe-step no-information extension (w+)+
of W by W++. If we replace w+ everywhere in Proposition 4.4 by w++, and

let p be of depth k., then the proposition no longer holds. For example, let p
be a primitive proposition that is true under the truth assignment f.. Then

(f,) ‘i= 1 K, p, so by negative introspection, (f,) ‘+!= K, - K, p. Therefore,
if p is lKlp, then (fo) ‘+K= Klp, although (fo) 1#‘K, p and E t# K,p,
where 2 is as in part (3) of Proposition 4.4. What is happening is that negative

knowledge at one level induces positive knowledge at the next level. This would

not happen if we modified the definition of knowledge structures by eliminating

negative introspection, as is done in [39].
Let w = (fo, . . . . fA)bea (k+ 1)-world, and let W+= (fo, . . . ,f~,fk+l)

be the one-step no-information extension. Note that for each (k + 2)-world

(fO! ..., fk, f~+l) ‘hat ‘Xtends ‘$ ‘e ‘ave f~+l(i) g fk+l(i) ‘or ‘ach agent i

(this follows from the restriction that for every (go, . . . . gk) ESf; +,( i) neces-

sarily gk(i) = fk( i)). Thus, the one-step no-information extension can be

characterized by the fact that fL +, ( i) is maximal for each i. This explains why

“no extra knowledge” is added in taking the one-step no-information exten-

sion, since the more possible worlds there are, the less knowledge there is.

However, now let (fo, . . . . fk, fk+l. fk+~ ) be the two-step no-information

extension w++. It is not the case that fk+2( i) is maximal for each i, among all

two-step extensions ( fo, . . . . fk, f~+ ~, f~+2 ) of w. This is because if f:+ ,(i)
# fk+,( i), then f;+ 2( i) and f~+, ( i) are incomparable (and in fact, disjoint
from each other), since every (go, . . . . g~+i) ~fi+z has g~+l(O =f;+l(i)!
whereas every (go, . . . , gL+l) G fk+2 ‘as gk+l(i) = fk+l(i). ‘gain, ‘he point
is that lack of knowledge at one level induces knowledge at the next level, by

negative introspection.
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The next theorem follows immediately from part (1) of Lemma 4.3.

THEOREM 4.5. For all worlds w, the no-information extension W* is a
knowledge structure.

COROLLARY 4.6. Every world is the prefix of a krzo wledge structure.

We note that in fact, it is not hard to show that every world is the prefix

of uncountably many distinct knowledge structures. Corollary 4.6 answers

McCarthy’s question (see Section 2) positively.

We shall investigate some properties of the no-information extension in the

next section.

4.2 ON THE PRESENCEOF COMMON KNOWLEDGE. Recall that state s of Kripke

structure k? is equivalent to knowledge structure f if lf, s = P iff f P p, for

every formula p. Since a no-information extension captures what is perhaps the

most natural notion of finite information, one might hope that for each

no-information extension w*, there would be a finite Kripke structure (i.e., one

with finitely many states), one of whose states is equivalent to w*. However,

this is not true. In fact, it is very far from the truth: For no no-information

extension is there such a finite Kripke structure. To understand why, we must

first consider the notion of common knowledge.
Assume that the agents are 1, . . . . n. Let Ep be a shorthand for ~1 p

A -.. AKnp, that is, “Everyone knows p‘’. Let ~“p be p, and let EJp
abbreviate EE’ – 1p for j a 1. We say that the formula p is comnzon

kno w[edge in knowledge structure f if f E EJp for every j >0. Similarly,

we say that the formula p is conzmon knowledge in state s of Kripke
structure M if ~, s h EJp for every j > 0.2

As we shall show, there is never any nontrivial common knowledge in a

no-information extension, so long as there are at least two agents. In fact, we

shall show (in Corollary 4.13 below) that p is common knowledge in w* iff p

is valid. We now show that the situation is completely different for finite Kripke

structures. We first need some preliminary definitions, which will also be

usetul for some of the theorems we prove later.

Definition 4.7. Let p = i, . . . is be a finite string of agents. The length of

p is s. The reverse of p, written pR, is i, . . . il. If p is a formula, then let

KP p be an abbreviation for the formula K,, . . . K[,q. If p is the empty string,

then KP p is taken to be p.

Definition 4.8. LetlM=(S, r, /l,..., x.) be a Kripke structure. We

say that there is a path of length k between two states s and t in S if there is
a sequence ?40, . . . , u~ of states in ~ such that s = 1[0, t = Uk and fOr all
(J < i= k – 1 we have that (~,, ~,+1 ) e ~, for some 1< j s n. If there is

such a path, then we say that the two states are connected. The distance
between s and t is the length of the shortest path between s and t if such a path

exists, and is undefined otherwise,

THEOREM 4.9. Assume that there are at least two agents. Then for each
finite Kripke structure M, there is some nonvalid formula p that is
common knowledge in every state of M.

: There are other Interpretations of the not]on of common hnowledge, See [2]
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PROOF. Let&f =(~, ~,71, ..., fi;), n >2. Let 6 be the maximal dis-

tance between any two connected states in S, and let p be a primitive

proposition.

Let ~ be the formula E&p + E6+ 1p. We claim that ~ is not valid. By way

of proof, consider the Kripke structure &f’ = (S’, T’, Y, r, . . . . ~’~’ ), where

S’= {o,..., 6, 6 + 1}, ~’(i) makes p true iff O < i <8, for j # 1 and

j # 2 the relation .Yj’ is the trivial equivalence relation {(i, i): O < i s 6 + 1},

.x( is the reflexive closure of{ ( i, i + 1): O s i s 6 and i is even}, and .1’: is

the reflexive closure of {(i, i + 1): O s i <6 and i is odd}. We leave it to the

reader to verify that A4’, O # ~. (Note, however, that ~ is valid if there is only

one agent.)

We now claim that ~ is true in every state of S. suppose that E*P is true in a

state s in S. Then p must be true in all states whose distance from s is less or

equal to d. By the definition of 8, it follows that p must be true in all states that

are connected to s, and consequently E6+ 1p is true in s. Since ~ is true in all

states of M, it follows that ~ is common knowledge in every state of M. ❑

Remark 4.10. Interestingly, the theorem does not hold if there is only one

agent. The intuitive reason is that, in that case, there are only finitely many

distinct knowledge states (given our assumption of a finite set of primitive

propositions) and each one of them may hold in one of the connected compo-

nents of AZ. A weaker version of the theorem is still true, however. For each

finite Kripke structure ill and each state s of &f, there is some nonvalid

formula p that is common knowledge in s.

We now show that agents have arbitrarily deep nontrivial knowledge in a

no-information extension. It is instructive to consider first the “simplest”

no-information extension. Assume that there is only one primitive proposition

p, and that there are only two agents, Alice and Bob. As before, for conve-

nience let us for now denote simply by p the truth assignment that makes p
true. Intuitively, the no-information extension (p) * is the knowledge structure

where p is true, and where Alice and Bob have no information. Assume that

$)~c~;~.fno~f~g~i;yj~t~j) $hat P must then be valid, since, after
, . This, however, is not the case. For,

since Alice does not know p, she knows that she does not know p. That is,

~)” ~ K~~,., 1 K~l,ceP, although 1 K~[tC-p is not valid. What if (p)* E
~l,C, K~O~ p? We are certainly tempted to conjecture that P must then be

valid. After all, in (p)*, Alice “has no information” about Bob. Once again,

our intuition is incorrect. For, since Alice knows that the formula K.A ~,C~p is
false, she also knows that Bob cannot know this formula (because anything that

Bob knows must be true); hence, Alice knows that T K~O~K~l,c,p is true.

Since Alice knows that Bob is introspective, she knows that if Bob does not

know something, then he knows that he does not know it. Thus, (p)* E
K K~o~ - K~o~ K~ ,,C,p. Hence, if P is the (non-valid) formulaAlzce
~ KEO~ ‘A1zce P, then (P)* ~ K~ [l.. K~O~ P, contrary to the tempting conjec-
ture. In fact, it follows from the proof of Theorem 4.11 below that this
generalizes, so that if q c { Alice, Bob}*, then (p)* = K. - K(qR, p. Thus, in

the no-information extension (p) *, where Alice and Bob have “no information”

about each other, they nevertheless have arbitrarily deep nontrivial knowledge !

Moreover, by taking P to be the disjunction of 7 K(~.) p over all q of length k,
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it follows that (P)* * 17kq. More generally. we have the following theorem,

which we shall show to be the best possible.

THEOREM 4.11. For every k, there is a k-world w such that for ever-y 1,
there is a non valid formula P of depth 1 where W* k E[fk - ‘P.

PROOF. We assume for convenience that there is exactly one primitive

proposition p. Let w be the k-world (f., . . . . fk _ ~) where f. is the truth

assignment that makes p true, and where f,(i) = { (fo, . . . . fJ _ ~)} if 1 < j <

k, for each agent i. Thus, fj( i) is a singleton set for 1 < j < k and for each

agent i. For each r E ?4 * of length k – 1, it is easy to see that w E Krp. Let

q == m be an arbitrary member of ,Y * of length 1 + k – 1, where r is of length

k – 1 and s is of length 1. Let i, be the formula 7 K~$~ ~1 p. We shall now

show that w* h K~ ~,.

We first show, by induction on 1, that for every p c Y * of length 1, the

formula p implies K.P 1 K(P., 1p. The base case (1 = O) is immediate. Assume

inductively that p Implies KP 7 K(P., 1 p; we shall show that p implies

KP, T K,(P R,1 p, where i is an arbitrary agent. It is convenient to give names

for reference to the following two simple facts.

Fact 1. a implies 7 K~ 7 a.

Fact 2. If a implies ~, then Kt a implies A’t /3, for tG Y’*.

By Fact 1, where we let a be the formula TK(PR11 p, we know that

T K(PR) 1 p implies 7 K, K(PR~ ‘p. Let -y be K(PR)Tp. By the axioms, we

know that 1 K,y implies K, 1 K,~. So, lK(PR) ‘p implies K,l KIK(PR,lp.

By using Fact 2, we therefore infer that KP 1 K(PH) T p implies

KPK,7 K,K(P~) -p. That is, [P T K[P. } ‘p implies KPI 7 K,(P.J 7P. Since

by inductive assumption p implles Kp T K(P ~, 7 p, it follows that p implies

KP, 7 K,(P.) = p. This completes the induction step.

By what we just showed. p implies K, I K(,~) 7 p. So by Fact 2, we know
that K,p implies KrK, 1 Kf,,l 1 p. But K,K, ~ K(,,) 1 pis just K~~,. Hence,

K,p implies K~+,. Since (a) w G K, p, (b) the k-ary prefix of W* is w. and

(c) the formula K,p is of depth k – 1, itfollows that w* I= K,p. Therefore,

from what we just showed, w* E K~ ~,.

Let p be V{~~: s= Y’* and s is of length 1}. Let q = rs be an arbitrary

member of ‘~* of length 1 + k – 1, where r is of length k – 1 and s is of

length 1. Since w* E K~IJ,, it follows that w* I= K~p. Since q was arbitrary,

it follows that w* I= El+h - lP.
Finally, it remains to show that p is not valid. Let f be the knowledge

structure (YO, ~1, . . . ) where f,, is the truth assignment that makes p false, and

where f~(i) = {(fo, . . . . fJ _ ,)} for j a 1 and for each agent i. Thus, fJ( i) is
a singleton set for j > 1 and for each agent i. It is easy to see that w i= K, 1p,

for each r= 4’*. Thus, f E - q, so p is not valid. ❑

Recall that we claimed above that there is no nontrivial common knowledge

in a no-information extension. We might hope to prove this by showing that if

w is a k-world and w P EJP for some sufficiently large j (say, j > k + 1),

then q is necessarily valid. However, Theorem 4.11 shows that this approach

will not work. We must take a more sophisticated approach and consider also

the depth of p, as in the following result, whose proof appears in the appendix.
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THEOREM 4.12. Assume that there are at least two agents, p is a formula
of depth r, and w is a k-world. If W* ~ Er~~p. then P is valid.

Note that the result of Theorem 4.12 is tight, since Theorem 4.11 shows we

cannot replace “r + k“ in 4.12 by “r + k – 1“. And of course it now

follows immediately that there is no nontrivial common knowledge in a

no-information extension.

COROLLARY 4.13. Assume that there are at least two agents, and w is a
world. Then p is common knowledge in W* iff p is valid.

Corollary 4.13 contrasts with the situation for finite Kripke structures (Theo-

rem 4.9). In fact, the following theorem is a simple consequence of Theorem

4.9 and Corollary 4.13.

THEOREM 4.14. Assume that there are at least two agents and that W* is
a no-information extension. Then there is no state s of a finite Kripke
structure M that is equivalent to w*. That is, if s is a state of a finite
Kripke structure M, then there is a formula p such that M, s K p but
W*I= ~(p.

PROOF. Let ~ be a nonvalid formula which is common knowledge in every

state of A4. Such a formula ~ exists, by Theorem 4.9. By Corollary 4.13, there

is k such that w* E 7 Ekt. However, since ~ is common knowledge in every

stage of M, we know that &f, s = E~~. So, if we let p be ~~~, then the

theorem follows. El

Thus, even to model Example 1.1 requires infinitely many states if we use

Kripke structures.

4.3 THE LEAST-INFORMATION EXTENSION. When defining the no-information

extension of a world w, we assumed that agents consider possibly every world

that is compatible with w. The justification is that no assumption should be

made about the underlying mode of knowledge acquisition. In practice, how-

ever, agents usually do have information about how knowledge is acquired.

Furthermore, this information is often common knowledge. For example, it

may be common knowledge that the only way new knowledge is acquired is via

message passing, and that communication proceeds in synchronous rounds. In

this case, the no-information extension is inappropriate, since it does not

capture this common knowledge (thus, .I~ is common knowledge that after, say,

one round, Alice does not know that Bob knows that Alice knows the primitive

proposition p). As another example, if it is common knowledge that each agent

stores his information about primitive propositions and about the information he

has received from other agents in a database, and it is common knowledge that

databases are insecure, then again the no-information extension is inappropri-

ate. For, if Alice has peeked at Bob’s database, and thereby knows that Bob

knows p, then Alice does not consider it possible that Bob knows that Charlie

does not know that Bob knows p, since it is common knowledge that Charlie
could have peeked at Bob’s database also.

We now consider a generalization of the no-information extension; in particu-

lar, we construct the least-information extension, which is designed to capture

the idea of “all you know, given some common knowledge”. In order to
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explain our construction, we first need to investigate the notion of common

knowledge a little more,

Definition 4.15. A world w appearsO in a world u if w is a prefix of u; w
appear,s+ ~ in u if w appears~ in u or some world ( gO, . . . , g~) appearsj in u
and w E g~( i) for some agent i. A world w appears in world u if w appears~

in u for some j. A world w appears in knowledge structure f if w appears in

some prefix of f. Let worlds~(f ) (resp., worlds~ ( w)) be the set of k-worlds

appearing in f (resp., w).

LEMMA 4.16. Suppose depth(p) = k. Then p is common knowledge in f
iff p is true in a[l the worlds in worlds~~, (f).

PROOF. lt is easy to show by induction on m that f R E’”p iff P is true in

all the (k + I)-worlds that appearn in f. R

Using the intuition brought out by this lemma, we can now describe our

construction of the least-information extension. More precisely, given a set t

of k-worlds (e. g., these worlds can be all the k-worlds satisfying a formula that

is commonly known to be true) and a world w c %’, we construct the least-
inforination extension of w with respect to ‘6. The idea is to build a

knowledge structure where ‘d is common knowledge; that is, the only

k-worlds that appear are those in %. The construction is completely analogous

to that of the no-information extension, except that everything is relativized to
z.

Let % be a set of k-worlds, let W be a set of (m – 1)-worlds, and i an

agent. Define the i-extension of W with respect to ‘i to be the set of

m-worlds given by {(g O, . . . , g,~_ l): g~.l(i) = W and
worldsL((gO, . . . . g,,,-,)) ~ ~}.

Intuitively, this is the set of m-worlds w such that in w, agent i considers W
as the set of possible ( m – 1)-worlds, subject to the restriction that it is

common knowledge that the only possible k-worlds are those in ‘t.

Definition 4.17. Let % be a set of k-worlds, and let w = (f., . . . . f,n) be

an (m + 1)-world. The one-step least-information extension of w with
respect to %, written (w, Y’)+, is the (m + 2)-world (fo, . . . , fwl, fmz+ l).
where ftiz +, ( i) is the i-extension of fm(i) with respect to ‘4. Thus, f,n +, ( i) =

{(go,.., g,,,): gm( i) = fro(i) and Worldsk((go. . . . . .gJ) G ‘L }.

Intuitively, the one-step least-information extension (f., ., f,fl, fm +, ) of

(f~, . . ~, f,.) describes what each %@ knows at depth vz + 1, assuming that
“all that each agent i knows” is already described by fm( i) and the fact that it

is common knowledge that K is the set of possible k-worlds. Thus, f,n +,(i) is

the set of all m-worlds that are compatible with i’s lower-depth knowledge,

subject to the constraint that it is common knowledge that x is the set of

possible k-worlds. Note that the one-step no-information extension is a special

case of the one-step least-information extension, where we take % to be the set

of all k-worlds. As in the case of the one-step no-information extension. it is

not a priori clear that (w, %’)+ is a world. In fact, in general it is not. We shall

investigate this issue shortly.
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We now give a proposition that justifies the name “least-information exten-

sion”, just as the analogous Proposition 4.4 justifies the name “no-information

extension”. We first need a definition analogous to that of i=+ . Recall that a

world w must eventually satisfy p, written w E + p, if for every knowledge

structure f with w as a prefix, f E p. Let Y be a set of k-worlds. We say that

a world w must eventually satisfy p, if V is common knowledge, written

w E+’ ‘ p, if for every knowledge structure f with w as a prefix such that

wor[ds,Jf) G f, we have f I= p.

PROPOSITION4.18. Assume that % is a set of k- worlds, i is an agent, w is
a k-world, and p is a formu[a of depth at most k – 1. Assume that
(w, %)+ is a world. The following are equivalent:

(1) (w, Y)+I= Klp
(2) w 1=+’ ‘ K,p
(3) Let Z be the set of all formulas -y of depth at most k – 1 of the form

K,+ or T K,+ that are satisfied by w. Let I’ be the set of all formulas
.?ilr~, where ~ is a depth (k – 1) formula that is satisfied by every
member of %. Then Z U r E Klp.

PROOF. The proof is very similar to that of Proposition 4.4. We also make

use of the fact that if a knowledge structure f satisfies r, then worlds~(f) G %.
Details are omitted. ❑

In part (3) of Proposition 4.18, the set II of formulas says that every depth

k – 1 formula that is satisfied by every member of ‘f is common knowledge.

In the next section, we shall enrich our language so that “~ is common

knowledge” can be expressed in the language (by CyJ). For each + as

described in Proposition 4.18, we could then, of course, replace the set of

formulas Er~ by the single formula C~. So, part (3) of Proposition 4.18 says

that knowledge (and lack of knowledge) of agent i, as described by w, along

with the fact that it is common knowledge that % is the set of possible

k-worlds, is sufficient to logically imply K, p.
Just as we did with the no-information extension, we define the least-

information extension by taking one-step least-information extensions repeat-

edly. Formally, if w = (f. , . . . . fk_,) e %, then the least-information ex-
tension of w with respect to t, written (w, %)*, is the sequence

(foe> fk-ltfk,. . .), where (fO, . . ., fm+,) is the one-step least-informa-
tion extension of (f., . . . . fm) with respect to %, for each m > k -1.

As with one-step extensions, the no-information extension is a special case of

the least-information extension, where we take % to be the set of all k-worlds.
As we remarked earlier, (w, %)+ is not necessarily a world, so of course

(W, ~)* is not necessarily a knowledge structure. As we shall see, there may
not even be a knowledge structure where K is common knowledge. In order to

characterize when least-information extensions exist, we need a few technical

definitions.

Definition 4.19. Let % be a set of k-worlds, and let i be an agent. ‘L is
i-c/osed if either (a) k = 1 or (b) k > 1 and whenever (f., . . . , fk _, ) c %

~;: (go, . . ~ , gL-2) G fk- l(i) then there iS g~-l such that
,. ... g~-,, g~_l) G ‘~ and g~-l(i) = f~_l(i). % is closed if it is i-closed

for each agent i. We say w’ is reachable from w in ~ if there is a sequence



402 R. FAGIN ET AL

~o~”..~ Wk of worlds in % such that w = WO, w’ = wk, and fOr all ~ < k,

we have wJ -1 wl+l for some agent i. In this case we say that w’ is distance k
from w. Let reach( w, Y ) be the set of worlds reachable from w in Z.

The intuition behind this definition is that a set ‘A of worlds is closed if all the

worlds that are considered possible in worlds in K are themselves in /. Thus,

if agent i knows that only worlds in V are possible, and

(1) (fo>. . ., fk_,)e ‘d, and

(~) there is nO g~-1 such that (go, . . . . gk-zt g~-1) G ~ and g~-l(i) =
fkl(i),

then we cannot have (go, . . . . g~- ~) ~ f~- II i). The intuition behind reachabil-
ity is that if w and w’ are in z and w -1 w’, then w’ is possible for agent i

from w. Thus, the worlds reachable from w in ‘A are the worlds that are in

some sense considered possible in w.

To further motivate the above notions, we present the following proposition:

PROPOSITION4.20. lff=(fo, f,,... } is a knowledge structure, then for
all k > 0,

(1) the set worlds~(f) is closed, and
(2) worlds~(f) = reach(( f,, . . . . f~_, ), worlds~(f)).

PROOF. For (l), first note that if a world (go, . . . . g~_ ~) appears in f, then

some extension (go, . . . , gl -1, g~) also appears in f. This is proved for
appears~ by an easy induction on .j, using (K3); we leave details to the reader.
Now fix k, and suppose that (go, . . . . g~_l) 6 worlds~(f) and (ho, . . . . hA_z)

G g~ _, ( i). From the observation above, it follows that there is some extension

( gO . . . . . gh ) ‘hat appears ‘n f ~ ‘y ‘K3~ again> ‘here’s ‘ome ‘k-l ‘Uch ‘hat

(ko, . . . . t?k-z, kk_, ) eg~(i). By definition, (hO, . . . . hk_I) e worlds~(f) and

by (K2) g~-, ( i) = h~_,( i). Thus, worlds~(f) is i-closed. Since i was arbi-
trary, worlds~(f) is closed.

For (2), we prove by a straightforward induction on j that for all m, if

(go,..., g~,-1) appearsj in f, then (go, ... >g,~-1) ~reach((fo ~... >f,,,-l)!
worlds,,,(f)). If j = O the result is immediate. For j = 1, suppose that there is

some (ho, . . . , h,n) that appear:j _ ~ in f such that (go, . . . . g,~_ ~) e h,,j( i) for

some agent i. By the reduction hypothesis. (ho, . . . . h,,,) =
reach(( fO, . . . . f,~), worldsrl +, (f)). It is easy to see that we must also have

(ho, . . ..h ,,l_, ) c reach((fO, . . . . f,H _ ,), worid.sm,(f)). And since

(go . ...> g,,,-1) –, (ho, . . . . k~,-1). it fOllOWS that (gO) . . . . gti, -1) =
reach((fo, . . ., f,,,-,). wwkism(f)). U

The next theorem. which is proven in the appendix, characterizes

(w, Y)* is a knowledge structure.

THEOREM 4.21. (w, ‘f) * is a knowledge structure iff reach( w, E
closed set.

when

is a

Suppose ‘/ is a set of k-worlds and w’ e ‘b . The least-information extension

(w, %)* (provided it exists) describes a knowledge structure where it is

common knowledge that the only k-worlds that appear are those in ‘A. But the

k-worlds that appear might be a proper subset L‘ C A. In such a case, it would

be common knowledge that the only k-worlds that appear are those in ‘?’.
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When is it the case that all the worlds of % are considered possible? That is,

under what conditions do all the worlds in 6 appear in (w, z )*? We get a clue

to the answer from Proposition 4.20, from which it follows easily that if

K = worlcis~(f) and w is the k-ary prefix off, then reach( w, X ) is closed and

V = reach( w, %). The next theorem, whose proof appears in the appendix,

says that these two conditions on w and 6 characterize when (w, %’)* is a

knowledge structure where all the worlds of % appear.

THEOREM 4.22. (w, % ]“ is a kno wledge structure where all the worlds of
‘6 appear iff z is closed and % = reach( w, Y).

We remark that from now on, whenever we write (w, t )*, we will always

assume that % is a set of k-worlds for some k, and reach( w, %) is closed, so

that in fact (w, %)* is a knowledge structure.

There is a natural sense in which we can view (w, K)* as a “finite model”,

since it is a finite description of an (infinite) knowledge structure. It is also

natural to view a pair ( A4, s), where A4 is a finite Kripke structure and s is a

state of i’kf, as a “finite model”. As we now show, the former class of “finite
models” is richer than the latter class: every state in a finite Kripke structure is

equivalent to some least-information extension. However, by Theorem 4.14,

the converse does not hold, since a no-information extension is a special case of

a least-information extension and is not equivalent to any state in a finite Kripke

model.

If A4 is a Kripke structure and s is a state of Wf, then let f~, ~ be the

knowledge structure constructed in the proof of Theorem 3.1. (Recall that f ~,,

is equivalent to the state s of AZ, that is, &f, s t= p iff f~, ~ E p, for every

formula p.)

THEOREM 4.23. If M is a finite Kripke structure and s is a state of M.
then f~, ~ is a least-information extension; that is, there exists a set z of
worlds and a world w ~ % such that fM, ~ = (w, ‘i’]*.

PROOF. Let ~ be the Kripke structure (~, T, x,, . . . . J’,,), where S, the

set of states, is finite. Throughout this proof, we shall denote f ~ ~ by f ~, and

write f. as (s., sl, . . .), for each s ~ S. Recall from the construction of

Theorem 3.1 that s~(i) = {(to, . . . t, ,_l): (s, t) e 71} for k >0. Choose iV
such that if s, t e S and f. # f ~, then s~_ ~ # tN_,. Since S is finite, there is

some finite N with this property. In fact, we can simply take N to be the

maximum of N, ~ + 1 for all states S, t in S, where N, ~ is the least m such
that SHl # t,,, if~, # ft, and Oiff~ = ft. Let %’= {(s.,’. . . ,SN): SC S}. It is

easy to see from the construction off ~ that the (N + 1)-worlds that appear in f ~
are precisely those in reach( (SO, . . . . s~), %), and by Proposition 4.20, these

worlds form a closed set. Thus, ((sO, . . . . SN), % ) * is a knowledge structure by

Theorem 4.21. We now show that for all s e S, we have f, =

((s., . . . . SN), Y)*.
In fact, we prove the following claim: Suppose s e S’, N > N, and w =

(s&,..., sfi, ) is such that (a) worlds
Then, s: = S, for all i < N.

N+l(w) G ~ and (b) s; =s, for i<N.

We prove the claim by showing, by induction on m, that s,. = sj,,, for
O s m s N. For m s N, this follows by assumption. For m > N, suppose

(t;,..., t;_, ) es~~(i). Now (t:,. . . . tj~_, ) ~sj,-l(i) by (K3), and s~Z_l(i) =
s~_ ~(i) by the inductive hypothesis. Thus, (t:, . . . . t~~_z) e s,,Z_ I( i), so for
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some t such that (s, t) e .~l, we have tj = t, for O s 1 s m – 2. Moreover,

since the prefix (t:, ...,t~) must be in Y by assumption (a), it follows that

for some u ~ S, we have t; = u, for O s 1 s N. Now using the induction

hypothesis, we have that tj = u, for O s 1 s m – 1. Since tl= t; for O s 1
~ m – 2, it follows that t, = ul for () ~ 1 ~ m – 2, and, since ~1 – 2 ~ N

– l, bychoice of Nwehaveu.Z_l == t,H_l. Thus, tj = tlfor OS 1s m – 1.
Since (to,. . . , fnl_~) 6 Sm(i) by definition of s,.( i), we have that

(t~,....t;n_,)c SW](i).Thus, s~~(i) G s,.( i). For the converse, suppose that

~~u~il~~ t~~~~t:~~~i)it~us, by (K3), (t,, . . . . tm2_2) c s,~_ ,(i), so by the

,. ... t,~_2) Gs;z _ ,(i). By (K3), there exists some

t’r?—1 such that (tO, , . . . t,fl_z, t~_l ) es:(i). Now if m – 1> N, it immedi-

ately follows from the induction hypothesis that we must have t;_ ~ = twz_,. If

m – 1 = N, then by assumption (a) it follows that (tO, . . . . tm_2. t&_ ~) G fi.
By the definition of ‘i, we also have that ( tO, . . . . t,. _~, t,. _ ~) c W. By choice
of N, we must have t;_ ~ = t,n_,. In either case, we get SWZ(i) G sj~( i). Thus,

it follows that Sml = s;., and we are done with the proof of the claim.

Now taking ((,s., . . . . SN), %’)* = (s:, s(, . . . ), an easy induction on m
using this claim shows that Sk = ,sj for all k, so that f, = ((so, . . . . SN), ‘t)*

as desired. ❑

Remark 4.24. The above proof does not give us any information about the

length of the worlds in K. We now show that we can bound this length.

We say that a state s is equivalent to t at the jth stage with respect to agent

i, denoted s -,,1 t, if sj(i) = t~(i). It is easy to see that if ,s -1 ~ t, then

s- l,J– I t.
Suppose now that for some j >0 we have that s -, ~ t iff ,s -, ~_ ~t for all

states S, t c S and for all agents i G ?/. If that is the’ case, then ‘we say that

~ – 1 is stable. We claim that if j – 1 is stable, then j is also stable. As we
already observed, if s -, ~+, t then s -, , t, so itremains to prove the other

direction.

Assume s -, ~ t.We first prove that SJ+, (i) G tj+l(i). Let UCS be such
that (s, U)G z’,,’ so(uO, . . . . u~) csj+l(i). Since (uO, . . . . uj_l) es](i) = t~(i),
there must be some u 6S such that (t,u) c Xl and (uO, . . . . uj_l) =

(u”> . . ..uj_. .) By assumption, it follows that (uO, . . . . UJ) = (uO, . . . . UJ), so

(uO,..., UJ) e t~+,(i), as desired. Analogously we can show that tJ+ 1(i)G

sy+l(i).Thus, ,s -,, J+l t.

Since the relations - ! ~ are decreasing as a function of j. there is some

.iO ~ O such that all ~ ~ J; are stable. Assume that j. is minimal with respect to
that property. Thus, if O s j < .jO, then for some agent i, the equivalence

relation -1, ~ strictly refines - ~ ~_ ~ . Let m be the number of states in S, and
let n be the number of agents. An equivalence relation on S can be strictly

refined at most m – 1 times. Thus, j. < mn. That is, if we take N to be

mn + 1, and if s, t ~ S and f, # ft, then sN_, # tN_ ~.Consequently, %’ can

be taken to be a set of ( mn + 2)-worlds.

We note that if s -, ~, t for all agents i e P, then f, = f,. This notion of

equivalence between states in Kripke structures is closely related to the notions

of equivalence [19] and bisimulation [32] between states in finite-state

automata. ❑

Example 4.25. We now consider a very interesting situation where both

no-information extensions and least-information extensions enter the picture.
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$hppose we have three agents, Alice, Bob, and Charlie, and suppose that there

are two primitive propositions, p and q. All the agents observe “reality” (so

that they get some information about p and q), but do not communicate, and

intuitively have “no information about each other’s knowledge. ” Moreover, it

is common knowledge that this is the case. Further, suppose that it is the case

that p and q are both true, but Alice just knows that p is true and has no

knowledge of q, Bob knows that either p is true or q is true, while Charlie

knows that both p and q are true. What knowledge structure f describes this

situation? Clearly, its 2-ary prefix is (~., ~1 ), where ~0 = pq, fl( A lice) =

{ pq, p~), fl(gob) = { Pq, P@y Zi} $ and fl(charlie) = {m}. Now
f2( A/ice) is clearly the Alice-extension of f,( Alice); Alice considers any

2-world consistent with her own information possible. Similarly, we see that

(fOt fl 3fJ is the one-step no-information extension of (fo, f~). What about
f3’? Should we continue taking one-step no-information extensions? The answer
is no, since it is common knowledge that “no one has any knowledge about

anyone else’s knowledge”, so it is also common knowledge that the only

2-worlds possible are one-step no-information extensions! Let % be the set of

all 2-worlds that are one-step no-information extensions. Then f =

((fo! f,> f,), 8)*.

This example can be generalized. Consider a situation where knowledge is

acquired by unreliable synchronous communication. Intuitively, before the first

round of communication we can paradoxically say that it is common knowledge

that “nobody has nontrivial knowledge of depth greater than 1.” (Note that if

communication is reliable, then common knowledge about reality can be

achieved in one round of communication. ) Similarly, after r rounds of commu-

nication we can say that it is common knowledge that “nobody has nontrivial

knowledge of depth greater than r + 1.” Suppose that f describes the state

of knowledge after r rounds of communication, where f = (f., f ~, . . . ).
Then, essentially the same reasoning as that above shows that f,+ 2( i) is the

i-extension of f,+,(i), and if K is the set of all ( r + 3)-ary one-step no-infor-

mation extensions, then f = (( f., . . ., f,+,), %)*. The knowledge structure f
can loosely be described as “the least-information extension of a one-step

no-information extension. ”

It turns out that this situation can also be captured by a finite Kripke model.

Let l,..., n be the agents. Let A4 be the Kripke structure (S, ~, Xl, . . . . Z.),
where S is the set of all k-worlds, where 7r(( f., . . . , fk _ I)) = f., and where

z, = {( W, W’): w-z w‘} for each agent i. This construction is analogous to

that of Theorem 3.1, except there we took S to consist of all knowledge

structures, rather than all the k-worlds. Of course, in this case ikf is a finite

Kripke structure. since there are only a finite number of k-worlds. By Theo-

rem 4.23, we know that f ~f, ~ is a least-information extension for every state s

of &f. In fact, it turns out that fM. = ((s., . . . . Sk), %)*, where s~(i) is the

i-extension of Sk_,(i) for each agent i and t’ consists of all the (k + 1) -ary

one-step no-information extensions. Then, f = ((fo. fl, f2), %)*. The details
of the proof of this fact are straightforward and left to the reader.

4.4 SUMMARY. We now summarize our results on modeling finite informa-

tion. First, we introduced the no-information extension w* of a world w, which

intuitively represents the state of knowledge if all of the information of the
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agents (about reality and about each other) is already given by the world w. We

showed that the no-information extension is indeed a knowledge structure. In

particular, this shows that every world is the prefix of some knowledge

structure. Although on the face of h, both a finite Kripke structure (along with a

state of the Kripke structure) and a no-information extension can be considered

as “finite models, ” we showed that there is an important difference between

them, when there are at least two agents. In every finite Kripke structure, some

nonvalid formula is common knowledge in every state. However, in each

no-information extension, the only formulas that are common knowledge are

valid formulas.

We then defined the least-information extension, which is a generalization

of the no-information extension that allows certain common knowledge. Let

~ be a set of k-ary worlds, and let w be a world in t. Intuitively, the least-

information extension (w, K’) * represents the state of knowledge if all of the

information of the agents (about reality and about each other) is already given

by the world w, subject to the constraint that it is common knowledge that the

only possible k-worlds are those in %’. Unlike the no-information extension, the

least-information extension is not always a knowledge structure. We character-

ized when the least-information extension (w, X’) * is a knowledge structure.

We also characterized when it represents a situation where it is common

knowledge that in fact the possible k-worlds are precisely those in W (rather

than a proper subset of %). We showed that least-information extensions are

the most general notion of 6‘ finite model” of those we have discussed, in that

not only is every no-information extension a least-information extension, but

also the knowledge structure that represents the information at a state of a finite

Kripke structure is also a least-information extension.

5. Modeling Common md Joint Knowledge

Convention. We use lowercase English letters such as i, j, etc. to range over

natural numbers, and we use lowercase Greek letters such as 8, h, etc. to range

over ordinals.

5.1 EXTENDED SYNTAX AND SEMANTICS . In Section 4, we mentioned the

important concept of conzrnon knowledge. Common knowledge was defined

as a metalogical concept, and we could not express it directly in our logic. It is

natural to extend our logic and add to it the notion of common knowledge. That

is, if p is a formula, then we would also like Cp (‘’p is common knowledge”)

to be a formula so that we can allow formulas with C “inside”. Another

important notion that we would like to add to our logic is that of joint
knowledge. A fact p is joint knowledge of a group S if ‘ ‘everybody in S

knows that everybody in S knows . . . P‘’. Common knowledge is, of course, a

special case of joint knowledge, where S is the set of all agents. Joint

knowledge is important in situations where some agents are reasoning about the

knowledge shared by certain groups of agents (see, e.g., [7]). Thus, we extend

our language by adding a new modality C~, for each nonempty set S of agents.

Let E~p be an abbreviation for ~1=,~ K, p (i. e., ‘ ‘everyone in S knows p’ ‘).
Furthermore, let E~p denote p, and let E: p denote 13~11~- 1P. Then, C~ P is

intended to mean A,> ~ E: p.
We now want to give semantics to the extended language. The semantics

defined in Section 2 depended on the notion of depth of formulas. Since a joint
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knowledge formula is intended to be equivalent to an infinite conjunction of

formulas of increasing depth, it seems that the depth of a joint knowledge

formula should be infinite. This motivates using ordinals to define depth of

formulas. More formally, we define the depth of formulas in the extended logic

as follows:

(1) depth(P) = O if p is a primitive proposition;
(2) depth(l p] = depth(p);

(3) depth(pl A P,) = rnax(depth(p,), depth);

(4) depth(K[p) = depth(p) + 1.

(5) depth(C~p) = rein{ k h > depth(p) + i for all i z 0}.

In other words, depth(C’~p) is the first limit ordinal greater than depth(p).

For example, if p is a primitive proposition, then the depth of KIK77 C[~, ~}p
is w + 2 and the depth of (3{1,Z}1 C{~,J}p is a x 2.

It is easy to verify the following proposition.

PROPOSITION5.1. For all extended formulas p, we have depth(p) < UZ.

To define the semantics of formulas of infinite depth we need to define

worlds of infinite length, that are indexed by ordinals rather than only by

natural numbers. The definition is a natural extension of the definitions in

Section 2. Instead of defining k-ary worlds for every natural number k, we
define h-ary worlds for every ordinal h. A O th-order knowledge assignment
fO is a truth assignment to the primitive propositions. We call (f,) a l-ary

world. Let WX be the set of all h-ary worlds. A Ath-order knowledge
assignment is a function fk: ,P -+ 2 WA. A h-sequence of knowledge assign-

ments is a sequence (f., f,, . . . ) of length h, where f, is an ith-order

knowledge assignment. A A-ary world (or h-world, for short) f is a h-sequence

of knowledge assignments satisfying certain restrictions. For example, an

(OJ + 1)-world is of the form ( fO, f,, . . . . fro). where f@(i) is a set of

co-worlds and certain other restrictions are satisfied. If K < A, then the K-prefix
of f, denoted f <~, is the K-sequence that is the restriction of f to K.

We now describe the restrictions that a ( X + 1)-world f has to satisfy for

each agent i.

(K1’) f<kef~( i).

(K2’) If g cfx(i), and A >1, then g.(i) = fK(i) for all K < h.

(K3’) Let O < K < h. Then g e fK( i) iff there is some h e f~( i) such that

g=ll<K.

We note that it follows from (K1’) and (K2’) that if h ~ fx( i) and O < K < A,

then h < ~ c fK ( i). Thus, only the other direction of (K3’) is nontrivial. We also

note that it follows from (Kl ~ that if f is a h-world, then f <, is a K-world for
all K < A.

Clearly, (Kl ~ - (K3’) generalize restrictions (Kl ) - (K3). It is easy to see that

knowledge structures are simply co-worlds.

We can now define what it means for a h-world f to satisfy a formula p of

depth K . written f t= p. We first define a binary relation < on ordinals. We

say that K < ~ if either K is a successor ordinal and K < ~, or K iS a limit

ordinal and ‘K s h (in other words, whether K is a successor ordinal or a limit

ordinal, h > p + 1 for all ~ < K). The relation 1= is defined between f and p
if K<A.
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(1) f I= p, where p is a primitive proposition, if p is true under the truth

assignment ~0.

(2)fE-~iffi#~.

(3) fEp1Ap2if fl=p1andfl=p2.

(4) If h is a successor ordinal, then f E K[~ if g E 4 for each g e fx_, ( i).
(5) If A is a limit ordinal, then f I= K,J if f <,+1 E K,*.

(6) f F c~i if f E l?~t for all i >0.

It is easy to see that the definitions of Section 2 are a special case of the

definitions here. In Section 2, however, we defined satisfaction with respect to

structures as a total relation, where here we leave satisfaction as a partial

relation between worlds and formulas.

The following lemma, which is analogous to Lemma 2.5, indicates the

robustness of the definitions above:

LEMMA 5.2. Let f be a A-world, and let p be a formula such that
depth(p) = K and h > K. Then f E p iff f <K+l E p. Furthermore, if K is
a limit ordinal, then f L p iff f ~ ~ I= p.

PROOF. The proof is by simultaneous induction on formulas and worlds. The

nontrivial cases in the induction on formulas are when p is of the form K, J or

C~IJ, where we assume inductively that the lemma holds for ~.

Consider first the case that p is of the form K, ~. Assume that h is a

successor ordinal. Suppose that f E K, t. Let g be an arbitrary member of

fK( i). It follows from (K3’) that g = h<, for some h G fx_,( i). Since f E K1~,
it follows by definition that h t= ~. By inductive assumption, g I= +. Thus,

every member of fk ( i) satisfies ~, and so f < ~+, E p. The proof of the

converse is similar.

Assume now that h is a limit ordinal. Then f E K,~ iff f < ~+, E K,+, and

the claim for this case holds by the induction hypothesis.
Consider now the case that p is of the form C~yJ. Suppose that f E Cs+.

Then f E Ej$ for all i 20. Let p = depth(~). By the induction hypothesis,

f < ~+1+ ~ I= E~~ for all i z O. Again, by the induction hypothesis, f < ~ E Ej~
for all i >0, whenever v z w + i for all i 20. In particular, f < ~ E p. Again

the proof of the converse is similar. ❑

We now describe some axioms for joint knowledge. These are generalization

of axioms for common knowledge due to Lehmann [23] and Milgrom [27].

Axioms 1-4 are analogous to Axioms 2-5 for knowledge, They say that joint

knowledge is correct, introspective, and closed under implication. Axiom 5

deals with the degenerate case of a single agent. Axiom 6 says that joint

knowledge is inherited by subsets, and Axiom 7 describes how joint knowledge

is built as a fixpoint of knowledge.
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We want to show that the axioms are valid. Since satisfaction is a partial

relation between worlds and formulas, we have to redefine the notion of

validity. We say that a formula p is valid if it is satisfied by every world for

which the satisfaction relation is defined with respect to that formula. An axiom

is valid if all its instances are valid.

PROPOsITION 5.3. A [1 the axioms above are valid.

PROOF. We demonstrate the validity of Axiom 7. The other axioms are left

to the reader. Let f be a A-world, and let p be a formula of depth K. Assume

that f E Cs(p - EYP) and f R p. By definition, we have that f E Ej(p =
Es p), for all i >0. By the knowledge axioms, it follows that f E E: p =

E:+ lP, for all i >0. We now show, by induction on i. that f E E~p, for all

i> O. For i = 1, we have that f c E~p, since f 1= p and f E C~(p -E~p).
Assume now that f E Ejp. Since f E l?: - E:+ ‘p, it follows that f E E:+ ‘p.

Thus, f E C~p. El

In [12], it is shown that the above axiomatizaticm for knowledge and joint

knowledge together with modus ponens and joint knowledge generalization

(’‘from p infer C~p”) is indeed complete. Another axiomatization is given in

[16].

5.2 MODEL-THEORETIC CONSTRUCTIONS. We now extend the machinery devel-

oped in the previous sections. Our goal is to prove the equivalence of” internal”

truth and “external” truth, in analogy with Theorem 2.7. This will then enable

us to relate knowledge worlds and Kripke structures as in Theorem 3.1.

Let f and g be A-worlds. We say that f and g are i-equivalent, written

f- ,g, if f.(i) = gh(i) for all K such that O s K < h. We call {g: f -, g} the
i-equivalence class of f.

We now generalize the no-information extension.

Definition 5.4. Let f be a h-world. Let p > h. The p-no-information
extension of f, denoted f‘, is a p-sequence of knowledge assignments defined

as follows:

(1) fk=f.
(2) If p > A is a successor ordinal, then f ~,_, = f w-1 and f~_ 1(i) is the

i-equivalence class of f A- 1 for all agents i.
(3) If p is a limit ordinal, then for each v < p, we have f ~ = f ~+’.

It is easy to see that when h < ~ (so that f is just a world of finite length),

then the co-no-information extension of f is the same as the no-information

extension as we defined in it Section 4.

We need to prove that the no-information extension yields knowledge worlds.

We first need the analogue of Lemma 4.2.

LEMMA 5.5. Let f and g be A-worlds for some successor ordinal A such
that f<A_l -i g< A_l. Let h ~ be a Ath-order knowledge assignment such

that hi(i) =fX(i) andhk(j) = gh(j) forj # i. Then (gO, . . . . gh-l, h~ is a
(h+ 1)-world.
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We also need a generalization of the matching extension. Let f be a X-world,

where h is a successor ordinal. Let g c fx _, ( i). The i-matching extension of g

with respect to f is the h-sequence h of knowledge assignments, where

h <k–l = g. hk- ,(i) = fx_ [(i), and h~_ ,(j) is the ~-equivalence class of g for
j # i. We now prove the analogue of Lemma 4.3.

THEOREM 5.6. Let ~ be a A-world.

(1) Let p z h. Then f p is a p-world.
(2) If A is a successor ordinal, and g ~ fL_,( i), then the i-matching

extension of g with respect to f is a i-world.

PROOF. The proof is by induction on h.

To prove ( 1). it suffices to prove that if f is a h-world, then f ‘+ 1 satisfies the

restrictions (K 1‘), (K2’), and (K3~. The fact that (K 1‘) and (K2’) hold is

immediate from the definition. We prove that (K3’) holds by induction on ~.

If h = 1, then the claim holds vacuously. For the inductive step, suppose that

O < K < h and g e fK(i). We construct a h-world h such that g = h . ~ and

h- , f. Thus, h ~ fk(i). We inductively describe h < ~ for K < ~ s h, where

h <P -[ f<,.
For the basis of the induction, we take h < ~ to be g. Assume now that ~ s ~

and h <,, has been defined for all v < p. If w is a limit ordinal, then h < ~ is

already defined, so suppose that w is a successor ordinal. Then, we have

h <#–l -,f <A_l. Leth < ~ be the i-matching extension of h <,_, with respect

to f<+. By the induction hypothesis, h < ~ is a ~-world, and clearly h < ~ -, f <~.
This completes the proof that (K3’) holds.

To prove part (2) we consider first the h-sequence g‘, which by the induction

hypothesis is a h-world. Since g e f~_,( i), we have that g -, f < ~_ ,. The claim

now follows by Lemma 5.5. ❑

A consequence of the theorem is that every h-world can be extended to a

~-world, for any P > ~. This generalizes the result in Section 4 that every
world can be extended to a structure. Furthermore, while proving the theorem

we also proved another useful result.

LEMMA 5.7. Let f be a A-world, and let g Ef~( i), where K < ~. Then
there is some A-world e such that g = e ~ ~ and e -, ~.

Let S be a set of agents. We say that a A-world g is S-reachable from a

A-world f if there is a sequence f,, . . . . f ~ such that f = f,. g = f,,, and for

each j such that 1 < j s k – 1 there is some agent i ~ S such that fJ -, fJ+,.
In this case. we say that g is S-distance k from g.

We can now prove the analogue of Theorem 2.7, which shows the equiva-

lence of internal and external notions of truth.

THEOREM 5.8. Let f be a A-world.

(1) f ti K,p iff g t= P whenever f -, g.
(2) f k= Cyp iff g E P whenever g is S-reachable from f.
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PROOF

(1) Suppose first that A is a successor ordinal.

(a) Assume that f E K,p. By definition, h E p whenever h G fk_,( i). Let

g be such that f -, g. By (K1’), g<k_l ~gl_l(i). But gh_l(i) =
f~- ,(i). It follows that g
5.2, we have g i= p.

<x–l~f~–l(i)~ so g<~–1 E P. BY Lemma

(b) Assume that g E p whenever f -, g. Let h ~ fA _ ,(i). By Lemma 5.7,
there is a A-world g such that h = g <x+, and g -1 f. Thus, g 1= p. By

Lemma 5.2, it follows that h E q.

Suppose now that h is a limit ordinal, and assume that the claim has been

proven for all smaller ordinals. Let K = depth(p).

(a) Assume that f E Klp. Then, by Lemma 5.2, f<~+z R K,p. Since

~ + 2 < h, we have that h E p for every (K + Z)-world h -, f< K+z.
Now assume g -1 f. It follows that g <~+z -, f <~+z. Thus, by Lemma

5.2, it follows that g != p.

(b) Assume that g E p whenever g -, f. Let h ~ fK + t(i). By (K2’), h -,

f <K+l. By Lemma 5.7, there is a h-world g such that g -, f and

h = g<~+l. By assumption, g t= p, so that h E=p, by Lemma 5.2. We

have shown that h E p whenever h e fK+ 1(i). It follows that f < ~+Z i=

K,p, and by Lemma 5.2, we have that f e K,p.

(2) It is easy to prove, by induction on i, that f t= E~p iff g E p whenever g is

S-distance i from f. The claim follows, since f E C~p iff f E 13~p for all

i>O. ❑

The next result is analogous to Theorem 3.1. Here we consider a state s of

Kripke structure M to be equivalent to an ~2-world if they satisfy the same

extended formulas.

COROLLARY 5.9. To every Kripke structure M and state s in M, there
corresponds an ti2- world f ~ ~ such that s is equivalent to f ~ ~. Con-

versely, there is a Kripke structure M~~ ~~ such that for every a~- world f
there is a state s~ in M~~oW such that f is equivalent to s~.

PROOF. The proof is analogous to the proof of Theorem 3.1. There are two

differences. First, the ~2-world f ~, ~ is constructed by transfinite induction.

Second, Theorem 5.8 is used instead of Theorem 2.7. ❑

5.3 WAS THAT NECESSARY? So far we have claimed that it is necessary to

define infinitary worlds in order to give semantics to extended formulas. But is

that really the case? We are now going to show some evidence to the contrary.

Let KC-formulas be formulas that use the modalities K, and C (i.e., C,,,

where Y is the set of all agents), but not C~ when S is a proper subset of Y.

Let K-formulas be formulas that use only the Ki modalities.

The next theorem says that for KC-formulas, the extension beyond a is

redundant.

THEOREM 5.10. Let o be a KC-formula. Let ~ and g be A-worlds, such
that f<u= g...Thenf~~iffg~~.

PROOF. See appendix. ❑



412 R. FAGIN ET AL

The above theorem indicates how we can define the semantics of arbitrary

KC-formulas in co-worlds. We denote this new satisfaction relation by the

symbol l}.

(1) f IE p, where p is a primitive proposition, if p is true under the truth

assignment ~..

(2) f 1} 1 ~, if it is not the case that f l} ~.

(3) fl~ PIAPZ, iff l} p, andf 11- p,.
(4) f 1+ ~,~, if g IE ~ whenever g -, f.

(5) f IF C+, if f 1+ E’* for all i >0.

THEOREM 5.11. Let o be a KC-formula of depth K, and let f be a
A-world, K ~ ~. Then f I\o iff f <m 1} o.

PROOF. We prove the claim by transfinite induction on the depth of a and

an induction on the Boolean structure of o. The nontrivial cases are where o is

either of the form K, p or of the form C@.

Consider the first case. Suppose that f E K, p. Let h be an u-world such that

h-t f<ti. Consider hh. By Theorem 5.10, we have hk I= K,p, so we also have

h~ E p, and by the induction hypothesis, h 1} p. Since h is an arbitrary

a-world such that h -, f < ~, it follows that f < ~ 1+ K, p.
Suppose that f <m 11-K,, p. Let g be a h-world such that g -[f. So g<~ II

p, by definition. By the induction hypothesis, g E p. Since g is an arbitrary

h-world such that g -Z f, itfollows, by Theorem 5.8, that f E K,p.

Consider the second case. Then f F Cp iff f E EJP for all j >0 iff (by the

induction hypothesis) f < ~ IE EJp for all j > () iff f < ~ l; C ❑9“

According to the above theorem I= and It- are consistent with each other, so

we need not distinguish between them. Note, however, that 11-may be defined

where E is undefined.

As a consequence of the above theorem we show that when dealing with

satisfiability of KC-formulas, it is sufficient to consider least-information

extensions.

THEOREM 5.12. Let p be a satisfiable KC-formula. Then there is an
u-world f such that f II p and f is a least-information extension.

PROOF. By [16]. if p is satisfiable, then there is a finite Kripke structure ill’

and a state s in &f such that ik’f, s E p. By Corollary 5.9, fM, , E p. Let
g = fM, ~. By Theorem 5.11, g<ti IE p. But by Theorem 4,23, g<ti is a

least-information extension. ❑

Since a least-information extension has a finite description, this theorem can

be viewed as a “finite model” theorem: If a KC-formula is satisfiable, then it

is satisfiable in a “finite” model.
We can now use KC-formulas to give another demonstration of the subtlety

of Corollary 4.13. Corollary 4.13 says that if p is a K-formula that is common

knowledge in a no-information extension, then p is valid. The theorem is false

if P is allowed to be a KC-formula. For example, if p is a primitive

proposition, then we can show that the KC-formula 1 Cp, which is not valid,

is common knowledge in every no-information extension. As a side remark, we

note that this formula - Cp can be viewed as an abbreviation for the infinite

disjunction T Ep v T E1p v T E3p v “ “ “ . It is interesting to note that although
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this infinite disjunction is common knowledge in every no-information exten-

sion, no finite part of it is common knowledge in any no-information extension.

The above theorems show that it is sufficient to consider co-worlds when

dealing with KC-formulas. The question then arises whether there is indeed a

need to define “longer” worlds.

Example 5.13. Consider the following situation. Agents 1 and 2 are

communicating about a fact p through an unreliable channel, one over which

messages are not guaranteed to arrive. As shown in [15], under such condi-

tions, arbitrarily deep knowledge is attainable, but common knowledge is not.

More precisely, E~l, ~}p is attainable for all k = 1, but C{ ~,~} p is not

attainable. If agent 3 does not know how many rounds of successful communi-

cation have transpired, then KS 1 C{,, ~}p holds and 1 KS 1 E:, ~j p holds for

all k> 1.

We claim that we need an (a + I)-world to model this situation. That is, we

claim that there is no ~-world f where KS 7 C ,1,z)p holds and 1K3TE/L,Z;P

holds for all k > 1. To make sense of what ~t means for a formula such as

KS 7 C{ ~,z} P to hold in f, we extend our definition of II- in the natural way to
apply to such formulas. Thus, f l!-- KS 1 C
that f -

{!, ~} P iff for every ~-world g such

s g, necessarily g It- = C {1. 2] P (Which> because 1 C{l, 2}P is of dePth
co, means that g i= 1 C{1,21P).

Assume now that f = (fo, fl, f2, . . . ) is an u-world and f E 7 KS = E~l, ,}p
for all k z 1; to prove our claim we must show that f l} 7K37 C{ ~,~}p.

We can assume without loss of generality that p is the only primitive

proposition (otherwise, we can “restrict” f by “erasing” all of the primitive

propositions other than p: the straightforward details are left to the reader). Let

T be a tree with levels O, 1,2 >. ... where the kth level of the tree contains all

of the members (go, . . . , g~) of fk+ 1(3) that satisfy ~~1. ~} P, and where the
parent of the (k + 1)-ary world (go, . . . . gk) is its k-ary prefix (gO, . . . . g~_, )

if k > 1. Thus, the kth level contains all of the ( k + 1)-ary worlds that agent 3

consider possible and that satisfy E[, z}p. (We see that T is a tree rather than a

forest, since there is only one member at level O, namely, (go), where gO is the

truth assignment where p is true.) For each k, there is some world (go, . . . . gk )

at level k, since f E 7 Kj 7 E~,~}P- Since Efi.~lP * E{~,~;P for each r ~ k.
it follows that if (go, . . . , g~) 1s in T, then so are all of its prefixes. Thus,

there are arbitrarily long finite paths in the tree. The tree has finite fanout, since

there are only a finite number of possible k-worlds for each k. By Konig’s

Infinity Lemma, T contains an infinite path. This infinite path corresponds to a

knowledge structure g = (go, gl, g2, . . . ). Since (go, . . . . gk) = fk+1(3), it

follows by restriction (K2) on knowledge structures that g~(3) = ft(3), for
every k. So f -3 g. Also g != C{1,2}p, since g E E~,,2}P for each k. Thus.

f 1- 1KX7 C{1,2jp, as desired.

In our example we would like to be able to model a situation where the facts

1 Kj 1E~,2}P, k a 1, and KS 1 C{l, ~} P all hold. It is easy to imagine
another situation where the facts 7 K3 1 E~l z p,

A? i
k> ~, and 7K37CI, Z}P

all hold. The crucial point is that the facts 7 ‘ ~ T E{,, ~} P. k 2 1, shou d not
determine whether KS 7 C{, ,Zlp holds. If we restrict attention to o-worlds

then, as we showed, this independence fails. In an u-world where the facts

1 K3 T E~,2}p, k 2 1, are all true, the fact 1 KS 1 C{l, ~}p is forced to be true

as well. This can be explained as follows. It is straightforward to show that
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under our 1~ semantics, agent 3 considers an o-world g = ( gO, g,. gz, . . )

possible precisely if agent 3 considers the k-ary prefix ( gO, . . . . g~ _, ) possible

for every kk> 1 (i.e., (go, . ~, gh -,) G.fL(sJ). under the aSSuwtiOn that

1 Kq 1 E{, ~} p holds for every k = 1, our arguments above actually show that
there is an o--world g that satisfies C{,, ~}p such that agent 3 considers every

finite prefix of g possible. So under the 1} semantics, agent 3 is forced to

consider g possible. The whole point of having an uth-order knowledge

assignment fu is to be able to model the fact that agent 3 considers g

impossible (via g ~~u( 3 )) even though agent 3 considers every finite prefix of g

possible.

The above example suggests that our transfinite construction is indeed

necessary. Intuitively, 6‘ long worlds” are needed to model “deep” knowledge.

This intuition, however, needs to be sharpened, since KC-formulas can express

deep knowledge but they do not require long worlds. The answer is that

KC-formulas do not really express knowledge of depth greater than u, since

they are always equivalent to formulas of depth u. On the other hand, a

formula SUCh aS K31 c{ I ~} P iS inherently of depth u + 1. The next theorem
says that the situation in general is unlike that with KC-formulas p, where we

could decide the truth of p by considering only the prefix of length a.

Specifically, the theorem says that there is no h < u such that for every

formula p, we can decide the truth of p in a world w by considering only the

prefix of w of length A.

THEOREM 5.14. For every ordinal 1 s i < tiz. there is a formula ~h and
there are ( A + 1)-worlds ~ and g, such thut f < ~ = g <~, f E oh, and
g + o~.

PROOF. See appendix. ❑

We note that another approach to modeling joint knowledge is described in

[1 1]. In that approach knowledge assignments assign sets of worlds to sets of

agents, rather than individual agents. The advantage of that approach is that one

does not need to consider h-worlds for A > co.

5.4 SUMMARY. We now summarize our results on modeling common and

joint knowledge. Common and joint knowledge are described by formulas of

infinite depth (in fact, by formulas whose depth is given by ordinals up to U2 ).

Therefore, to properly model states of knowledge in which such formulas might

hold, we need to consider not just worlds of length u (i. e., knowledge

structures, as in the previous sections), but worlds of length up to U2. Once we

do this, most of our earlier results generalize. In particular, we showed that the
truth of a formula is determined by a prefix of appropriate length of the world.

We generalized the definition of no-information extension, and showed that the

result is indeed a world. This shows that every A-world is a prefix of some

w-world, whenever v ~ L which generalizes the result of Section 4 that says
this when h is finite and p = u. We showed that internal and external notions

of truth coincide, and we used this to prove an equivalence between knowledge

worlds and Kripke structures.

We showed that if we restrict our attention to KC-formulas p (those where

there is no joint knowledge over proper subsets of the set of agents), then the

truth of p in a h-world f is already determined by the co-prefix of f. We then
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showed how to define the semantics of KC-formulas in u-worlds directly. We

also proved a finite model theorem, by showing that if a KC-formula is

satisfiable, then it is satisfiable in an co-world that is a least-information

extension. Finally, we showed the rather difficult technical result that when we

allow general extended formulas (which may mention joint knowledge among

proper subsets of the set of agents), then we really need to allow “long

worlds”. Thus, there is no h < ti2 such that for every formula p, we can

decide the truth of p in a world f by considering only the prefix off of length

h.

6. Extensions of the Approach

6.1 A BAYESIAN APPROACH. Economists have taken a Bayesian approach to

modeling knowledge, where instead of having possible and impossible worlds

we associate a probability distribution on worlds with each agent [1, 3]. In a

non-Bay esian setting, an agent knows a fact p if p holds in all the worlds that

the agent consider possible. In a Bayesian setting, an agent knows a fact p if

the probability that p holds according to the agent’s distribution is 1 [3]. (See

also [9] and [28] for an approach that mixes Bayesian and non-Bay esian

approaches.)

Mertens and Zamir describe a Bayesian analogue to knowledge structures

[26], which they call infinite hierarchies of beliefs. If X is a set, then let
A(X) denote the space of probability distributions over X. Mertens and Zamir

start with a set S called the uncertainty space (for technical reasons, this set is

required to satisfy certain topological properties). Intuitively, S consists of all

possible states of nature. A Oth-order Bayesian assignment fO is simply an

element of ~ and ( fO) is a Bayesian 1-world.

Assume inductively that the set X~ of Bayesian k-worlds have been defined.

A kth-order Bayesian assignment is a function fk: #- A( X~). Intuitively, fk
associates with every agent a probability distribution on the set of Bayesian

k-worlds. A (k + 1)-sequence of Bayesian assignments is a sequence

(f~,.. ., fk), where f, is an ith-order Bayesian assignment. A (k + 1)-worlci
is a ( k + I )-sequence of Bayesian assignments that satisfy certain semantic

restrictions, which we do not list. An infinite sequence (f., f ~, f ~, . . . ) is
called a Bayesian knowledge structure if each prefix (f., . . . . fk _, ) is a

13ayesian k-world for each k. The Bayesian approach has the interesting feature

that there is no point in explicitly defining transfinite assignments, since these

are already determined by the kth-order assignments (this result is implicit in

Theorem 2.9 of [26]). We come back to this point later.

The connection between Bayesian Kripke structures [1, 3] and Bayesian

knowledge structures [26] has been studied in [4], [26], and [37]. The conclu-

sion is that 13ayesian Kripke structures and Bayesian knowledge structures have

a relationship somewhat analogous to the one exhibited in this paper between
Kripke structures and knowledge structures. Note that the results cannot be

precisely analogous, since none of those papers has a notion of a logical

language in which assertions about the structures can be made.
It may seem that the Bayesian approach is more expressive than the non-

Bayesian approach. After all, in the Bayesian approach not only do we

distinguish between possible (having positive probability) and impossible (hav-

ing probability zero) worlds, but we actually supply a degree of possibility to
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worlds. This is indeed the case with finite-order assignments over a finite

uncertainty space. However, once we consider infinite uncertainty spaces or

transfinite assignments, the picture gets more involved. Now, we cannot

represent the fact that a world is impossible just by assigning it probability zero;

in fact, probability is assigned to sets of worlds and not to individual worlds.

Thus. in general, the expressive power of knowledge assignments and Bayesian

assignments is incomparable. Consider an ( u + 1)-world f = (~0, ~1, . . . , ~ti)

in which ~0( i) is uncountable, that is, there are uncountably many co-worlds

that agent i considers possible (an example occurs in the ( u + 1)-no-information

extension of a k-ary world, k < u, when there are at least two agents). For

Bayesian assignments, we have made the convention that an agent knows a fact

precisely if the probability of that fact (according to the agent’s distribution) is

1. Hence, an agent considers a fact possible precisely if its probability is

positive, since if its probability is O, then the agent would know the negation of

the fact. In the situation we are now considering, agent i considers an

uncountable number of u-worlds possible, and hence, under the Bayesian

approach. agent i must assign to each of these co-worlds a positive probability.

However, it is well-known that it is impossible to assign positive probabilities to

uncountably many disjoint events. Thus, this situation cannot be captured by the

Bayesian approach.

Example 6.1. It is instructive to re-examine in a Bayesian setting the

situation described in Example 5.13, where 7 KS T Ek~1,~}P holds for all k ~ 1,
Probabilistically speaking, that means that the probabdlty assigned by agent 3 to

the events Efi ~}p is greater than O for all k = 1.
Let p~ be the probability assigned by agent 3 to ~fl, ~} p (and hence to the

equivalent formula ~ ~=, Efl, ~}p), for k > 1. Since ~ ~=, E/l, ~,p is equivalent

to C{,, ~}p, the probability that agent 3 assigns to C{,,,?} p is Iim ~~ ~pk (this

follows from the countable additivity of probabdlty functions). Thus,

~31 C{,l , 2} P holds PreciselY when lim L +~p~ = O. So, in this case, we can see
why it 1s not necessary to go beyond level u: the probability (and hence the

truth) of KS 1 C{,, 21p is determined by probabilities at the finite levels. By

contrast, as we discussed in Example 5.13, in the non-Bay esian setting we need

to examine the tith-order assignment ~U to determine whether K3 m C{ ~,~, p
holds.

The crucial point is that in the Bayesian setting, the probabilities assigned by

agent 3 to the facts E: ~;p,
L’

k ~ 1, determine the probability he assigns to the

fact C{l ~}p. This lac of independence is a general phenomenon. Let A be a

set of a-worlds in the Bayesian setting. and let A ~ be the set of all k-ary

prefixes of members of A, The probability that agent 3 assigns to the set A is
the limit (as k ~ m) of the probability that agent 3 assigns to the set A ~. The

probabilities at the finite levels completely determine the probabilities at level

O. As a consequence, we do not need uth-order assignments in a Bayesian

setting. By contrast, as we saw in Example 5.13, in our setting we need level

co, to provide additional information: If agent 3 considers every finite prefix of

an w-world g possible, then the uth-order assignment ~ti tells us whether or

not agent 3 considers g possible.

The above example demonstrates that countable additivity of probability

functions is the reason that transfinite assignments are redundant in the Bayesian
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approach. We note that countable additivity is crucial to the results in [4] and

[26] .

6.2 FURTHER EXTENSIONS. Knowledge structures serve as a useful and robust

tool for a deep investigation of various knowledge-related issues. While in this

paper we focus on a particular variety of knowledge, the methodology we

presented can be used to study other varieties.

For example, if we want to study belief rather than knowledge, then we

replace the semantic restriction (Kl) (“(~o, . . . . fk_, ) G fk(i), if k > 1”) by

“f~(i) is nonempty if k >1” in our definition of knowledge structures, and

we get belief structures (where it is possible to “believe” something that may

not be true). We can also define knowledge belief structures that deal with

both knowledge and belief simultaneously, where there is a semantic restriction

that implies that every known fact is also believed.

We can also incorporate time into knowledge structures, so that we can give

semantics to a sentence such as b‘Alice knows that tomorrow Bob will know p‘’

(or even to a sentence “Alice knows that tomorrow she (Alice) will know
whether p is true or false”). The first step is to define a Oth-order assignment

as a function fO from co (which we take to represent time; O is today, 1 is

tomorrow, etc.) to truth assignments on the primitive propositions. The second

step is to define a kth-order assignment as a function f~: @ x u ~ 2‘~, where

Wk here is the set of all k-worlds involving time. Our semantic restrictions

(Kl), (K2), and (K3) generalize naturally. One can also add other natural

semantic restrictions; for example, a restriction that says that each agent’s

knowledge increases monotonically with time (cf. [17] and [23] for the Kripke

semantics of knowledge and time).

The above examples suggest that the methodology described in this paper is

quite general. This line of thought is pursued in [1 1], which investigates the

applicability of the approach presented here to the modeling of other modal

logics.

7. Concluding Remarks

In this paper, we introduced a new semantic approach to modeling knowledge

using knowledge structures. Although in a certain sense knowledge structures

are equivalent to the well-known Kripke structures, they have a number of

advantages over Kripke structures:

—Although there are situations where using Kripke structures is the appropriate

approach to modeling knowledge (such as the situated-automata approach,

where knowledge is ascribed on the basis of the information carried by the

state of a machine), there are other situations where it is not clear how to use

Kripke structures to model knowledge states. In such situations, our approach

offers a more intuitive approach to modeling knowledge.

—Our notion of a no-information extension models directly the notion of a

“finite amount of information, ” where in particular there is no common

knowledge. However, we show that no finite Kripke structure can capture

this, By means of the least-information extension, we model the notion of a
“finite amount of information in the presence of common knowledge. ”

—As shown in [1 1], by using knowledge structures, one can obtain proofs of

decidability and compactness that are almost straightforward, and an elegant

and constructive completeness proof.
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On the other hand, for some applications, using Kripke structures is clearly

the preferred approach. For example, the graph-theoretic nature of Kripke

structures makes them the tool of choice when developing efficient decision

procedures (cf. [16, 23, 40] ).

In summary, knowledge structures are a new semantic representation for

knowledge. Although they do not replace the widely used Kripke structures,

they do complement them: There are times when we can gain more insight by

modeling knowledge with knowledge structures rather than with Kripke struc-

tures.

Appendix

In this appendix, we give the results and proofs we promised in the body of the

paper.

A 1. A Lemma Used for Proposition 4.4

We begin with a lemma that was used in the proof of Proposition 4.4.

LEMMA Al. Let w and w’ be k-worlds that agree on all formulas of
depth at most k – 1 of the form Kl~ or ~ K,+. Then w -1 w’.

PROOF. We prove this by induction on k. The case k = 1 is trivial. For the

inductive step, assume that w = (fO, . . . . fk_l) and w’ = (fj, . . . . f[_l) are
as in the statement of the lemma. We must show that fk _,( i) = f~ _,( i). If not,

then without loss of generality, we can assume that there is some ( k – 1)-world

u that is in fk_ l(i) but not in fj_ l(i). Assume that f~_ l(i) = {u;, . . . , u:}

Thus, v is distinct from each of the U;’s. Hence, for each j ( 1 s j s r), either

the first component go of u is distinct from the first component of u;, or else

there is i such that u +-, U;. So by inductive hypothesis, there is a formula +J

of depth at most k – 2 such that u; F ij but u !# ~j. Let ~ be the formula

$, ~ .- “ V ~r. Then w’ t= K,+ but w t# K,+. Since the formula K[~ is of

depth at most k – 1, this contradicts our assumption. ❑

A 2. Proof of Theorem 4.12

Our next goal is to prove Theorem 4.12, which is as follows:

THEOREM 4.12. Assume that there are at least two agents, p is a formula
of depth r, and w is a k-world. If W* E Erhkp, then p is valid.

We first need some preliminary concepts and results.

LEMMA A2. Let (fO, . . . ,f~-,) and (go, . . . . g~_, ) be k-worlds. If

fk-[(i) = g~-~(o, then (f”, . . . . fk_,)* -l (go,. . . . gk_, )*.

PROOF. Let (fO, . . .. fL_l)* be (fO, . . .. fk_l. fk, fA+), ...), and simi-
larly fOr (go, . . . . g~_ ,)*. Since f&~(i) = g&~(i). it follows, as noted

earlier, that fl( i) = gJ( i) whenever O < j < k. Assume inductively that we
have shown that f,(i) = g,(i) for some r ~ k – 1. Then f,+,(i) =

{(hO,..., h,): h,(i) =tr(i)} = {(ho, , . . . h,): h,(i) = g,(i)} = g,+,(i).
This completes the induction step. ❑

Definition A3. If p = ii . . . is is a string of agents and if f and f’ are

knowledge structures, then we say that f –P f’ if there are knowledge structures
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f . . . . f ~+1 such that (a) f ~ = f, (b) f~+l = f’, and (c) f~ -1, fj+, whenever

11: j s s. We may then say that there is a path between f and f’.

Note in particular that if p is the empty string, then f -P f’ precisely if

f = f’. Note that for an arbitrary string p the relation -~ need not be an

equivalence relation.

We shall take advantage of the following simple properties of -P , where pq
is the concatenation of the strings p and q.

(Reversibility): If f -, f’, then f’ -P. f.

(Transitivity): If f -P f’ and f’ -~ f, then f -,. f“.

(Collapsibility): Let i be an agent. Then f -,Zi, f’, if and only if f -P,~ f’.

Ifp= il... is and no two consecutive agents in p are the same, (i. e., if

~j # i~+ ~ for 1 s j < s), then we say that p is nonduplicating. By collapsibil-

ity, we can use nonduplicating strings without loss of generality.

We are interested in our notation of -P because of the following lemma,

whose simple proof (by induction on the length of p) is left to the reader.

LEMMA A4. If f KKPp andf -P g, then g = p.

The next proposition implies that there is a path between every pair of

no-information extensions, and gives us information as to the length of the path.

PROPOSITION A5. Let w be a k-world, let w’ be a k’-world, and let
P ~ .P * be nonduplicating and of length k + k’ – 1. Then W* -P w’*.

PROOF. We first prove the following special case.

Special Case: Let (fO, . . ., f~_,) be a k-world, and let p = Y * be nondu-

plicating and of length k. Then (fO)* -p (fO, . . . . fk_ ,)*.

We prove the special case by induction on k. The base case (k = 1) is

immediate. For the inductive step, let ( fO, . . . . fk) be a (k + I)-world, and let
p= il... i~+, be nonduplicating. By the inductive assumption, ( fO) * -,,...,,

(fo>... fk-,)*. We must show that (fJ* -,, ....,+, (fO,. . . >fk)*. Define

f: by letting fj(j) be the ~-equivalence class of fk- ~(j) for each agent ~. BY
Lemma 4.3, we know that (fo, . . . , fk-1, f;) is a (k + 1)-world. Let

(fo,., fk-,, gk) be the ‘k+ l-matching extension of (f., . . . >fk - 1) with

respect to fk. Again, by Lemma 4.3, we know that (fo, . . . . fk_,, gk) iS a

(k+ 1)-world.

Since gk( ik) = fj( ik), itfollows from Lemma A2 that

Since gk( ‘k+ ~) = fk( ik+ ~), it follows from Lemma A2 that

(fo>... ,fk-1> gk)* ‘,,+1 (fO*. . .~fk-l~fk)*-

Since f~( j) is the j-equivalence class of f$_ 1(j) for each agent ~, it follows

that (fo, . . . . fk-l> f;)*= (fO.. .~f1)l) . Putting these last few observa-

tions together, we see that (fO, . . . . fk_l)* -[kl,+L(fo, . . . ,f~_l, f~)*.
Putting this fact together with our inductive assumption that (JO) * -,, ...,,

(fO>..., fk-,) *2 it follows by transitivity that



420 R. FAGIN ET AL

By collapsibility, (~0)* -,, ... ,,f, (~0, . . . . ~~)’. which was to be shown. This
concludes the proof of the special case.

Letw=(~O, . . ..~~_l) andw'=(~~ . . . ..~~_l). Letp=il. ..i~+~_1.

By the special case, (~n)* -, .,, , W* and (~()* -z,,,,, w’*. By re-‘4’ —,
versibility, W* -,, ,k (~,)’. B; Lemma A.2, (~0)* -,,

(applied twice),

By collapsibility (applied twice), w* -P w’*, as desired.

We can now prove Theorem 4.12.

(~~) *. By transitivity

❑

PROOF OF THEOREM 4.12. Assume that there are at least two agents, that P is

a formula of depth ~, that w a /c-world, and that w* t= E’+’~. We must show

that P is valid. Assume not; we shall derive a contradiction.

Let p e & * be nonduplicating and of length r + k (there is obviously such a

string p, since there are at least two agents). Since w* E E’+ ‘p, clearly

w* I= KP p. Since p is of depth r and not valid, there is an ( r + 1)-world

W’=(fo, ..., ~,) such that w’ # p. Hence, w’* # p. By Lemma A5, w* -,

w’*. Therefore, since w* = KP p, it follows from Proposition A4 that w’* = p.

This is a contradiction. ❑

A3. Proof of Theorem 4.21

We now begin a development that will lead to the proof of Theorem 4.21,

which we restate here:

THEOREM 4.21. (w, %)* is a knowledge structure iff reach( w, %) is a
closed set.

In order to prove the theorem, we need a few preliminary lemmas.

LEMMA A6. If V is a set of k-worlds, w ~ f, and %’ = reach( w, %),
then (w, %)* = (w, %’)*.

PROOF. Suppose W=(fo, ..., f~-,) and (w, )‘/*= (fo, ...,

fk-,, fk. fk+,. . . . ). We can prove, by induction on m ~ k, that
worldsk(( fO, . . . , f~ - I)) ~ reac~( W, ~‘): the proof is left to the reader. It
now follows from the definition of the least-information extension that ( W, % ) *

= (w, W)*. ❑

LEMMA A7. Let Z be a closed set of k-worlds, m > k – 1, and v =
(go,... $g,n) be a world such that worldsk( v) Q Z. Define gin,+,(i) =
{{hO . . . . . h~}: h,,,(i) = g~(i) and worlds~((hO, . . . . h,J) q 6 } for each
agent i. Then (gO, . . . . g~+, ) is a world.

PROOF. The fact that (K I ) and (K2) hold is immediate from the definition.

To see that (K3) holds, we proceed by induction on m. First suppose m = k –
l> Oand(hO, . . ..h ,._,) e g~(i). From the fact that ‘~ is closed and v G %’

(since v = worlds~( v) C %), itfollows that there is some (hO, . . . . hnl _,, h,n)
e ‘F such that h~(i) = g~( i). This world is in g~+, ( i) by definition, so

(K3) holds. Suppose now that m > k – 1 and (hO, . . . . h~_l) eg~(i). Note

that worZdsA((hO, . . . . h,~_ ,)) G % by assumption. Define h~(i) = g~(i)
and h,~(j) = {(hj, . . . , h’ ,~-~): h~.-l(j) = h,n-, (j) and
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worlds~((h~, . . . . h~z_ ~)) ~ F’} for j # i. By the inductive hypothesis,

(hO,..., h,.) is a world, and by construction, it is in g~+, ( i). Thus, there is
some extension of (hO, . . . . h,,Z_,) and g~+l(i), so (K3) holds. ❑

LEMMA As. Suppose ‘6 is a set of k-worlds, w, w’ e %’ with w -Z w’,
and (w, K)* is a knowledge structure. Then ( w‘, ‘6) * is a kno w[edge
structure.

PROOF. Suppose (w, 6)* = (fO, fl, . . .) and (w’, %’)* = (gO, gl, . . .).

We prove by induction on m that (go, . . . . g~) is an (m + 1)-world for all m.
Ifnz<k, then (go,..., g,.) is a prefix of the world w’, so the result is

immediate. If m 2 k, itis easy to see that properties (K 1) and (K2) hold from

the construction. For (K3), suppose that m > 1 and (hO, . . . . hm,_z) ~ gWZ_ l(j).
By assumption, (go, . . . . g,. - 1) is a world. BY the construction of least-
information extensions, g,~_ ,(i) = f~_ ,(i) and worlds~(( gO, . . . . g,H_ ,)) G
%“, so (go,..., g,. _,) 6 f,.(i). Since (w, K)* is a knowledge structure, there
is some g;l such that (gO, . . . , g,. - 1~ g;n) = fm+ l(i). BY Property (K3), there
must be some h~fi_ ~ such that (hO, . . . , hn_z, h~~_~) Gg~~(i). By construction

again, we must have hj. _l(i) = g~_l(i) and worlds~((ho, . . . . h,H_2, hjn-1))
c ‘i. Thus, (ho, . . . , hml–z, h:~–l— ) 6 g,.(i), so (K3) holds. ❑

PROOF OF THEOREM 4.21. Suppose that (w, K)* is a knowledge structure.

Note that it follows (by an easy induction on distance using Lemma A8) that

( w’, %)* is a knowledge structure for all w’ E reach( w, %). We now show that

reach( w, %’) is closed. Suppose (go, . . . , g~-1) ~ reach(w, %) and
f,, ~ii ~ gk_ ~,, and ~h ~h~_z) e g~_ ~(z). We want to show that, for some h~_,, we have

k–1 . . . . ~-z, hj_l) e reach (w, K). Suppose

((got. . . . g~-1), ~) = (go, ~:. , g~-1, gk, . . .). By property (K3), there is
some hj_l such that (ho, . . . , h&z, h~- 1) = gk( i). By the construction of
least-information extensions, we must have (ho, . . . . h~_2, h~_ ~) ~ % and

h~-,(i) = gk_l(i). Thus, (ho, . . . . hk_,, h~_l) e reach(w, 6). This shows
that reach( w, t?) is closed.

For the converse, suppose that %‘ = reach( w, %’) is closed. By Lemma A6,

it follows that (w, ‘~~ * = (w, %)*. Suppose that (w, 6’)* = (fO, fl, . . .).
NOW a straightforward induction on m using Lemma A7 shows

that (fo, . . . . f~) is an (m + 1)-world. Thus, (w, f?)* is a knowledge struc-

ture. ❑

A4. Proof of Theorem 4.22

In this subsection, we prove Theorem 4.22, which we restate here:

THEOREM 4.22. (w. ‘6) * is a knowledge structure where all the worlds of
% appear iff % is closed and %’= reach( w, ~).

We begin with a lemma.

LEMMA A9. Suppose $7 is a set of k-worlds, w ~ ‘c, and (w, %]* is a
knowledge structure. Then worlds~(( w, %)*) = reach( w, ‘<): that is, the
k-worlds that appear in (w, %)* are precisely those that are reachable
from w.

PROOF. Let Z‘ = reach( w, %’). By Lemma A6, it follows that

worlds~(( w, %)*) G ‘~’. To get containment in the other direction, we show by

induction on m that if w‘ is distance m from w, then w‘ appears in (w, ‘<)*.
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The result is trivial if m = O. If ~ >0, there exists W“ G L , where w -1 W“

for some agent i, and W’ is distance m – 1 from w“. By Lemma A8, ( w“. ‘i )*

is a knowledge structure, and by induction hypothesis, w’ appears in ( w“, ‘t )*.

Suppose (w, ‘K)* = (~o,~l,. . .) and (w”, Z)* = (gO, g,, . .). Thus, ~’

appears in (go, . . . , gl) for some 1. Since w -, w“, by the construction of

least-information extensions, we must have ~1( i) = g{(i) and thus ( gO, . . . . g{)

G fl+ 1(0. Therefore, ~’ appears in (fO, . . . , fl+ l). ❑

We now prove Theorem 4.22. If (w, K)* is knowledge structure where all

the worlds in K appear, then by Theorem 4.21, reach( w, ‘i) is closed, and by

Lemma A9, ‘< = reach( w, ‘F). Conversely. if ‘6 is closed and ‘; =

reach(w, ‘~), then reach( w, K) is closed, so by Theorem 4.21, (w, %)* is a

knowledge structure. By Lemma A9, it also follows that all the worlds of ‘t

appear in (w, F)*. ❑

A 5. Proof of Theorem 5.10

In this subsection, we prove Theorem 5.10. We first need a lemma.

LEMMA A 10. Let o be a K-formula, and let ~ and g be ti-worlds such
that f -, g for each i. Then f E Co iff g i= Co.

PROOF. Assume f E Co. Then, f t= 13~o for all j >0. It follows that

f E K,EJU for all ~ >0. But f -, g. so g E EJO for all ~ >0. Thus,

g!= co. ❑

We can now restate and prove the theorem.

THEOREM 5.10. Let o be a KC-formula. Let ~ and g be A-worlds, such
that~cm= g...Thenf~~iffg~~.

PROOF. By Lemma 5.2, we can prove the theorem by showing that every

KC-formula is equivalent to the a formula whose depth is less than or equal to

u. The proof uses the following valid axiom schemes:

(1) K,(P1 A “ “ “ APk) = (Klp, A .“” AK, pk)

(2) C(PI A “ “ “ A@k)-(CqlA.C.AC@k)

(3) K,CP = Cp
(4) K[7Cp= =Cp
(5) Ccp = Cp
(6) CTCp = lCp
(7) K, PvK,4 - K1((pv+)

(8) C’PVC+ + c(~v+)

(9) K,p + p
(10) Cp = q

We want to show that every KC-formula is equivalent to a formula where

there is no C in the scope of another C or a K,. The proof is by structural

induction. By (1) and (2), it suffices to prove that the following axiom schemes

are valid, where p and ~ are K-formulas.

(a) K,(Cp V+) = (Cp VK, +)
(b) K1(l CpV~) = (l CpVK,~)
(c) C(c$ov+) = (c$ovclJ)
(d) C(TCp V~) = (Cp VC~)
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In (a)-(d), implication from right to left follows easily from (3)-(10), so we

consider only implication from left to right. We first prove (a). By Lemma 5.2,

it suffices to consider (w + 1)-worlds. Let h be an ( o + 1)-world.

Suppose that h E K,(CP V ~). Then, for every e c ~O(i), we have e E Cp V

~. There are two possibilities to consider. First, it is possible that for some

e e jti(i), we have that e 1= Cp. Then, by Lemma AlO, for every e e ~d(i) we

have that e I= Cp. Thus, h E KjCp. Consequently, by (3), b E Cp V K,~.
The other possibility is that for all e e ~o( i) we have that e R T Cp. In that

case, we have h E K,$, so h E CpVKl+.

The proof of (b) is similar and left to the reader. We now prove (c). Let h be

a world such that h E C(CP V ~). Then, h t= 13’(Cp V ~) for all i >0. It

follows by (a) that h e (Cp V 13’~) for all i >0. There are now two possibili-

ties to consider. First, it is possible that b t= Cp, in which case, clearly,

h E= Cp v C~. The other possibility is that h !# Cp. In that case, we have

h t= JY’IJ for all i >0, that is h R Ct. It follows that h E Cq V CIJ.
The proof of (d) is similar and left to the reader. ❑

A6. Proof of Theorem 5.14

In this section, we prove Theorem 5.14, which is as follows:

THEOREM 5.14. For every ordinal 1 s h < U2, there is a formula o~ and
there are (h + I)-worlds ~ and g, such that f < ~ = g <~, f E q,, and

g # %.

~ROOF. We first prove the claim for 1 < h < LO.The case h = 1 is easy and

is left to the reader (one agent suffices). Consider the case where 1 < h < a.

Here we need two agents, 1 and 2, and one primitive proposition p. Let fO
make p true. For 1 s k s A, let f~(l) = f~(2) = {~< ~}. It is easy to verify

that f is a ( h + I)-world. Also, one can show by induction on k, 1 s k s A
that f <~+ ~ E lZ~P. In particular. f I= Exp. Let g be the 2-matching extension

of f<~with respect to f. That is, g<x = f <i, gi(2) = {g <A}, and gh(l) is the

l-equivalence class of g <~. We now show that g ~ ELp. The proof is by

induction on h. For h = 1, we have g,(l) = {p, ~}, so g ~ Klp, and

consequently, g ~ Ep. For h > 1, let g’ be the 1-matching extension of g < ~.,
with respect to g<~; that is, g’<X_l = g<h_l, g~_l(l) = {g <h-l}, and

g~- I(2) is the 2-equivalence class of g < ~- ~. By the inductive hypothesis and a
symmetry argument we have that g’ !# EA - ‘p, But g’ -~ g <~, so g #

K, Ek - lp. Consequently, g t# EXp.
We now prove the claim for ~ < X < Uz. Here we use three agents, 1, 2,

and 3, and one primitive proposition p (note that three agents are necessary by

Theorem 5. 10). Let p < U2. Note that ~=uxk+lforsomek, l>O. We

define the classes UK and VM of p-worlds. As we shall see later, the worlds f
and g whose existence is claimed by the theorem will be members of UP and

VA, correspondingly. Worlds in UK are constructed in such a manner as to

prevent agents 2 and 3 from having joint knowledge, and to make sure that

agent 1 knows it. In worlds in V&, agents 2 and 3 do have joint knowledge of

agent 1‘s knowledge.

The construction is by induction on p. The class UI contains the single

1-world ( hO), where hO makes p true. Let VI = UI.
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A 2-world h is in Uz if h <, c U1 and /zl(l) = {h<,}. An l-world h is in UI

forl>2ifh<z is in U,, and either h~_, (2) is the 2-equivalence class of

h </–1 or h ~_,(3) is the 3-e-quivalence class of h <,_,. An o-world h is in U. if

h{(l) is the l-equivalence class of h < ~ for all 1> 1, and h < ~ is in U1 for some

1>2. An l-world h is in Vl for 1> 1 if h < ~ is in Uz, and for all rn such that

1 s m <1 we have kI~(2) = {e: e -a h<,. and e= V’nl}, and hn,(3) = {e:
e-~ h<., and e E V~}. An ~-world h is in VW if hl( 1) is the 1-equivalence

class of h < ~ foralll> l,andh<l isin V{ foralll> 1.

Inductively, let p < U2 be a limit ordinal. A world h is in U.+ ~ if h < ~ is in

~, and h.(l) = {e: e -1 h<y and e e UV}. A (p + 1)-world h is in U&+l for

1> 1 ifh<,+l is in U&+, and either h&+ ~_,(2) is the 2-equivalence class of

h <ti+l-1 or hY+i_ 1(3) is the 3-equivalence class of h < ~+~_,. A (p + u)-world
h is in UP+ti if h&+l(l) is the l-equivalence class of h < ~+1 for all 1>0, and
h <,, +1 is in UU~l for some 1> 1, A (W + /)-world h is in ~,+~ for 1>0 if

h <y+, isin UP+l, h&(2) = {e: e -z h<, andee UK}, hY(3)={e:e-~ h<&

and e e UZ}, and for all m such that i s m < 1 we have that hK+,J2) = {e: e

h <P+,,, and e= VP+,,,}, and hV+,.(3) = {e: e -~ h<~+,. and e= VV+,. }.

~z(p + u)-world h is in VV+U if hP+l(l) is the l-equivalence class of h <JL+l
for all 1> 1, andh<y+, isin VK+l for all 1> 1.

To prove the existence off and g, we have to first prove several properties of

the Uv’s and Vu’s. The proof requires a fairly technical induction hypothesis.

We also need define the classes U; for certain successor ordinals. Let w be a

limit ordinal. A world h is in U;+, if h<, is in UP and hy( 1) is the

l-equivalence class of h <~.

CLAIM Al. Let p < u=.

(1) If h E UP, then there is some h’ E LjL+ ~ such that h’<, = h.
(2) If ~ is a successor ordinal and h e VW, then there is some h’ c ~+ ~

such that h’< ~ = II.
(3) If v is a litmt ordinal and h E UN, then there is some h’ e Vk+, such

that h’c ~ = h.
(4) If F is a successor ordinal and h E V,, then there is some h’ E UF~,

such that h’< ~ = h.
(5) If v is a limit ordinal and h E UV, then there is some h’ E U~~, such

that h’< ~ = h.
(6) The classes Up and VWare nonempty.

The proof is by induction on v. We first prove part (1). If p is a successor

ordinal and h e U&, then h W+ 1 is the desired extension. Assume now that

IJ = u X k is a limit ordinal. Let h e UP. We construct a ( p + 1)-world h’ in
u. Let h:< ~ = h, h~(2) (resp., h~(3)) be the 2-no-information (resp.,
3-%~:informatlon) extension of h, and h~( 1) = { e: e -1 h and ec U&}. We

have to show that h’ satisfies (K3’) for all agents. That (K3’) holds for agents 2

and 3 is obvious, so we focus on agent 1. Let e e h. ( 1). Without loss of

generality we can assume that K > u x (k – 1). It is easy to see that eye U.
and e –1 h, so ew 6 h~( 1) and (K3~ holds. This completes the proof of part (1).

We now prove part (2). We first consider the case v == ~ < ~. The claim

clearly holds for 1 = 1. For 1> 1, let h’ be an ( 1 + 1)-world defined as

follows: h’< ~ = h, h{(1) is the l-no-information extension of h, h~(2) = { e:
e -1 h and e ~ Vi}. and h~(3) = {e: e -~ h and e e Vl}. We claim that
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11’ev ~+~. (K1’) and (K2’) clearly holds, so only (K3’) remains to be verified.

That (K39 holds for agent 1 is obvious, so we focus on agent 2 (the argument

for agent 3 is analogous). Let e c h~_ ,(2). Since b c Vl, we have that e e V~_,.
Thus, by the inductive hypothesis, there is e’ e V1 such that e’< ~_ ~ = e. In

particular, ej_ 1(2) = { e“: e“ -z eande” c Vi_l}. But e -z h<l_l, so e;-1(2)

= h(_ 1(2), and consequently e’ –z h. Thus, e’ ~ h~(2) and (K3~ holds. It

follows that h’ e Vl+ ~.
Now let p be a limit ordinal, and let h c VA+l, 1>1. We define h’ to be a

(W + 1 + 1)-world defined as follows: h’< .+l = h, h~+l(l) is the l-no-infor-
mation extension of h, h;+ ~(2) = {e: e -, h and e= V,+[}, and h~+1(3) = {e:
e -~ h and e e V&+[}. We claim that h’ = VP+l+,. (K1’) and (K2’) clearly hold,

so only (K3’) remains to be verified. That (K3’) holds for agent 1 is obvious, so

we focus on agent 2 (the argument for agent 3 is analogous). Let e ~ h&+,_, (2).
If 1 = 1, then es UW, and if 1> 1, then e c VW+l_l. In either case, there is

e’ e V~+, such that e’ = e. In particular, if 1 = 1 then e~+l_ 1(2) = {e”:

e“ -2 e and e“ c Up~~+&& if 1> 1, then e~+[_ 1(2) = {e”: e“ -1 e and

e“ G V&+[_l }. Bute -, b<y+l-l, so e~+,_, (2) = hp+[_ ,(2), and consequently
e’ -1 h. Thus, e’ ~ h~+~(2). It follows that h’ e ~+{+, and (K3’) holds. This

completes the proof of part (2).

We now prove part (3). Let h e UP. We construct a (v + I)-world h’ in

v ~+l. Leth~<P = h, and h;(i) = {e: e -, h and e E Uy} for i ~ :P. We verify

that h’ satisfies (K3’) as above. This completes the proof of part (3).

Let p be a successor ordinal and let h c Vp. Then h&+ 1 c Uw+,. Let v be a

limit ordinal and let h ~ UU. Then h P+ 1 e U;+,. This completes the proof of

parts (4) and (5). Finally, part (6) follows from parts (1), (2), and (3). This

completes the proof of Claim A 1.

Let (3~ be the formula (1 C

i

~,~}Kl)~p, where (- C{z,~)Kl)Op is p, and

(1 c{2,3}~,) ‘+lp is (m C{Z,3} 1)(1 C{z,~}Kl)AP.

CLAIM A2. Letp<u2, V=uxk+l.

(1)

(2)

(3)

(4)

(5)

Letk=O andl =2. If h~U;, then hi=7K1p. If h~Uz, then
h!= K1p.
Letk = O and I> 2. If he UP, then h F 7E[~~)K1p. If he V&, then
h K E;; ;)KIP.
Letk>Oand l= O. Ifhe Up, then ht=8k. Ifhe VW, then hL 181.
Let k>O and 1= 1. If h~U;, then h= 7K18k. If he UP, then
h I= K(O~.
Let k> O and 1> 1. If h~~,, then h E 7E~L~)K10~. If he ~,,

r ,— -,

then h I= E&~}KIO~.

Part (1) of the claim is obvious. We now prove part (2) by induction on 1. Let

h c Uq and assume that hz(2) is the 2-equivalence class of h <~. Let e be the

2-matching extension of h <, with respect to h < ~. It is easy

to see that eeU~ and e-2h <z. Thus, e~h2(2), so h I= 1E{2, q Klp.
iInductively, let h e Ul and assume that hl_ 1(2) is the 2-equivalence c ass of

h <,_,. Let e be the 2-matching extension of h <~_* with respect to h < ~_,.

Then e e U , and e e hJ_ ,(2). By induction, e P 713(~~1 K, p. It follows that
h ➤ ~E[-~-~z ~lKlp.

We now’ prove that if h e Vl, 1> 1, then h E E~~ ~1K, p. This clearly holds

for 1 = 2. Suppose now that h e Vl, 1>2. Let e = h[_ 1(2). By definition,

ee Vl_l, so e = E{j~}KIP. Thus, h 1= K2E{~~)K1 p. Similarly, h E
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1-2 A’, p. This completes the proof ofK~E{&~}K1 p. It follows that h E -FIz, ~j

part (2).

Part (3) follows from parts (2) and (5) and the definition of U& and ~, for

limit ordinals ~.

We now prove part (4). Let v = a x k. Let h e Uv+l and e E h,,(l). By

definition, e E U,, so by induction (part (3)) e E Ok. Thus, h ~ ~l~k. Let

he U;+l. Suppose first that k = 1. Let e c V.. We have that e e hu( I ), since

h < ~ by construction. But e = 70, (by part (3)), so h E 1 Kld,. Sup-

~o;; now that k > 1. Let d be h<tiX(k_ l). We know that de Uti A,L-l). By
Claim Al, d can be extended to a world e e K, such that e ~.. ~~_ ~} = d and
e -1 h. Bute E Tflk,soht= lKIOL.

We prove Part (5) by induction on 1. Let v < tiz be a limit ordinal. Let

h G UV+: and assume that hu+ ,(2) is the 2-equivalence class of h < ,,+,. Let e be

the 2-matching extension of h <,, with respect to h <.+ ~. It is easy to see that

e~u~+lande-zh <V+,. Thus, e~h ,+1(~), so h 1= 7Ep,}K,0~, since, by
part (4), e b 1 K, Ok. Inductively, let h G U“+,. 1>2, and assume that

h ~+{_ ,(2) is the 2-equivalence class of h < “+,_,. Let e be the 2-matching

extension of h < ~+1_ ~ with respect to h < ,,+[_,. We have that e e ~,+l_, and

e e hp+l_ 1(2). By induction, e i= ‘E(~~)K16A. It follows that h E

7E&:~K10~.

Ifhe VV+l, then we also have h G ~,+, by construction. Thus, by part (4),
we have h I= KfO~. Suppose now that h c ~,+,, 1> 1. Let echv+f.1(2). BY

definition, e ~ Vv+l–l, so e E ~~~l~lKl~~ by induction. Thus, h t=

K.E~~~}KIO~. Similarly, h = KaE/~~ K16~. It follows that h E E~~~}KIO~.
‘dThis completes the proof of part (5) an of Claim A2.

Let ~ = a x k + 1, k >0. Consider first the case that p is a limit ordinal.

Let h e U~. By Claim Al there are worlds f e U~+, and g = ~,+, such that

f = g<~ = h. By Claim A2, we have f E 7 KIO~ and g ~ m KIO~. Con-

si%- now the case that w is a successor ordinal. Let h e VP. By Claim A 1, there

are worlds f e U +, and gc Vu+, such that f <P = &.& = h. BY ClaimA2, we
have f E ~ E~~~)KIOL and g % ~ E~~ilK16A.

NOTE ADDED IN PROOF

We remark that, recently, knowledge structures have been mvestrgated by Hamdton and Delgrande

[17a], who show how they can be generahzed to capture the nonstandard eplstemlc loglcs described by

Levesque [23a] and Lakemeyer [’22al and fir~t-order eplstemlc Ioglcs. 3
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