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1. Introduction 

A r m s t r o n g  re la t ions  are objects  o f  interest  in  re la t ional  da tabase  theory.  Let ~ be 
a set o f  func t iona l  dependenc ies  (FDs) [6], a n d  let ~ be a single FD.  W h e n  we say 
that Z logically implies ~ or that ~ is a logical consequence of  Z, we mean that 
whenever every FD in ~ holds for a relation R, then also ~ holds for R. That  is, 
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there is no "counterexample relation" or "witness" R such that every FD in 
holds for R, but such that a fails in R. We write 2; ~ ~ to mean that ~ logically 
implies ~ (and ~ ~ a to mean that 2; does not logically imply a). For example, 
{A ---> B, B ---, CI ~ A ---, C. Let 2; be a set of FDs, and let x* be the set of  all FDs 
that are logical consequences of 2;. For each FD a not in 23", we know (by definition 
of ~) that there is a relation R~ (a witness) such that R, obeys B but not a. It 
follows from results of Armstrong [1] that there is a relation (a global witness) that 
can simultaneously serve the role of all of the R,'s. That is, Armstrong showed that 
there is a relation that obeys 2~* and no'other FDs. Following Fagin [14], we call 
such a relation an Armstrong relation for ~. Actually, Armstrong did not explicitly 
state or prove the existence of an Armstrong relation, insiead, he proved a result 
that implies both the completeness of a certain set of axioms about FDs (see [12]) 
and the existence of an Armstrong relation. 

As an example [ 14], let ~ be the set {EMP ~ DEPT, DEPT --* MGRI, containing 
two FDs. Then ~* contains the FDs in ~, along with, for example, the FD 
EMP ---> MGR. It is easy to verify (by considering all possible FDs involving only 
EMP, DEPT, and MGR) that the relation (call it R) in Figure 1 is an Armstrong 
relation for ~, that is, that it obeys every FD in ~* and no others. For example, 
the FD MGR ---, DEPT is not an FD in ~*, and indeed, R does not obey this FD, 
since Gauss is the manager of two distinct departments (Math and Physics). 

We shall give a simple proof of the existence of Armstrong relations for sets of  
FDs. That proof is a slight modification of a proof by Beeri et al. [4], which 
contains a minor "bug" (in that dependencies whose left-hand side is the empty set 
are ignored). 

The existence of Armstrong relations has been proved in the presence, not just 
of FDs, but of  the much more general "embedded implicational dependencies" 
(for details, see [ 14]). A concept closely related to Armstrong relations in traditional 
mathematics is the free algebra with countably many generators [19], which obeys 
just a specified set of equations and their logical consequences, and no other 
equations. (However, although the free algebra just mentioned is unique to within 
iomorphism, Armstrong relations are not [ 14].) In ordinary first-order logic (where 
arbitrary first-order sentences, and not just, say, FDs are allowed), there can be no 
Armstrong relations. For example, let 2 be the empty set 6.  Assume that R were 
a relation that obeyed just 2;* (that is, just the tautologies), and no other first-order 
sentences. Let (r be an arbitrary first-order sentence such that neither a nor ~ r  is a 
tautology. Clearly, R must obey one of a or ~a;  thus, R obeys a nontautology. 
This is a contradiction. Hence there is a witness for a (a relation that shows that 
is not a tautology), and a witness for ~ (a relation that shows that ~ is not a 
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tautology), but there is no global wffness (a relation that simultaneously shows that 
a is not a tautology and ~ is not a tautology). 

It is common to speak of a relation obeying an "accidental" dependency, that is, 
a dependency that is not a logical consequence of the collection of "specified" 
dependencies. Thus, each specified dependency is supposed to hold "for all time," 
that is, for every "snapshot" (instance) of  the database, whereas an accidental 
dependency is one that happens to hold in some snapshot of the database, but may 
fail in other snapshots. An Armstrong relation is precisely one that obeys every 
specified dependency and no accidental dependency. 

We note an interesting "practical" application for Armstrong relations. Silva and 
Melkanoff [22] have developed a database design aid, in which the database designer 
inputs a set of FDs and MVDs (multivalued dependencies) [ 11, 26]. The design 
aid then presents him with an Armstrong relation, that is, a "sample relation" that 
obeys just those dependencies that are logical consequences of those that he has 
inputted. (Armstrong relations exit in the presence of FDs and MVDs, and this is 
the case in which Silva and Melkanoff were interested.) Let us say, for example, 
that the designer gives as input the set {EMP ~ DEPT, DEPT ---, MGR} of FDs. 
The database design aid would then present the designer with an Armstrong 
relation, such as relation R in Figure 1, for this set of dependencies. The designer 
would then inspect the sample relation, and might observe, for example, "Here is 
a manager, namely Gauss, who manages two different departments. Therefore, the 
dependencies that I inputted must not have implied that no manager can manage 
two different departments. Since I want this to be a constraint for my database, I'd 
better input the FD MGR ---, DEPT." 

In this example, the designer did not have to explicitly think about the depend- 
ency MGR ---, DEPT and whether or not it was a consequence of the dependencies 
that he input; rather, by seeing the Armstrong relation, and thinking about what it 
said, he simply noticed that the FD MGR ~ DEPT failed. Thus, Silva and 
Melkanoff's approach is a partial solution, in the spirit of Query-by-Example 
[27], to the problem of helping a designer think of what dependencies shouM be 
included. Unfortunately, one of the results in this paper shows a limitation of this 
approach: namely, a minimal-sized Armstrong relation for a set of FDs can be of 
exponential size (in the number  of attributes). 

Let us call the collection of all relations (with a given set U of attributes) that 
obey a given set of FDs an FD class [14]. Let R be a fixed relation. In the spirit of 
Ginsburg and Zaiddan [17], we define the FD class generated by R to be the 
smallest FD class that contains R. It is easy to see that this class is simply those 
relations (with attributes the same as those of R) that obey 2;, where 2; is the set of 
all FDs obeyed by R. A natural question is whether every FD class has a generator. 
The answer [ 17] is yes: if the FD class _~ consists of all relations with attributes U 
that obey 2;, then let R be an Armstrong relation (with attributes U) for ~; it is 
easy to see that R is generator for the class ~.. Thus, a natural interpretation for 
Armstrong relations is as class generators. 

Armstrong relations arise naturally in proofs in database theory. For example, 
Casanova et al. [5] make use of an "Armstrong database" to help show that for 
each k, there is no k-ary complete axiomatization for functional dependencies and 
"inclusion dependencies" together (a typical inclusion dependency [5] says, for 
example, that every manager is an employee). We give another application of 
Armstrong relations in Section 4. 

For a history and summary of results on Armstrong relations, see [ 13]. 
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In Section 2 we present basic definitions. In Section 3 we present a simple proof, 
which "patches" a proof by Beeri et al. [4] of  the existence of  Armstrong relations 
for sets of FDs. In Section 4 we give an application of Armstrong relations to 
generalize a result of Demetrovics about the possible sets of  keys for a relation. In 
Section 5 we show that a natural conjecture is false. The conjecture says that almost 
all relations obeying a given set of functional dependencies are Armstrong relations 
for that set. In Section 6 we characterize Armstrong relations in terms of  closed 
sets. We use this technique to obtain upper and lower bounds on the size of 
minimal Armstrong relationS. We also give upper and lower bounds on the number 
of distinct entries that must appear in an Armstrong relation. In Section 7 we 
present some complexity results. We show that the time complexity of  producing 
an Armstrong relation, given a set of functional dependencies, is precisely expo- 
nential in the number of attributes. By this we mean that there is an exponential- 
time algorithm, and furthermore, that there is an example in which the time simply 
to write down the Armstrong relation is exponential. Finally, we show that the 
problem of deciding whether there is a key of size at most given integer is NP- 
complete, whether the set of functional dependencies is presented explicitly, or 
implicitly via an Armstrong relation (Lucchesi and Osborn [20] already proved 
this result in the explicit case.) 

2. Basic Definitions 

We assume a finite set U of attributes. A tuple (over U) is a mapping with domain 
U, and a relation (over U) is a set of  tuples (over U). If X C U, and if t is a tuple 
over U, then we denote the restriction of t to X by t[X]. I f R  is a relation over U, 
then R[X] = It[X] : t ~ R}. IfA is an attribute of U, and if t  is a tuple over U, then 
we may refer to t[A] as an entry, in the A column. 

A functional dependency (over U) [6], or an FD, is a statement, or sentence, 
X ---, Y where X, Y _C U. A relation R over U obeys the FD X---, Y if whenever fi, 
t2 are tuples of R with q[X] = t2[X], then t~[Y] = t2[Y]. We also say then that the 
FD holds for R. If the FD does not hold for R, then we say that the FDfails in R, 
or that R violates the FD. 

3. Constructing Armstrong Relations for FDs 

In this section we give a simple proof, which "patches" a proof by Beeriet al. [4], 
of the existence of Armstrong relations for sets of FDs. We begin with a simple 
lemma, which is not really necessary, but is convenient. 

LEMMA 3.1 [1 1]. Let ~ be a set of  FDs, and let a be a single FD such that 
~z ~. Then there is a two-tuple relation that obeys ~ but not ~r. 

PROOF. Since Z ~: or, there is a relation R that obeys Z but not ~r. Let o- be the 
FD X---~ 17. Since R does not obey X---~ Y, there are tuples t~ and t2 of  R such that 
tj[X] = t2[X] but tl[Y] ~ tz[Y]. Let R '  be a relation that contains precisely the 
tuples t1 and t2. It is easy to see that R '  is the desired two-tuple relation. [] 

Although the proof of Lemma 3.1 is nonconstructive, we now sketch a simple 
constructive proof of the same result (this is of interest because we shall later use 
Lemma 3.1 to construct Armstrong relations). Let Z be a fixed set of  FDs, and let 
X be a set of attributes. We define X* to be the set of all attributes A such that 

~ X---, A. Let ~ be an FD not in Z*. Now assume that Z I~ ~r, and that ~ is-the 
FD X ~ Y. Let R be a two-tuple relation, in which one tuple has all 0"s as entries, 
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and the other tuple has O's in the X* entries and 1 elsewhere. It is easy to verify 
[12] that R is a two-tuple relation that obeys 2; but not a. A similar construction 
can be used [25] to prove the completeness of Armstrong's axioms for FDs. 

We note that the claim in Lemma 3.1 is true about MVDs also. In fact, Sagiv et 
al. [21 ] show that if 2; is a set of  dependencies (FDs or MVDs), if ~ is a single 
dependency, and if R is a relation that obeys 2; but not ~, then R has a two-tuple 
subrelation that obeys 2; but not ~ (a subrelation is a subset of  the tuples). The 
proof is much harder than the proof of  Lemma 3.1. 

We now describe how to construct Armstrong relations for sets of  FDs. We use 
the "disjoint union" technique of Beeri et al. [4]. The reader should note that there 
is a minor bug in their proof, caused by neglecting FDs with the empty set as their 
left-hand side. This bug is corrected below. See also Armstrong and Delobel [2]. 

THEOREM 3.2 [1, 4]. For each set 2; of FDs, there is an Armstrong relation 
for2;. 

PROOF. Let 2; be a set of  FDs. We shall construct an Armstrong relation for 2;, 
that is, a relation that obeys the FDs in 2;* and no other FDs. For each FD a not 
in 2;*, let R,  be a relation that obeys Y~ but not a (by Lemma 3.1, we can even take 
R, to be a two-tuple relation). We can assume that the entries that appear in R, 
are distinct from those that appear in R, whenever a and r are distinct FDs, with 
the following exception. For each attribute A in O* (that is, for each attribute A 
such that 2; I= O ---, A), every A entry in every tuple in every one o f  these relations 
is the same value. Let R be the union of all these relations R,, that is, R = 
13 {R,: a ~ 2;'1. We now prove that R is an Armstrong relation for 2;. 

We first show that R obeys every FD in 2;. Let X---, Y be an FD in 2;, and let A 
be an attribute in Y. We need only show that R obeys the FD X ---, A. There are 
two  cases. 

Case 1. X C_. 0*. Then A E Q*, and so all of the tuples of R contain the same A 
entry. Hence, R obeys X ~ A. 

Case 2. X fI 0*. Assume that t, and t2 are tuples of  R, and that t~[X] -- t2[X]; 
we must show that tt[A] = t2[A]. Since X g; O*, there is an attribute B in X - 0*. 
Since tt[B] = t2[B], and since B $ O*, we know by construction of R that tt and t2 
are tuples in the same relation R,, for some a ~ 2;*. Since Ro obeys 2;, it follows 
that R, obeys the FD X-- ,A .  Since also tt[X] = t2[X], it follows that tt[A]= t2[A]. 
This was to be shown. 

Thus, R obeys each FD in 2; (and hence in 2;*). If~r is an FD not in 2;*, then R 
violates a, since its subrelation R, violates a. Hence, R is an Armstrong relation 
for 2;. 17 

4. An Application 

We now give an application of Armstrong relations to database theory. A key of a 
relation is a set K of  attributes such that K---, U holds in the relation but such that 
for every proper subset K'  of  K, the FD K'  ---> Udoes not hold in it. A key gives a 
minimal unique identifier for each tuple in a relation. 

If J is the set of  keys of a relation, then dearly every pair of keys in J is 
incomparable under set inclusion. We now show that the converse holds. 

THEOREM 4.1. Let J be a nonempty collection of incomparable subsets of a 
finite set U. Then there is a relation with attributes U for which the set of keys is 
precisely J. 
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PROOF. Let ~ be the set [ K ~  U:K ~ J} of FDs, and let R be an Armstrong 
relation for Z. We claim that the set of keys of  R is precisely J. To show this, it is 
sufficient to show that if K'  C U, then 

R obeys the FD K'  ~ U if and only i fK '  is a superset of  a member of  J. 
(4.1) 

Since R is an Armstrong relation for ~, we know that the statement (4.1) is 
equivalent to the statement, 

I= K'  --, U if and only if K '  is a superset of a member of J. (4.2) 

We now show (4.2). Assume first that K'  is a superset of  a member K of J. 
Then the FD K --* U is in ~, and so X ~ K'  --~ U. Conversely, assume that 

~ K'  -o  U, but that K' is not a superset of a member of  J;  we shall derive a 
contradiction. Let R be a two-tuple relation such that one tuple has all O's as 
entries, and the other tuple has O's in the K' entries and l elsewhere. Since K'  is 
not a superset of a member of J, it follows easily that R obeys ~. However, R does 
not obey the FD K'  -~ U. This contradicts our assumption that ~ ~ K' .-> U. [] 

It is well-known [23] that the biggest set J of incomparable subsets of  an n- 
element set U has S(n) members, where S(n) is the binomial coefficient (tl/~J), and 
where lx / i s  the greatest integer not exceeding x. This set J is the set of  all subsets 
of U that contain precisely ln/21 members. Demetrovics [7] proved, by a compli- 
cated construction, that there is a relation, with n attributes, that has S(n) keys. Of  
course, this result is an immediate consequence of our Theorem 4.1 and the above 
remarks. Demetrovics' result is of interest because it shows that the maximum 
possible number of keys in a relation with n attributes can be obtained. 

5. Random Relations versus Armstrong Relations 

Let us hold fixed a set U of attributes. Let -~k be the set of  all relations with 
attributes U such that every entry of  the relation is a member of  { 1 . . . .  , k}. Thus, 
-~k contains 2 k" members, where u is the number of attributes (that is, the size of  
U). If 5~ is a property of relations, then we say that "almost all relations have 
property _~" (or "a random relation has property ~ " )  if the fraction of  members 
of -~k with property ~converges  to 1 as k --* oo. Fagin [10] showed that if ~ i s  a 
first-order property of relations, then either almost all relations have property 
or almost all relations violate property ~ .  From his characterization, it follows 
easily that for each nontrivial FD a, almost all relations (over the appropriate 
attributes) violate a. Since there are only a finite number of FDs over a given set 
of attributes, it follows that almost all relations simultaneously violate every 
nontrivial FD. Thus, almost all relations are Armstrong relations (with respect to 
FDs) for the empty set of FDs. 

If ~ and -~ are properties of relations, then we say that "almost all relations 
with property 2 have property ~ "  if the number of members of  X~k with both 
properties 2 and ~ divided by the number with property .~ converges to 1 as 
k --, oo. A natural conjecture is that almost all relations that obey a given set ~ of 
FDs is an Armstrong relation for X (with respect to FDs). As we noted earlier, the 
conjecture is true when 2~ is empty. We now show that the conjecture is false in 
general. In fact, we shall show that if the attributes U are IA, B, C, D}, then almost 
all relations obeying the FD A ~ BCD also obey the FD BCD --. A, and so are 
certainly not Armstrong relations for [A --~ BCDI. 
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Let ak be the number of  4-ary relations over { 1, . . . ,  k} obeying A ..-., BCD, and 
let bk be the number of  4-ary relations over {1 . . . .  , k} obeying {A --, BCD, 
BCD ~ A}. We shall show that b~/ak ~ 1 as k ~ oo. 

Let ak, be the number of  4-ary r-tuple relations over {1, . . . .  k} obeying 
A ~ BCD, and let bk, be the number of  4-ary r-tuple relations over {1, . . . ,  k} 
obeying {A --, BCD, BCD -.-, A}. Clearly akr and bkr are positive precisely when 0 
_< r _< k, since each tuple of  4-ary relation obeying A -.-, BCD must have a distinct 
A value, and there are only k possible values. 

We now show that akr ~ (k,)k3'. This is because if R obeys A .-,  BCD, then each 
tuple of R must have a distinct A entry; there are (kr) possible choices for the set of 
r distinct A entries, and there are k 3" choices for how to fill out the remaining 3r 
entries in the B, C, and D columns. 

We now show that bk, -- (f)(k3)(k 3 - 1) . . .  (k 3 - r + 1). This is because i f R  
obeys {A ---, BCD, BCD .-.. A}, then each tuple of  R must have a distinct A entry 
and each tuple of  R must have a distinct BCD entry; there are (k) possible choices 
for the set of r distinct A entries, and there are (k3)(k 3 - 1) . . .  (k 3 - r + 1) choices 
for how to fill out the remaining 3r entries (which can be thought of  as r distinct 
BCD tuples) in the B, C and D columns, given that no two BCD tuples can be the 
same. So 

bk_.Sr = k3(k 3 -  1 ) . . .  (k 3 -  r + 1) 

akr k 3r 

k 3 k 3 - 1 k 3 - r + 1 

k 3 k 3 " .  k 3 

= 1 _ 1 _ 2 . .  r - -  1.) 

:(, since r _< k. 

Now 

bk > min bk, 
ak  O.~r~k akr  

as we just showed. 
By l'Hospitars rule, (1 - l / k : )  k ~ 1 as k ~ oo. So, since 1 _ (bk/ak) >-- 

(1 -- l/k2) k, it follows that bk/ak ~ 1, which was to be shown. 
It is interesting to consider the question of  the probability (as a function of  ~) 

that a relation obeying Z is an Armstrong relation for ~, that is, the limiting ratio 
(if it exists) of the number of  Armstrong relations for Z over { 1 . . . . .  k} divided by 
the number of  relations over {1, . . . ,  k} obeying ~. 

6. Size o f  Minimal  Armstrong Relations 

A minimal  Armstrong relation is an Armstrong relation R for a set ~ of  FDs such 
that every Armstrong relation for Z has at least at many tuples as R. In this section 
we consider the size of (i.e., number of tuples in) minimal Armstrong relations, in 
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terms of  the number of  intersection generators (defined soon), and also in t~rms of  
the number of attributes. We also consider the number of distinct entries that must 
appear in an Armstrong relation. We need some preliminary results, w h i r  are 
interesting in their own right. 

Let 7  ̀be a set of  FDs, over the set U of attributes. A subset V C U is closed if 
for every FD X ~ Y in 7  ̀for which X ___ V, also Y C_ V. It is easy to see [ 1 ] that the 
intersection of closed sets is closed. Note that the minimal closed set containing X 
is X*, where, as before, X* is the set of  all attributes A such that ~ I= X ~ A. 

Let M be a family of subsets of  a finite set, closed under intersection. Then M 
contains a unique minimal subfamily M '  such that the members of  M '  generate 
M by intersection [2]. Thus, M '  is the smallest set such that M ~ {S~ f3 . . .  t'1 Sk: 
k _> 0 and St . . . .  , Sk ~ M'}.  The members of M '  are the intersection generators 
of M. In fact, it is not hard to see that a member V o f M i s  in M '  if and only if V 
is properly contained in the intersection of the members of Mtha t  properly contain 
V. For a given set of  ~ of FDs, denote by CL(~) the family of  dosed sets defined 
by ~;. As we noted, CL(~;) is dosed under intersection. Denote by GEN(~) the 
intersection generators of CL(Z). Note that U is in CL(Z) but not in GEN(~), since 
it is the intersection of the empty collection of sets. 

Let t~ and t2 be tuples, and let X be a set of attributes. We say that t~ and t2 agree 
exactly on X if h[X] -- t2[X], and if h[A] # t2[A] for each attribute A not in X. If 
R is a relation, then we define agr(R) to be {X:there is a pair of  distinct tuples in 
R that agree exactly on Xt. The next theorem is extremely useful as a characteri- 
zation of Armstrong relations. 

THEOREM 6. I. Let 7, be a set of  FDs, and let R be a relation. Then R is an 
Armstrong relation for ~ i f  and only i f  GEN(7`) C_ agr(R) C_ CL(7`). 

PROOF. ~==: Assume that GEN(7`) C_ agr(R) _ CL(7`). Let X--> A be in ~, and 
assume that two tuples of R agree on X. Since by assumption agr(R) C_ CL(~), we 
know that the tuples agree on a closed set. Hence they agree on X*, and so they 
agree also on A. It follows that R satisfies 7 .̀ Now let X ---> A be an FD not in ~*. 
Then A ~ X*. By the discussion above, there exists a set X '  E GEN(~) such that 
X _ X '  and A E U - X'.  But GEN(7`) C_ agr(R), and so R contain~ two tuples that 
agree exactly on X' .  Thus, R does not satisfy X - ,  A. We have shown that R is an 
Armstrong relation for 7 .̀ 

7 :  Let R be an Armstrong relation for 7`. We show first that agr(R) C_ CL(~), 
that is, that every two tuples of R agree on a closed set (with respect to ~). Indeed, 
since R satisfies 7`, if two tuples agree on a set then they agree on its closure. Hence 
agr(R) C CL(~). 

We now show that GEN(7`) C_ agr(R). Assume X ~  GEN(~); we shall show that 
X ~ agr(R). Let Y be the intersection of all closed sets that properly contain X. 
Then Yis a closed set. Since X ~  GEN(7`), we know that Y -  Xis  not empty. Take 
A in Y - X. Since X is a closed set, the FD X ~ A is not in ~;*, so R contains two 
tuples t, and t2 that agree (at least) on X and disagree on A. We claim that t~ and 
12 agree exactly on X. For, assume not. Then Ii and t2 agree on a dosed set Z that 
properly contains X. By the definition of Y, they agree on Y, and hence on A. This 
is a contradiction. So, It and t2 agree exactly on X. Thus, X E agr(R). This was to 
be shown. [] 

We note that Ginsburg and Hull [16] independently proved that agr(R)_c. CL(~) 
if and only if R obeys ~; this result follows immediately from our proof of  Theorem 
6.1. 
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Let us define a GEN set to be a collection Q of subsets of  U such that (a) U 6[ 
Q, and (b) no member of Q is equal to the intersection of other members of Q. 
From what we have said, it is clear that GEN(20 is a GEN set for each set ~ of 
FDs. Conversely, Armstrong showed [ 1 ] that for every GEN set Q, there is a set 
of  FDs such that Q = GEN(2). Let Q~" be the closure of Q under intersection. 
Thus, Qt  = {S~ n . . .  o Sk:k > 0 and Si . . . . .  Sk E Q}. We may say that a relation 
R is an Armstrong relation for Q if Q _ agr(R) _ Qt.  By Theorem 6.1, if 2; is a set 
of FDs and if Q = GEN(2;), then R is an Armstrong relation for 2; (as defined 
earlier) if and only if R is an Armstrong relation for Q (as we just defined it). We 
shall usually denote a set Q fulfilling (a) and (b) above (that is, a GEN set) by GEN, 
since, as noted above, Q equals GEN(~) for some 2;. Similarly, we may write CL 
for Qt. 

Let us associate with each Armstrong relation R for GEN a graph G(R). The 
nodes of the graph are the tuples of R. Two tuples are connected by an edge if they 
agree exactly on a set in GEN. 

The next theorem provides a useful necessary condition for minimal Armstrong 
relations. 

THEOREM 6.2. I f  R is a minimal Armstrong relation for GEN, then G(R) is 
connected. 

PROOF. Let R be a minimal Armstrong relation for GEN. Assume that G(R) is 
not connected. Let G(R) contain the connected components Hi, . . . ,  Hk. Then k > 
1, since G(R) is not connected. Obtain relation R '  from R by changing the values 
in the tuples of Hi to be distinct from the values in the tuples of G(R) - Ht except 
in the columns •*. Denote by HI the connected component of G(R') that 
corresponds to H, (note that H, and HI have the same number of tuples). It is 
easy to see that agr(H~) = agr(H0, that agr(G(R') - H~) = agr(G(R) - H0, and 
that tuples of HI agree with tuples of G(R') - HI in ~*, a member of CL. It 
follows easily from these facts and from the fact that GEN _ agr(R) _ CL (since R 
is an Armstrong relation for GEN) that GEN C agr(R') _ CL. Thus, the new 
relation R '  is still an Armstrong relation for GEN. Now obtain R" from R'  by 
choosing arbitrarily tuples tl in HI and t2 in Hi ,  and identifying tl and t2. By 
"identifying tt and t2," we mean to replace q[A] by t2[A] for each attribute A 
everywhere tl[A] appears in HL The new relation R" has one less tuple than R'.  
Denote by HI' the result of transforming the tuples of HI (again HI and HI' have 
the same number of tuples). For tuples rt ~ HI' and r2 ~ G(R") - HI', tuple rt 
agrees with t, on a set X~ in CL, and r2 agrees with t2 on a set X2 in CL. Hence, in 
R", tuples rj and 1"2 agree exactly on X~ O X2, which is in CL. It is easy to show 
that what we have said implies that GEN _ agr(R") C_ CL. Thus, R" is an 
Armstrong relation for GEN, which contradicts minimality of R. [] 

The next theorem deals with the case where O E GEN. The corollary that follows 
this theorem will prove useful to us later. Let us associate with each Armstrong 
relation R for GEN a graph H(R). The nodes of the graph are the tuples of R. Two 
tuples are connected by an edge if they agree exactly on a set in GEN - {O1. Recall 
that the graph G(R) was defined similarly, except that in G(R), two tuples are 
connected by an edge if they agree exactly on a set in GEN. 

THEOREM 6.3. Let R be a minimal Armstrong relation for GEN, where 0 E 
GEN. Then H(R) contains exactly two connected components. Furthermore, In each 
column the values in the two components are distinct (that is, it is false that there 
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are a column A and tuples tl and t2 in distinct connected components such that 
t ,IA] = t tA]). 

PROOF. It is convenient to label the edges of H(R) as follows. Let e be an 
arbitrary edge of  H(R) between nodes tl and t2. Thus t~ and t2 are tuples of  R. 
Assume that ti and t2 agree exactly on X. We then label the edge e with the label 
X. 

We shall prove the following fact, which we shall utilize several times. 

FACT (*). Each pair of  tuples from the same connected component o f  H(R) agree 
on a nonempty closed set. 

We now prove Fact (,). Let K be a connected component of  H(R). Each pair of  
tuples of  K agree at least on the intersection of  the labels on a path connecting 
them. Since the labels are from GEN - 161, and since ~ E GEN, it follows that 
this intersection properly contains 6.  Thus, each pair of tuples of  H(R) agree on a 
nonempty set. The set on which the pair of tuples agree is also dosed, since 
agr(R) C_ CL. This proves Fact (,). 

Now R must contain two tuples that agree precisely on O (since GEN ~ agr(R)). 
By Fact (,), these tuples are not in the same connected component of  H(R}.,Hence, 
H(R) contains more than one connected component. 

IfH(R) were to contain more than two connected components, then by a similar 
argument to that used in the proof of  Theorem 6.2, it would be possible to merge 
two of the components, to yield an Armstrong relation with fewer tuples. (For 
those readers who are worried as to why all of the components cannot be merged 
into a single component, the answer is that GEN would not then be a subset of  
agr(R), since O would not be in agr(R).) 

We conclude the proof by showing that in each column, the values in distinct 
components are distinct. If not, assume that two tuples h and t2 from distinct 
components agree precisely on a nonempty set Xo. Of  course, Xo is closed, since 
agr(R) C_ CL. Since GEN _C agr(R), there are tuples s~ and s2 that agree precisely 
on 6 ,  that is, s~[A] ~ s2[A] for each attribute A. By Fact ( , )  above, we know that 
s~ and s: cannot be in the same connected component. So s~ and s2 are in distinct 
connected components. Since there are only two connected components, we can 
assume (by relabeling if necessary) that s~ is in the same connected component as 
h, and that s2 is in the same connected component as tz. By Fact (,), we know that 
s~ and tl agree on a nonempty closed set X~, and similarly, we know that s2 and t2 
agree on a nonempty closed set X2. So s~ and s2 agree at least on Xo N Xj N .¥2, 
which is a nonempty closed set (it is nonempty because ~ ~ GEN). This contradicts 
our assumption that sl and s2 agree precisely on t3. I-3 

COROLLARY 6.4. I f  ¢~ E GEN, then a minimal Armstrong relation for GEN 
contains precisely one more tuple than a minimal Armstrong relation for GEN - 

PROOF. Let s be the number of  rows in a minimal Armstrong relation for GEN, 
and let t be the number of  rows in a minimal Armstrong relation for GEN - {O}. 
We must show that s = t + I. Let R be a minimal Armstrong relation for GEN - 
{O}, and let R '  be the result of adding to R one more tuple of  all new distinct 
values. It follows easily from our characterization of  Armstrong relations in 
Theorem 6.1 that R '  is an Armstrong relation for GEN. Thus, s <- t + 1. We 
conclude the proof by showing that s _> t + I. 
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Let S be a minimal Armstrong relation for GEN. By Theorem 6.3, we know that 
H(S) contains exactly two connected components K~ and K2, and that in each 
column, the entries in each tuple in K, are distinct from those in K2. Choose 
arbitrarily tuples t~ in K~ and t2 in K2 and identify them, as in the proof of Theorem 
6.2. Call the resulting relation S. By an argument very similar to that used in the 
proof of Theorem 6.2, it follows easily that S is an Armstrong relation for GEN - 
{~}. Hence, t < s - 1, and so s > t + 1, which was to be shown. [] 

The next theorem characterizes precisely how small or how big a minimal 
Armstrong relation can be, in terms of the size of GEN. In this theorem, rxl is the 
result of rounding x up to an integer. 

THEOREM 6.5. Every min imal  Armstrong relauon for  G E N  contains at least 
[(1 + (1 + 8r)~/2)/21 tuples and at most  r + 1 tuples, where r is the number o f  
elements in GEN. Both bounds are attainable for  each positive integer r. 

PROOF. Let R be a minimal Armstrong relation for X. By Theorem 6.2, 
we know that G(R) is connected. But a connected graph with r edges has at most 
r + 1 nodes. Thus, G(R) has at most r + 1 nodes, and so R has at most r + 1 
tuples. As for the lower bound, assume that G(R) has m nodes. Then the number 
of edges of G(R) is at most m ( m  - 1)/2. Hence, m ( m  - 1)/2 >_ r, that is, m > 
F(1 + (1 + 8r)1/2)/21. Thus, R has at least f(l + (1 + 8r)~/2)/21 tuples. Finally, the 
fact that the lower and upper bounds are attainable follows from two examples, 
which follow. [] 

Example  6.6. Assume that there are n attributes A~ . . . .  , An. Let GEN consist 
of the singleton sets {A~}, {A2} . . . . .  {Ao}. In particular, distinct members of GEN 
are disjoint. In this case, r = n. Let G be a graph with a minimal number of nodes 
that has r edges. (Thus G has m nodes, where m -- F(I + (1 + 8r)~/2)/21.) Label 
each edge of G with a member of GEN, such that distinct edges are labeled with 
distinct sets. It can be easily seen that we can construct a relation with tuples 
corresponding to the nodes of G such that two tuples agree exactly on A, if their 
nodes are connected by an edge labeled with {A,I, and have nothing in common 
otherwise. This relation is an Armstrong relation for GEN with a minimal number 
oftuples equal to the lower bound of Theorem 6.5. [] 

Example  6.7. Consider a sequence of strictly monotonically increasing sets 
X~ ~ 2(2 ~ . . .  ~ 2(, ~ U, and let GEN = {X~ . . . . .  Xr}. GEN is closed under 
intersection, so GEN --- CL. Let R be a minimal Armstrong relation for GEN. We 
prove, using induction on r, that R must contain r + 1 tuples. 

For r = 1, at least two tuples are needed so that the nontrivial FDs with left- 
hand side X~ are false in the resulting relation. Assume that all for r ___ k, at least 
r + 1 tuples are needed, and let r - k + 1. Now, by the induction hypothesis, a 
minimal Armstrong relation for {X2 - X~, . . . ,  Xr - X~} contains r tuples. Hence, 
by Corollary 6.4, a minimal Armstrong relation for {¢3, X2 - X~ . . . . .  Xr -- X~} 
contains r + 1 tuples. Let R be a minimal Armstrong relation for GEN. It is 
not hard to see that R[U - X~] is then a minimal Armstrong relation for {@, 
X2 - X~ . . . . .  Xr - Xj} (and they have the same number of tuples). But we just 
showed that a minimal Armstrong relation for {¢3, X2 - X~, . . . ,  Xr - X~} contains 
r + 1 tuples. So, a minimal Armstrong relation for GEN contains r + 1 tuples. 
This completes the induction. We remark that another example of a GEN set with 
r members, whose minimal Armstrong relation contains r + 1 tuples, is given by 
letting GEN be the collection of all (r - l)-element subsets of { 1 . . . . .  r}. [] 
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In Theorem 6.5, we considered the size of  a minimal Armstrong relation as a 
function of  the size of  GEN. We now consider the size of  a minimal Armstrong 
relation as a function of  the number of  attributes. As before, let us denote the 
binomial coefficient (t~/zJ) by S(n). By Stirling's formula, it follows that S(n) is 
asymptotic to (2/Tr)l/Z2"n-l/2. 

LEMMA 6.8. There is a constant c such that each GEN set over n attributes has 
less than S(n)(1 + (c/nl/2)) members. 

PROOF. Kleitman (see [9]) showed that there is c such that S(n)(l + c/nil2)) is 
an upper bound on the size of  a set of  subsets of  { 1, . . . ,  n} with the property that 
no one is the intersection of  two others. Now a GEN set has the even stronger 
property that no member is the intersection of  any collection of  the others. The 
result follows immediately. [] 

We now give upper and lower bounds on the size (number of  tuples in) the 
biggest minimal Armstrong relation with n attributes. 

THEOREM 6.9. There is a constant c such that every minimal Armstrong relation 
contains less than S(n)(1 + (c/n~/Z)) tuples, where n is the number o f  attributes. 
There is a set ~ of  FDs such that each Armstrong relation for ~ contains more than 
S(n)/n 2 tuples. Thus, let p(n) be the size o f  the biggest minimal Armstrong relation 
with n attributes. That is, p(n) is the maximum (over all sets ~ o f  FDs, where 
involves n attrtbutes) of  the minimum number of  tuples (over all Armstrong relations 
for ~). Then S(n)/n 2 <p(n)  < S(n)(l + (c/nl/2)). 

PROOF. We first consider the upper bound S(n)(l + c/nl/2)). By Theorem 6.5, 
the number of  tuples is at most r + 1, where r is the size of  GEN(~).  By I .emma 
6.8, we know that r < S(n)(l + cl/n I/2) for some constant cb So, the number  of  
tuples is less than 1 + S(n)(l + cl/nl/2). Now, 1 + S(n)(1 + cl/n 1/2) <_ 
S(n)(l + (ct + 1)/nl/2), since S(n) >_ n l/z. Hence, we can take c = cl + I. 

We now prove the lower bound S(n)/n 2. Our proof is a slight modification of a 
proof of  a related result by Ronyai, which appears in [8]. Let us denote G(n) the 
number of GEN sets over n attributes. Recall that a GEN set over n attributes 
A~ . . . . .  An is a set of  subsets of  {A~ . . . . .  An}, such that no member equals the 
intersection of  a collection of  other members (and such that U = {A~, . . . .  An} is 
not a member). The set V, consisting of  all subsets of  In/2] attributes, is a GEN 
set. Furthermore, every subset of  a GEN set is a GEN set, and so every subset of  
V is a GEN set. Since V contains S(n) members, it has 2 s~n) distinct subsets. Hence, 

G(n) >_ 2 ~n). (6.1) 

Suppose an Armstrong relation has t tuples. Then, without loss of  generality, it 
can be assumed (by renaming if necessary) that its entries are taken from the set 
{ 1 . . . .  t}. Let us call a relation special if 

(1) it is a minimal Armstrong relation for some GEN set, and 
(2) if it contains t tuples, then its entries are taken from the set {1, . . . ,  t}. 

Let us denote the number of  special relations over n attributes by H(n). Then 

H(n) >_ G(n). (6.2) 

This follows from the fact that two Armstrong relations for two distinct GEN sets 
are nonisomorphic, hence distinct. 
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Let p(n) be as in the statement of  the theorem. Each special relation has at most 
np(n) entries, since there are n columns and at most p(n) tuples. Further, each entry 
lies in { 1, . . . ,  p(n)}, because the largest entry in a special relation with t tuples is at 
most t. Since there are at most np(n) entries, and since the entries lie in {1 . . . . .  
p(n)}, the total number of  special relations is at most p(n) ~n). That is, 

p(n) "~") >_ H(n). (6.3) 

By (6.1)-(6.3), we obtain 

p(n) "~") _ 2 s~n). (6.4) 

We now show that (6.4) implies that p(n) > S(n)/n 2. Assume not. Then for some 
n, we have p(n) < S(n)/n 2. Thus, S(n)/n 2 > 1. Since the function mapping x into 
x "  is monotone increasing in x (for x > 1), the fact that S(n)/n 2 > p(n) implies 
that 

--~'-1 >- p(n) "~"). (6.5) 

By (6.4) and (6.5), it follows that 

~---~--] _ . ( 6 . 6 )  

An easy simplification of  (6.6) gives 

S(n) ~_ n22 ". (6.7) 

But S(n) < 2" (in fact, it is well known that 2" -- ~'-o (7), where one of  the terms 
in the sum is S(n)). Since S(n) < 2", it is all the more true that S(n) < n22 ". This 
contradicts (6.7). [] 

We remark that by a simple modification of  our proof, we can show that for 
each constant k, we have p(n) > S(n)](n - k) 2 for n sufficiently large. 

We now consider how large the domain size must be in an Armstrong relation, 
that is, we consider the number of  distinct entries in each column. 

THEOREM 6.10. There is a constant c such that every minimal Armstrong 
relation contains less than S(n)( l + c/nm)) distinct entries in each column, where 
n is the number o f  attributes. There is a set Z o f  FDs such that each Armstrong 
relation for Z contains more than S(n)/(2n 2) entries in some column. 

PROOV. The upper bound follows from Theorem 6.9, since the number of 
distinct entries in each column is bounded by the number of tuples. We now 
consider the lower bound. 

Let m -- n - 1, By Theorem 6.9, where we let m play the role of  n, we know 
that there is a set Z '  of  FDs (over n - 1 attributes A~ . . . . .  A , -0  such that each 
Armstrong relation for 2;' contains more than S(n - l)/(n - 1) 2 tuples. Let 
contain ~;', along with exactly one more FD A, --~ A~ .. .  A,-~. Thus, the new FD 
says that the new attribute A, is a key. Each Armstrong relation R for ~ contains 
more than S(n - l)/(n - 1) 2 tuples, since the projection of  R onto the first (n - 1) 
attributes is an Armstrong relation for ~ '  with as many tuples as R. Since A, is a 
key, every tuple has a distinct A, entry. Thus, the A, column contains more 
than S(n - l)/(n - 1) 2 entries. Simple algebra shows that S(n - l)/(n - 1) 2 _ 
S(n)/(2n2). The result follows. [] 
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The lower bound of Theorem 6.10 provides a negative answer to Gold's question 
[ 18] as to whether, for each set Z of FDs, there is an Armstrong relation for Y~ that 
is 0-1 valued (that is, whose only entries are O's and l's). It also strengthens a 
result, obtained independently by Ginsburg and Zaiddan [17], that there is a set ~; 
of FDs such that each Armstrong relation for 2; contains more than three entries 
in some column. 

7. Complexity Results 

In this section we show that the complexity of finding an Armstrong relation, given 
a set of FDs, is precisely exponential in the number of attributes. We also show 
that the problem of deciding if there is a key of size at most k is NP-complete 
[ 15], whether the set of  FDs is presented explicitly, or implicitly via an Armstrong 
relation. 

We begin with the issue of the complexity of finding an Armstrong relation, 
given a set of FDs. We shall show: 

(i) There is an algorithm for obtaining an Armstrong relation, given the set Z of 
FDs, where the running time of the algorithm is exponential in the number of 
attribules (by exponential, we mean time c" for some constant c; in fact, our 
proof shows that c can be taken to be 2 + E for arbitrary ~ > 0); and 

(ii) There is a set Z of FDs in which the number of tuples in each minimal 
Armstrong relation for 2; is exponential--thus, an exponential amount of time 
is required in this case simply to write down the relation. We shall, in fact, 
show that for each ~ > 0 there is N such that if n > N, then there is a set ~ of 
FDs over n attributes such that every Armstrong relation for ~ has at least 
(2 - e)" tuples. 

Because of (i) and (ii) above, we say that the complexity of finding an Armstrong 
relation is precisely exponential in the number of attributes. 

We can prove a result that is stronger than (ii). Specifically, we can (and shall) 
exhibit a set 2; of functional dependencies such that the number of tuples in a 
minimal Armstrong relation for 2; is exponential, not only in the number of 
attributes (as demanded by (ii)), but also in the number of functional dependencies. 
We begin by proving (i) and (ii). 

THEOREM 7.1. The complexity of finding an Armstrong relation, given a Jet of 
FDs, is precisely exponential in the number of attributes. 

PROOF. We first present an exponential-time algorithm for finding an Ann- 
strong relation, given a set ~ of FDs. Our construction is very similar to that of 
Gold [18]. It is also reminiscent of  the "partially disconnected augmentation" 
technique of Ginsburg and Hull [16]. Let n be the number of attributes. The 
algorithm first cycles through each of the 2 n subsets of attributes, and checks which 
are closed (with respect to ~:). Let S be the collection CL(Z) of dosed sets. (We 
could get away with using GEN(~) instead of CL(2;) as S in the construction that 
follows, but we do not wish to spend the time to prune out the nongenerators). 
Assume that the distinct members of S are S~ . . . . .  St. Let t, (1 _< i _< r) be a tuple, 
where t[A] = 0 ifA is an attribute in S,, and where t[A] = i for each of the other 
attributes. The desired relation contains a tuple of all O's, along with each of the 
tuples t, (1 _< i _ r). By Theorem 6.1, it follows easily that as long as GEN(2;) C 
S C_ CL(~:), this contruction produces an Armstrong relation for ~. It is clear that 
this algorithm has an exponential running time (exponential in the number of 
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attributes), since the size of ~ is at most exponential in the number of attributes, 
and checking whether a set X is closed can be done in time polynomial in the size 
of  $ and the set X [3]. 

To complete the proof of  the theorem, we must show (ii) above: that there is a 
set ~ of FDs for which the number of tuples in each minimal Armstrong relation 
for ~ is exponential in the number of attributes. By Theorem 6.9, there is a set 
of  FDs such that a minimal Armstrong relation for ~ has more than S(n)/n 2 tuples. 
By Stirling's formula, S(n) is asymptotic to (2/~r)~/22nn -~/2. Thus, the size of a 
minimal Armstrong relation is asymptotically greater than (2/~r)~/22"n-5/2. But this 
value is asymptotically greater than (2 - ~)~ for each ~ > 0. This shows (ii) 
above. [] 

It is easy to obtain an explicit example of a GEN set GEN such that the size of 
a minimal Armstrong relation is exponential in the number of attributes. We 
simply take GEN to be the set of all Ln/21-sized subsets of the n attributes. Since 
this GEN set has S(n) members, it follows from the lower bound of Theorem 6.5 
that each Armstrong relation for GEN has at least [(l + (1 + 8S(n))~/2)/2] tuples. 
This number asymptotically dominates k ~ for each k < 2 t/2. 

In the example we just presented, the number of FDs was itself exponential in 
the number of attributes. We now exhibit another example, in which the size of 
each Armstrong relation is exponential, but for which the number of FDs is small 
(in fact, less than the number of attributes). Let there be 2m + l attributes A~, 
A2 . . . . .  A2m, B. The set ~ of FDs is 

AIA2 ---> B, 
A3A4 "-> B, 

A2m-lA2m -'-> B. 

Let T be an arbitrary set containing exactly one attribute from the left-hand side 
of each of the FDs above, and not containing B. Thus, T has exactly m attributes, 
and there are exactly 2" such sets T. We now show that T E GEN(~). 

If T is not in GEN(~), then it is the intersection N T, of  a family of closed sets, 
each of which properly contains T. Since B $ T, clearly B $ Ts for some j. We 
shall show that for this j, necessarily T = T s, a contradiction. Clearly T _ Tj. If Tj 
were to contain some attribute A, not in T, then T~ would contain the entire left- 
hand of one of the FDs above. But then, Tj would contain B, which it does not. 
Hence, T = Tj, as desired. 

We have shown that GEN(~) contains each such set T, and so contains (at least) 
2" members. So by Theorem 6.9, each Armstrong relation for ~ contains at least 
[ ( l  + (1 + 8r)t/2)/2] tuples, where r = 2 m. Now m = (n - 1)/2, where n is the 
number of  attributes. From a simple computation, we conclude that a minimal 
Armstrong relation for ~ contains at least k n tuples (where k -- 2~/4). This was to 
be shown. 

We close by showing that the problem of deciding whether there is a key of size 
at most k is NP-complete. There are (at least) two possible methods of presenting 
an input to this problem: 

(a) by presenting a set ~ of FDs, and 
(b) by presenting an Armstrong relation for ~. 
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THEOREM 7.2. For either type of presentation, the problem of deciding whether 
there is a key of size of most k is NP-complete. 

PROOF. The problem is clearly in NP. We shall show that the vertex cover 
problem is reducible to this problem. Let G be a graph with V as its set of  vertices 
and E as its set of  edges. The vertex cover problem asks if there is a set X of  at 
most k vertices in V such that every edge contains a vertex in X. It is well known 
[15] that the vertex cover problem is NP-complete. 

Let R be a relation with attributes V. The entries of the relation R will be 
members of E, along with a new value z. There will be I EI + 1 tuples, indexed by 
E U {z}. Every entry in the z tuple is z. If e is in E, and if vertex a is in edge e in 
G, then the a entry in the e tuple is e; otherwise the a entry in the e tupi¢ is z. It is 
straightforward to verify that if X is a set of attributes and if a is a single attribute 
not in X, then the FD X---> a holds in R if and only if {b:(a, b) E E} C_ AT. Hence, 
X is a key (for relation R) if and only if X is a vertex cover (for graph G). This 
proves the result for presentations of type (b). Now, let ~ be the set {X --* a :  X = 

{b:(a, b) E E}} of FDs. As we noted, these are precisely the FDs that hold in R. 
This proves the result for presentations of type (a). [] 

Lucchesi and Osborn [20] prove the theorem for presentations of  type (a). The 
problem of determining whether the FD X---> Y holds, given a presentation of  type 
(b), can be solved in logspaee. On the other hand, the problem of determining 
whether the FD X---, Y holds, given a presentation of type (a), is logspacc-complete 
for P; there is an easy reduction of whether a propositional Horn formula follows 
from a set of Horn formulas (see [24]). 
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