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Chuangtse and Hueitse had strolled on to the bridge over the Hao., when the
Sformer observed. ‘*See how the small fish are darting about! That is the
happiness of the fish.”” ** You are not a fish yourself.”” said Hueitse. "~ How can
vou know the huappiness of the fish” **And vou not being 1. reroried
Chuuangtse, ~*how can you know that I do not know?"’

—Chuangtse, c. 300 BC

Abstract. Understanding knowledge 1s a fundamental 1ssue 1n many discipbnes In computer science,
knowledge arises not only 1n the obvious contexts (such as knowledge-based systems), but also m
distributed systems (where the goal 1s to have each processor “‘know' something. as m agrcement
protocols). A general semantic model of knowledge is ntroduced, to allow reasoning about statements
such as **He knows that I know whether or not she knows whether or not 1t 1s raming.”” Thus approach
more naturally models a state of knowledge than previous proposals (including Kripke structures)
Using this notion of model, a model theory for knowledge 1s developed This theory enables one to
interpret the notion of a **finite amount of information.™
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1. Introduction

Epistemology, the theory of knowledge. has been a subject of philosophical
investigation for millennia. Reasoning about knowledge and knowledge repre-
sentation has also been an issue of concern in Artificial Intelligence for over
two decades (cf. [5. 24, 29]). More recently, researchers have realized that
these issues also play a crucial role in other subfields of computer science,
including cryptography. distributed computation, and database theory, as well
as in mathematical economics (cf. [13, 14]).
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For example, a distributed protocol is often best analyzed in terms of the
states of knowledge of the processors involved. In a protocol such as Byzantine
Agreement [8, 33], it is essential that this analysis includes not only what a
processor knows to be true about the world, but also its knowledge about what
the other processors know. Such reasoning can, however, get very complicated.
As Clark and Marshall point out [6]. while it may be somewhat difficult to keep
straight a pipeline of gossip such as ‘“Dean knows that Nixon knows that
Haldeman knows that Magruder knows about the Watergate break-in,”” making
sense out of ‘‘Dean doesn’t know whether Nixon knows that Dean knows that
Nixon knows about the Watergate break-in>’ is much harder. Yet this latter
sentence precisely captures the type of reasoning that goes on in proving lower
bounds for Byzantine Agreement [8].

The need to formally model this type of reasoning is our motivation for
constructing a semantic model for knowledge. The first attempt to do so was
made by Hintikka [18], using essentially the notion of possible worlds.
Hintikka’s idea was that someone knows ¢ exactly if ¢ is true in all the worlds
he thinks are possible. Possible-world semantics has been formalized (cf. [36])
using Kripke structures |21]. In a Kripke structure for knowledge, the
‘*possible worlds™” can be viewed as nodes on a graph that are joined by edges
of various colors, one corresponding to each ‘‘knower’ or ‘‘agent”’. Two
possible worlds are joined by an edge for agent i exactly if they are indistin-
guishable as far as agent i is concerned.

There are situations where Kripke structures clearly model the state of
knowledge. For example, assume that there is a set of processors, each with a
set of clearly defined local states. We then define a Kripke structure whose
states consist of the global states (which describe the local states of each of the
processors), where two global states are indistinguishable to a processor if it has
the same local state in both. This is the situated-automata approach, where
knowledge is ascribed on the basis of the information carried by the state of a
machine [34]. This approach has been used in a number of papers on distributed
systems, including [7], [10], [15], [31], and [35]. However, there are situations
where it is not clear how to use Kripke structures to model directly a state of
knowledge.

Example 1.1. Consider a system with two communicating agents where
message transmission is not guaranteed. Suppose two messages have been
exchanged: A message from agent 1 to agent 2 saying p (think of p as being
“‘the value is 3°’), followed by an acknowledgement from agent 2 that is
received by agent 1. Thus, agent 1 knows p, agent 2 knows that agent 1 knows
Db, agent 1 knows that agent 2 knows that agent 1 knows p, and this, in some
sense, is all that is known. While it is easy to construct Kripke structures where
the formulas K, p, K, K, p, and K,K,K, p are all true (where K¢ is read
““i knows ¢’"), it is not the least bit obvious which one captures precisely this
simple situation, or even if there is one. (It follows from our results in Sections
3 and 4 there indeed is one, but that there is none with only finitely many
nodes.)

The difficulty in using Kripke structures to model directly knowledge states
aJso sheds doubt on their adequacy as semantic models for knowledge. To get
around this difficulty, various researchers have tried to characterize a state of
knowledge syntactically, by the set of formulas that are true of this state
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(cf. [18, 25, 30]). This method, however, requires infinitely many formulas to
characterize a state of knowledge, and still begs the question of what a model of
a state of knowledge is. A model to us is a description of the world, not a
collection of formulas. Describing a state by the formulas that are true in it
seems to avoid the issue of modeling altogether.

In this paper, we introduce knowledge structures, which are intended to
model states of the knowledge. We also use the idea of possible worlds, but in a
somewhat different way than in Kripke structures. Roughly speaking, we
proceed inductively by constructing worlds of each depth. A depth 0 world is a
description of reality (in the propositional case, a truth assignment to all the
primitive propositions); a depth 1 world consists of a set of depth 0 worlds for
each agent, corresponding to the worlds that the agent thinks are possible; a
depth 2 world consists roughly of a set of possible depth 1 worlds for each
agent, etc.

Having modeled knowledge states. we can go back and examine Kripke
structures. It turns out that we can now justify the use of Kripke structures as
models for collections of knowledge states. More precisely, to every node in a
Kripke structure there corresponds a knowledge structure where the same
formulas are true, and conversely, for every knowledge structure we can build
a Kripke structure one of whose nodes will satisfy the same formulas as the
knowledge structure. This correspondence between knowledge structures and
Kripke structures enables us to immediately apply to knowledge structures
results concerning complete axiomatizations and decision procedures that have
already been proved for Kripke structures (cf. [16, 36]).

Although the same axioms characterize knowledge structures and Kripke
structures, knowledge structures are a much more flexible tool for examining
two concepts that seem to us fundamental—finite information and common
knowledge—and their interaction. (A fact p is common knowledge if everyone
knows that everyone knows that everyone knows - - - that p. For a discussion
of the significance of common knowledge for distributed systems, see [15].) We
study two model-theoretic constructions, no-information and least-informa-
tion extensions, that capture the notion of finite information, and finite
information in the presence of common knowledge. An interesting corollary of
this investigation is that finite Kripke structures cannot model lack of common
knowledge.

Approaches similar to ours have been taken by van Emde Boas et al. [3§],
and by Mertens and Zamir [26]. In [38] an epistemic model is used to analyze
the Conway Paradox. Like ours, that model captures an infinite hierarchy of
knowledge levels, but it does not have the expressive power of knowledge
structures. In [26], the framework is Bayesian: a world is not just possible or
impossible, but it has a probability associated with it. Mertens and Zamir’s
infinite hierarchy of beliefs is the analogue of our knowledge structures in a
Bayesian setting. We have more comments later about the relationship between
these works and ours.

The rest of this paper is organized as follows: In the next section, we
formally describe knowledge structures and show how to use them to give
semantics to formulas involving knowledge. In Section 3, we describe the
correspondence between knowledge structures and Kripke structures, and show
how we exploit this correspondence. In Section 4, we show how to model finite
information. These results imply the surprisingly subtle fact that in many
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practical situations, there can be no nontrivial common knowledge. In this
section, we also show that finite Kripke structures cannot in general model
finite information. In Section 5, we deal with common and joint knowledge.
The theme in this section is that common and joint knowledge involve knowl-
edge of transfinite depth, and we develop appropriate tools to deal with it. In
Section 6, we compare our approach with the Bayesian approach to modeling
knowledge and we comment on the flexibility and utility of knowledge struc-
tures, by showing hcw they can be extended to deal with belief and time. We
conclude with some remarks in Section 7.

2. Knowledge Structures

In this section, we define knowledge structures, each of which models a state
of knowledge. We assume a finite set of agents. The first step in designing a
model of knowledge is to decide what the properties of knowledge should be.
The nature of knowledge and its properties has been a matter of great dispute
among philosophers. Rather than attempting to resolve these disputes here, we
concentrate on one set of properties that seems natural, and mention later
(in Section 6) how to modify the model to capture various others.

We take it to be a part of the definition of knowledge that anything that
someone knows is true. Although someone may believe false things, it is
impossible to have false knowledge. The motivation for the other properties of
knowledge that we assume comes from considering a system of idealized
rational agents, in which it is common knowledge that each agent is capable of
perfect introspection and logical reasoning. In such a system, an agent knows
exactly what he does and does not know, and knows also all the logical
consequences of his knowledge. Finally, he knows that these properties hold for
all the other agents’ knowledge. These properties are essentially the axioms that
characterize our notion of knowledge. Thus, our knowledge structures will be
defined in such a way that they satisfy the following axioms (recall that K,¢
means ‘‘agent [ knows ¢’’):

(1) All substitution instances of propositional tautologies.

(2) K;¢ = ¢ (““Whatever agent i knows is true’’).

(3) K;¢o = K,K,;p (““Agent i knows what he knows’).

4) " K,p = K, K,p (‘““Agent i knows what he does not know””).

(5) Koy AK (¢, = ¢,) = K,o, (“What agent i knows is closed under
implication’”’).

These axioms were first discussed by Hintikka [18]. The axioms, along with
the inference rules of modus ponens (‘‘from ¢, and ¢, = ¢, infer ¢,"") and
knowledge generalization (‘‘from ¢ infer K,¢’’) imply that the agents are very
wise: each knows all tautologies and all of the consequences of his knowledge,
and each knows that all of the other agents are equally wise. It is well known
that Axiom 3 can be derived from the other axioms and inference rules [20]. It
is convenient to refer sometimes to Axiom 3 as describing positive introspec-
tion, and to Axiom 4 as describing negative introspection.

Before we formally define knowledge structures, let us discuss them infor-
mally. Assume first that there is only one agent. In this case, a knowledge
structure consists of two parts. The first part describes ‘‘reality.”” For simplic-
ity, in this paper, we take reality to be a truth assignment to a fixed set of
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primitive propositions. The second part of a knowledge structure describes a set
of “*possible worlds,”” each of which is a truth assignment that the agent thinks
is possible.

Example 2.1. Assume that p, ¢. and r are the primitive propositions, and
that “‘reality’’ is the truth assignment pgr, which means that p is true, g is
false, and r is true. Assume that the agent knows that exactly one of p, g, or r
is false, but that he does not know which. Then, his set of ‘‘possible worlds™” is

{ bgr., pgr. pqgr}.

When there are two or more agents, then the situation becomes much more
complex. Not only can agents have knowledge about reality, but they can also
have knowledge about each other’s knowledge.

Example 2.2. Assume there are two agents, Alice and Bob, and that there
is only one primitive proposition p. At the “*Oth level’" (*‘reality’”). assume
that p is true. The Ist level tells each agent’s knowledge about reality. For
example, Alice’s knowledge at the 1Ist level could be ‘I (Alice) don’t know
whether p is true or false’’, and Bob’s could be ‘I (Bob) know that p is true’".
The 2nd level tells each agent’s knowledge about the other agent’s knowledge
about reality. For example, Alice’s knowledge at the 2nd level could be I
know that Bob knows whether p is true or false,”” and Bob’s could be “I don’t
know whether Alice knows p.’” Thus, Alice knows that either p is true and
Bob knows this, or else p is false and Bob knows this. At the 3rd level. Alice’s
knowledge could be *‘I know that Bob does not know whether I know about
p.”” This can continue for arbitrarily many levels.

We now give the formal definition of a knowledge structure, and then explain
more of the intuition underlying it. We assume a fixed finite set of primitive
propositions, and a fixed finite set # of agents. A Oth-order knowledge
assignment, f,, is a truth assignment to the primitive propositions. We call
(fo) a l-ary world (since its ‘‘length’ is 1). Intuitively, a l-ary world is a
description of reality. Assume inductively that k-ary worlds (or k-worlds, for
short) have been defined. Let W, be the set of all k-worlds. A kth-order
knowledge assignment is a function f,: #— 2" Intuitively, f, associates
with each agent a set of ‘‘possible A-worlds’’; the worlds in f, (/) are
“‘possible™ for agent i and the worlds in W, — f,(i) are ‘‘impossible’” for
agent I. A (k + l1)-sequence of knowledge assignments is a sequence
(fouen-n Sf). where f, is an ith-order knowledge assignment. A (k + 1)-world
is a (kK + 1)-sequence of knowledge assignments that satisfy certain semantic
restrictions, which we shall list shortly. These restrictions enforce the proper-
ties of knowledge mentioned above. An infinite sequence {f,. f,, f>,...) is
called a knowledge structure if each prefix (f,,.... f,_,) is a k-world for
each k. Thus, a k-world describes knowledge of depth & — 1, and a knowl-
edge structure describes knowledge of arbitrary depth.

Example 2.3. Before we list the restrictions on f,, let us reconsjder
Example 2.2. In that example, f, is the truth assignment that makes p true.
Also. fi(Alice) = { p. p} (where by p (respectively, p) we mean the 1-world
(fo) (vesp.. {f5)), where f, (resp., fy) is the truth assignment that makes p
true (resp., false)), and f,(Bob) = { p}. Saying f(Alice) = { p, p} means
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that Alice does not know whether p is true or false. We can write the 2-world

<f07 f1> as
( p.(Alice » {p. p},Bob — {r})).
Let us denote this 2-world by w,. Let w, be the 2-world

(P, (Alice » {p, p},Bob ~ {p})),

and let w, be
(p, (Alice = {p}.Bob = {p})).

In Example 2.2, f,(Alice) = {w, w,}, since Alice thinks both w, (where p
is true and Bob knows this) and w, (where p is false and Bob knows this) are
possible worlds. Similarly, f,(Bob) = {w,, w;}, since Bob thinks both w,
(where p is true and Alice does not know it) and w, (where p is true and Alice
knows this) are possible worlds.

A (k+ D-world (f,, ..., f,) must satisfy the following restrictions for
each agent i:

(K1) Correctness: (fy, ..., fr_1) € fi(D), if k=1 (““The real k-world is
one of the possibilities, for each agent’’). In our example, we see that indeed
p € fi(Alice) and p € f,(Bob). Furthermore, w, € f,(Alice) and w, € f,(Bob),
where we recall that w, is the ‘“‘real’” 2-world (f,, f,). Intuitively, this
condition says that knowledge is always correct (unlike belief, which can be
incorrect).

(K2) Introspection: If (g, ..., &,_,) € fi(i), and k > 1, then g, (i) =
Jr_1(D) (“‘Agent i knows exactly what he knows’’). Let us consider our
example. Alice thinks there are two possible 2-worlds, namely, w, and w,,
since f,(Alice) = {w,, w,}. If we write w, as (g,. g,), then indeed g (Alice)
= { p, P} = fi(Alice), as required. Intuitively, although Alice has doubts
about Bob’s knowledge, she has no doubts about her own knowledge. Thus, in
all 2-worlds she considers possible, her knowledge is identical, namely, she
does not know whether p is true or false. This condition implies that our agents
are introspective about their knowledge.

(K3) Extension: (gq,.... 8 1) € fr_,(i) iff there is a (k — 1)st-order
knowledge assignment g, _, such that (g,,..., &,_,, &;_1) € f(D), if k> 1
(**#’s higher-order knowledge is an extension of i’s lower-order knowledge™).
In our example, since Alice thinks either p or p is possible, there is some
2-world she thinks possible (namely, w,) in which p is true, and there is some
2-world she thinks possible (namely, w,) in which p is false. Conversely,
because she thinks w, and w, are both possible, it follows that she thinks either
p or p is possible. Intuitively, this condition says that the different levels of
knowledge describing a knowledge world are consistent with each other.

We note that (K1) implies that if (f,,..., fi) is a (k + 1)-world, then
(fos+ -5 [,) is a (j + D)-world, for all j such that 0 < j < k. We also note
that our three restrictions imply an apparent strengthening of (K2): namely, if
(8g»---»8r_y) € fr(D), and k > 1, then g(i) = f(i) if 1 =/ < k. Simi-
larly, our conditions imply that the ‘‘compatibility’” between f, and f,_, as
expressed by (K3) implies that the same compatibility holds between f; and f,
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if 0 <j< k. Thus, i’s higher-level knowledge determines his lower-level
knowledge (i.e., f,(i) determines fj(i) if 0 < j < k). So, higher-order knowl-
edge refines (i.e., adds more detail to) lower-level knowledge.

We have phrased (K3) as a necessary and sufficient condition, but it is easy to
sec that one direction actually follows from (K1) and (K2). Suppose that
(80> -+ 82+ & 1) € f(i). Then, by (K2), g, (i) = f,._,(i). By (K1),
(8o+ s 8xn) € &r_ (D). If follows that (g,,..., &x_») € fr_(i). From
now on, whenever we have to verify that (K3) holds, we check only the
nontrivial direction.

It is not obvious that every world is the prefix of some knowledge structure.
J. McCarthy (personal communication) posed essentially this question as an
open problem in 1975 (in a different framework, of course). In fact, it may not
be obvious to the reader that there are any knowledge structures at all. As we
shall see in Section 4. there are many, and the answer to McCarthy's question is
positive.

There are tempting ways to “‘simplify’’ knowledge structures. It turns out
that the alternative definitions are not expressive enough to model the full range
of possibilities that knowledge structures can model. For example. one may
want to define a kth-order knowledge assignment as an assignment to each
agent of the set of (k — I)th-order knowledge assignments (instead of a set of
k-worlds). This in fact is the approach taken by van Emde Boas et al. [38].
Unfortunately. with this definition we cannot describe the state of knowledge
where Alice knows that either p is true and Bob knows it or p is false and Bob
does not know it. Essentially, the simpler approach cannot model knowledge
about relationships between knowledge and reality, and, more generally,
it cannot model knowledge about relationships between different levels
of knowledge.

Let f be the knowledge structure ( f,, f,. .. .). Define i’s view of f, denoted
7(f), to be the sequence (f(i), f5(D)....). If f and f" are knowledge struc-
tures, we say that f and {" are i-equivalent. written f ~ f, if = (f) = = ().
Thus, f and {" are i-equivalent if agent / cannot distinguish between them.

At this point, we can imagine two notions of what it means for agent / to
think that a k-world w is possible. The first is the one we have been implicitly
using up to now: agent [ thinks w is possible in a knowledge structure
f={(fy, f1,...)if we f.(i). We say that agent i thinks w is conceivable in
f if w is a prefix of some knowledge structure ' such that f ~ f’; that is, w is
the prefix of a knowledge structure that agent / cannot distinguish from f. The
following theorem assures us that the two notions of ‘‘possible world’’ are
identical.

Tueorem 2.4. Agent i thinks that w is possible in t iff agent i thinks
that w is conceivable in f.

Proor. Assume first that agent i thinks w is conceivable in f, so w =
(for v Si_1) is the prefix of a knowledge structure £ = (f, fi.....),
where f ~, F". In particular, we have f, (i) = f.(i). By (K1), {(f§,. ... fi_,)€
Ji(D). Hence, we f,(i), so agent i thinks w is possible in f.

Conversely, suppose agent I thinks w is possible in f, so that w =
(for - s Jroa) € filD). By (K2), fr_ (i) = f, (). As we commented ear-
lier, it follows easily that S = fj(i) if 1 =j<k-— 1. Since
(Sos oy Ji1) € fili), it follows from (K3) that there is some f; such that
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(SOr - s St J) € Sfrrili). By (K2), fi(i) = f,(i). Similarly, we can find
Jiv1» Jiysr-.. such that £ ~ £ = (f}, fi,...). Since w is a prefix of f, it
follows that w is conceivable in f. [

The set of formulas is the smallest set that contains the primitive proposi-
tions, is closed under the Boolean connectives ™ and A, and contains K¢ if it
contains ¢ (in Section 5. we discuss richer languages). Boolean connectives
such as vV and = are defined as usual. We now define the depth of a formula
¢, denoted depth( ).

(1) depth( p) = 0 if p is a primitive proposition;
(2) depth(™ ¢) = depth(¢);

(3) depth(p, A ¢,) = max(depth(e,), depth(e,)):
(4) depth(K,¢) = depth{¢) + 1.

We are almost ready to define what it means for a knowledge structure to
satisfy a formula. We begin by defining what it means for an (r + 1)-world
(for- - - f,) to satisty formula ¢, written (f,, . ... f,) E ¢, if r = depth(e).

(1) (fo,---.f,) Ep, where p is a primitive proposition, if p is true under
the truth assignment f,.

Q) (foree s [)E QI (foro s [)H 0.

(3) <f0*"'afr> N P AN if<f0,---,fr> E ¢, and <f0""7fr> E o,

4 }f(o‘,). LS EKe if (g,,...,8,_,) E¢ for each (g,,....g,_,) €
(1)

Let us reconsider Example 2.2. Let w, and w, be, as before, the two
2-worlds that Alice considers possible. Then w, = Ky, p, since according to
w, the only 1-world Bob considers possible is ( p). Similarly, w, = K, , " p.
Hence, both w, and w, satisty (K ,,pV K ,, ™ p). Since both of the 2-worlds
that Alice considers possible satisty (Ky., p V Ky, 7 p), it follows that in our
example ([, f1. f5) E Kool Kpop PV Koy 7 D).

The next lemma says that to determine whether a formula of depth k is
satisfied by a world, we need only consider the (k + 1)-ary prefix of the world.

Lemma 2.5.  Assume that depth(p) = k and r = k. Then. (f,, ..., f,)
= iff (fooo o fi) E o

Proor. The proof is by induction on formulas. The only nontrivial case is
when ¢ is of the form K,y , where we assume inductively that the lemma holds
when ¢ is ¥. Assume that (f,, ..., f,) = K}, and that depth(K ,¢/) = k < r.
Let (gy, ..., &_;) be an arbitrary member of f,(i). It follows from (K3) that
there exist g,,..., g,_, such that (g,,..., &, (»--.. & _,) € f.(i). Since
(for- .., [) B Ky, it follows by definition that (g, ..., &,_,) = ¥. So, by
inductive assumption, (gg,..., g&;_;) = ¥. Thus, every member of f,(i)
satisfies v, and so (f,, ..., fi) F K ¥, as desired. The proof of the converse
is similar. []

We say that the knowledge structure f = (f,, f,,...) satisfies ¢, written
f=o,if (fy,..., fr) E ¢, where k = depth(p). This is a reasonable defini-
tion, since if w = (f,, ..., f,) is an arbitrary prefix of f such that r = k. then
it then follows from Lemma 2.5 that f = ¢ iff w= ¢. We say that ¢ is
satisfiable if it is satisfied in some knowledge structure, and valid if it is
satisfied in every knowledge structure.
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Proposition 2.6.  All of the axioms are valid.

Proor. (K1) (which says (f,..... Si_ € fild), if k=1) causes the
axiom K, ¢ = ¢ to be valid. (K2) (which says that if (g,...., g, ) € f.(i).
and k> 1, then g,_ (i) = f,_,(i)) can be viewed as a combination of two
restrictions, one with g, (/) € f,_ (i), and one with g, (i) 2 f, ,(i). The
former restriction causes the axiom K,p = K,K,¢ to be valid, and the latter
causes the axiom 7 K ¢ = K, 7 K ¢ to be valid. The remaining simple details
are left to the reader. [

Tueorem 2.7. f = K, ¢ iff g = ¢ whenever f ~, g.

Proor.  Assume that depth(K ¢) = k. We first show that if f = K ¢ and
f~, g theng=¢. Letfbe (f,, f,....), and let w be the k-world that is a
prefix of g. By Theorem 2.4. we know that we f.(i). Since f & K, ¢, it
follows by definition that every member of f,(/) (and, in particular, w)
satisfies . Since w = ¢, it follows by definition that g = ¢. as desired.

Conversely, assume that g = ¢ whenever f ~, g. To show that f = K¢, we
must show that w = ¢ for each w e f,(/). Assume that w e f,(i). By Theorem
2.4, w is a prefix of some g such that f ~, g. By assumption, g = ¢, and so by
definition w = . [

Thus, agent i knows ¢ precisely if ¢ holds in every knowledge structure that
i thinks possible. Theorem 2.7 is a powerful tool. It shows the equivalence of
two distinct notions of truth. The first notion of truth, which we can call
“internal truth™, says that K ¢ is true if ¢ is true in every k-world that i
thinks is possible (where depth(K,¢) = k). These k-worlds are obtained by
““looking inside’’ the knowledge structure (at level k). Thus. internal truth is a
finitistic notion. The other notion of truth, which we can call **external truth™,
says that K ¢ is true if ¢ is true in each of the knowledge structures that i
thinks is possible, of which there can be uncountably many.

3. Knowledge Structures and Kripke Structures

Many previous attempts (cf. [25, 29, 36]) to provide a semantic foundation for
reasoning about knowledge have made use of Kripke structures [21].

Suppose we have agents 1, ..., n. The corresponding Kripke structure M is
a tuple (S, w, .#,,...,.#,), where S is a set of states, w(s) is a truth
assignment to the primitive propositions for each state se S, and .», is an
equivalence relation on § (i.e., a reflexive, symmetric, and transitive binary
relation on S). Intuitively, (s, 7)€ .#, iff s and ¢ are indistinguishable as far
as agent /'s knowledge is concerned. We now define what it means for a
formula ¢ to be satisfied at a state s of M, written M, s = o.

(1) M.s = p, where p is a primitive proposition, if p is true under the truth
assignment w(s).

(2) M.sE= o if M. sH .

3) M,s= o ANp, it M.st= ¢, and M, s E ¢,.

4) M.sE& K,pif M,tE ¢ forall ¢ such that (s, t)e .7,.

It is not hard to show that with Kripke semantics. the modality K, also has all
the properties discussed in the previous section (see [16] and [36] for more
details). The reflexivity of .7, gives us K,¢ = ¢, transitivity gives us K,¢ =
K,K,p. and symmetry and transitivity together give us 7K o = K, 7 K o.
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Even though Kripke structures give K, the desired properties, it is not clear
that they actually capture our intuition about knowledge. In particular, it is not
clear what state of knowledge corresponds to a state in a Kripke structure. The
following theorem clarifies this issue by providing an exact correspondence
between knowledge structures and states in Kripke structures.

We say that a state s of Kripke structure M is equivalent to knowledge
structure f if M, s = ¢ iff f = ¢, for every formula ¢. That is, s and f are
equivalent if they satisfy the same formulas.

Tueorem 3.1. To every Kripke structure M and state s in M. there
corresponds a knowledge structure f,, = such that s is equivalent to f,, ..
Conversely. there is a Kripke structure M, .. such that for every knowl-
edge structure f there is a state s; in M, .. such that § is equivalent to s;.

Proor. Suppose M is a Kripke structure. For every state s in M we
construct a knowledge structure £,, . = (fg. f7....). First, f is just the truth
assignment 7 (s). Suppose we have constructed f3, f]. ..., f; for each state s
in M. Then, f{ (D) = {{fs.-.., f{): (s.1)e #,}. We leave it to the reader
to check that M, .. s & ¢ iff fM.S = .

For the converse, let M, . = (Si,0mw> T+ #1s.... #,), where §,,,,. con-
sists of all the knowledge structures, w(f) = f,, and (f,g)e.r, Hf f ~ g

Now using Theorem 2.7, we can show M, fropifff = . U

now:*

In [36] it is shown that the axioms of the previous section, with modus ponens
and knowledge generalization as the rules of inference, give a complete
axiomatization for the Kripke structure semantics of knowledge, while in {16] it
is shown, again with respect to Kripke structure semantics, that the question of
deciding if a formula is satisfiable is PSPACE-complete (provided there are at
least two agents). From Theorem 3.1, it follows that these results also apply to
the knowledge structure semantics, so we get:

CoroLLARY 3.2, The axioms of the previous section, together with
modus ponens and knowledge generalization as the rules of inference, give
a complete axiomatization for knowledge structures.

CoroLLarRY 3.3. The problem of deciding if a formula is satisfiable is
PSPACE-complete ( provided there are at least two agents).

We note that in [11] it is shown how to obtain an elegant, constructive proof
of Corollary 3.2, by working only with knowledge structures and not making
use of the completeness theorem for Kripke structures.

Theorem 3.1 shows that knowledge structures and Kripke structures have the
same theory, but its implications are deeper. It shows that knowledge structures
and Kripke structures complement each other in modeling knowledge: knowl-
edge structures model states of knowledge and Kripke structures model collec-
tions of knowledge states.

4. Modeling Finite Information

4.1 Tue No-INnrormaTioN ExtTensiON. A knowledge structure fully describes
a state of knowledge; that is, it describes arbitrarily deep levels of knowledge.
In reality, however, agents have only a finite amount of information. In this
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section, we study the knowledge states that arise from finite amounts of
information. Put differently, we study knowledge structures that have finite
descriptions.

Consider a variant of Example 1.1, where we have a system with three
communicating agents, Alice, Bob, and Charlie. Assume that Bob has sent no
messages and has received only one message, a message from Alice saying
“p’’ (i.e., p is true). For ease of exposition, let us also assume that p is the
only primitive proposition. Intuitively, all that Bob knows at this point is that
Alice knows p. But what state of knowledge does this correspond to?

The answer to this question depends in part on the underlying model of
knowledge acquisition (cf. [10, 12]). For example, is it possible as far as Bob is
concerned that Charlie knows that Bob knows p, even though Bob never sent
any messages? The answer may be yes if each agent stores the information he
has about primitive propositions and about the information he has received from
other agents in a database, and if databases are insecure, so that agents can read
each other’s databases (then Charlie can find out what information Bob has
received, without receiving any messages from other agents). It may also be yes
if messages are guaranteed to arrive in one round of communication, for in
that case, for all Bob knows, Alice may have sent Charlie a message (in the first
round) saying that she would also send Bob the message ‘“p’’ in that round. On
the other hand, if message communication is nof guaranteed and databases are
secure, then Bob knows that Charlie does nor know that Bob knows p. Is it
possible that Alice knows that Bob knows that Alice knows p? Again, the
answer depends in part on whether communication is guaranteed. If there is a
chance that messages may not arrive, then it is not possible for Alice to have
such depth 3 knowledge at the end of the first round.

In order to characterize Bob’s knowledge state, we first consider the most
‘“permissive’’ situation, where we assume that agents have no knowledge about
how other agents acquire information. Thus, agents should allow for all
possibilities that are consistent with the information they have. Since Bob has
received a message from Alice saying p is true (and we assume that messages
are honest). Bob knows that Alice knows p. Of course, Bob also knows that he
himself knows p, but he has no idea whether Charlie knows p. Thus, there are
two 2-worlds that Bob thinks are possible:

(. (Alice = { p}. Bob ~ { p}. Charlie ~ { p}))

and

(p,(Alice » {p}. Bob —~ {p}, Charlie - { p, p})).

Let W be the set consisting of these two 2-worlds. What 3-worlds does Bob
think possible? Intuitively, Bob should consider a 3-world w = (g,. &,. &,)
possible if it is consistent with Bob’s information, that is, if g,(Bob) = W. Let
W’ be the set of 3-worlds that satisfy this condition. These are the 3-worlds that
Bob considers possible. This idea extends. The set of 4-worlds that Bob thinks
are possible consists of all the 4-worlds (g,, &,. &,, &) such that g,(Bob) =
W’. We shall generalize this idea shortly when we define the no-information
extension.

Let W be a set of (kK — 1)-worlds, and 7 an agent. Define the i-extension of
W to be the set of k-worlds given by {(g,.... & 1) g, (i) = W}.
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Intuitively, this is the set of k-worlds w such that in w, agent i considers W as
the set of possible (k — 1)-worlds.

Definition 4.1. Let w = (f,, ..., f,) be a (k + 1)-world. The one-step
no-information extension w* of w is the (k + 2)-world (fy, . .., fi» frs1)s
where f,, (i) is the i-extension of f,(i). Thus, f, (V) ={{gy, .-, &):

g (1) = fk(i)}'

In the above definition (and later), we use the convention that f(i) is the
empty set for each agent i. Hence, (f,)* = (f,. f). where f,(i) is the set of
all truth assignments, for each agent /. Intuitively, the one-step no-information
extension (fy, ..., fi, frs1) Of (fo, - - .. f;) describes what each agent knows
at depth k& + 1, assuming that ‘‘all that each agent i knows’’ is already
described by f,(i) and given the underlying ‘‘permissive’’ model described
above. Thus, f; (i) is the set of all k-worlds that are compatible with /’s
lower-depth knowledge.

We can relate this definition to the notion of i-equivalence defined in the
previous section as follows. Let w = (f,, ..., fr_and w' = (fi, ..., fi )
be k-worlds. By analogy with our definition of i-equivalence for knowledge
structures, let us say that the worlds w and w’ are i-equivalent (written
w ~,w’), if f,(i) = f;(i) for 0 < j < k. Then (as noted in Section 2), w ~, w’
it f, () = fr_ (D). So, [, (i) is the i-extension of f,(i) if f,, (i) =
(80> - 8 (&ovovs &) ~i (Sos- s [}

The intention of the one-step no-information extension is that w* describes
the knowledge of the agents one level higher than the description of their
knowledge in w, if w completely describes the information they have. How-
ever, a priori, it is not clear that w* is even a world, since it may not satisfy
the three restrictions described in Section 2. Before removing this doubt, we
need some auxiliary machinery.

The following lemma, whose proof is left to the reader, shows that knowl-
edge assignments can be ‘‘mixed’’ together.

Lemva 4.2, Let (fy, ..., fy) and (g, ..., g,) be (k + 1)-worlds such
that (fo, ..., fe_1) ~, (&> &_y). Let h, be a kth-order knowledge
assignment such that h, (i) = f,(i) and h,(j) = g,(j) for j+#i. Then
(80> > &k_1. hy) is a (k + D)-world.

Let w=(fy,...,f;) bea(k+ 1)-world and let (g,,.... g, ) €fi(i).
The i-matching extension of (g,, ..., g,_,) with respect to w is the sequence
(805> &k_1- &)» Where g,(i) = f.(I) and g,(/j) is the j-extension of
8r(J) for j # 0.

Lemma 4.3

() Let (fy,...,fr_1) be a k-world. Then the one-step no-information
extension is a (k + 1)-world.
(2) Let w=(fy,....fx) be a (k+ 1)-world and let (g,,..., g, |} €

Ji(i). Then the i-matching extension of (g, ..., &,_,) With respect to
wis a(k + 1)-world.

Proor. We prove parts (1) and (2) simultaneously by induction on k. To
prove part (1), we consider a k-world w = (fo, ..., fr,_;). Let (fo. ..., fo)
be the one-step no-information extension of w. We have to show that
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(fo- ..., [, satisfies the restriction (K1), (K2), and (K3). The case k = [ is
immediate. For the inductive step, again the fact that (K1) and (K2) hold
follows immediately from the definition of the one-step no-information exten-
sion. For (K3). suppose (gq...., &_>) € fr_(i). Let w’ be the i-matching
extension of (g,.. .., &,_,) with respect to w. By the induction hypothesis. w’
is a k-world. By construction w ~, w’, so by the definition of the one-step
no-information extension, w’ e f,(i). Thus. every element of f, (/) has an
extension in f,_ (/). and (K3) holds.

To prove part (2), we consider first the one-step no-information extension

(8gv---» &) Of (89s-- ., &_,)- By the induction hypothesis, (g, ..., &) is
a (k + 1)-world. Since (g, ..., &;_,) € f,(i). we have that {f,,..., f, )
~. (&> s &c_1)- The claim now follows by Lemma 4.2. []

Part (1) of Lemma 4.3 tells us that indeed, the one-step no-information
extension of a world is a world.

We now develop some machinery that justifies the name ‘‘no-information
extension.”” We have defined what it means for an (r + 1)-world (f,,.... f,)
to satisfy formula ¢, written (f,. ..., f,) = ¢, if r = depth(¢). We now give
an extension of this definition to formulas of greater depth. Let us say that a
world w must eventually satisfy ¢, written w =" ¢, if for every knowledge
structure f with w as a prefix, f = ¢. For example, if the primitive proposition
p is true under the truth assignment f,. then (f) =" 7 K, p, since if p is
true, then it is not possible for an agent to know — p. Note that we cannot
replace =" by F (in other words, it is not the case that (f,) = =K, 7 p),
since the depth of the formula — K, 7 p is too big.

Say that a set ¥ of formulas logically implies the formula ¢, written X = o,
if every knowledge structure that satisfies every formula of ¥ also satisfies o.
That is, ¥ logically o if there is no “*counterexample’” knowledge structure that
satisfies every formula of X but not o.

The next proposition justifies the name °‘‘no-information extension’’ by
characterizing when an agent i/ knows a formula ¢ of depth at most £ — 1 in
the one-step no-information extension of a k-ary world w = (f,. ... f_ ).
The proposition says that this happens precisely when the truth of the formula
K, ¢ is already guaranteed by w anyway. There are two ways that we make
precise ‘‘the truth of the formula K¢ is already guaranteed by w anyway’’. In
the first sense (part (2) of Proposition 4.4 below), w =% K, ¢; that is, w must
eventually satisfy K,¢, as defined above. The second sense (part (3) of
Proposition 4.4) says that knowledge (and lack of knowledge) of agent i, as
described by w, is sufficient to logically imply K ,¢.

ProrosITION 4.4.  Assume that i is an agent, w is a k-world. and ¢ is a
Sormula of depth at most k — 1. The following are equivalent.

(1) w"e K,e;

2y we" K,¢;

(3) Let ¥ be the set of all formulas v of depth at most k — 1 of the form
Ky or 7K that are satisfied by w. Then, £ = K ¢.'

!'Note that if k = 1, then there are no formulas v of depth 0 of the form K,y or = K,y. Thus. 1f
k =1, then ¥ 18 the empty set.
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Proor. It is immediate that (2) implies (1), since w is a prefix of w™. We
now show that (3) implies (2). Assume that (3) holds. Let f be a knowledge
structure with w as a prefix. We must show that f = K,¢. Since w satisfies X,
so does f. Since X = K, ¢, it follows that f = K, ¢, as desired.

We now show that (1) implies (3). Assume that (1) holds. Let w'=

(fos -+ fr). Let 2 be as in (3), and let £ = (f;, f1,...) be a knowledge
structure that satisfies . We must show that f' = K,¢. That is, let v =
(8gs---» &y be an arbitrary member of f,(i); we must show that v = ¢.

Since f’ satisfies ¥, so does its k-ary prefix (fg,..., fr_,). It therefore
follows from Lemma Al of the appendix that f, (i) = f;_ (i). Since v =
(80s---» 8_q) € f1(), it follows from (K2) that g,_ (i) = f;_,(i). Hence,
810y = f_,(i). Therefore, by definition of the one-step no-information
extension, v € fi(i). Since wr= (f,, ..., f,) E K,p, it follows that v &= ¢.

This was to be shown. [

We now define the no-information extension of a world w to be the result
of repeatedly taking one-step no-information extensions. Formally, the #no-

information extension w* of w = (f,,..., f,) is the sequence
(fos s Jus Frwto---)» where {(fo, . ... f,,.) is the one-step no-information
extension of (f,,..., f,) for each m = k. Intuitively, the no-information

extension w* is a knowledge structure that describes the knowledge of the
agents, if w completely describes the information they have.

We might hope that an analogous proposition to Proposition 4.4 would hold
for the (full) no-information extension. However, this is not the case. To
understand why, let us denote the two-step no-information extension (w*)™
of w by w*™, If we replace w* everywhere in Proposition 4.4 by w*™, and
let ¢ be of depth k, then the proposition no longer holds. For example, let p
be a primitive proposition that is true under the truth assignment f,. Then
(foy e 7K, p, so by negative introspection, (f,) "= K, K, p. Therefore,
if ¢ is 2K, p, then (f,)"" = K,p, although (f,) # "K,¢ and ¥ & K, ¢,
where X is as in part (3) of Proposition 4.4. What is happening is that negative
knowledge at one level induces positive knowledge at the next level. This would
not happen if we modified the definition of knowledge structures by eliminating
negative introspection, as is done in [39].

Let w = (f,, ..., fi) bea(k + 1)-world, and let w*= (f, ..., fr, fis1)
be the one-step no-information extension. Note that for each (k + 2)-world
(for v Si» fiy) that extends w, we have f; (i) € f, (i) for each agent i
(this follows from the restriction that for every (go. ..., &) € fr. (i) neces-
sarily g,(i) = f.(i)). Thus, the one-step no-information extension can be
characterized by the fact that f,, (/) is maximal for each /. This explains why
“no extra knowledge’’ is added in taking the one-step no-information exten-
sion, since the more possible worlds there are, the less knowledge there is.
However, now let (fy, ..., fu> fxs1- frio) be the two-step no-information
extension w**. It is not the case that f, ,,(7) is maximal for each /, among all
two-step extensions (fo. ..., fis frs1s Jrio) of w. This is because if f; , (i)
# fro (D, then f, (D) and f,,,(}) are incomparable (and in fact, disjoint
from each other), since every (&g, - - &xr1) € fran has g, () = fr, (D),
whereas every (&g, - -, 8kt 1) € frs2 has g,.,(0) = fi,(i). Again, the point
is that lack of knowledge at one level induces knowledge at the next level, by
negative introspection.
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The next theorem follows immediately from part (1) of Lemma 4.3.

Tueorem 4.5. For all worlds w, the no-information extension w* is a
knowledge structure.

CoroLLary 4.6.  Every world is the prefix of a knowledge structure.

We note that in fact, it is not hard to show that every world is the prefix
of uncountably many distinct knowledge structures. Corollary 4.6 answers
McCarthy’s question (see Section 2) positively.

We shall investigate some properties of the no-information extension in the
next section.

4.2 On tHE Presence orF ComMmon Knowrepce.  Recall that state s of Kripke
structure M is equivalent to knowledge structure f if M, s = ¢ iff f = ¢, for
every formula ¢. Since a no-information extension captures what is perhaps the
most natural notion of finite information, one might hope that for each
no-information extension w*, there would be a finite Kripke structure (i.c., one
with finitely many states), one of whose states is equivalent to w*. However,
this is not true. In fact, it is very far from the truth: For no no-information
extension is there such a finite Kripke structure. To understand why., we must
first consider the notion of common knowledge.

Assume that the agents are 1,...,n. Let E¢ be a shorthand for K, ¢
A -+ AK,p, that is, “Everyone knows ¢”. Let E% be ¢, and let E’¢
abbreviate EE’"'¢ for j = 1. We say that the formula ¢ is common
knowledge in knowledge structure t if f = E/¢ for every j > 0. Similarly,
we say that the formula ¢ is common knowledge in state s of Kripke
structure M if M, s = E’¢ for every j > 0.7

As we shall show, there is never any nontrivial common knowledge in a
no-information extension, so long as there are at least two agents. In fact, we
shall show (in Corollary 4.13 below) that ¢ is common knowledge in w™ iff ¢
is valid. We now show that the situation is completely different for finite Kripke
structures. We first need some preliminary definitions, which will also be
useful for some of the theorems we prove later.

Definition 4.7. Letp = i,...1, be a finite string of agents. The length of
p is s. The reverse of p, written p*, is i,...i,. If ¢ is a formula, then let
K, ¢ be an_abbrewatlon for the formula K ne e K P If p is the empty string,
then K¢ is taken to be ¢.

Definition 4.8. Let M = (S, w, 7,....,.%,) be a Kripke structure. We
say that there is a path of length k between two states s and ¢ in S if there is
a sequence U, ..., U, of states in S such that s = 1, ¢ = u, and for all
0=i=<k—1 we have that (u,.u,, )€ #, for some | </ < n. If there is
such a path, then we say that the two states are connected. The distance
between s and ¢ is the length of the shortest path between s and ¢ if such a path
exists, and is undefined otherwise.

TueoreM 4.9.  Assume that there are at least itwo agents. Then for each
Jinite Kripke structure M, there is some nonvalid formula ¢ that is
common knowledge in every state of M.

* There are other interpretations of the notion of common knowledge. See [2].
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Proor. Let M = (S, n, . »,...,.x,), n=2. Let 6 be the maximal dis-
tance between any two connected states in S, and let p be a primitive
proposition.

Let ¥ be the formula E°p = E°*'p. We claim that y is not valid. By way
of proof, consider the Kripke structure M’ = (S, «', %, , ..., %, ), where
S ={0,...,6,8 + 1}, «'(i) makes p true iff 0 <i=<3$, for j# | and
J # 2 the relation . is the trivial equivalence relation {(i,i): 0 < i < 6 + 1},
A is the reflexive closure of {(i, i + 1): 0 =i < 6 and i is even}, and .7, is
the reflexive closure of {(i,i + 1): 0 < i < § and 7 is odd}. We leave it to the
reader to verify that M’, 0 & . (Note, however, that ¥ is valid if there is only
one agent.)

We now claim that y is true in every state of S. Suppose that E° is true in a
state s in S. Then ¢ must be true in all states whose distance from s is less or
equal to 6. By the definition of §, it follows that ¢ must be true in all states that
are connected to s, and consequently E°*'¢ is true in s. Since ¥ is true in all
states of M, it follows that ¢ is common knowledge in every state of M. []

Remark 4.10. Interestingly, the theorem does not hold if there is only one
agent. The intuitive reason is that, in that case, there are only finitely many
distinct knowledge states (given our assumption of a finite set of primitive
propositions) and each one of them may hold in one of the connected compo-
nents of M. A weaker version of the theorem is still true, however. For each
finite Kripke structure M and each state s of M, there is some nonvalid
formula ¢ that is common knowledge in s.

We now show that agents have arbitrarily deep nontrivial knowledge in a
no-information extension. It is instructive to consider first the ‘‘simplest’
no-information extension. Assume that there is only one primitive proposition
p, and that there are only two agents, Alice and Bob. As before, for conve-
nience let us for now denote simply by p the truth assignment that makes p
true. Intuitively, the no-information extension ( p)™ is the knowledge structure
where p is true, and where Alice and Bob have no information. Assume that
(p)* = K ,;;..0- We might conjecture that ¢ must then be valid, since, after
all, Alice has ‘‘no information’ in { p)*. This, however, is not the case. For,
since Alice does not know p, she knows that she does not know p. That is,
(PV* = K 4100 7 K 411000> although =K ,, . p is not valid. What if {p)* =
K ,ice K pope? We are certainly tempted to conjecture that ¢ must then be
valid. After all, in { p)*. Alice ‘‘has no information’” about Bob. Once again,
our intuition is incorrect. For, since Alice knows that the formula XK ,,,.,p 1s
false, she also knows that Bob cannot know this formula (because anything that
Bob knows must be true); hence, Alice knows that 7 K ,K ;.. p is true.
Since Alice knows that Bob is introspective, she knows that if Bob does not
know something, then he knows that he does not know it. Thus, (p)* &
K iceKpor 7" KpopKancep. Hence, if ¢ is the (non-valid) formula
K gor K 4ce D> then (p)* = K ,,,..K g, ¢, contrary to the tempting conjec-
ture. In fact, it follows from the proof of Theorem 4.11 below that this
generalizes, so that if q € { Alice, Bob}™, then (p)* = K 7 K, p. Thus, in
the no-information extension ( p)*, where Alice and Bob have *‘no information”
about each other, they nevertheless have arbitrarily deep nontrivial knowledge!
Moreover, by taking ¢ to be the disjunction of ~ K 4, p over all q of length &,
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it follows that { p)* &= E*¥o. More generally, we have the following theorem,
which we shall show to be the best possible.

TueoreM 4.11.  For every k., there is a k-world w such that for every |,
there is a nonvalid formula ¢ of depth | where w* &= E'™%~

Proor. We assume for convenience that there is exactly one primitive
proposition p. Let w be the k-world (f,..... f,_;) where f; is the truth
assignment that makes p true, and where f,(i) = {(f,..... [, )} if 1l =j<
k, for each agent i. Thus, f,(i) is a sm016ton set for 1 < Jj < k and for each
agent /. For each re #* of lenoth k — 1, it is easy to see that w = K, p. Let
q = rs be an arbitrary member of #* of length [+ k — 1, whereris of length
k—1ands is of length /. Let , be the formula —‘K(skﬁp. We shall now
show that w* = K a¥s-

We first show, by induction on /, that for every pe #* of length I, the
formula p implies K, ™ K ,#, 7~ p. The base case (/ = 0) is immediate. Assume
inductively that p implies K, K, "p; we shall show that p implies
K, 7 K,,= " p, where i is an arbitrary agent. It is convenient to give names
for reference to the following two simple facts.

Fact 1. « implies 7 K, 7 c.
Fact 2. If o implies 8, then K,« implies K, (3, for te 7%

By Fact 1. where we let o be the formula _‘K(pR) p. we know that

“ Kr T p implies 7K K &7 p. Let vy be K(p , ' p. By the axioms, we
know that = Ky implies K, ™ K y. So, 'K ~ p implies K,7 K K‘p )
By wusing Fact 2, we therefore infer that K, K(pk) 1mplies
K,K, 7K, K« p. That is, K, " K« p implies K K pr, p. Since
by 1nduct1ve assumption p implies K, 7K » 7 p, it follows that p implies
K, 7 K = " p. This completes the induction step.

By what we just showed. p implies K, 7 K« 7 p. So by Fact 2, we know
that K p implies K K — K, ~ p. But K K - K(b #, 1 Pis just qus. Hence,
K. p implies K .. Since a) wE K, p, (b) the k-ary preflx of w*is w. and
c) the formula K P is of depth k — 1 it follows that w* = K, p. Therefore,
from what we just showed, w* = K _y,.

Let ¢ be V{y.: se #* and s is of length /}. Let q = rs be an arbitrary
member of #* 0f length / + & — 1, where r is of length &k — 1 and s is of
length /. Since w =K 1,& it follows that w* = K 4~ Since q was arbitrary,
it follows that w* = B4 *‘<p

Finally, it remains to show that ¢ is not valid. Let f be the knowledge
structure { f,, f|....) where f,, is the truth assignment that makes p false, and
where f,(i) = {{fo.....f,_1)} for j = I and for each agent i. Thus, f,(i) is
a singleton set for j = 1 and for each agent 7. It is easy to see that w = K, 7 p.
for eachre #*. Thus, f = ¢, s0 ¢ is not valid. [J

Recall that we claimed above that there is no nontrivial common knowledge
in a no-information extension. We might hope to prove this by showing that if
w is a k-world and w = E/¢ for some sufficiently large j (say. j > k + 1),
then ¢ is necessarily valid. However, Theorem 4.11 shows that this approach
will not work. We must take a more sophisticated approach and consider also
the depth of ¢, as in the following result, whose proof appears in the appendix.
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TuroreM 4.12.  Assume that there are at least two agents, ¢ is a formula
of depth r, and w is a k-world. If w* = E" *¢. then ¢ is valid.

Note that the result of Theorem 4.12 is tight, since Theorem 4.11 shows we
cannot replace “‘r + k£’ in 4.12 by “r + k — 1”’. And of course it now
follows immediately that there is no nontrivial common knowledge in a
no-information extension.

CoroLLarY 4.13.  Assume that there are at least two agents, and w is a
world. Then ¢ is common knowledge in w* iff ¢ is valid.

Corollary 4.13 contrasts with the situation for finite Kripke structures (Theo-

rem 4.9). In fact, the following theorem is a simple consequence of Theorem
4.9 and Corollary 4.13.

TueoreM 4.14.  Assume that there are at least two agents and that w* is
a no-information extension. Then there is no state s of a finite Kripke
structure M that is equivalent to w*. That is, if s is a state of a finite
Kripke structure M, then there is a formula ¢ such that M, s &= ¢ but
w* = T,

Proor. Let ¢ be a nonvalid formula which is common knowledge in every
state of M. Such a formula y exists, by Theorem 4.9. By Corollary 4.13, there
is k such that w* = — E*y.. However, since ¥ is common knowledge in every
stage of M, we know that M, s = EXy. So, if we let ¢ be E*y, then the
theorem follows. []

Thus, even to model Example 1.1 requires infinitely many states if we use
Kripke structures.

4.3 Tue Least-INrForMATION Extension.  When defining the no-information
extension of a world w, we assumed that agents consider possibly every world
that is compatible with w. The justification is that no assumption should be
made about the underlying mode of knowledge acquisition. In practice, how-
ever, agents usually do have information about how knowledge is acquired.
Furthermore, this information is often common knowledge. For example, it
may be common knowledge that the only way new knowledge is acquired is via
message passing, and that communication proceeds in synchronous rounds. In
this case, the no-information extensinn is inappropriate, since it does not
capture this common knowledge (thus, it is common knowledge that after, say,
one round, Alice does not know that Bob knows that Alice knows the primitive
proposition p). As another example, if it is common knowledge that each agent
stores his information about primitive propositions and about the information he
has received from other agents in a database, and it is common knowledge that
databases are insecure, then again the no-information extension is inappropri-
ate. For, if Alice has peeked at Bob’s database, and thereby knows that Bob
knows p, then Alice does not consider it possible that Bob knows that Charlie
does not know that Bob knows p, since it is common knowledge that Charlie
could have peeked at Bob’s database also.

We now consider a generalization of the no-information extension: in particu-
lar, we construct the least-information extension, which is designed to capture
the idea of *‘all you know, given some common knowledge' . In order to
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explain our construction, we first need to investigate the notion of common
knowledge a little more.

Definition 4.15. A world w appears, in a world u if w is a prefix of u; w
appears, ., in u if w appears, in « or some world (g, ..., g) appears, in u
and we g, (i) for some agent i. A world w appears in world u if w appears,
in u for some j. A world w appears in knowledge structure f if w appears in
some prefix of f. Let worlds,(f) (resp.. worlds,(w)) be the set of k-worlds
appearing in £ (resp., w).

Lemma 4.16.  Suppose depth(¢) = k. Then ¢ is common knowledge in £
iff ¢ is true in all the worlds in worlds, . ,(f).

Proor. 1t is easy to show by induction on m that f = E™¢ iff ¢ is true in
all the (kK + 1)-worlds that appear,, in f. []

Using the intuition brought out by this lemma, we can now describe our
construction of the least-information extension. More precisely, given a set %
of k-worlds (e.g., these worlds can be all the k-worlds satisfying a formula that
is commonly known to be true) and a world we %, we construct the least-
information extension of w with respect to ‘¢. The idea is to build a
knowledge structure where ¢ is common knowledge; that is, the only
k-worlds that appear are those in %. The construction is completely analogous
to that of the no-information extension, except that everything is relativized to
(o

Let % be a set of k-worlds, let W be a set of (m — 1)-worlds, and / an
agent. Define the i-extension of W with respect to % to be the set of
m-worlds given by {(gy. ..., &n,_1) &m_(i) = W and
worldsk(<g0, LR gm—l)) < %}

Intuitively, this is the set of m-worlds w such that in w, agent i/ considers W
as the set of possible (m — 1)-worlds, subject to the restriction that it is
common knowledge that the only possible k-worlds are those in #.

Definition 4.17. Let 7 be a set of k-worlds, and let w = (f,,.... f,,) be
an (m + 1)-world. The one-step least-information extension of w with
respect to . written (w, 7)*, is the (m + 2)-world (fy. ..., Sos Fons 1)
where f,, (i) is the i-extension of f, (i) with respect to %. Thus, f,, (i) =
{(8on- s &t 8D = f,,(0) and worlds,({gq-. ... &) S 4}.

Intuitively, the one-step least-information extension (fq, ..., fp, [ of
(fos -y [ describes what each agent knows at depth # + 1, assuming that
‘*all that each agent i knows’’ is already described by f,,(i) and the fact that it
is common knowledge that % is the set of possible k-worlds. Thus. f,,. (7) is
the set of all m-worlds that are compatible with i’s lower-depth knowledge.
subject to the constraint that it is common knowledge that % is the set of
possible k-worlds. Note that the one-step no-information extension is a special
case of the one-step least-information extension, where we take % to be the set
of all k-worlds. As in the case of the one-step no-information extension. it is
not a priori clear that (w, #)" is a world. In fact, in general it is not. We shall
investigate this issue shortly.
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We now give a proposition that justifies the name ‘‘least-information exten-
sion’’, just as the analogous Proposition 4.4 justifies the name “‘no-information
extension’’. We first need a definition analogous to that of =¥ . Recall that a
world w must eventually satisfy ¢, written w = "¢, if for every knowledge
structure f with w as a prefix, f = ¢. Let ¢ be a set of k-worlds. We say that
a world w must eventually satisfy ¢, if ¢ is common knowledge, written
wET" ¢, if for every knowledge structure f with w as a prefix such that
worlds, (f) € ¢, we have f = ¢.

ProposiTion 4.18.  Assume that % is a set of k-worlds, i is an agent, w is
a k-world, and ¢ is a formula of depth at most k — 1. Assume that
(w, )" is a world. The following are equivalent:

(1) (W’ %/)+t: K1§0

2 we"" Ko

(3) Let X be the set of all formulas v of depth at most k — 1 of the form
Ky or 7K,y that are satisfied by w. Let T be the set of all formulas
E™, where y is a depth (k — 1) formula that is satisfied by every
member of 4. Then 2 UT &= K, p.

Proor. The proof is very similar to that of Proposition 4.4. We also make
use of the fact that if a knowledge structure f satisfies I', then worlds, (f) < %.
Details are omitted. [

In part (3) of Proposition 4.18, the set I' of formulas says that every depth
k — 1 formula that is satisfied by every member of ¥ is common knowledge.
In the next section, we shall enrich our language so that *‘¢ is common
knowledge’” can be expressed in the language (by Cy). For each ¢ as
described in Proposition 4.18, we could then, of course, replace the set of
formulas E"Y by the single formula Cy. So, part (3) of Proposition 4.18 says
that knowledge (and lack of knowledge) of agent 7, as described by w, along
with the fact that it is common knowledge that % is the set of possible
k-worlds, is sufficient to logically imply K, ¢.

Just as we did with the no-information extension, we define the /least-
information extension by taking one-step least-information extensions repeat-

edly. Formally, if w = (f,,..., fiy_;) € 7, then the least-information ex-
tension of w with respect to ¥, written (w, ¥)* is the sequence
(for- oo Sucrs Jus- o), Where (fy, ..., f,. ) is the one-step least-informa-
tion extension of (f, . ... f,,) with respect to %, for each m = k — 1.

As with one-step extensions, the no-information extension is a special case of
the least-information extension, where we take % to be the set of all k-worlds.

As we remarked earlier, (w, ¢)™" is not necessarily a world, so of course
(w, %)™ is not necessarily a knowledge structure. As we shall see, there may
not even be a knowledge structure where ¢ is common knowledge. In order to
characterize when least-information extensions exist, we need a few technical
definitions.

Definition 4.19. Let ¢ be a set of k-worlds, and let i be an agent. ¢ is

i-closed if either (a) k =1 or (b) kK > 1 and whenever (f,,..., f,_ )€ %
and (gg, ..., 8_>) € fr_,(i) then there is g,_, such that
(80s--+»8rn> 8k_1) € #and g,_,(i) = f,_,(D). % is closed if it is i-closed

for each agent i. We say w’ is reachable from w in % if there is a sequence
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Wo, o - w, of worlds in % such that w = w,, w’ = w,, and for all j < k,
we have w, ~ w, ., for some agent /. In this case we say that w'is distance k
from w. Let reach(w, ') be the set of worlds reachable from w in %.

The intuition behind this definition is that a set % of worlds is closed if all the
worlds that are considered possible in worlds in % are themselves in . Thus,
if agent i knows that only worlds in ¢ are possible, and

(1) <f0""ﬁfk,1>e ’{/, and

(2) there is no g, ; such that (g,,....,&,_,. 8¢ )€ ¢ and g, (i) =
fk—l(i)7
then we cannot have (gg. ..., gi_») € fr_ (7). The intuition behind reachabil-

ity is that if w and w’ are in % and w ~, w’, then w’ is possible for agent i
from w. Thus, the worlds reachable from w in % are the worlds that are in
some sense considered possible in w.

To further motivate the above notions, we present the following proposition:

Proposirion 4.20.  If £ = (fy. f\....) is a knowledge structure, then for
all k = 0,

(1) the set worlds (f) is closed. and
(2) worlds, (f) = reach({f,. . ... Je_ 1), worlds,(f)).

Proor. For (1), first note that if a world (g, ..., g,_,) appears in f, then
some extension (g,,..., &, ,» & ) also appears in f. This is proved for
appears, by an easy induction on j, using (K3); we leave details to the reader.
Now fix k, and suppose that (g,. .. .. gi_,) € worlds,(f) and (A, . . .. hy_5)
€ g,_,(i). From the observation above, it follows that there is some extension
(&g~ -- g,) that appears in f. By (K3) again, there is some %, _, such that
(hys ...y hy_s. hy_y) € g (i), By definition, (h,. ..., h,_ ) € worlds,(f) and
by (K2) g,_,(i) = h,_,(i). Thus, worlds(f) is i-closed. Since I was arbi-
trary, worlds,(f) is closed.

For (2), we prove by a straightforward induction on j that for all m, if

(8grv - g, ) appears, in f, then (g,, ..., g, ) €reach({fy, ..., fo,_1),
worlds, (f)). If j = 0 the result is immediate. For j = 1, suppose that there is
some (4, ..., h,,) that appears, | in f such that (g, .... g,_,) €h,,(i) for
some agent . By the induction hypothesis, (h,, . ... h,) €
reach({ fo. . ... f,,), worlds,, . (f)). It is easy to see that we must also have
(hos - . . h,, ) ereach(fo, .. ., f_), worlds, (f)}). And since
(oo v v s 8noy) ~, (hy, ..., h, ). it follows that (g,,..., &, ) €

reach({ fy. ..., f,,_,). worlds,(£)). []

The next theorem, which is proven in the appendix, characterizes when
(w, #)* is a knowledge structure.

TueoreMm 4.21. (w, %)* is a knowledge structure iff reach(w. ¢) is a
closed set.

Suppose # is a set of k-worlds and w e ¢. The least-information extension
(w, #)* (provided it exists) describes a knowledge structure where it is
common knowledge that the only k-worlds that appear are those in #%. But the
k-worlds that appear might be a proper subset 4’ C #. In such a case, it would
be common knowledge that the only k-worlds that appear are those in #’.
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When is it the case that a// the worlds of % are considered possible? That is,
under what conditions do all the worlds in % appear in (w, %)*? We get a clue
to the answer from Proposition 4.20, from which it follows easily that if
¢ = worlds,(f) and w is the k-ary prefix of f, then reach(w, %) is closed and
¢ = reach(w, ¢). The next theorem, whose proof appears in the appendix,
says that these two conditions on w and % characterize when (w, #)* is a
knowledge structure where all the worlds of % appear.

Tueorem 4.22.  (w, 4)* is a knowledge structure where all the worlds of
¢ appear iff ' is closed and % = reach(w, %).

We remark that from now on, whenever we write (w, ¢)*, we will always
assume that %' is a set of k-worlds for some k, and reach(w, %) is closed, so
that in fact (w, %)™ is a knowledge structure.

There is a natural sense in which we can view (w, 4)™ as a “*finite model”’,
since it is a finite description of an (infinite) knowledge structure. It is also
natural to view a pair (M, s), where M is a finite Kripke structure and s is a
state of M, as a “‘finite model’’. As we now show, the former class of *“finite
models’” is richer than the latter class: every state in a finite Kripke structure is
equivalent to some least-information extension. However, by Theorem 4.14,
the converse does not hold, since a no-information extension is a special case of
a least-information extension and is not equivalent to any state in a finite Kripke
model.

If M is a Kripke structure and s is a state of M, then let f,, . be the
knowledge structure constructed in the proof of Theorem 3.1. (Recall that f,, |
is equivalent to the state s of M, that is. M, s = ¢ iff f,, &= ¢, for every
formula ¢.)

Tueorem 4.23.  If M is a finite Kripke structure and s is a state of M.,
then fy, . is a least-information extension; that is, there exists a set ¢ of
worlds and a world w e ¢ such that f,; ; = (w, €)*.

Proor. Let M be the Kripke structure (S, 7, 4, ..., ¥,), where S, the
set of states, is finite. Throughout this proof, we shall denote f,, ; by f,. and
write f, as (s,.s,,...), for each se€S. Recall from the construction of
Theorem 3.1 that 5,(i) = {(#,,...,t_,): (s, 1) e #} for k > 0. Choose N
such that if s, e S and f, # f,, then s,_, # f,_,. Since S is finite, there is
some finite N with this property. In fact, we can simply take N to be the
maximum of N, , + 1 for all states s, ¢ in S, where N, , is the least m such

that s, # ¢, iff,#f,,and 0iff = f,. Let ¢ = {(sp,...,8y): s€S}. Itis
easy to see from the construction of £ that the (N + 1)-worlds that appear in f
are precisely those in reach((s,, ..., Sy), #), and by Proposition 4.20, these
worlds form a closed set. Thus, ((sy, . .., Sy}, #)* is a knowledge structure by

Theorem 4.21. We now show that for all seS, we have f ¢ =
((Sg» - -+ s Sn)s )"

In fact, we prove the following claim: Suppose s€S, N’ = N, and w =
(85 -+ ., Sn) is such that (a) worlds,,,(w) € % and (b) s/ = s, for i < N.
Then, s; = s, for all i < N,

We prove the claim by showing, by induction on m, that s, = s/, for
0 =m < N'. For m =< N, this follows by assumption. For m > N, suppose
(80 o sty _ ) €8, (D). Now (t5, ..., ), )y es,_(i)by (K3),and s, (i) =
S,, (i) by the inductive hypothesis. Thus, (#3,...,f, _,)€s, (i), so for

m-—2
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some ¢ such that (s, #) € #;, we have ¢; = ¢, for 0 </ < m — 2. Moreover,
since the prefix (z),..., ;) must be in % by assumption (a), it follows that
for some ueS, we have ¢, = u, for 0 </ =< N. Now using the induction
hypothesis, we have that #; = u, for 0 = /<m — 1. Since t, =t for 0 </
=m — 2, it follows that ¢, = u, for 0 =/ < m — 2, and, since m — 2 =N
— 1, by choice of N wehave u,, |, = ¢, ,.Thus, ] =¢,forO</=<m — 1.
Since (ty, ..., ¢,_;) €5,(i) by definition of s, (i), we have that
{145ty _y) €S,(0). Thus, s,(i) < s,,(). For the converse, suppose that
{tgs ... t,_y) €s,(i). Thus, by (K3), (¢,,...,¢,, ) €s, ,(i). so by the
inductive hypothesis, (z,....,¢, ,)€s, _,(i). By (K3), there exists some
t,,, such that (¢,,....¢, ,.¢,_,)€s, (). Now if m — 1 > N, it immedi-
ately follows from the induction hypothesis that we must have ¢/, |, = ¢, . If
m — 1 = N, then by assumption (a) it follows that (7. . ... Lppnetl, ) E 7.
By the definition of 7, we also have that (#,,....,¢,, ,.t, )€ %. By choice
of N, we must have ¢,, | = ¢, . In either case, we get s,,(i) € s/ (7). Thus,
it follows that s,, = s,,, and we are done with the proof of the claim.

Now taking ((sq,...,Sy), ¢)* = (s}, s;,...), an easy induction on m
using this claim shows that s, = s} for all k. so that f, = ({5, ..., sy), ©)*
as desired. L[]

Remark 4.24. The above proof does not give us any information about the
length of the worlds in . We now show that we can bound this length.

We say that a state s is equivalent to t at the jth stage with respect to agent
i, denoted s ~, ¢, if 5,(i) = t,(i). It is easy to see that if s ~,, ¢, then
S~ 1

Suﬁpose now that for some j = O we have that s ~ , it s~ f for all
states s, f€.S and for all agents i€ #. If that is the case then we say that
J — 1is stable. We claim that if j — 1 is stable, then j is also stable. As we
already observed, if s ~, | ¢ then s ~ ¢, so it remains to prove the other
direction.

Assume s ~, 7. We first prove that s, (i) € t,.1(0). Let ueS be such

that (s, u) € %}, 80 (g, ..., u ) €s,, (i). Since (uy, ..., u, ) es,(i) = t,(i),
there must be some veS such that (f,v)er, and (uy,...,u,_,) =
(vgs - -+ vj_1>. By a.ssumption.. it follows that (g, ..., u,) = (v,.. ... vj>.. S0
(Ug. . u,)et,, (i), as desired. Analogously we can show that [0 s

j+1(l) Thus §~, i1 L

Since the relations ~,,, are decreasing as a function of j, there is some
Jo = O such that all j = j, are stable. Assume that j, is minimal with respect to
that property. Thus, if 0 < j < j,, then for some agent i, the equwalence
relation ~, = strictly refines ~,  _, . Let m be the number of states in S, and
let # be the number of agents. An equwalence relation on S can be strictly
refined at most m - 1 times. Thus, j, < mn. That is, if we take N to be
mn + 1, and if s, t€S and f, # f,, then s5_, # t5_,. Consequently, % can
be taken to be a set of (mn + 2)-worlds.

We note that if s ~, , ¢ for all agents i€ :#, then f, = £,. This notion of
equivalence between states in Kripke structures is closely related to the notions
of equivalence [19] and bisimulation [32] between states in finite-state
automata. []

Example 4.25. We now consider a very interesting situation where both
no-information extensions and least-information extensions enter the picture.



A Model-Theoretic Analysis of Knowledge 405

Suppose we have three agents, Alice, Bob, and Charlie, and suppose that there
are two primitive propositions, p and q. All the agents observe ‘‘reality’’ (so
that they get some information about p and q), but do not communicate, and
intuitively have ‘‘no information about each other’s knowledge.’’ Moreover, it
is common knowledge that this is the case. Further, suppose that it is the case
that p and g are both true, but Alice just knows that p is true and has no
knowledge of g, Bob knows that either p is true or g is true, while Charlie
knows that both p and g are true. What knowledge structure f describes this
situation? Clearly, its 2-ary prefix is (f,, f;), where f, = pq, fi( Alice) =
{pq, g}, f(Bob) = {pq, pg, pq}, and f(Charlie) = {pq}. Now
So(Alice) is clearly the Alice-extension of f,(Alice); Alice considers any
2-world consistent with her own information possible. Similarly, we see that
(fo- f1- f>) s the one-step no-information extension of (f,, f,). What about
J5? Should we continue taking one-step no-information extensions? The answer
is no, since it is common knowledge that ‘‘no one has any knowledge about
anyone else’s knowledge’’, so it is also common knowledge that the only
2-worlds possible are one-step no-information extensions! Let ¢ be the set of
all 2-worlds that are one-step no-information extensions. Then f =

(Sfo- Sf15 L2)s )"

This example can be generalized. Consider a situation where knowledge is
acquired by unreliable synchronous communication. Intuitively, before the first
round of communication we can paradoxically say that it is common knowledge
that ‘‘nobody has nontrivial knowledge of depth greater than 1.”” (Note that if
communication is reliable, then common knowledge about reality can be
achieved in one round of communication.) Similarly, after » rounds of commu-
nication we can say that it is common knowledge that ‘‘nobody has nontrivial
knowledge of depth greater than » + 1.”° Suppose that f describes the state
of knowledge after r rounds of communication, where f = (f,, f....).
Then, essentially the same reasoning as that above shows that f, (/) is the
i-extension of f,, (i), and if % is the set of all ( + 3)-ary one-step no-infor-
mation extensions, then f = ((f,, ..., f,,,), #)*. The knowledge structure f
can loosely be described as ‘‘the least-information extension of a one-step
no-information extension. "’

It turns out that this situation can also be captured by a finite Kripke model.
Let1, ..., nbe the agents. Let M be the Kripke structure (S, 7, /1, ..., 7,),
where S is the set of all k-worlds, where 7({f,, ..., fi_1)) = Sy, and where
A, = {(w,w): w~_ w} for each agent i. This construction is analogous to
that of Theorem 3.1, except there we took S to consist of all knowledge
structures, rather than all the k-worlds. Of course, in this case M is a finite
Kripke structure, since there are only a finite number of k-worlds. By Theo-
rem 4.23, we know that f,,  is a least-information extension for every state s
of M. In fact, it turns out that £,, , = ((Sp, . ... S.), ¥)*, where 5,(i) is the
i-extension of s,_,(7) for each agent / and ¢ consists of all the (k + 1)-ary
one-step no-information extensions. Then, f = ({f,. f, f2), #)*. The details
of the proof of this fact are straightforward and left to the reader.

4.4 Summary. We now summarize our results on modeling finite informa-
tion. First, we introduced the no-information extension w™ of a world w, which
intuitively represents the state of knowledge if all of the information of the
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agents (about reality and about each other) is already given by the world w. We
showed that the no-information extension is indeed a knowledge structure. In
particular, this shows that every world is the prefix of some knowledge
structure. Although on the face of it, both a finite Kripke structure (along with a
state of the Kripke structure) and a no-information extension can be considered
as ‘‘finite models,”” we showed that there is an important difference between
them, when there are at least two agents. In every finite Kripke structure, some
nonvalid formula is common knowledge in every state. However, in each
no-information extension, the only formulas that are common knowledge are
valid formulas.

We then defined the least-information extension, which is a generalization
of the no-information extension that allows certain common knowledge. Let
# be a set of k-ary worlds, and let w be a world in ¢. Intuitively, the least-
information extension (w, %) represents the state of knowledge if all of the
information of the agents (about reality and about each other) is already given
by the world w, subject to the constraint that it is common knowledge that the
only possible k-worlds are those in %" Unlike the no-information extension, the
least-information extension is not always a knowledge structure. We character-
ized when the least-information extension (w, #)* is a knowledge structure.
We also characterized when it represents a situation where it is common
knowledge that in fact the possible k-worlds are precisely those in ¢ (rather
than a proper subset of #%). We showed that least-information extensions are
the most general notion of **finite model’" of those we have discussed, in that
not only is every no-information extension a least-information extension, but
also the knowledge structure that represents the information at a state of a finite
Kripke structure is also a least-information extension.

5. Modeling Common and Joint Knowledge

Convention. We use lowercase English letters such as i, j, etc. to range over

natural numbers, and we use lowercase Greek letters such as 8, A, etc. to range
over ordinals.

5.1 EXTENDED SYNTAX AND Semantics . In Section 4, we mentioned the
important concept of common knowledge. Common knowledge was defined
as a metalogical concept, and we could not express it directly in our logic. It is
natural to extend our logic and add to it the notion of common knowledge. That
is, if ¢ is a formula, then we would also like C¢ (‘“¢ is common knowledge’’)
to be a formula so that we can allow formulas with C “‘inside’’. Another
important notion that we would like to add to our logic is that of joint
knowledge. A fact ¢ is joint knowledge of a group S if “‘everybody in S
knows that everybody in S knows . .. ¢’’. Common knowledge is, of course, a
special case of joint knowledge. where S is the set of all agents. Joint
knowledge is important in situations where some agents are reasoning about the
knowledge shared by certain groups of agents (see, e.g., [7]). Thus. we extend
our language by adding a new modality Cg, for each nonempty set S of agents.
Let Egp be an abbreviation for A, ¢ K,¢ (i.e., “‘everyone in S knows ¢°).
Furthermore, let E{p denote ¢, and let Efe denote E¢EL 'e. Then, Cye is
intended to mean A, , E{e.

We now want to give semantics to the extended language. The semantics
defined in Section 2 depended on the notion of depth of formulas. Since a joint
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knowledge formula is intended to be equivalent to an infinite conjunction of
formulas of increasing depth, it seems that the depth of a joint knowledge
formula should be infinite. This motivates using ordinals to define depth of
formulas. More formally, we define the depth of formulas in the extended logic
as follows:

(1) depth(p) = 0 if p is a primitive proposition;

(2) depth(™ ¢) = depth(¢);

(3) depth(e, A ¢,) = max(depth(¢p,). depth(¢,)):

(4) depth(K,¢) = depth(e) + 1.

(5) depth(Cgp) = min{A: N = depth(¢) + ¢ for all i = 0}.

In other words, depth(Cg¢) is the first limit ordinal greater than depth(¢).
For example, if p is a primitive proposition, then the depth of K, K, ™ Chyp
is  + 2 and the depth of Cy, ,, 7 Cp3 ;P is w X 2.

It is easy to verify the following proposition.

Prorosition 5.1.  For all extended formulas ¢, we have depth(p) < ’.

To define the semantics of formulas of infinite depth we need to define
worlds of infinite length, that are indexed by ordinals rather than only by
natural numbers. The definition is a natural extension of the definitions in
Section 2. Instead of defining k-ary worlds for every natural number k, we
define A-ary worlds for every ordinal \. A Oth-order knowledge assignment
So is a truth assignment to the primitive propositions. We call {f,) a l-ary
world. Let W, be the set of all A-ary worlds. A Ath-order knowledge
assignment is a function f,: .#— 2"» A \-sequence of knowledge assign-
ments is a sequence (fy, f,....) of length A, where f, is an ith-order
knowledge assignment. A N-ary world (or \-world, for short) f is a A-sequence
of knowledge assignments satisfying certain restrictions. For example, an
(w + 1)-world is of the form (f,.f,,...,f,). where f (i) is a set of
w-worlds and certain other restrictions are satisfied. If k < \, then the x-prefix
of f, denoted f _ . is the x-sequence that is the restriction of f to «.

We now describe the restrictions that a (N + 1)-world f has to satisfy for
each agent /.

(K1) f_,efiD).

(K2') If gefy(i), and N > 1, then g, (i) = f, (i) for all k < \.

(K3") Let 0 <« < \. Then gef (i) iff there is some hef(/) such that
g = h<K'

We note that it follows from (K1) and (K2') that if h e f,(i) and 0 < k¥ < A,
then h _ e f (/). Thus, only the other direction of (K3") is nontrivial. We also
note that it follows from (K1') that if f is a A-world, then f _, is a k-world for
all k < A.

Clearly, (K1)-(K3") generalize restrictions (K1)-(K3). It is easy to see that
knowledge structures are simply w-worlds.

We can now define what it means for a A-world f to satisfy a formula ¢ of
depth «. written f = . We first define a binary relation < on ordinals. We
say that « < M\ if either k is a successor ordinal and «k < \. or « is a limit
ordinal and « = A (in other words, whether « is a successor ordinal or a limit

ordinal, A > p + 1 for all 4 < ). The relation = is defined between f and ¢
if « <A
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(1) f = p, where p is a primitive proposition, if p is true under the truth
assignment f.

) f= "y iffE .

B)yfte=p ANe, iff =@ and f = ¢,.

(4) If N is a successor ordinal, then f = K, if g = ¢ for each ge f, (7).

(5) If Nis a limit ordinal, then f = K,y if f_ ., = K y.

6) f=Cgy if f = Egy forall i > 0.

It is easy to see that the definitions of Section 2 are a special case of the
definitions here. In Section 2, however, we defined satisfaction with respect to
structures as a total relation, where here we leave satisfaction as a partial
relation between worlds and formulas.

The following lemma, which is analogous to Lemma 2.5, indicates the
robustness of the definitions above:

LemMma 5.2. Let £ be a N-world, and let ¢ be a formula such that
depth(¢) = k and N> k. Then f = ¢ iff £ _ | = ¢. Furthermore, if  is
a limit ordinal. then £ = ¢ iff f_ = ¢.

Proor.  The proof is by simultaneous induction on formulas and worlds. The
nontrivial cases in the induction on formulas are when ¢ is of the form K,y or
Csy¥, where we assume inductively that the lemma holds for .

Consider first the case that ¢ is of the form K,y. Assume that \ is a
successor ordinal. Suppose that f = K,i/. Let g be an arbitrary member of
S.(0). It follows from (K3") that g = h __ for some he f,_,(i). Since f = K,y
it follows by definition that h = . By inductive assumption, g = . Thus,
every member of f (/) satisfies ¢, and so f_,  , &= ¢. The proof of the
converse is similar.

Assume now that A is a limit ordinal. Then f = K,y iff £ _ ,, = K, ¢, and
the claim for this case holds by the induction hypothesis.

Consider now the case that ¢ is of the form Cgy. Suppose that f = Cgy.
Then f = E¢y for all i = 0. Let u = depth(y). By the induction hypothesis.
Seprin1 F Egy forall i = 0. Again, by the induction hypothesis, f _, = Egy
forall i = O, whenever » = pu + i for all i/ = 0. In particular, f _, = ¢. Again
the proof of the converse is similar. [

We now describe some axioms for joint knowledge. These are generalization
of axioms for common knowledge due to Lehmann [23] and Milgrom [27].

(1) Cgo = ¢

(2) Cyo = CsCqo

(3) ~Cgp = Cg— Cyp

(4) Cso AN Csl) = ¢,) = Cyey
(5) Che =Ko

(6) Csp = Croift TES

(7) Cyle = Egp) = (¢ = Cs).

Axioms 1-4 are analogous to Axioms 2-5 for knowledge. They say that joint
knowledge is correct, introspective, and closed under implication. Axiom 5
deals with the degenerate case of a single agent. Axiom 6 says that joint
knowledge is inherited by subsets, and Axiom 7 describes how joint knowledge
is built as a fixpoint of knowledge.
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We want to show that the axioms are valid. Since satisfaction is a partial
relation between worlds and formulas, we have to redefine the notion of
validity. We say that a formula ¢ is valid if it is satisfied by every world for
which the satisfaction relation is defined with respect to that formula. An axiom
is valid if all its instances are valid.

ProrosiTioN 5.3.  All the axioms above are valid.

Proor. We demonstrate the validity of Axiom 7. The other axioms are left
to the reader. Let f be a A-world, and let ¢ be a formula of depth k. Assume
that f = Cs(¢ = Egp) and f = . By definition, we have that f = Eg(¢p =
Egp), for all i > 0. By the knowledge axioms, it follows that f = Ege =
Eit'p, for all i > 0. We now show, by induction on /. that f = Ege, for all

i > 0. For i = 1. we have that f = Eg¢, since f = ¢ and f £ Cg(¢ = Ego).
Assume now that f = E{e. Since f = E§ = E{t'o, it follows that f = EL o
Thus, f = Cgp. U]

In [12], it is shown that the above axiomatization for knowledge and joint
knowledge together with modus ponens and joint knowledge generalization

(““from ¢ infer Cg¢”’) is indeed complete. Another axiomatization is given in
[16].

5.2 MopeL-TaeoreTic CoNsTRUCTIONS.  We now extend the machinery devel-
oped in the previous sections. Qur goal is to prove the equivalence of “‘internal ™’
truth and “‘external’’ truth, in analogy with Theorem 2.7. This will then enable
us to relate knowledge worlds and Kripke structures as in Theorem 3.1.

Let f and g be A-worlds. We say that f and g are i-equivalent, written
f~ g if f.(i) = g (i) for all « such that 0 < k < \. We call {g: f ~, g} the
i-equivalence class of f.

We now generalize the no-information extension.

Definition 54. Let f be a A\-world. Let u = A. The u-no-information
extension of f. denoted f*, is a p-sequence of knowledge assignments defined
as follows:

() £ =f.

(2) If ;> N\ is a successor ordinal, then £~ _, = f* ! and f* (i) is the
N ; <p-—1 w1
i-equivalence class of f#~! for all agents /.

(3) If p is a limit ordinal, then for each » < u, we have f* = f2*'.

It is easy to see that when A < w (so that f is just a world of finite length),
then the w-no-information extension of f is the same as the no-information
extension as we defined in it Section 4.

We need to prove that the no-information extension yields knowledge worlds.
We first need the analogue of Lemma 4.2.

Lemma 5.5.  Let £ and g be N-worlds for some successor ordinal N\ such
that £ _, | ~, g_,_,- Let h, be a Nth-order knowledge assignment such
that hy(i) = f,(i) and hy(j) = g\(J) forj # i. Then {gq, ..., gx_1. 1) isa
(N + D-world.
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We also need a generalization of the matching extension. Let f be a A-world,
where A is a successor ordinal. Let g € (/). The i-matching extension of g
with respect to f is the A-sequence h of knowledge assignments, where
h_, =g A () =/f,_ (i), and h,_,()) is the j-equivalence class of g for
J # i. We now prove the analogue of Lemma 4.3.

TuroreM 5.6, Let £ be a N-world.

(1) Let w = N. Then £* is a p-world.
(2) If N is a successor ordinal, and gef, (i), then the i-matching
extension of g with respect to £ is a N-world.

Proor. The proof is by induction on A.

To prove (1). it suffices to prove that if f is a A-world, then £ **! satisfies the
restrictions (K1), (K2’), and (K3’). The fact that (K1) and (K2") hold is
immediate from the definition. We prove that (K3’) holds by induction on A.

If N = 1, then the claim holds vacuously. For the inductive step, suppose that
0 <k <\ and gef, (/). We construct a A\-world h such that g = h__ and
h ~ f. Thus. hef(i). We inductively describe h_, for x < u < \. where
h_ ~f_.

For the basis of the induction, we take h __ to be g. Assume now that pu < \
and h _, has been defined for all » < pu. If p is a limit ordinal, then h _ PRE
already defined, so suppose that u is a successor ordinal. Then, we have
h_,,~f_, , Leth_ be the i-matching extension of h _ | with respect
to f_ .. By the induction hypothesis, h _  is a y-world. and clearly h _ Ml SO
This completes the proof that (K3’) holds.

To prove part (2) we consider first the N\-sequence g*, which by the induction
hypothesis is a A-world. Since g € f, _ (7). we have that g ~,f_, . The claim
now follows by Lemma 5.5.

A consequence of the theorem is that every A-world can be extended to a
p-world, for any p > A. This generalizes the result in Section 4 that every
world can be extended to a structure. Furthermore, while proving the theorem
we also proved another useful result.

Lemma 5.7.  Let £ be a N-world. and let gef (i), where k < \. Then
there is some N-world e such that g = e_,_ and e ~ f.

K

Let S be a set of agents. We say that a A-world g is S-reachable from a
A-world f if there is a sequence f,....f, such that f =, g = f_, and for
each jsuch that | < j < k — 1 there is some agent i € S such that f ;.
In this case. we say that g is S-distance k from g.

We can now prove the analogue of Theorem 2.7, which shows the equiva-
lence of internal and external notions of truth.

J+1

TueoreM 5.8. Let £ be a \-world.

(D) f= K, 0 iff g = ¢ whenever f ~, g.
(2) T = Cqso iff g = ¢ whenever g is S-reachable from f.
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Proor
(1) Suppose first that A is a successor ordinal.

(a) Assume that f = K,¢. By definition, h = ¢ whenever he f, (/). Let
g be such that f ~ g. By (K1), g_,_,€g, ,(i). But g _ () =
Jao (D). Tt follows that g _,_, €f,_,(i), so g_, |, E ¢. By Lemma
5.2, we have g &= ¢.

(b) Assume that g = ¢ whenever f ~, g. Let he f,_ (/). By Lemma 5.7,
there is a A-world g such thath =g _,,, and g ~,f. Thus, g &= ¢. By
Lemma 5.2, it follows that h = ¢.

Suppose now that A is a limit ordinal, and assume that the claim has been
proven for all smaller ordinals. Let k = depth().

(a) Assume that f = K;p. Then, by Lemma 5.2, f_, ,, = K,¢. Since
k +2 < N, we have that h = ¢ for every (x + 2)-world h ~ f___ ..
Now assume g ~, f. It follows thatg _ , ~,f_,,. Thus, by Lemma
5.2, it follows that g = .

(b) Assume that g = ¢ whenever g ~,f. Let he £, (/). By (K2), h ~,
f_..1- By Lemma 5.7, there is a A\-world g such that g ~, f and
h =g_, ,,. By assumption, g = ¢, so that h = ¢, by Lemma 5.2. We
have shown that h = ¢ whenever he f, (). It follows that f _, ,, =
K;p, and by Lemma 5.2, we have that f = K, ¢.

(2) Itis easy to prove, by induction on 7, that f = E{p iff g = ¢ whenever g is
S-distance i from f. The claim follows, since f = Cyp iff f = Elo for all
i>0. [

The next result is analogous to Theorem 3.1. Here we consider a state s of
Kripke structure M to be equivalent to an w’-world if they satisfy the same
extended formulas.

CoroLLarRY 5.9. To every Kripke structure M and state s in M, there
corresponds an >-world f,, ; such that s is equivalent to f m.s- Con-
versely, there is a Kripke structure M,, ,,, such that for every w*-world f
there is a state s; in M, such that t is equivalent to s;.

Proor.  The proof is analogous to the proof of Theorem 3.1. There are two
differences. First, the w’-world f,, . is constructed by transfinite induction.
Second, Theorem 5.8 is used instead of Theorem 2.7. [

5.3 Was Tuat Necessary?  So far we have claimed that it is necessary to
define infinitary worlds in order to give semantics to extended formulas. But is
that really the case? We are now going to show some evidence to the contrary.

Let KC-formulas be formulas that use the modalities K ,and C (i.e., C,,
where 7 is the set of all agents), but not Cy when S is a proper subset of 2.
Let K-formulas be formulas that use only the K, modalities.

The next theorem says that for KC-formulas, the extension beyond w is
redundant.

Tueorem 5.10.  Let o be a KC-formula. Let £ and g be N-worlds, such
that £ _ =g__ . Thenfe=o iff g=o.

Proor. See appendix. [J
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The above theorem indicates how we can define the semantics of arbitrary
KC-formulas in w-worlds. We denote this new satisfaction relation by the
symbol |I-.

(1) £l p, where p is a primitive proposition, if p is true under the truth
assignment f,.

(2) £fIF 4y, if it is not the case that f [ y.

3) flF o Ap,, iffIF ¢, and f I ¢,.

4) fl- Ky, if gl ¢ whenever g ~, f.

(5 - Cy, if fI- E*Y forall i > 0.

Tueorem 5.11. Let ¢ be a KC-formula of depth «, and let f be a
N-world, k < N\. Then f ko iff f__I- o.

Proor.  We prove the claim by transfinite induction on the depth of ¢ and
an induction on the Boolean structure of o. The nontrivial cases are where o is
either of the form K,¢ or of the form Ce.

Consider the first case. Suppose that f = K,¢. Let h be an w-world such that
h ~,f _ . Consider b*. By Theorem 5.10, we have h* = K, ¢. so we also have
h" = ¢, and by the induction hypothesis, h IF ¢. Since h is an arbitrary
w-world such that h ~ f _ , it follows that f _ I K, ¢.

Suppose that f _ |- K, ¢. Let g be a A-world such that g ~,f. So g __ I+
¢, by definition. By the induction hypothesis, g = ¢. Since g is an arbitrary
A-world such that g ~ £, it follows. by Theorem 5.8, that f = K .

Consider the second case. Then f = Co iff f = E’¢ for all j > 0 iff (by the
induction hypothesis) f _, = E/p for all j > 0ifff_ |+ C,. O

According to the above theorem = and |l are consistent with each other, so
we need not distinguish between them. Note, however, that |- may be defined
where = is undefined.

As a consequence of the above theorem we show that when dealing with
satisfiability of KC-formulas, it is sufficient to consider least-information
extensions,

TueoreM 5.12. Let ¢ be a satisfiable KC-formula. Then there is an
w-world £ such that f\k¢ and t is a least-information extension.

Proor. By [16]. if ¢ is satisfiable, then there is a finite Kripke structure M
and a state s in M such that M, s &= ¢. By Corollary 5.9, f,, . = ¢. Let
g =1f, ,. By Theorem 5.11, g__IF ¢. But by Theorem 4.23, g__ is a
least-information extension. [

Since a least-information extension has a finite description. this theorem can
be viewed as a ‘‘finite model’’ theorem: If a KC-formula is satisfiable, then it
is satisfiable in a ‘‘finite’” model.

We can now use KC-formulas to give another demonstration of the subtlety
of Corollary 4.13. Corollary 4.13 says that if ¢ is a K-formula that is common
knowledge in a no-information extension, then ¢ is valid. The theorem is false
if ¢ is allowed to be a KC-formula. For example, if p is a primitive
proposition, then we can show that the KC-formula — Cp, which is not valid,
is common knowledge in every no-information extension. As a side remark, we
note that this formula =~ Cp can be viewed as an abbreviation for the infinite
disjunction " EpV " E*pV T E*pV --- . Itis interesting to note that although
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this infinite disjunction is common knowledge in every no-information exten-
sion, no finite part of it is common knowledge in any no-information extension.

The above theorems show that it is sufficient to consider w-worlds when
dealing with KC-formulas. The question then arises whether there is indeed a
need to define ‘‘longer’” worlds.

Example 5.13. Consider the following situation. Agents 1 and 2 are
communicating about a fact p through an unreliable channel, one over which
messages are not guaranteed to arrive. As shown in [15], under such condi-
tions, arbitrarily deep knowledge 1s attainable, but common knowledge is not.
More precisely, E{1 o3P is attainable for all £ =1, but Cy ., p is not
attainable. If agent 3 does not know how many rounds of successful communi-
cation have transpired, then K;7 Cy; ,, p holds and K, E{1 21 P holds for
all k= 1.

We claim that we need an (w + 1)-world to model this situation. That is, we
claim that there is no w-world f where K, Crl -1 p holds and ~ K, E{l 4
holds for all k¥ = 1. To make sense of what it means for a formula such as
K;7Cy 5 p to hold in f, we extend our definition of I in the natural way to
apply to such formulas. Thus, f - K;7 C,, ,, p iff for every w-world g such
that f ~; g, necessarlly gl-~"Cy o (whrch because = Cy, 5, p is of depth
w, means that g = ™ Cy, 5 P).

Assume now that f = <f0, fi> fas .. .)isan w-world and f = 7 K37 Eff 5, p
for all k£ = 1; to prove our claim we must show that f |- 7 K, C,1 2D

We can assume without loss of generahty that p is the only primitive
proposition (otherwise, we can ‘‘restrict’’ f by ‘‘erasing’’ all of the primitive
propositions other than p: the straightforward details are left to the reader). Let
T be a tree with levels 0, 1,2, ..., where the kth level of the tree contains all
of the members (g, ..., &) of f;, (3) that satisfy Ef, ,, p, and where the
parent of the (k + 1)-ary world (g, . . ., &) is its k-ary prefix (g,. . . ., 8r-1)
if £ = 1. Thus, the kth level contams all of the (k£ + 1)-ary worlds that agent 3
consider possible and that satisfy E. 1 23 p- (We see that 7 is a tree rather than a
forest, since there is only one member at level 0, namely, (g,), where g, is the

truth assignment where p is true.) For each k, there is some world (g, . . ., &)
at level k, since f = 7 K; 7 Ef ,, p. Since E{kl_z}p = E{, » p for each r < k.
it follows that if (g,, ..., g,) is in T, then so are all of its prefixes. Thus,

there are arbitrarily long finite paths in the tree. The tree has finite fanout, since
there are only a finite number of possible k-worlds for each k. By Konig’s
Infinity Lemma, 7 contains an infinite path. This infinite path corresponds to a
knowledge structure g = (g4, &, &5, ---). Since (&g, ..., &) € frr(3). it
follows by restriction (K2) on knowledge structures that g,(3) = f,.(3), for
every k. So f ~; g. Also g = Cy; 5, p, since g = E 1 oy p for each k. Thus,
flF " K;7Cy 5y p, as desired.

In our example we would like to be able to model a situation where the facts
- K; E{1 2 Ds k=1, and K;™ Clq}p all hold. It is easy to imagine
another situation where the facts — K, E ., k= 1 and ~K;7Cyy o p
all hold. The crucial pomt is that the facts - ](} Eq 5 “p.k=1. shouid not
determine whether K~ C 1,23 P holds. If we restrict attention to w-worlds
then, as we showed, this 1ndependence fails. In an w-world where the facts
Ky E{l,z}p, k =1, are all true, the fact 7 K37 Cy, 5, p is forced to be true
as well. This can be explained as follows. It is straightforward to show that
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under our |- semantics, agent 3 considers an w-world g = (g,, &, &>....)
possible precisely if agent 3 considers the k-ary prefix (g,. ..., &._,) possible
for every k=1 (i.e., (gg,..., &_,) €f,(3)). Under the assumption that

K FE {l‘z}kp holds for every k£ = 1. our arguments above actually show that
there is an w-world g that satisfies C,;, ,, p such that agent 3 considers every
finite prefix of g possible. So under the |- semantics, agent 3 is forced to
consider g possible. The whole point of having an wth-order knowledge
assignment f_ is to be able to model the fact that agent 3 considers g
impossible (via g ¢ f,(3)) even though agent 3 considers every finite prefix of g
possible.

The above example suggests that our transfinite construction is indeed
necessary. Intuitively, *‘long worlds™ are needed to model “*deep’” knowledge.
This intuition, however, needs to be sharpened, since KC-formulas can express
deep knowledge but they do not require long worlds. The answer is that
KC-formulas do not really express knowledge of depth greater than . since
they are always equivalent to formulas of depth w. On the other hand. a
formula such as K37 Cy, », p is inherently of depth w + I. The next theorem
says that the situation in general is unlike that with KC-formulas ¢, where we
could decide the truth of ¢ by considering only the prefix of length w.
Specifically, the theorem says that there is no N\ < w such that for every
formula ¢, we can decide the truth of ¢ in a world w by considering only the
prefix of w of length A.

Tueorem 5.14.  For every ordinal 1 < \ < w*. there is a formula ¢, and
there are (N+ 1)-worlds £ and g, such that f_,=g_,. f=o0,, and
g i~ oy

Proor. See appendix. []

We note that another approach to modeling joint knowledge is described in
[11]. In that approach knowledge assignments assign sets of worlds to sets of
agents, rather than individual agents. The advantage of that approach is that one
does not need to consider A-worlds for A > w.

5.4 Summary.  We now summarize our results on modeling common and
Jjoint knowledge. Common and joint knowledge are described by formulas of
infinite depth (in fact, by formulas whose depth is given by ordinals up to w?).
Therefore, to properly model states of knowledge in which such formulas might
hold, we need to consider not just worlds of length w (i.e., knowledge
structures, as in the previous sections), but worlds of length up to w?®. Once we
do this. most of our earlier results generalize. In particular, we showed that the
truth of a formula is determined by a prefix of appropriate length of the world.
We generalized the definition of no-information extension. and showed that the
result is indeed a world. This shows that every \-world is a prefix of some
p-world, whenever u = N, which generalizes the result of Section 4 that says
this when A is finite and p = w. We showed that internal and external notions
of truth coincide, and we used this to prove an equivalence between knowledge
worlds and Kripke structures.

We showed that if we restrict our attention to KC-formulas ¢ (those where
there is no joint knowledge over proper subsets of the set of agents), then the
truth of ¢ in a A-world f is already determined by the w-prefix of f. We then
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showed how to define the semantics of KC-formulas in w-worlds directly. We
also proved a finite model theorem, by showing that if a KC-formula is
satisfiable, then it is satisfiable in an w-world that is a least-information
extension. Finally, we showed the rather difficult technical result that when we
allow general extended formulas (which may mention joint knowledge among
proper subsets of the set of agents), then we really need to allow ‘‘long
worlds’’. Thus, there is no A < w® such that for every formula ¢, we can

decide the truth of ¢ in a world f by considering only the prefix of f of length
A

6. Extensions of the Approach

6.1 A BaYesiaN ApproacH. Economists have taken a Bayesian approach to
modeling knowledge, where instead of having possible and impossible worlds
we associate a probability distribution on worlds with each agent [1,3]. In a
non-Bayesian setting. an agent knows a fact p if p holds in all the worlds that
the agent consider possible. In a Bayesian setting, an agent knows a fact p if
the probability that p holds according to the agent’s distribution is 1 [3]. (See
also [9] and [28] for an approach that mixes Bayesian and non-Bayesian
approaches.)

Mertens and Zamir describe a Bayesian analogue to knowledge structures
[26]. which they call infinite hierarchies of beliefs. If X is a set, then let
A( X)) denote the space of probability distributions over X. Mertens and Zamir
start with a set S called the uncertainty space (for technical reasons. this set is
required to satisfy certain topological properties). Intuitively, S consists of all
possible states of nature. A Oth-order Bayesian assignment f, is simply an
element of S and (f,) is a Bayesian 1-world.

Assume inductively that the set X, of Bayesian k-worlds have been defined.
A kth-order Bayesian assignment is a function f,: #— A(X)). Intuitively, f,
associates with every agent a probability distribution on the set of Bayesian
k-worlds. A (k + 1)-sequence of Bayesian assignments is a sequence
(fos .-+ fy), wWhere f, is an ith-order Bayesian assignment. A (k + 1)-world
is a (kK + 1)-sequence of Bayesian assignments that satisfy certain semantic
restrictions, which we do not list. An infinite sequence (f,. fy, f>,...) is
called a Bayesian knowledge structure if each prefix (f,...., f,_,) is a
Bayesian k-world for each k. The Bayesian approach has the interesting feature
that there is no point in explicitly defining transfinite assignments, since these
are already determined by the kth-order assignments (this result is implicit in
Theorem 2.9 of [26]). We come back to this point later.

The connection between Bayesian Kripke structures [1,3] and Bayesian
knowledge structures [26] has been studied in [4], [26]. and [37]. The conclu-
sion is that Bayesian Kripke structures and Bayesian knowledge structures have
a relationship somewhat analogous to the one exhibited in this paper between
Kripke structures and knowledge structures. Note that the results cannot be
precisely analogous, since none of those papers has a notion of a logical
language in which assertions about the structures can be made.

It may seem that the Bayesian approach is more expressive than the non-
Bayesian approach. After all, in the Bayesian approach not only do we
distingush between possible (having positive probability) and impossible (hav-
ing probability zero) worlds, but we actually supply a degree of possibility to
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worlds. This is indeed the case with finite-order assignments over a finite
uncertainty space. However, once we consider infinite uncertainty spaces or
transfinite assignments, the picture gets more involved. Now, we cannot
represent the fact that a world is impossible just by assigning it probability zero;
in fact, probability is assigned to sets of worlds and not to individual worlds.
Thus, in general, the expressive power of knowledge assignments and Bayesian
assignments is incomparable. Consider an (w + D-world £ = (f,, f,,..., f,)
in which f (i) is uncountable, that is, there are uncountably many w-worlds
that agent / considers possible (an example occurs in the (w + 1)-no-information
extension of a k-ary world, k& < w, when there are at least two agents). For
Bayesian assignments, we have made the convention that an agent knows a fact
precisely if the probability of that fact (according to the agent’s distribution) is
1. Hence, an agent considers a fact possible precisely if its probability is
positive, since if its probability is 0, then the agent would know the negation of
the fact. In the situation we are now considering, agent I considers an
uncountable number of w-worlds possible, and hence, under the Bayesian
approach. agent / must assign to each of these w-worlds a positive probability.
However, it is well-known that it is impossible to assign positive probabilities to
uncountably many disjoint events. Thus, this situation cannot be captured by the
Bayesian approach.

Example 6.1. It is instructive to re-examine in a Bayesian setting the
situation described in Example 5.13, where = K ;7 Ef, (1.2 P holds for all £ = 1.
Probabilistically speakln that means that the probabﬂlty assigned by agent 3 to
the events E{k1 2y P 1s greater than O for all £ = 1.

Let p, be the probablhty assigned by agent 3 to E,1 -1 p (and hence to the
equivalent formula /\,,]E{1 2y p). for k = 1. Since /\1—1Ef1 oy P 1s equivalent
to Cyy 5, p, the probability that agent 3 assigns to Cy; ,, p is hm,ﬁwp,\ (this
follows from the countable additivity of probablhty functions). Thus,
K37 Gy 5, p holds precisely when lim, ., p, = 0. So, in this case, we can see
why it is not necessary to go beyond level w: the probability (and hence the
truth) of K, Cy; » p is determined by probabilities at the finite levels. By
contrast, as we discussed in Example 5.13, in the non-Bayesian setting we need
to examine the wth-order assignment f, to determine whether K, Cianp
holds.

The crucial point is that in the Bayesian setting, the probabilities a331gned by

agent 3 to the facts Efj s P, k =1, determine the probability he assigns to the
fact Cy; 5y p. This lacﬁ< of independence is a general phenomenon. Let A be a
set of w—wor]ds in the Bayesian setting. and let A4, be the set of all k-ary
prefixes of members of A. The probability that agent 3 assigns to the set 4 is
the limit (as k — oo) of the probability that agent 3 assigns to the set 4, . The
probabilities at the finite levels completely determine the probabilities at level
w. As a consequence, we do not need wth-order assignments in a Bayesian
setting. By contrast, as we saw in Example 5.13, in our setting we need level
w, to provide additional information: If agent 3 considers every finite prefix of
an w-world g possible, then the wth-order assignment f, tells us whether or
not agent 3 considers g possible.

The above example demonstrates that countable additivity of probability
functions is the reason that transfinite assignments are redundant in the Bayesian
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approach. We note that countable additivity is crucial to the results in [4] and
[26].

6.2 Furter Extensions. Knowledge structures serve as a useful and robust
tool for a deep investigation of various knowledge-related issues. While in this
paper we focus on a particular variety of knowledge, the methodology we
presented can be used to study other varieties.

For example, if we want to study bDelief rather than knowledge, then we
replace the semantic restriction (K1) (““(fy,. ..., fr_,) € fi(i), if k= 1"") by
“f(i) is nonempty if k¥ = 1"’ in our definition of knowledge structures, and
we get belief structures (where it is possible to ‘‘believe’” something that may
not be true). We can also define knowledge belief structures that deal with
both knowledge and belief simultaneously, where there is a semantic restriction
that implies that every known fact is also believed.

We can also incorporate time into knowledge structures, so that we can give
semantics to a sentence such as *‘Alice knows that tomorrow Bob will know p"’
(or even to a sentence ‘‘Alice knows that tomorrow she (Alice) will know
whether p is true or false™”). The first step is to define a Oth-order assignment
as a function f, from w (which we take to represent time; O is today, 1 is
tomorrow, etc.) to truth assignments on the primitive propositions. The second
step is to define a kth-order assignment as a function f,: ¥ X w = 2", where
W, here is the set of all k-worlds involving time. Our semantic restrictions
(K1), (K2), and (K3) generalize naturally. One can also add other natural
semantic restrictions; for example, a restriction that says that each agent’s
knowledge increases monotonically with time (cf. [17] and [23] for the Kripke
semantics of knowledge and time).

The above examples suggest that the methodology described in this paper is
quite general. This line of thought is pursued in [11], which investigates the
applicability of the approach presented here to the modeling of other modal
logics.

7. Concluding Remarks

In this paper, we introduced a new semantic approach to modeling knowledge
using knowledge structures. Although in a certain sense knowledge structures
are equivalent to the well-known Kripke structures, they have a number of
advantages over Kripke structures:

— Although there are situations where using Kripke structures is the appropriate
approach to modeling knowledge (such as the situated-automata approach,
where knowledge is ascribed on the basis of the information carried by the
state of a machine), there are other situations where it is not clear how to use
Kripke structures to model knowledge states. In such situations, our approach
offers a more intuitive approach to modeling knowledge.

—Our notion of a no-information extension models directly the notion of a
““finite amount of information,”” where in particular there is no common
knowledge. However, we show that no finite Kripke structure can capture
this. By means of the least-information extension, we model the notion of a
““finite amount of information in the presence of common knowledge.”’

—As shown in [11], by using knowledge structures, one can obtain proofs of
decidability and compactness that are almost straightforward, and an elegant
and constructive completeness proof.
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On the other hand, for some applications, using Kripke structures is clearly
the preferred approach. For example, the graph-theoretic nature of Kripke
structures makes them the tool of choice when developing efficient decision
procedures (cf. [16, 23, 40]).

In summary. knowledge structures are a new semantic representation for
knowledge. Although they do not replace the widely used Kripke structures,
they do complement them: There are times when we can gain more insight by
modeling knowledge with knowledge structures rather than with Kripke struc-
tures.

Appendix

In this appendix., we give the results and proofs we promised in the body of the
paper.

Al. A Lemma Used for Proposition 4.4

We begin with a lemma that was used in the proof of Proposition 4.4,

Lemva Al.  Let w and w’' be k-worlds that agree on all formulas of
depth at most k — 1 of the form Ky or ~ K. Then w ~, w'.

Proor. We prove this by induction on k. The case & = 1 is trivial. For the
inductive step, assume that w = (f,...., f,_;) and W' = (fi...., JSi_,) are
as in the statement of the lemma. We must show that f, (i) = f;_(i). If not,
then without loss of generality, we can assume that there is some (£ — 1)-world
v that is in f, (i) but not in f;_ (7). Assume that f,_,(i) = {v|,...,v}.
Thus, v is distinct from each of the v;’s. Hence, for each j (1 = j < r), ecither
the first component g, of v is distinct from the first component of vy, or else
there is 7 such that v +, v]. So by inductive hypothesis, there is a formula
of depth at most k& — 2 such that v; &= ¢, but v i ¢,. Let y be the formula
Yy V-V, Then w' &= K, but w i K,y. Since the formula K is of
depth at most & — 1, this contradicts our assumption. [

A2. Proof of Theorem 4.12

Our next goal is to prove Theorem 4.12, which is as follows:

Tueorem 4.12.  Assume that there are at least two agents, ¢ is a formula
of depth r, and w is a k-world. If w* = E™ %, then ¢ is valid.

We first need some preliminary concepts and results.

Lemma A2, Let (fy...., Jeoy) and (g, . ... gy_1) be k-worlds. If
S D) = g ((D), then (f, ... w.fk71>* ~ <g0 ~~~~~ gk71>*-

Proor. Let (fo, ..., fr_1)" be {fou. o fucis Sur fasrr-.-), and simi-
larly for (gq,..., gc_ )" Since f, (i) =g, (i), it follows, as noted

earlier, that f;(i) = g (/) whenever 0 < j < k. Assume inductively that we
have shown that f.(i) = g, (i) for some r =k — 1. Then f, (i) =
{<h0""’hr>: hr(l) :fr(l)} = {<h0""’hr>: hr(l) zgr(l)} =gr+1(i)'
This completes the induction step. [

Definition A3. If p =1, --- i, is a string of agents and if f and f are
knowledge structures, then we say that f ~ 1 if there are knowledge structures
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f,,...,0,,, suchthat (a) f;, =1, (b) f,,, =¥, and (c) f, ~, f ,, whenever
1 = j < s. We may then say that there is a path between f and f'.

Note in particular that if p is the empty string, then f ~, " precisely if
f = f'. Note that for an arbitrary string p the relation ~_  need not be an

. . p
equivalence relation.

We shall take advantage of the following simple properties of ~ , where pq
is the concatenation of the strings p and q.
(Reversibility): If £ ~ 1, then {’ ~ « f.
(Transitivity): It f ~, ¥ and ¥ ~ 1, then f ~ 1"
(Collapsibility): Let i be an agent. Then f ~ ;. ', if and only if f ~, , f".

If p=1i,...i, and no two consecutive agents in p are the same, (i.e., if
{ L, F i forl =/ <), th.en we say that p is nonduplicating. By collapsibil-
ity, we can use nonduplicating strings without loss of generality.

We are interested in our notation of ~ because of the following lemma,
whose simple proof (by induction on the length of p) is left to the reader.

Lemva A4, If fE K, o and { ~, g, then g = ¢.

The next proposition implies that there is a path between every pair of
no-information extensions, and gives us information as to the length of the path.

Proposition A5. Let w be a k-world, let w be a k’-world, and let
p e #* be nonduplicating and of length k + k' — 1. Then w* ~ w'*.

Proor. We first prove the following special case.

Special Case: Let (f,,..., fr_,) be a k-world, and let p € #™ be nondu-
plicating and of length k. Then (fo)™ ~, (fo,. ... fi_ ™

We prove the special case by induction on k. The base case (kK = 1) is
immediate. For the inductive step, let (f,, ..., f;) be a (K + 1)-world, and let
p =1, - i, be nonduplicating. By the 1nduct1ve assumption, (f,)* ~ i
(for - s Se)™ We must show that (f)* ~ .., (fo,...,fi)" Define
Jr by lettmg f#(J) be the j-equivalence class of f,_ (/) for each agent j. By

Lemma 4.3, we know that (f,....,f,_;,fr) is a (k+ 1)-world. Let
(fos s Sfu_1r &) be the ik+1—matching extension of (f,, ..., fr_;) with
respect to f,. Again, by Lemma 4.3, we know that (f...., fi_ . &) is a

(k + 1)-world.
Since g,(i,) = f(i,), it follows from Lemma A2 that

<f0’- . '>.fk—15fllc>* ~ik<f0" .. 5fk-—]’ gk>*
Since g,(i;.,) = filir, ), it follows from Lemma A2 that
<f0: LI 7fk—13 gk>* ~ik+1 <fO" . ’fkfl’fk>*'

Since f3(/) is the j- equlvalence class of jjé (j) for each agent j, it follows

that (fy, ..., fu1» S0 = (fos - -» fx_1)". Putting these last few observa-
tions together we see that (fo, o S )~ ASor o Sro 1,fk> i
Putting this fact together with our mducuve assumptlon that ( Jo)* ~he g
(fos - os Fr )™, it follows by transitivity that

<f0>* T B i) <f0’ st fk>*
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By collapsibility. {fo)* ~, .. e (oo S, which was to be shown. This
concludes the proof of the spemal case.

Let w = (fo...., fr_y and w' = (f(,. .. fk—1> Letp =i ... 00y
By the special case, (fy)* ~, .., w* and <f0> ~ e, W By re-

versibility, w* ~, .., (fo)*. By Lemma A.2, (f,)* ~, (f5)*. By transitivity
(applied twice),
w* BEUREE IR TR I 4
By collapsibility (applied twice), w* ~p w'™*, as desired. [
We can now prove Theorem 4.12.

Proor oF THEOREM 4.12.  Assume that there are at least two agents, that ¢ is
a formula of depth r. that w a k-world, and that w* = E""*4. We must show
that ¢ is valid. Assume not; we shall derive a contradiction.

Let p € #™ be nonduplicating and of length r + k (there is obviously such a
strmg p. since there are at least two agents). Since w* = E"*% g, clearly
w* = K p®- Since ¢ is of depth r and not valid. there is an (r + 1)-world

<f0, ) such that w' £ ¢. Hence, w™* i ¢. By Lemma AS, w*
w’*. Therefore, since w* = K p @ it follows from Proposition A4 that w'* = ¢.
This is a contradiction. [
A3. Proof of Theorem 4.21

We now begin a development that will lead to the proof of Theorem 4.21,
which we restate here:

Tueorem 4.21. (w, %)* is a knowledge structure iff reach(w, %) is a
closed set .

In order to prove the theorem, we need a few preliminary lemmas.

Lemma A6. If ¢ is a set of k-worlds, we ¢, and ¢’ = reach(w, %),
then (w, ¥)* = (w, #"*.

Proor. Suppose w = {(fy, ..., fi_,) and (w, )" = (f,, ...,
S 1s Jir Sxwro - ). We can prove, by induction on m = k., that
worlds ({ fo, ..., f,_1)) € reach(w, %), the proof is left to the reader. It

now follows from the definition of the least-information extension that (w. %)*
= (w, ¥)* O

Lemva A7. Let ¢ be a closed set of k-worlds, m =k — 1, and v =

(g5 .-+ &, be a world such that worlds,(v) S %. Define o) =
Aoy b B (0) = g,(0) and worlds,((hg, ..., h,)) € ¢} for each
agent i. Then (g,, ..., g, isa world.

Proor. The fact that (K1) and (K2) hold is immediate from the definition.
To see that (K3) holds, we proceed by induction on m. First suppose m = k —
1>0and (hy,..., h,_,)eg,(i). From the fact that % is closed and ve ¢
(since v € worlds,(v) € ¢), it follows that there is some (h, ..., h, ,, h,)

€ ¢ such that #4,(i) = g,(i). This world is in &m+1(1) by definition, so
(K3) holds. Suppose now that m > k — 1 and (A,,.... h, ) eg,i). Note
that worlds, ({(hy, ..., h,, ) S ¢ by assumptlon Define 4, (i) = g,.(i)
and hm(.]) = {<h,0=“"hm~1>: m~l(-]) hm-l(-] and
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worlds, ({(hy, ..., H,,_\)) € %} for j=#i. By the inductive hypothems
(hgs ..., h,)is a world, and by construction, it is in g, (7). Thus, there is
some extension of (hy, ..., h, ) and g,,, (i), so (K3) holds. [J

Lemma A8.  Suppose ¢ is a set of k-worlds, w,w' € ¢ with w ~, w’,
and (w, €)* is a knowledge structure. Then (w’, )" is a knowledge
structure.

Proor. Suppose (w, €)* = (fo, f1....) and (W, %)* = (g,. &,,...).
We prove by induction on m that (g,, ..., g,,) is an (m + 1) world for all m.
If m<k, then (g,,..., g, is a prefix of the world w’, so the result is
immediate. If m = k, it is easy to see that properties (K1) and (K2) hold from
the construction. For (K3), suppose that m > land (h, ..., h,, ) eg, (J).
By assumption, (g,,.... &,,_;) is a world. By the construction of least-
information extensions, gm (8 = f,, (i) and worlds,((gq, ..., &y 1) S
%, 80 (80s- s &n_1) € fu(i). Since (w, #)* is a knowledge structure, there
is some g, such that (g,,..., &,,_. &, € [, (D). By property (K3), there
must be some A4, | such that (h,, ..., h,,_,, #,_,)eg,(i). By construction
again, we must have #),_,(i) = g,,_,({) and worlds,({(h,, ..., h )
< . Thus, (hy,..., h K, ) eg,(i), so (K3) holds. [

Proor oF Tueorem 4.21. Suppose that (w, ¢)* is a knowledge structure.
Note that it follows (by an easy induction on distance using Lemma A8) that
(w', #)*is a knowledge structure for all w’ € reach(w, ¥). We now show that

m—=2>

nm—2-

reach(w, #) is closed. Suppose (g, ..., &,_,) € reach(w, %) and
(oo .y hy_y) €84 1(i). We want to show that, for some #/,_,, we have
e (D) = g (i) and (hy, ..., hy_,, W,_,) € reach(w, ). Suppose
((&or- s &8k—1)> €)= (&¢s-» &k_1> &x»---). By property (K3), there is
some A}, such that (hg, ..., h,_,, K} ,)eg.(i). By the construction of
least-information extensions, we must have (hg,...,h,_,, h, )€ % and
hy_ (i) = g,_(i). Thus, (hy, ..., h, ,, W,_,) € reach(w, %). This shows

that reach(w, %) is closed.

For the converse, suppose that ¢’ = reach(w, %) is closed. By Lemma A6,
it follows that (w, 4)* = (w, %)*. Suppose that (w, €)* = (fy, fi,...).
Now a straightforward induction on m wusing Lemma A7 shows

that (fy, ..., f,) is an (m + 1)-world. Thus, (w, )* is a knowledge struc-
ture. [J

A4. Proof of Theorem 4.22

In this subsection, we prove Theorem 4.22, which we restate here:

Tueorem 4.22. (w. €)™ is a knowledge structure where all the worlds of
% appear iff ¢ is closed and ¢ = reach(w, %).

We begin with a lemma.

Lemvma A9. Suppose % is a set of k-worlds, we %, and (w, $)* is a
knowledge structure. Then worlds,((w, $)*) = reach(w, €): that is, the
k-worlds that appear in (w, )" are precisely those that are reachable
Sfrom w.

Proor. Let %’ = reach(w, ¢). By Lemma A6, it follows that
worlds,((w, )*) € ¢’. To get containment in the other direction, we show by
induction on m that if w’ is distance m from w, then w’ appears in (w, 7)*.
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The result is trivial if m = 0. If m > 0, there exists w” € «, where w ~, w”
for some agent i, and w’is distance m — 1 from w”. By Lemma A8, (w". ¢ )*
is a knowledge structure, and by induction hypothesis, w’ appears in (w”, #)*.
Suppose (w, €)* = (fo, f1,...) and (w”, €)* = (g,, g,....). Thus, w’
appears in (g,. ..., g, for some /. Since w ~, w”, by the construction of
least-information extensions, we must have f,(i) = g,(/) and thus (g,, ..., g,

€ f,.,(i). Therefore, w’ appears in (f, ..., fi, )

We now prove Theorem 4.22. If (w, ¢)* is knowledge structure where all
the worlds in ¢ appear, then by Theorem 4.21, reach(w, ¢) is closed. and by
Lemma A9, % = reach(w, ¢). Conversely. if ¢ 1is closed and % =
reach(w, ¢'), then reach(w, ¥) is closed, so by Theorem 4.21, (w, ¥)* is a
knowledge structure. By Lemma A9, it also follows that all the worlds of #
appear in (w, «)*, [

AS5. Proof of Theorem 5.10

In this subsection. we prove Theorem 5.10. We first need a lemma.

Lemma A10.  Let o be a K-formula, and let £ and g be w-worlds such
that £ ~, g for eachi. Then f = Co iff g = Co.

Proor. Assume f = Co. Then, f = E’c for all j > 0. It follows that
f=K,E'oc for all j>0. But f~, g, so g=E’c for all j> 0. Thus,
g=Co. [

We can now restate and prove the theorem.

Tueorem 5.10.  Ler o be a KC-formula. Let £ and g be \-worlds, such
that £ _  =g_,. Thenf=o iff g = o.

Proor. By Lemma 5.2, we can prove the theorem by showing that every
KC-formula is equivalent to the a formula whose depth is less than or equal to
w. The proof uses the following valid axiom schemes:

() K, (oA Noy) = (K, N ANK o)
(2) C(‘;D]/\"'/\<Pk)E(Cﬁal/\"'/\cﬁok)
(3) K,Co = Cyp

4) K,7Cp="Cp

(5) CCp = Cyp

(6) C7Cop="Cop

(7) KjeVK Y =K (oVy)

(8) CoVCy = ClopVy)

9) Kp=¢

(10) Co = ¢

We want to show that every KC-formula is equivalent to a formula where
there is no C in the scope of another C or a K,. The proof is by structural
induction. By (1) and (2), it suffices to prove that the following axiom schemes
are valid, where ¢ and ¢ are K-formulas.

(@) Ki(CoVy)=(CoVK,)

b) K(7CeViy)=(T"CoVK YY)
() C(CpVy) = (CeVCy)

(d) C(TCpVy) =(CeVCy)
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In (a)-(d), implication from right to left follows easily from (3)-(10), so we
consider only implication from left to right. We first prove (a). By Lemma 5.2,
it suffices to consider (w + 1)-worlds. Let h be an (w + 1)-world.

Suppose that h = K ,(Co V ¢). Then, for every e € f, (i), we have e = Cp V
Y. There are two possibilities to consider. First, it is possible that for some
ee f (i), we have that e = Ce. Then, by Lemma A10, for every e f (i) we
have that e = Ce. Thus, h = K,;Ce. Consequently, by (3), h = CoVK,y.
The other possibility is that for all e e f, (/) we have that e = ~ Cy. In that
case, we have h = K¢, so h = Co VK y.

The proof of (b) is similar and left to the reader. We now prove (c). Let h be
a world such that h = C(Ce Vv ¢). Then, h = E(CoV ) for all i > 0. It
follows by (a) that h = (Ce V E'Y) for all i = 0. There are now two possibili-
ties to consider. First, it is possible that h = C¢, in which case, clearly,
h = CoV Cy. The other possibility is that h # Ce. In that case, we have
h = E%Y forall i = 0, that is 2 = Cy. It follows that h = Co VvV Cy.

The proof of (d) is similar and left to the reader. [

A6. Proof of Theorem 5.14

In this section, we prove Theorem 5.14, which is as follows:

TueoREM 5.14.  For every ordinal 1| < \ < w°, there is a formula o, and
there are (N+ 1)-worlds £ and g, such that f_, =g _,, f=o0,, and
gt oy

Proor. We first prove the claim for 1 < A\ < w. The case A = 1 is easy and
is left to the reader (one agent suffices). Consider the case where 1 < \ < w.
Here we need two agents, 1 and 2, and one primitive proposition p. Let f,
make p true. For | < k < A, let fi(1) = f,(2) = {f _,}. It is easy to verify
that f is a (A + 1)-world. Also, one can show by induction on k, 1 < k < A
that f _,., = E*p. In particular. f = E™p. Let g be the 2-matching extension
of f _, with respect to f. Thatis, g _, = f_,. g,(2) = {g_.,}, and g,(1) is the
l-equivalence class of g _,. We now show that g &£ E*p. The proof is by
induction on A. For A =1, we have g(1)={p,p}, so gt K,p, and
consequently, g & Ep. For A > 1, let g’ be the 1-matching extension of g _, |
with respect to g_,; that is, g'_, ,=g_,_;, g (D ={g_,_,}, and
&n_1(2) is the 2-equivalence class of g _, _,. By the inductive hypothesis and a
symmetry argument we have that g & E* 'p. But g ~, g_,, s0 gt
K,E'p. Consequently, g & E™p.

We now prove the claim for w < N\ < w”. Here we use three agents, 1, 2,
and 3, and one primitive proposition p (note that three agents are necessary by
Theorem 5.10). Let u < w?. Note that u = w X k + / for some k, /= 0. We
define the classes U, and V, of p-worlds. As we shall see later, the worlds f
and g whose existence is claimed by the theorem will be members of U, and
V,, correspondingly. Worlds in U, are constructed in such a manner as to
prevent agents 2 and 3 from having joint knowledge, and to make sure that
agent 1 knows it. In worlds in ¥, agents 2 and 3 do have joint knowledge of
agent 1’s knowledge.

The construction is by induction on u. The class U, contains the single
1-world (h,), where h, makes p true. Let V|, = U,.
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A 2-world hisin U, ifh_, e U, and A /(1) = {h \}- An /-world h is in U,
for />2if h_, is in U,. and either h, ((2) is the 2- equivalence class of
h_,_ | Of h,_,(3) is the 3- -equivalence class of h _,_ - An w-world hisin U, if
h,(1) is the 1-equivalence class of h _, forall / > 1, and h _, is in U, for some
l> 2. An [-world hisin V, for / > 1 if h _, is in U,, and for all m such that
1<m<! we have h,(2) = {e:e~, h_, and eeV, }, and h,Q3) = {e:
e~ h_,andeeV,}. An w-world h is in V,, if A1) is the I-equivalence
class of h _, for all / > l and h_, isin V, for all l> L.

Inductively. let p < w” be a llmlt ordinal. A world his in U, , if h _ is in
U, andh(l)—{e e~ h_,andeeU}. A(p+1] worldh1s1nU , for
151 if h< +1is in U, and either &, , ,(2) is the 2-equivalence class of
h<w+, , or n w131 is the 3- equlvalence classofh_, ., . A(p + w)-world
hisin U, if h .+/(1) is the 1-equivalence class of h _ , , for all /> 0, and
h_, ., is in U,. for some / > 1. A(p,+l)worldhis in ¥V, for I >0if
h<u+11s1nUH+1,h(2)—{ee ,andee U}, h (3) ={ete~; h_,
and e U}, and for all m such that l = “m < I we have that h, . (2)= {e e
2 h<u+m and e€ V, +m} and hu—l—m(}) - {e €~ h<u+m and e € I/;mLm}
A (p + w)-world h is in V,io it h, (1) is the 1- equwalence class of b,
forall />1,andh_ ,, is in V. foral /> 1.

To prove the existence of f and g. we have to first prove several properties of
the U’s and V's. The proof requires a fairly technical induction hypothesis.
We also need define the classes U, for certain successor ordinals. Let u be a
limit ordinal. A world h is in Ué+1 if h 1s in Uu and hu(l) is the

<
I-equivalence class of h _ ’

Cram Al. Let p < .

(1) If he U, then there is some W e U, | such that h'_ <u=h

2) If nis a successor ordinal and heV,, then there is some h' e |
such that h'_ = h.

(3) If pnisa llmzt ordinal and he U,, then there is some h' €V, 1 Such
that h'_ = h.

4 If pis a successor ordinal and heV,, then there is some h' e U,
such that W'_ , = h.

(5) If p is a limit ordinal and he U,, then there is some W e U, such
that W'_ = h.

(6) The classes U, and V., are nonempty.

The proof is by induction on p. We first prove part (1). If u is a successor
ordinal and he U,, then h**! is the desired extension. Assume now that
= w X k is a limit ordinal. Let he U,. We construct a (z 4+ D)-world h’ in
U Let W_, =h, h(2) (resp., h,(3)) be the 2-no-information (resp.,
3-no-information) extension of h, and 74, (1) = {e: e ~, h and ec U}. We
have to show that h’ satisfies (K3’) for all agents. That (K3) holds for agents 2
and 3 is obvious, so we focus on agent 1. Let ee £, (1). Without loss of
generality we can assume that « > w X (kK — 1). It is easy to sce that e* e U,
and e ~; h, so e” e hj (1) and (K3’) holds. This completes the proof of part (1).
We now prove part (2). We first consider the case u = [/ < w. The claim
clearly holds for /= 1. For /> 1, let h’ be an (/ + 1)-world defined as
follows W_,=h, A)(1) is the 1-no-information extension of h, A)(2) = {e:
o h and eeV,}. and A)(3) = {e: e ~; h and eeV,}. We clalm that
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h eV, . (KI') and (K2') clearly holds, so only (K3’ remains to be verified.
That (K3’) holds for agent | is obvious, so we focus on agent 2 (the argument
for agent 3 is analogous). Let e € #,_,(2). Since h € V,, we have thatee V,_,.
Thus, by the inductive hypothesis, there is e’ € V, such that ¢_, , = e. In
particular, e;_,(2) = {¢":¢” ~, eande” € V,_,}.Bute ~, h_,_,,s0 e/ ,(2)
= h,_,(2), and consequently e ~, h. Thus, e €/)(2) and (K3") holds. It
follows that h" e V. ;.

Now let p be a limit ordinal, and let he V, ,, / = 1. We define h’ to be a
(u + 1 + I)-world defined as follows: h'<u+, h, A, (1) is the l-no-infor-
mation extension of h, %, , (2) = {e:e ~, handeeV,  }, and 4 ,(3) = {e:
e~;handeeV  }. We claim that b’ € V RUINE (Kl’) and (K2 clearly hold,
$O only (K3 remains to be verified. That (K3’) holds for agent 1 is obvious, so
we focus on agent 2 (the argument for agent 3 is analogous). Leteeh, l(2)
If I=1,theneelU, and if /> 1, then eeV,,,_,. In either case, there is

e eV, ., such that e <u+i—1 = € In particular, if /= 1 then ¢’ pi- (2) = {e”:
e’ ~, “e and e’ eU}, and if />1, then ¢ +, (2) ={e" ¢ ~, e and
eV, }.-Bute~, h_,,, ,s0e,, (2)= h,.i-1(2), and consequently

¢’ ~, h. Thus, ¢ eh’ +l(2) It follows that h’ e V, 1141 and (K3) holds. This
completes the proof of part (2).

We now prove part (3). Let he U,. We construct a (u + 1)-world h" in
Viir- Let b’ = h, and (i) = {e: e ~ ;hand ee U} for ie #. We verify
that h’ satisfies (K3’) as above. This completes the proof of part (3).

Let p be a successor ordinal and let he V,. Then h**tlelU +1- Let pbea
limit ordinal and let h e U,. Then h**le U’ . This completes the proof of
parts (4) and (5). Finally, part (6) follows from parts (1), (2), and (3). This
completes the proof of Claim Al.

Let 6, be the formula (7 Cy, 4 K) D, where (7 Cp n K, Yp is p, and
(7 Cp. 3}1() 'pis (™ Cy,. 3}K{ W Coy, 3}K) D.

Ciam A2, Let p<o?, p=wXxXk+ 1

(1) Let k=0 and [ =2. If helU,, then h= " K,p. If helU,, then
he= K, p.

(2) Letk =0and!>2. If heU, thenh = ~ E{”}Klp. If heV,, then
hE £ K, p.

(3) Letk>0andl=0.1f heU, thenh=6,. If heV,  thenh= 70,

(4) Let k>0 and I =1. If heU,, then h= "K/0,. If heU,, then
he=K0,.

(5) Let k>0 and |> 1. If heU,, then h= "Ej, 3K 0,. If heV,,
thenhl:E{2 3}K0

Part (1) of the claim is obvious. We now prove part (2) by induction on /. Let
h € U; and assume that h,(2) is the 2-equivalence class of h _,. Let e be the
2-matching extension of h_, with respect to h_,. It is easy
to see that eeU; and e ~,h_,. Thus, e€#,(2), so h= " E, K, p.
Inductively. let h e U, and assume that %, ,(2) is the 2-equivalence class of
h_,_,. Let e be the 2-matching extension of h _,_, w1th respect to b _,_ ;.
Then e U,_, and ee h,_,{2). By induction. e = ™ E{q 2 K, p. It follows that
h= " Ef, 3}K D

We now prove that if he V,, / > I, then h = E{’2 g}K p. This clearly holds
for / = 2. Suppose now that he V,, /> 2. Let eeh, 1(2). By definition,
eecl,_,, so eFE E{2 3}K1p Thus, h= K E{, 3}K1p Similarly, h =
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K, Em 3K p. 1t follows that h = Em 3,K1p. This completes the proof of
part ( 2)

Part (3) follows from parts (2) and (5) and the definition of U, and V, . for
limit ordinals u.

We now prove part (4). Let » = w X k. Let he U, , and eeh(1). By
definition, e € U,, so by induction (part (3)) e = 6,. Thus, h = K,0,. Let
he U/, . Suppose first that k = L. Let ee V. We have that e € 4,(1). since
e ~ h by construction. But e = 76, (by part (3)), so h = ﬂK ¢,. Sup-
pose now that k > 1. Let d be h<w><(/\ ;- We know that d € UM(,\,U By
Claim Al, d can be extended to a world e€ V, such that e _ ., ;, = d and
e ~, h.Butet:ﬁOk,soht:ﬁKG :

We prove Part (5) by induction on /. Let » < w” be a limit ordinal. Let
he U, and assume that &, (2) is the 2-equivalence class of h _,,,. Let e be
the 2-matching extension of h _, with respect to h _ . It is easy to see that
ecU_ ,ande~, h_, . Thus, ech, (2),so hi= 7 E, 3K 0,, since, by
part (4), e = ﬁK 0,. Inductlvely, let heU e > 2, and assume that
h,.,_(2) is the 2- equwalence class of h_,,, . Let e be the 2-matching
extension of h _,,,_, with respect to h _ ,,_ We have that ee U, ,_, and
ee hv+, (2). By induction, e &= ﬁEfz‘;K 6,. It follows that h &=
ﬁE{j 31K 0.

If heV,, . then we also have he U, _, by construction. Thus, by part ( 4)
we have h = K ,0,. Suppose now that he V, ;. [ > 1. Leteeh, , (2). B

definition, e e V+,_1, SO e = E{w ;,K ¢, by induction. Thus, h L:
K,E[;3,K\0,. Similarly, h = K E{; 3 . It follows that h = E[; 5, K 0, .
This completes the proof of part (5) andf of Clalm A2.

Let uw = w X k + I, k > 0. Consider first the case that u is a limit ordinal.
Let he U,. By Claim Al there are worlds fe U, ,, and ge U;,, such that
f_, = g< = h. By Claim A2, wehavefl:ﬂKB and g # - K,0,. Con-
sider now the case that p is a successor ordinal. Let h € V,. By Claim Al there
are worlds fe U , andge V,,, suchthatf _ =g _, = h. By Claim A2. we

have f = — El 5 K0, and g % — E}5 |, K 0,

NoOTE ADDED IN PROOF

We remark that, recently, knowledge structures have been investigated by Hamilton and Delgrande
[17a], who show how they can be generalized to capture the nonstandard epistemic logics described by
Levesque [23a] and Lakemeyer [22a] and first-order epistemic logics.?
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