
Degrees of Acyclicity for Hypergraphs
and Relational Database Schemes

RONALD F A G I N

IBM Research Laboratory, San Jose, Cahfornia

Abstract. Database schemes (winch, intuitively, are collecuons of table skeletons) can be wewed as
hypergraphs (A hypergraph Is a generalization of an ordinary undirected graph, such that an edge need
not contain exactly two nodes, but can instead contain an arbitrary nonzero number of nodes.) A class of
"acychc" database schemes was recently introduced. A number of basic desirable propemes of database
schemes have been shown to be equivalent to acyclicity This shows the naturalness of the concept.
However, unlike the situation for ordinary, undirected graphs, there are several natural, noneqmvalent
notions of acyclicity for hypergraphs (and hence for database schemes). Various desirable properties of
database schemes are constdered and it is shown that they fall into several equivalence classes, each
completely characterized by the degree of acycliclty of the scheme The results are also of interest from a
purely graph-theoretic viewpomt. The original notion of aeyclicity has the countermtmtive property that
a subhypergraph of an acychc hypergraph can be cyclic. This strange behavior does not occur for the new
degrees of acyelicity that are considered.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory--graph algorithms;
trees; H.2.1 [Database Management]: Logical Design--normal forms;, schema and subschema; H 3.3
[Information Storage and Retrieval]' Information Search and Retrieval--query formulation

General Terms: Algorithms, Design, Languages, Management, Theory

Additional Key Words and Phrases. Acyclicity, hypergraph, database scheme, relational database, join
dependency, loop-free Bachman diagram

1. Introduction

A hypergraph is a pa i r (./if,, 8) , where Jf f is a f ini te set o f nodes a n d 8 is a set o f
edges (or hyperedges) which a re a rb i t r a ry n o n e m p t y subsets o f ~ A n o r d i n a r y
und i r ec t ed g r a p h (wi thout self- loops) is, o f course, a h y p e r g r a p h where every edge
has exac t ly two nodes. A specia l class o f hype rg raphs , ca l led acyclic, has recent ly
been i n t roduced [7, 8, 22, 23]. W e shal l cal l this class ¢t-acyclic in this paper . T h e r e
is a n a t u r a l co r r e spondence be tween d a t a b a s e schemes, each o f which can be though t
o f as a col lec t ion o f tab le skeletons, as in F igu re 1, a n d hyperg raphs . F o r example ,
the h y p e r g r a p h o f F i g u r e 2 co r re sponds to the d a t a b a s e scheme o f F i g u r e 1. A
d a t a b a s e scheme is sa id to be a -acyc l i c prec ise ly i f the co r r e spond ing h y p e r g r a p h is.
Eve ry ~t-acyclic da t abase scheme enjoys a n u m b e r o f des i rab le proper t ies , each o f
which is in fact equ iva len t to a -acyc l i c i ty [7, 8, 22, 23, 25, 32]. F u r t h e r [38], there a re

Most of this research was conducted while the author was a Visiting Research Fellow at Pontifi¢la
Universidade Catolica do Rio de Janeiro and was supported m part by a grant from IBM Brazd
Author's address: IBM Research Laboratory K51/281, 5600 Cottle Road, San Jose, CA 95193.
Permisston to copy without fee all or part of th~s material is granted provided that the copies are not made
or distributed for direct commeroal advantage, the ACM copyright notice and the tttle of the pubhcaUon
and its date appear, and notice is given that copying is by permission of the Assocmtion for Computing
Machinery. To copy otherwise, or to republish, reqmres a fee and/or speofic permission.
© 1983 ACM 0004-5411/83/0700-0514 $00 75

Journal of the Assoeiauon for Computing Machinery, Vol 30, No 3, July 1983, pp 514-550

Hypergraphs and Relational Database Schemes

SUPPLIER PART PROJECT

PARTICOST I

!1

515

FIGURE 1

FIGURE 2

problems that are NP-complete in general, but which have polynomial-time algo-
rithms under the assumption of a-acyclicity.

There are other, even nicer properties of database schemes that are too strong to
be obeyed by all a-acyclic database schemes. We study some such properties and
characterize graph-theoretically those database schemes which enjoy these properties.
Once again, the properties fall into equivalence classes, which correspond to natural
"degrees of acyclicity" for hypergraphs. For, unlike the situation for ordinary,
undirected graphs, there are a number ofinequivalent, natural definitions of acyclicity
for hypergraphs. It is appropriate to speak of "degrees of acydicity," rather than
simply "types of acychcity," since it turns out that there is a linear ordering of the
strengths of the types of acyclicity we consider; the weakest (least restrictive) is the
previously studied notion of a-acyclicity.

Our new degrees of acychcity remedy a mathematically unnatural property of the
earlier notion of a-acyclicity; namely, it is possible for a hypergraph to be a-acyclic
but have an t~-cyclic subhypergraph. (A subhypergraph contains a subset of the edges
of the original hypergraph.) This strange phenomenon does not occur for our new
degrees of acyclicity.

Each of the degrees of hypergraph acyclicity that we consider is a generalization
of the concept of acyclicity for ordinary undirected graphs; that is, an undirected
graph is acyclic in the usual sense if and only if it is "acyclic," when viewed as a
hypergraph, for any of our notions of "acyclic."

There is an analogy between degrees of acyclicity for database schemes and normal
forms [15, 20] for relation schemata (a relation scheme along with its set of depend-
encies [21]). For, there is a hierarchy of normal forms for relation schemata, each

516 RONALD FAGIN

normal form being more restrictive than its predecessor. Codd has argued that we
should not insist that a relation schema be in a given normal form. Rather, the
database designer should be aware of the issues and have a warning flag that if the
relation schema is not in a given normal form, then certain problems may arise. An
identical comment applies to the question of whether a database scheme should obey
a given degree of acyclicity. In practice, it might be reasonable to try to attain a given
degree of acyclicity in a user's view (which involves only a portion of the database),
rather than in the whole database scheme. This might be attainable, for example, by
renaming attributes. An example is given in Section 8.

We now give an example of a natural database property that is equivalent to one
of our degrees of acyclicity ("y-acyclicity"). Assume that there are (among others) an
EMP__INFO relation with attributes (column names) EMP (for "employee"), DEPT,
and SALARY, and a DEPT___INFO relation with attributes DEPT, CITY, and
MGR. An example of an "(EMP, CITY} relationship" is obtained by joining
together the EMP__INFO and the DEPT__INFO relations on DEPT and projecting
the result on EMP and CITY. It is conceivable that there could be other (EMP,
CITY} relationships, obtained by taking one, two, or more other relations and
joining them together in some manner and then projecting the result onto EMP and
CITY. However, we show that a database scheme is y-acyclic if and only if for every
set X of attributes (such as (EMP, CITY}) and every consistent database over the
scheme, there is a unique X-relationship.

Thus, in the above example, if the database scheme is 7-acyclic and the database
is consistent, then there is a unique {EMP, CITY} relationship. This fact has a
number of useful corollaries. For example, an SQL query [13] to fred all EMPs
associated with the CITY San Jose would be

SELECT EMP
FROM EMP__INFO, DEPT__INFO
WHERE EMP INFO.DEPT -- DEPT__INFO.DEPT
AND DEPT___INFO.CITY -- 'San Jose'.

However, by y-acyclicity it is possible instead to unambiguously pose the query

SELECT EMP WHERE CITY = 'San Jose'. (1.1)

The desirability of being able to pose queries such as (1.1), with such a simple syntax,
has been discussed by UUman [37]. Not only is the latter query easier to pose and
simpler to understand than the SQL query, but also the system has a great deal of
flexibility in optimizing how to f'md the result of the query. The system's choice of
which relations to join might depend, for example, on which indices are present.

Languages such as SQL are considered high-level, since it is not necessary to
explicitly state the access paths (such as which indices to utilize). Similarly, in a
y-acychc database scheme it is possible to make use of a still higher level language,
in which it is not even necessary to specify which relations must be joined to obtain
the answer the user desires.

We now discuss the organization of the paper. If all the reader cares about are the
database properties (as opposed to graph-theoretic properties), then he can simply
skim Sections 2-6; for example, such a reader need only note one of the various
equivalent det'mitions of a given degree of acyclicity. In Section 2 we present some
basic definitions and define a-acyclicity. In Section 3 we define Berge's [10] noUon
of acyclicity. In Section 4 we give several natural but different-looking definitions of
one of our new degrees of acyclicity, namely, fl-acyclicity, and prove that the

Hypergraphs and Relational Database Schemes 517

detrmitions are equivalent. We also discuss the desirability of ~-acyclic database
schemes. In Section 5 we define -t-acyclicity and prove the equivalence of various
definitions of y-acyclicity. In Section 6 we prove that Berge-acyclicity =* -t-acyclicity
=* fl-acyclicity ~ o~-acyclicity but that none of the reverse implications hold. We also
contrast features of the various degrees of acyclicity and discuss their naturalness. In
Section 7 we define join expressions, which correspond to "programs" for taking
joins, and discuss some of their properties (join expressions are useful for the
discussion in Section 8). In Section 8 we describe a number of desirable properties of
database schemes, involving monotone-increasing joins and unique relationships
among attributes, such that each property is equivalent to the scheme being ~,-acyclic.
In Section 9 we give polynomial-time algorithms for determining the degree of
acyclicity. In Section 10 we present our conclusions.

2. a-acyclicity

Let j~r be a finite set of distinct symbols, called attributes (or column names), and let
Y be a subset of~VT. A Y-tuple (or simply a tuple, if Y is understood) is a function with
domain Y. Thus a tuple is a mapping that associates a value with each attribute in Y.
I f X is a subset of Y and t is a Y-tuple, then t[X] denotes the X-tuple obtained by
restricting the mapping to X. A Y-relation (or a relation over Y, or simply a relation,
if Y is understood) is a finite set of Y-tuples. If r is a Y-relation and X is a subset of
Y, then by r[X], the projection of r onto X, we mean the set of all tuples t[X], where
t is in r. We shall often denote sets of attributes by uppercase letters and relations by
lowercase letters.

I f ~ r is a set of attributes, then we deirme a database scheme R --- (Rx R,,) to
be a set of subsets of ~ . Intuitively, for each i, the set R, of attributes is considered
the set of column names for a relation. We may call the R,'s relation schemes. I f
rl r,, are relations, where r, is a relation over R, (1 ___ i ___ n), then we may say that
r = (rl , rn} is a database over R. We may call r, the R, relation.

We have already defined a hypergraph to be a pair (~ , g) , where A/'is a set of
nodes and 8 is a set of edges (or hyperedges) which are arbitrary nonempty subsets of

We sometimes refer to the edges as "'full" edges, to distinguish them from
"partial" edges, which we discuss later.

The hypergraph of a database scheme (R~ , R,,) has as its set of nodes those
attributes that appear in one or more of the R,'s, and as its set o f edges R =
(R~ Rn). We shall often speak of the "hypergraph R" without mentioning the
set j l r of nodes; then we tacitly assume that Y = I.J (R,: 1 < i __- n}.

Let us give some terminology for hypergraphs. A path from node s to node t is a
sequence of k ___ 1 edges E1 , Ek such that

(i) s is in El,
(ii) t is in Ek, and

(iii) E, n E,+a is nonempty if I <__ i < k.

We also say that the above sequence of edges is a path from E1 to Ek.
Two nodes (or attributes) are connected i f there is a path from one to the other.

Similarly, two edges are connected if there is a path from one to the other. A set of
nodes or edges is connected if every pair is connected. A connected component is a
maximal connected set of edges.

Let (..C, 8) be a hypergraph. Its reduction (~, 8') is obtained by removing from 8
each edge that is a proper subset of another edge. A hypergraph is reduced if it
equals its reduction, that is, if no edge is a subset of another edge.

518

FiGtrl~ 3

FIGUI~E 4

RONALD FAGIN

J

M

FIGURE 5

Let ~ be a set of nodes of the hypergraph (..,V,, 8). The set of partial edgQs generated
by ./g is defined to be obtained by intersecting the edges in 8 with J/ , that is, takin 8
(E N J I : E ~ 8} - {0} and then taking the reduction of this set of edges. The set
of partial edges generated from (JV, 8) by some set ~ is said to be a node,generated
set of partial edges.

Let ~ be a connected, reduced set of partial edges, and let E and F be in ~. Let
Q = E N F. We say that Q is an articulation set of~ -~ if the result of removing Q from
every edge of ~, that is, {E - Q: E ~ ~ } - {O}, is not a connected set of partial
edges. It is clear that an articulation set in a hypergraph is a generalization of the
concept of an articulation point in an ordinary graph.

A block of a reduced hypergraph is a connected, node-generated set of partial
edges with no articulation set. A set is trivial if it contains less than two members. A
reduced hypergraph is a-acyclic if all its blocks are trivial; otherwise, it is e~,cy¢lic. A
hypergraph is said to be a-cyclic or a-acyclic precisely if its reduction is.

Example 2.1. It is straightforward to verify that Figure 3 shows an 0l-aey¢li¢
hypergraph. Its edges are ABC, CDE, EFA, and ACE. (We follow the usual database
convention that {A, B, C} is abbreviated by ABC, etc.) An articulation set for the set
of all edges is ABC N ACE = AC, since the result of removing A and C from each
edge is to leave the set of edges B, DE, EF, and E, which is not connected (B is
disconnected from the others). Note that the subset {ABC, CDE, EFA} of the ~dges
(Figure 4) has no articulation set. However, this set is not node-generated, so there
is no contradiction of our assertion that the hypergraph of Figure 3 is a-acycli¢. [2

Let (.A', 6 ~) be a hypergraph, and let ~ be a subset of 6 ~. Let . g be the set of nodes
that is the union of members in ~. We say that ~ is closed if for each edge E of the
hypergraph, there is an edge F in ~ such that E N . g __ F. For example, {G, H, 1}
in Figure 5 is a closed set of edges. Thus the intersection of edge K with G O H U 1
is contained in edge H; similarly, the intersection of edge J with G O H LI I is
contained in G, and the intersection of each of edges L and M with G O H LI I is
contained in I. However, {L, M} is not a closed set of edges, if nodes x and y are
present, as drawn in Figure 5. For, the intersection of edge I with L t.J M is contained
in neither L nor M. Note that every closed set of (full) edges is always a node-
generated set of partial edges. Note also that every set of edges in an ordinary
undirected graph is automatically closed.

Recall that a reduced hypergraph is a-acyclic if every nontrivial, connected, node-
generated set of partial edges has an articulation set. It follows from results of Fagin

Hypergraphs and Relational Database Schemes

FIGr.~ 6

519

et al. [22] that a reduced hypergraph is ct-acyclic if and only if every nontrivial,
connected, closed set of (full) edges has an articulation set. We make use of this
characterization later.

A database scheme R is said to a-acyclic (respectively, a-cyclic) precisely if the
corresponding hypergraph is. Every a-acyclic database scheme has a number of
desirable properties, each of which is equivalent to a-acyclicity [7, 8, 22, 23, 25, 32].
We discuss some of these properties in later sections.

3. Berge-acyclicity

We now present Berge's [10] concept of acyclicity. A Berge cycle in a hypergraph
is a sequence ($1, xl, $2, x2 Sr,, xm, Sin+l) such that

(i) xl xm are distinct nodes of ~,~;
(ii) $1 Sm are distinct edges of ~ , and S,,+1 = S1;

(iii) m .>_ 2, that is, there are at least 2 edges involved; and
(iv) x~ is in S~ and S~+~ (1 _< i _< m).

A hypergraph is Berge-cyclic if it has a Berge cycle; otherwise, it is Berge-acyclic.
As an example, the hypergraph of Figure 6 is Berge-cyclic, because it contains the

Berge cycle (ABC, C, BCD, B, AB...C), where, for clarity, the edges are underlined.
We see from this example that if some pair of edges of a hypergraph have two or
more nodes in common, then the hypergraph is Berge-cyclic.

4. fl-acyclicity

In this section we give various defmitions for another degree of acyclicity, called
fl-acyclicity. We show that the definitions are equivalent. One of these definitions
says that a hypergraph R is fl-acyclic if and only if every subhypergraph of R is
ct-acyclic (if S ___ R is a subset, not necessarily proper, of the edges R, then S is a
subhypergraph of R.) Thus, although the hypergraph in Figure 3 is a-aeyclic, it is not
fl-acyclic, because the subhypergraph in Figure 4 is a-cychc.

Because of this characterization of fl-acyclic hypergraphs, and because of the
importance of a-acyclic database schemes [4, 7, 8, 14, 22, 23, 25, 29, 32, 38], it follows
that fl-acyclic database schemes are also important. For it is very natural to deal with
subschemes of a relational database scheme. Thus a database scheme is fl-acyclic if
and only if every subscheme is o~-acyclic.

Properties of a-acyclic schemes "relativize" to fl-acyclic schemes, as we mentioned
in the introduction. Thus, if ~ is one of the various desirable properties of database
schemes that is equivalent to e~-acyclicity, then a database scheme is fl-acyelic if and
only if every one of its subschemes enjoys property ~. It is informative to give an
example.

A database scheme is a-acyclic if and only if there is a semijoin program that can
assist a user who is interested in taking a join over all of the relations in the database.
By "assist a user" we mean that the semijom program converts the original database
into a (globally) consistent database (for details and definitions, see [8] or [11]).
Therefore, a database scheme is fl-acyclic if and only if no matter what subset of the
relations in the database the user wants to join, there is a semijoin program that can
assist hinl.

RONALD FAGIN

FIGURE 7

520

We now prepare to give our various definitions of fl-acyclicity. Actually, it is
convenient instead to define fl-cyclicity. Of course, we say that a hypergraph is
fl-acyclic if and only if it is not B-cyclic. A database scheme is fl-acyclic (respectively,
B-cyclic) precisely if the corresponding hypergraph is.

Let ($1, . . . , Sin, S,~+I) be a sequence of sets, where $1 S,~ are distinct and
Sra+l = S1. Let us call S, and S,+1 neighbors (1 _< i <__ m); note, in particular, that S,,,
and $1 are neighbors. Let us call (S t , . . . , Sin, Sin+a) apure cycle i fm >_ 3 (i.e., at least
three sets are involved) and if whenever i # j , then S, tq Sj is nonempty if and only
i f S, and Sj are neighbors. Thus a pair is nondisjoint precisely if it is a neighboring
pair. Furthermore, if m = 3, then we assume also that $1 t3 $2 tq $3 is empty. I f
m _ 4, then the comparable assumption (i.e., the assumption that S~ 13 . . . N Sm is
empty) is unnecessary, since it is a consequence of our other assumptions. A pure
cycle with seven edges appears in Figure 7, where two edges have nonempty
intersection if and only if they are shown to intersect in Figure 7. Of the types of
cycles for hypergraphs which we discuss in this paper, a pure cycle is certainly the
most natural and noncontroversial. (However, Kahn et al. [30] have defined several
notions of acyclicity for hypergraphs for which a pure cycle may be an acyclic
hypergraph!)

A B-cycle in a hypergraph ~ is a sequence (S~, . . . , Sin, S,,,+1) of edges such that
if X = S~ 13 . -- 13 Sin, and S,' is the set difference S, - X (1 _ i _ m), then
(Si S~, S~,+~) is a pure cycle. Thus every B-cycle is of the form (Si t.J X,
S~ t.J X, S~+~ O X), where (Si S~, S~+~) is a pure cycle. S: need not be an
edge of the hypergraph, although S~ is (1 _< i _ m + 1). Of course, every pure cycle
of edges is also a B-cycle.

We are now ready to give our first three definitions of fl-cyclicity (we shall give
five definitions altogether).

A hypergraph is B-cyclic if it has a B-cycle.

A hypergraph is B-cyclic if some subhypergraph is a-cyclic.

Definition 1.

Definition 2.

Definition 3.
of edges has no

A hypergraph is B-cyclic if some nontrivial, connected, reduced set
articulation set.

In Definition 3 we can replace "nontrivial, connected, reduced set of edges" (which
means "connected, reduced set of at least two edges") by "connected, reduced set of
at least three edges" and get an equivalent def'mition. This is because every connected,

Hypergraphs and Relational Database Schemes

$1

$3

FIGURE 8

521

reduced set of two edges clearly has an articulation set. Further, if we work only with
reduced hypergraphs, as is often the case, then we can drop the word "reduced" in
Definition 3.

Now a hypergraph is a-cyclic precisely if some nontrivial, connected, reduced,
closed set of edges has no articulation set (this statement follows immediately from
results in [22]). Note that the only difference between this characterization of
a-cyclicity and the characterization of B-cyclicity in Definition 3 is that in Definition
3 the word "closed" does not appear. Thus B-cyclicity may be considered a more
natural graph-theoretic concept than a-cyclicity, since the somewhat arbitrary con-
cept of closedness is dropped. Further, a hypergraph is a-cyclic precisely if some
nontrivial, connected, node-generated set of partial edges has no articulation set. This
characterization of a-cyclicity is identical to the characterization of fl-cyclicity in
Definition 3, except that Definition 3 deals with "reduced sets of edges" rather than
with the more complex "node-generated sets of partial edges."

Our next definition of fl-cyclicity is given to provide an analogy with Berge-
acyclicity and with two of our definitions of 3,-cyclicity (Section 5). A weak B-cycle
in a hypergraph g is a sequence (St, xl, Sz, x2 Sin, xm, Sin+l) such that

(i) xt Xm are distinct nodes of .~;
(ii) $1 Sm are distinct edges of ~ , and Sm+l -- $1;

(iii) m ~ 3, that is, there are at least 3 edges involved; and
(iv) x, is in S~ and S,+~ (1 <__ i ___ m) and in no other Sj.

It is sometimes convenient to refer to the sequence (S~ , . . . , Sin, Sin+l) of edges alone
of a weak B-cycle as a weak B-cycle. Under this notation, every B-cycle is clearly a
weak B-cycle, but the converse is false, as we shall see. However, it is not hard to see
that the shortest weak B-cycle in a hypergraph is a B-cycle (we shall prove a stronger
result in the proof of Theorem 4.1). Note that if we change "Y ' everywhere in (iii) to
"2" and drop "and in no other Sj" in (iv), then we get the definition of a Berge cycle.

The sequence (St, xt, $2, x2, Sa, x3, $4, x4, $1) in Figure 8 is a weak B-cycle.
However, it is not a B-cycle, because the node y is in S~, $3, and $4 but not in $2.

Definition 4. A hypergraph is B-cyclic if it has a weak B-cycle.

Our final definition of fl-cyclicity is essentially due to Graham [26]. Let
(St, . . . , S,n, Sm+~) be a sequence of edges, where $1, . . . , Sm are distinct and
S,~÷1 = St. Assume further that m >_ 3 (i.e., that at least three edges are involved).
Define & -- S, N Si+~ (1 ___ i _ m). We say that (S~ Sin, Sin+l) is a Graham cycle
i f each A, is nonempty (1 _ i _.< m) and whenever i ~ j , then A, and Aj are
incomparable (i.e., A, ~ Aj and Aj ~ A,). Graham calls a hypergraph CAG-C i f it has
no Graham cycle.

522

Definition 5. A hypergraph is fl-cyclic if it has a Graham cycle.

It is clear that every weak fl-cyde is a Graham cycle.

THEOr.EM 4.1. Definitions 1-5 of fl-cyclicity are equivalent.

RONALD FAGIN

PROOF. We show that (3) m (2) =* (3) =~ (4) = , (5) =* (1) = , (3). By "(i) = , (j)"
we mean that every hypergraph that is fl-cyclic by definition (i) is fl-cyclic by
definition (j).

(3) = , (2): Let ,~Wbe fl-cyclic by Definition 3. By Defmition 3, g h a s a nontrivial,
connected, reduced set E of edges with no articulation set. Then E is an a-cyclic
hypergraph, since the set E of edges is a node-generated set of partial edges in the
hypergraph E. Hence oW is fl.cyclic by Defmition 2.

(2) =* (3): Let g be a fl-cyclic hypergraph by Det'mition 2; we shall show that it
is fl-cyclic by Definition 3. By Definition 2, g has a subhypergraph ~,~ that is
a-cyclic. Let ,~ ' be the reduction of ~ . Then ~ ' is a reduced, a-cyclic subhypergraph
of .,W (recall that a hypergraph is a-cyclic precisely if its reduction is). Thus ,~r, has
a nontrivial, connected set E of edges with no articulation set (the set E is also closed
in ~" , although we do not need this fact). Clearly E is reduced, since ~-' is. Hence,
,YF is fl-cyclic, by Definition 3.

(3) =* (4): Let . g be fl-cyclic by Definition 3; we shall show that it is fl-cyclic by
Definition 4. Since g is fl-cyclic by Definition 3, it has a connected, reduced set E
of at least three edges and with no articulation set. (See the comment following
Definition 3.) Find two distinct edges V and W in E such that the number of nodes
in VN Wis as big as possible. Since E is connected, we know that some pair of edges
in E has nonempty intersection, and so V and W also have nonempty intersection.
Let us denote V f3 W by Q. We know that Q is a proper subset of each of V and W,
because E is reduced. Since E has no articulation set, we know that the result of
removing Q from every edge in E leaves a connected set of partial edges. Hence
there is a sequence ($1 , Sk) of distinct edges in E for which

(i) & = g,
0i) sk= w,

('fii) (S, f) S~+1) - Q is nonempty for 1 ___ i < k.

Let us choose the sequence ($1 Sk) as above so that k is as small as possible.
Since (S, VI S,÷a) - Q is nonempty by (iii), it contains a node x, (1 <_ i < k). I f j is not
i or i + 1, then x, is not in Sj; otherwise the sequence ($1 Sk) could be shortened
and still maintain properties (i)-(iii) above, and this would violate minimality of k.
Hence, if we can t'md m with 3 _< m _ k (and so, in particular, 3 - k) such that Sa
and Sm contain a node v that is not in Sj for 1 < j < m, then ($1, xl, $2, x2 $=,
v, $1) is a weak r-cycle (where we are using the edge-node-edge notation for clarity),
and we are done.

Now Q ~ $1 N $2. For if Q _ S~ vI $2, then $1 V) $2 would have strictly more
nodes than Q, since ($1 N S2) - Q is nonempty by (iii) above. However, this would
contradict the maximality of Q (recall that V and W were chosen in E such that
Q = V N I4 / is as big as possible).

Since ~ ~ S~ ~ $2, let v be a node in Q that is not in S~ f') S~. Now v ~ S~ (since
~ V = 81). Hence, since v ~ $1 N $2, it follows that v ~ $2. Let m be minimal such

that 3 _< m ~ k and v ~ $,,,. There is such an m, since v ~ Sk (because v ~ Q ~ W
= Sk). Then $1 and S,~ contain the node v, which is not in S~ for 1 < j < m. This was
to be shown.

Hypergraphs and Relational Database Schemes 523

(4) ~ (5): Let ~ be fl-cyclic by Definition 4; it is then B-cyclic by Definition 5,
since, as we noted, every weak fl-cycle is a Graham cycle.

(5) =m (1): Let . g b e fl-cyclic by Definition 5; we shall show that it is fl-cyclic by
Definition 1, Lot 6e = (S~, Sm, Sm+~) be a minimal Graham cycle, that is, a
Graham oyele with m, the number of edges in the Graham cycle, as small as possible.
We shall show that 6 a is a fl-cycle, which shows that . g is fl-cyclic by Definition 1.
Let X = S~ t3 . . . N Sin, and let S ' be the set difference S= - X (1 _< i _< m). We must
show that S~' -" (S~ S ' , S~,+x) is a pure cycle•

Let 4~ (respectively, 4/) be S, fl S,+a (respectively, S[tq S~+O, for 1 _ i _< m. Each
4[(1 z; i -< m) is nonempty. For if 4; were empty, then 4, _ 4j for each j , and in
particular, for some j # i; this contradicts our assumption that 6a is a Graham cycle.

We have shown that each pair of neighbors in 6e' is nondisjoint (since each A[is
nonompty), By construction we know that S~ tq . . . tq S~, is empty. To show that
6P' is a pure cycle, we need only show now that nonneighbors are disjoint. Assume
not; we shall derive a contradiction• Let S~ and S~ be nonneighbors that are
nondisjoint. Take a node v in S~ tq Sq. By construction of ~ ' , we know that v ~ S',
for some r. By interchanging the roles of S~ and S~, if necessary, we can assume that
proceeding "clockwise" on 6 a' from S~ to S~, we encounter S~ on the way. (The
"clockwise" direction is from St to S~ to . . to Sg to S ' . . • 1 t o . .) Consider the
following conditions on a pair (s, j) of indices:

(a) S ' and S; are distinct and nonneighbors, and
(b) there is a node w in S'~ N Sj that is not in some S;~ that lies on the clockwise path

from S; to Sj.

These conditions can be fulfilled by letting w, s, j, and k be, respectively, v, p, q, and
r. Select s and j such that (a) and (b) are satisfied, and such that the clockwise path
from S; to S; is as short as possible• By doing a cyclic shift of the subscripts, if
necessary, we can assume that s = 1. Thus, 1 < j < m, and the node w ~ St 17 Sj, but
w ~ S~ for some k, with 1 < k < j. Also, j --> 3, since S1 and S; are not neighbors.
We now show that for each p with i < p < j, necessarily w ¢~ S~. For, assume
w ~ S~ and 1 < p < j. There are two cases, depending on whether p < k
or k < p, Assume p < k; the other case is similar. Then there is a node (namely, w)
in S~, and S; but not in S~, and also S~ is on the clockwise path from S~, to S; (see
Figure 9). Since the clockwise path from S~ to Sj is shorter than the clockwise path
from S~ to $;, this contradicts our minimality assumption in the choice of s and j.
Hence w ~ S~ whenever 1 < p < j.

We now show that

(s~ s , , $1) (4.1)

is a Graham cycle. Let A, and A; be as before (1 _ i < j) , let A be S~ N $1, and
let A' be S~ N S~. We already know that A, and Aj are pairwise incomparable when
i # j, since ($1 Sin, SO is a Graham cycle and j < m. Further, A and each A, are
nonempty. Hence, to show that (4.1) is a Graham cycle, we need only show that A is
incomparable with each of the A,'s. Now A contains w, which is not in any of the
4,'s, Thus, A ~ 4, (1 ___ i < j). So, to show that (4.1) is a Graham cycle, we need only
show that A, g: A (1 _< i < j) . Assume not; we shah derive a contradiction. Find n
(1 _ n ~: j) such that 4,= __C A. Therefore, since 4~ = 4 , - Xand A' = A -- X, it follows
that

a" __q A'. (4.2)

524 R O N A L D F A G I N

FIGURE 9

\
\ S~ \
\ \

sp

1 / i
I

s'./
/

/ /
/ /

Sj Sj -

FIGtrV.E 10

Let x be an arbitrary member of A'. By (4.2), we know that x ~ A'. We now
show that

x E S[for 1 5 i ~ j . (4.3)

Assume not. Find t (1 <_ t _ j) such that x ~ St. Since x ~ A" and x E /v, we
know that t is not any of 1, n, n + 1, or j . There are now two cases, depending
on whether t < n or n + 1 < t. Assume t < n; the other case is similar. Then (see
Figure 10)

(a) S~ and S" are distinct and normeighbors, and
(b) node x is in S~ N S" but not in Sh and St lies on the clockwise path from S~

to S~.

But the clockwise path from S~ to S~ is strictly shorter than the clockwise path from
Si to Sj. This contradicts our minimality assumption in our choice o f s and j. This
proves (4.3). Since S[C_ S,, it follows from (4.3) that x E S,, for 1 _< i _ j. Therefore,
x ~ A, (1 _< i < j) . But x was an arbitrary member of A~. Hence, A~ _ Ai (1 _< i < j) .
Thus, A,, __C_ A, (1 <_ i < j) , since the only nodes in A,~ that are not in A" are the nodes
X that are in every S,. Let a be arbitrary such that 1 _< a < j and a # n. There is such
an a, since j > 3. Since A. C_ Aa, this contradicts the fact that the A,'s are pairwise
incomparable. This contradiction establishes our claim that (4.1) is a Graham cycle.
But (4.1) is a shorter Graham cycle than our allegedly smallest Graham cycle
(Sx Sin, SO. This contradiction shows that the smallest Graham cycle is indeed
a/8-cycle, which was to be shown. (As a matter of interest, we note that although the
smallest Graham cycle is always a fl-cycle, there may be a Graham cycle that is not
even a weak/3-cycle.)

(1) =* (3): Let ~ be /8-cyclic by Definition 1. Therefore, it has a fl-cycle
(Sa S,,, Sin+0, where m >_ 3. The set ($1 Sin) of edges is clearly a non-
trivial, connected, reduced set of edges with no articulation set. So . ~ is/~-cyclic by
Definition 3. []

We note that recently Graham [27] has independently shown the equivalence of
Definitions 2 and 5.

5. y-acyclicity

As in the case offl-cyclicity, we shall give several equivalent definitions of ~,-cyclicity.
A hypergraph is y-acyclic i f it is not y-cyclic. A database scheme is ,/-acyclic
(respectively, y-cyclic) precisely if the corresponding hypergraph is.

A W-cycle in a hypergraph ~ is a sequence

($1, xl, $2, x~ Sin, xm, Sin+0 (5.1)

Hypergraphs and Relational Database Schemes

FIGURE 11

525

such that

(i) X1 Xm are distinct nodes of .~;
(ii) $1 Sm are distinct edges of ~ , and S,,+1 = St;

(iii) m --> 3, that is, there are at least 3 edges involved;
(iv) x~ is in S, and S,+~ (1 _ i _ m); and
(v) if 1 _ i < m, then x, is in no Sj except S, and S,+1.

Note that the only difference between a y-cycle and a weak fl-cycle is that "1 _< i
< m" in (v) is replaced by "1 <_ i _< m" to define a weak B-cycle. Thus every weak
fl-cycle is a y-cycle. Note also that the only difference between a ,/-cycle and a Berge-
cycle is that to define a Berge cycle, "3" is replaced everywhere in (iii) by "2," and
also (v) is dropped. As before, it is sometimes convenient to refer to the sequence
($1 Sin, Sin+0 of edges alone of a y-cycle as a y-cycle. We say that this T-cycle,
with m distinct edges, is of size m.

Definition 1. A hypergraph is `/-cyclic if it has a V-cycle.

We define a weak y-cycle just as we defined a y-cycle, except that "1 _< i < m" in
(v) is replaced by "i --- 1 or i = 2" to define a weak y-cycle. Thus every T-cycle is a
weak T-cycle. Although the converse is false, it is true that the shortest weak y-cycle
in a hypergraph is a y-cycle (we shall prove a stronger result in the proof of Theorem
5.1 below).

Definition 2. A hypergraph is ,/-cyclic if it has a weak y-cycle.

To help prevent confusion, we note that in an earlier version o f this paper we
referred to what we are now calling a weak y-cycle as a T-cycle.

The next definition gives us a nice characterization of y-cyclic hypergraphs.

Definition 3. A hypergraph is T-cyclic if it has either a ,/-cycle o f size 3 or a pure
cycle.

It is easy to see that a hypergraph is V-cyclic according to Definition 3 precisely if
it contains at least one of two kinds of "forbidden configurations" of edges: either a
pure cycle, as in Figure 7, or a set of three edges that intersect at least as shown as in
Figure 11. (By the latter, we mean that in Figure 11 there is at least one node in
E tq F N G, there is at least one node in (E tq G) - F, and there is at least one node
in (F N G) - E. Other intersections involving combinations of E, F, and G may also
occur.) For, if there is a y-cycle of size 3, then either there is a configuration as in
Figure 11 or else there is a pure cycle of size 3.

Our next def'mition (Definition 4) of y-cyclicity is due to Goodman and Shmueli
[24], who, after reading an early draft of this paper, pointed out to the author that
Definition 4 is equivalent to the author's Definitions 1-3.

Definition 4. A hypergraph is y-cyclic if it has a pair E, F of incomparable,
nondisjoint edges such that in the hypergraph that results by removing E f'l F from
every edge, what is left of E is connected to what is left o f F.

526 RONALD FAGIN

Remark. We say that E and F are incomparable if E ~ F and F ~ E. Definition
4 says that hypergraph ~ i s T-cyclic if it has a pair E, F of incomparable, nondisjoint
edges such that if Q ffi E N F, if G' is G - Q for each edge G of ~ , and if ~ ' ffi
(G': G is an edge of ,,'if} - { O}, then E ' and F ' are connected in ~ ' .

There is a pretty algorithm (defined in [18]) for determining T-acyclicity. It is very
similar in flavor to "Graham's algorithm" for determining ~t-acyclicity. Both of these
algorithms will be presented in Section 9.

THEOREM 5.1. Definitions 1-4 o f y-cyclicity are equivalent.

PROOF. We show that (1) =* (2) =* (3) =* (4) =* (1). By "(i) ~=~ (j)", we mean that
every hypergraph that is y-cyclic by definition (i) is y-cyclic by definition (j).

(1) =* (2): This is immediate, since, as noted, every T-cycle is a weak y-cycle.

(2) =* (3): Let .Y~be T-cyclic by Definition 2; we shall show that .Yt°is y-cyclic by
Definition 3. Let (5.1) above be a minimal weak T-cycle in .Y~ (by minimal we mean
that m is as small as possible). I f m ffi 3, then we are done (since a weak T-cycle of
size 3 is clearly a T-cycle of size 3). So, assume that m >- 4. We shall show that (5. l)
is a pure cycle. We already know that neighbors intersect, so we need only show that
nonneighbors do not intersect.

We now show that $1 does not intersect a nonneighbor. Assume it does. Find k
(3 <_ k < m) as small as possible so that $1 t3 Sk # @. Take v in S~ f3 Sk. Then
(S~, xl Sk-~, xk-1, Sk, v, Sx) is a smaller weak y-cycle than (5. 0. This is a
contradiction.

We now show that $2 does not intersect a nonneighbor. For, assume that v E
$2 f3 Sk, with 4 _< k _< m. There are now two cases.

Case I. v E So. We know that v ~ $1, since $1 does not intersect its non-
neighbor $3. Find r as big as possible so that v E S,. It is then easy to see that ($1, x~,
$2, v, S,, x Sin, Xm, St) is a smaller weak T-cycle than (5.1). This is a
contradiction.

Case 2. v ~ $3. Find r as small as possible so that v ~ S,. It is then easy to see
that (S,, v, $2, x2, $3, xa , S,) is a smaller weak V-cycle than (5.1). This is a
contradiction.

We have shown that neither S~ nor S~ intersects a non.neighbor. Find j as small as
possible so that S~ intersects a nonneighbor Sk; say v E $1 N Sk. Then 3 <_ j, and
j + 2 _< k _< m. It is easy to see that ($1, xx, $2, x2 Sj, v, S~ Sm+~) is a
smaller weak T-cycle than (5.1). This contradiction completes the proof of (2) =* (3).

(3) =~ (4): Let g be y-cyclic by Definition 3; we shall show that .g~ is V-cyclic
by Definition 4. Since . ~ is T-cyclic by Definition 3, it has either a T-cycle of size
3 or a pure cycle. Assume first that .,~ has a T-cycle of size 3, and let this y-cycle be
(Sx, x~, $2, x2, $3, xa, S~). It is easy to verify that g i s V-cyclic by Definition 4, where
we let E and F be, respectively, S~ and $3. Now assume that .~f has a pure cycle. By
letting E and F be neighboring edges in the pure cycle, we see once again that . ~ is
T-cyclic by Definition 4.

(4) =* (1): Let . ~ b e T-cyclic by Definition 4; we shall show that H is y-cyclic l~y
Definition 1. Take E and F as in Definition 4, and let Q ffi E N F. We know that
there is a sequence (S~ Sin) of edges such that

(i) S x f f i g ,
(ii) S,~ -- F, and

(iii) (S,O S,+x) - Q # O, for 1 _< i <_ m - 1.

Hypergraphs and Relational Database Schemes

FI~trgE 12

527

Let us also assume that we have selected the S,'s so that (i)-(iii) above hold and m
is as small as possible. If m = 2, then $2 = F b y (ii), and so $1 n $2 -- Q,
which contradicts (iii) when i = 1. Hence m _> 3. By (iii), we can find a node x, in
(S~ n S~+1) - Q, for 1 _< i ___ m - 1. Define also Sm+l to be E (=St), and def'me xm
to be a node in E n F (by assumption, E n F is nonempty). We now show that
(S~, x~, $2, x2 S=, xm, S,~+t) is a 7-cycle. The node xt is not in any of
$3 S,~-~, by minimality of m (thus, if xx E S,, where 3 _ i --< m -- 1, then the
sequence $1, S,, S,+~, . . . , Sm could be used in place of S1, $2, . . . , S~). Further,
x~ ~ Sm= F, since xa E E = $1 but xl ~ Q - E n F. So x~ is in Sa and $2 but in no
other Sj. Similarly, x, is in S, and S,+~ but in no other S~, for 1 <_. i <_ m - 1. In
particular, xa xm-~ are all distinct. Further, x,~ is distinct from any of xl
xm-~, since x= ~ Q but x, f~ Q, for 1 <- i <_ m. Thus the nodes xx x,~ are all
distinct. The edges $1 Sm are all distinct by minimality of m. We have shown
enough to prove that (Sa, x~, $2, x2, . . . , Sin, xm, S,~+1) is a -~-cyele. Hence ~ is
-t-cyclic by Definition 1, which was to be shown. []

Later we shall identify some desirable properties of database schemes, involving
monotone-increasing joins and unique relationships among attributes, such that each
of these properties is equivalent to ~,-acyclicity.

6. Relationships Among the Various Degrees of Acyclicity

We begin by proving the following simple theorem.

Tm~OREM 6.1. Berge-acyclicity =* "[-acyclicity ==} fl-acyclicity =~, a-acyclicity. None
of the reverse implications hold.

PROOF. Every a-cyclic hypergraph is fl-cyclic, since a hypergraph is fl-cyclic
if and only if some subhypergraph (including the whole hypergraph itself) is
a-cyclic. Also, it is clear from our definitions that every weak fl-cycle is a y-cycle
and every 7-cycle is a Berge cycle. It follows that Berge-acyclicity =~ 7-acyclicity
fl-acyclicity ~ a-acyclicity.

We now show that none of the reverse implications hold. The hypergraph of
Figure 3, with edges ABC, CDE, EFA, and ACE, is a-acyclic but fl-eycli¢ (since the
subhypergraph of Figure 4, with edges ABC, CDE, and EFA, is a-cyclic). The
hypergraph of Figure 12, with edges AB, AC, and ABC, is fl-aeyclic. However, it is
"t-cyclic, since (A__if_C, C, ABC, B, A__if_B, A, A_.~C) is a V-cycle, where, for clarity, the edges
are underlined. The hypergraph of Figure 2 is a reduced hypergraph that is fl-acyclic
but y-cyclic.

Finally, the hypergraph of Figure 6, with edges ABC and BCD, is -~-acyclic.
However, as we noted in Section 3, it is Berge-cyclic. []

We note that Zaniolo [41] defined two other notions of acyclicity for hypergraphs,
in a pioneering effort to find some hypergraph condition that is equivalent to a
certain desirable database condition ("every pairwise consistent database is consist-
ent"; see Section 7). Unfortunately, one of his conditions was sufficient but not
necessary, and the other was necessary but not sufficient. Neither of his conditions

528 RONALD FAGIN

is equivalent to any of our degrees of acyclicity. We also note that Batini et al. [6]
discuss the issue of generating various subclasses of a-acyclic hypergraphs by
"hypergraph grammars." Further, Kahn et al. [30] have defined several notions of
acyclicity for hypergraphs by generalizing various properties of acyclic graphs.

We now discuss the naturalness of the various degrees of acyclicity, and then we
make a few observations contrasting their features.

Berge-acyclicity is too restrictive an assumption to make about database schemes.
For, if some pair of distinct relation schemes R,, R+ in the database scheme R =
{R1 Rn} have more than one attribute in common, then R is Berge-cyclic. For
example, the hypergraph of Figure 6, with edges ABC and BCD, is Berge-cyclic, as
we noted earlier. A restriction that no two relation schemes can have more than one
attribute in common is far too severe. We now show that there are "natural" database
schemes that are a-acyclic but ~8-cyclic, and natural schemes that are ~8-acyclic but
~,-cychc.

Assume that there are six attributes SUPPLIER, PART, PROJECT, COUNT,
DATE, and COST, where SUPPLIERs supply PARTs to PROJECTs; where for
each PART and PROJECT, the COUNT tells how many of that PART have been
supplied to that PROJECT; where the DATE tells when a given supplier first
supplied a given PROJECT; and where the COST is what a given SUPPLIER
charges for a given PART. The only constraints are the functional dependen-
cies [15]

{PART, PROJECT} ~ COUNT,
{SUPPLIER, PROJECT} --~ DATE,
{SUPPLIER, PART} ~ COST,

(and their logical consequences). The functional dependency {SUPPLIER, PART}
COST says that there is only one COST that a given SUPPLIER charges for a

given PART; the SUPPLIER does not, for example, charge different PROJECTs
different COSTs for the same PART. By doing a standard decomposition to obtain
Boyce-Codd normal form [16], the resulting database scheme has four relation
schemes, with attributes, respectively,

{SUPPLIER, PART, PROJECT),
{SUPPLIER, PART, PROJECT},
{SUPPLIER, PART, COST},
{PART, PROJECT, COUNT},
{SUPPLIER, PROJECT, DATE}.

The hypergraph of this scheme is as in Figure 13. But this is just an example of
the hypergraph of Figure 2, which is a-acyclic but/~-cyclic. To obtain a scheme
that is fl-acyclic but ,/-cyclic, we simply drop the COUNT attribute (and the
{PART, PROJECT, COUNT) relation scheme) to obtain the hypergraph of Fig-
ure 3. This hypergraph is ~,-cyclic, since ({SUPPLIER, PART, COST}, PART,
{SUPPLIER, PART, PROJECT), PROJECT, {SUPPLIER, PROJECT, DATE},
SUPPLIER, {SUPPLIER, PART, COST)) is a -~-cycle.

Although there are natural database schemes that are "y-cyclic (such as the example
just shown), there are also a number of database schemes that are .y-acyclic. (An
example appears later in this section, with a demonstration of-y-acyclicity.) Although
we should not demand ~,-acyclicity, it is good to know when a given scheme is
y-acyclic, so that we know that it enjoys the desirable properties discussed in Section
8. Similar comments apply, of course, to/%acyclicity.

Hypergraphs and Relational Database Schemes

FIGURE 13

529

As observed in other papers, it is natural to demand a-acyclicity; indeed, Fagin et
al. [22] and Maier and Ullman [32] argue that a-cyclic schemes represent a possible
error in database design. In Section 8 we shall discuss an example of an a-cyclic
scheme (which is given in Figure 20) and its "conversion" (by renaming attributes)
into a scheme (given in Figure 21) that is not only a-acyclic but even 7-aeyclic.

We now contrast some of the features of the various degrees of acyclicity. The
proofs of the remarks we now make are straightforward and are left to the reader.

A hypergraph is a-acyclic if and only if its reduction is a-acyclie. However, the
analogous statement is false for the other kinds of acyclicity. Thus, the hypergraph
of Figure 14 (with edges AB, BC, AC, and ABC) is fl-cyclic, y-cyclic, and Berge-
cyclic, although its reduction (which consists of the single edge ABC) is of course
acyclic in each of the four senses.

By an isolated node we mean as before a node that is in exactly one edge. I f . ~ is
a hypergraph and .¢t ~' is the result of deleting an isolated node, then . ~ is 0-acyclic
if and only if ~e, is 0-acyclic, for 0 = c~, fl, or 7. Although it seems as though the same
statement should be true for # -- Berge, there is a subtlety that prevents this. Let
be the Berge-cyclic hypergraph of Figure 6, with edges ABC and BCD. The result of
deleting the isolated nodes A and D is to leave us with two edges, both BC. Since a
hypergraph is a set of edges (in which there are no duplicates), the resulting
hypergraph has only one edge BC and is therefore Berge-acycli¢. However, the
original hypergraph ~ was Berge-cyclic.

By a singleton edge we mean an edge with exactly one node, which may or may
not be isolated. By a global node we mean a node that is in every edge. If A~' is the
result of deleting a singleton edge, then .,~ is 0-acyclic if and only if ~ ' is 0-acydic,
for 0 = a, fl, Y, or Berge. I f ~ ' is the result of deleting a global node, then . ~ is
0-acyclic if and only if .,~' is 0-acyclic, for 0 = a or/3. The statement is false if 0 ---
7 or Berge. Thus the hypergraph of Figure 12 with edges AB, A C, and ABC, is Berge-
cyclic and y-cyclic. However, the hypergraph of Figure 15, which has edges B, C,
and BC and is the result of deleting the global node A, is acyclic in each of the four
senses.

We say that two nodes are edge-equivalent if they are in precisely the same edges.
We shall deal extensively with edge-equivalence in Section 9, where we discuss a
polynomial-time algorithm for determining 7-acyclicity. If ~,~' is the result of deleting
a node that is edge-equivalent to another node, then . ~ is 0-acyelic if and only if
~ ' is 0-acyclic, for 0 = a, fl, or 7. The statement is false if 0 =- Berge. Thus the

530 RONALD FAGIN

F:GURE 14

F:otrg~ 15

FIGURE 16

hypergraph of Figure 6, with edges ABC and BCD, is Berge-cyclic; however, the
hypergraph of Figure 16, which is the result of deleting node C (which is edge-
equivalent to B), is Berge-acyclic.

We have just discussed various transformations of hypergraphs and considered
whether or not the transformation preserves both O-acyclicity and 0-cyclicity. That is,
we were concerned with the question of whether a hypergraph ~ is 0-acyclic if and
only if its transform .,~' is 0-acyclic. Less restrictively, we might also consider whether
or not certain transformations preserve 0-acyclicity (and not be concerned with
whether the transformation preserves 0-cyclicity). As an important example, we say
that a hypergraph ~ ' is the result of uniformly deleting nodes from .~if there is a set
X of nodes of .,~ such that the edges of .~ ' are precisely {E - X: E is an edge of
~'~}. We note that Goodman and Shmueli [23] characterize a-acyclicity in terms of
this concept. If ~ ' is the result of uniformly deleting nodes from ~ , and ,~ is
0-acyclic, then so is ~ ' , for 0 = a, fl, or y. By the same example as we used in
discussing the result of deleting isolated nodes, the statement is false for 0 -- Berge.
It is easy to see that the result of uniformly deleting nodes from a 0-cyclic hypergraph
may be 0-acyclic, for any 0. (For example, every node can be deleted, which leaves
the empty hypergraph, a 0-acyclic hypergraph for every 0.)

Another distinction among the various degrees of acyclicity is, as we observed
earlier, that a subhypergraph of an a-acyclic hypergraph may be a-cyclic. However,
each subhypergraph of a 0-acyclic hypergraph is 0-acyclic, for 0 = fl, y, or Berge.

As we noted earlier, an ordinary undirected graph is acyclic in the usual sense if
and only if it is 0-acyclic when viewed as a hypergraph, for 0 = a, fl, y, or Berge.
Thus, each of these four concepts of 0-acyclicity is a generalization, from graphs to
hypergraphs, of the usual concept of acyclicity.

We close this section by considering the industrial database scheme of [19] and
showing that it is y-acyclic. There are six relation schemes, with attributes, respec-
tively,

{SUPPLIER, PART, PROJECT},
{SUPPLIER, PART, COST},
{EMPLOYEE, SALARY, HIREDATE},
{EMPLOYEE, PROJECT},
{PROJECT, MANAGER},
{SUPPLIER, LOCATION}.

The semantics of this database scheme is explained in [19]. The hypergraph is that
of Figure 17. It is easy to verify that by iteratively applying the rules that an isolated
node or a singleton edge can be removed (without affecting y-acyclicity), we are left
the empty set. Thus, by the rules of this section, we see that the hypergraph in Figure
17 is y-acyclic. (In Section 9 we shall give a general polynomial-time algorithm for
deciding y-acyclicity.) However, note that this hypergraph is Berge-cyclic, because

Hypergraphs and Relational Database Schemes

FIGURE 17

531

FIGURE 18

two edges (SUPPLIER, PART, PROJECT} and (SUPPLIER, PART, COST} share
two nodes.

7. Join Expressions

Consider the following scenario. A user desires to take the join of four relations rl,
r2, r3, and r4. The following might happen. He might first form rl t~ r2, which might
have, say, a thousand tuples. Then he might join the result with r3, to obtain rl t~ r2
t~ ,'3, a relation with, say, a million tuples. He might trmally join the result with r4, to
obtain his desired answer rl ~ r2 t~ ra t~ r4, which might have only ten tuples. Thus,
even though the result he was seeking had only ten tuples, he might have had an
intermediate result with a million tuples. In this section we discuss "monotone join
expressions," which prevent this unpleasant behavior. We first def'me the important
concept of consistency.

Let r and s be relations, with attributes R and S, respectively. We say that r and s
are consistent [8] if r[R tq S] = s i r N S], that is, if the projections of r and s onto
their common attributes are the same.

Let r = {ri rn} be an arbitrary database over R = (R1 R,}. We say that
r is pairwise consistent if r, and rj are consistent for each i and j. We say that r is
globally consistent (or simply consistent) if there is a relation r over attributes ./ff =
R1 L) . . . URn such that r ~ [R ,] = r[R,] for each i. Thus r is consistent if there is a
"universal relation" r such that each r, is a projection of r.

It is clear that if r is consistent, then it is pairwise consistent. I f n = 2, that is, ff
only two relations are involved, then it is easy to see that the converse is true.
However, in general, the converse is false. For example, let rl, r2, and ra be the three
relations in Figure 18, over attributes AB, BC, and AC, respectively. It is easy to
verify that these relations are pairwise consistent but not consistent. Beeri et al. [8]
prove that if the database scheme is a-acyclic, then every pairwise consistent database
is consistent.

A join expression is a well-formed expression formed out of relation schemes, the
symbol t~, and parentheses, in which every join is binary. For example, if R1, R2, R3,
and R4 are among the relation schemes, then ((R2 t~ Ra) t~ (R~ t~ R4)) is a join
expression, which corresponds to joining the R2 and the R3 relations, joining the R1
a n d / ~ relations, and then joining together the two results.

Certain join expressions, called sequential join expressions, are of special interest.
Let O be a join expression over R. I f0 is of the form (. . . ((R1 ~ R~) ~ Ra) . . . t~ R,J,

532 RONALD FAGIN

where R1 Rn is an ordering of the distinct members of R, then we say that 0 is
sequential. Intuitively, a sequential join expression (. . . ((R~ t~ R2) t~ Ra) . . . t~ R,,)
corresponds to first joining the R1 and the R2 relations, then joining the result with
the R3 relation, then joining the result with the R4 relation, and so on.

Let 0 be a join expression whose relation schemes are all in R, and let r be
a database over R. By 0(r), we mean the relation that results by replacing each re-
lation scheme R in 0 by r, where r E r and r has attributes R. For example, ff r ffi
{r~, r2, r3, &} and 0 is the join expression (R2 t~ (R3 I~ R2)), where !"2 and ra have
attributes R2 and R~, respectively, then 0(r) is the relation (r~ t~ (ra t~ r2)), that is, the
relation r2 t~ ra.

A subexpression of a join expression is defined in the usual way. Let 0 be a join
expression containing relation schemes R, and let r be a database over R, We say
that 0 is monotone with respect to r if for every subexpression (01 t~ 02) of 0, the
relations 01(r) and 02(r) are consistent. Intuitively, 0 is monotone with respect to r if
no tuples are lost in taking any of the binary joins obtained by "executing" 0(r)
as dictated by the parentheses. (We say that no tuples are lost in taking the join
of relations r and s if r and s are each projections of r t~ s, i.e., if r and s are con-
sistent.) As an example, ((R2 t~ R3) t~ (Ra t~ R4)) is monotone with respect to r ffi
(rl, r2,/'3, r4}, where r, has attributes R, (1 _< i ___ 4), if

(a) r2 and ra are consistent,
(b) rx and r4 are consistent, and
(c) (r2 t~ ra) and (& t~ 1"4) are consistent.

We say that 0 is monotone if it is monotone with respect to every pairwise consistent
database over R. If 0 involves precisely the relation schemes R, then we say that R
has a monotone join expression. Monotone join expressions provide an efficient (both
space-efficient and time-efficient) manner for taking a join, in that no "intermediate"
join has more tuples than the " fmar ' join rl t~ . . . t~ r,,.

Beeri et al. [8] prove the following theorem.

TH~ORE~ 7.1 [8]. The following are equivalent.

(1) R is a-acyclic.
(2) There is a monotone join expression over R.
(3) There is a monotone, sequential join expression over R.

Theorem 7.1(3) says that there is an ordering R1 R,, of R such that if r =
(rl , r,,} is a pairwise consistent database over R, then the join r~ ~ - . . ~ r, is
consistent with r~+x (1 < i < n). Thus, f fwe first join rx with r2, join the result with ra,
join the result with &, and so on, then no tuples are lost in taking any of the joins;
hence the number of tuples grows monotonically. Also, by taking the join in this
manner, only one intermediate join needs to be maintained.

We say that a join expression 0 is connected ff for each of its subexpressions
(01 t~ 0~), there is an attribute that appears in both 01 and 02. Intuitively, a join
expression is connected ff none of the binary joins of which it is composed is actually
a Cartesian product.

Let us now restrict our attention to database schemes R for which the corresponding
hypergraph is connected. We close this section by showing that every monotone join
expression over R is connected. In the next section we show (among other things)
that R is ~,-acyclic i f and only if the converse holds, that is, if and only if every
connected join expression over R is monotone.

Hypergraphs and Relational Database Schemes 533

THEOREM 7.2. Let R be a connected hypergraph. Then every monotone join expres-
sion over R is connected.

PROOF. Let 0 be a join expression over R that is not connected; we shall show
that 0 is not monotone. Let r be a relation with attributes R1 U • - - t.J R,~ and with
exactly two tuples: a tuple of all O's and a tuple of all l 's. Let r -- (rt, . . . , rn} be a
database over R = (R1 Rn), where r, = r [Rd for each i. So, r is consistent (and
hence pairwise consistent).

Since 0 is not a connected join expression, it has a subexpression 6 -- 01 t~ 02 such
that the attributes of 01 are disjoint from the attributes of 0~. Now 01(r) and 02(r) each
have at least two tuples, namely, a tuple of all O's and a tuple of all l 's. Since 6(r) =
01(r) t~ 02(r) is the Cartesian product of 01(r) and 02(r), it follows that 6(r) has at least
four tuples. We shall soon show that 0(r) = r. Hence, 0(r) has exactly two tuples,
while 8(r) has at least four tuples. Since 8 is a subexpression of 0, it follows that 0 is
not a monotone join expression, which was to be shown.

Thus, we need only show that 0(r) -- r. Now 0(r) = rl 1~ - . . I ~ rn, since 0 is a join
expression over R. So, the proof is complete once we show that r~ t~ . . . t~ r,~ = r.
Clearly r __C_ r~ t~ . . . t~ rn, since each r, is a projection of r . We now prove the opposite
inclusion, that is, that

rl ~ . . . ~ rn C_ r. (7.1)

Let u be a tuple in r~ ~ . . . t~ rn; we must show that u is a tuple in r. Since u is in
rl t~ . . . t~ rn, we know that u[R,] is in r , for 1 ___ i _ n. But ri = r[Ri], so u[R~] is in
r[R~], for 1 --< i ~ n. This means that there is a tuple q~ of r such that u[R~] -~ q~[R~],
for 1 _< i _< n. We shall show that all of the q,'s are equal. It then follows that u equals
their common value. This implies that u is in r, which proves (7.1).

So, to prove (7.1), we need only show that q~ -- qj for each i and j. Since
R = (R1 Rn) is connected, there is a path from R~ to Rj. Therefore, to show that
q, = qj, it is sufficient to show that whenever R, and Rt are nondisjoint, then
q~ = qt. For then, by induction on the length of the path f rom R~ to Rj, we see that
q~ = qj.

Assume now t h a t / L and Rt are nondisjoint; say A E R~ f~ Rt. Then q~[A] = u[A]
= qt[A]. So q, and qt are two tuples of r that agree on an attribute, namely, A. It
follows from the definition of r that q, and qt are therefore equal. This was to be
shown. []

8. Properties o f ~,-acyclic Database Schemes

In this section we discuss several desirable properties for a relational database scheme
R. Each of these properties is equivalent to the scheme R being T-acyclie. For
simplicity, we restrict our attention in this section to database schemes R with a
connected hypergraph. This restriction is not essential.

(1) R is y-acyclic. By this, o f course, we mean that the hypergraph of the database
scheme is 3,-acyclic.

(2) Every connected join expression over R Is monotone. Assume that R is con-
nected. The equivalence of this property (call it property (2)) with -/-acyclicity is o f
interest because of the close analogy with Theorem 7.1. Thus, Theorem 7.1 says that
R is a-aeyclic if and only if some join expression over R is monotone; the equivalence
of 3,-acyclicity with property (2) (almost) says that R is y-acyclic if and only if every
join expression over R is monotone. We must say "almost" in the previous sentence

534 RONALD FAGIN

FIoOp.~ 19

'A' B C D
o oo
5 1 3 0

because we actually restrict our attention to connected join expressions. By Theorem
7,2, this is not really a restriction, since the only join expressions that can be monotone
are connected.

Property (2) guarantees a great deal of freedom in taking joins. Thus, let r be a
pairwise consistent database over a scheme that obeys property (2). Assume that the
user wishes to take a join of some subset of the relations in the database. Property
(2) guarantees that he can take his join however he wishes (i.e., he can use whatever
join expression he wishes that involves the right relations), and as long as he does not
act "foolishly," then he is guaranteed that he is acting in an efficient manner. By
"never acting foolishly" we mean that he never joins two relations together whose
attributes are disjoint, that is, he never takes a Cartesian product. By "efficient" we
mean, as before, that no intermediate join has more tuples than the final join. His
choice of how to take the join, that is, which join expression to use, can be dictated
by other performance considerations, such as the presence of indices that might speed
up the process.

(3) Every connected, sequential join expression over R is monotone. Property (3)
is to property (2) as Theorem 7.1(3) is to Theorem 7.1(2).

(4) The Join dependency t~R implies that every connected subset of R has a lossless
join. We say [1, 34] that a relation r with attributes R1 t.I • • • t.J Rn obeys the join
dependency t~{R1 Rn} if r -- t~{rl rn}, where r, = r[R,], for 1 _< i <_ n. It
follows that the join dependency ~{Rx Rn} holds for the relation r if and only
if r contains each tuple t for which there are tuples wl, . . . , wn of r (not necessarily
distinct) such that w,[R,] = t[R,] for each i (1 _< i _< n). As an example, the relation
r in Figure 19 violates the join dependency t~{AB, ACD, BC}. For, let wl, w~, and w3
be, respectively, the tuples (0, 1, 0, 0), (0, 2, 3, 4), and (5, 1, 3, 0) of r; let R1, R2, and
R8 be, respectively, AB, ACD, and BC; and let t be the tuple (0, 1, 3, 4); then w,[R,]

t[R~] for each i (1 < i < n), although t is not a tuple in the relation r. However, it
is straightforward to verify that the same relation r obeys, for example, the join
dependency t~{ABC, BCD, ABD }.

Let S = {S~, . . . , Sin}. I f Sx U . . . U Sm is a subset of the attributes of the rela-
tion r, then we say that r obeys the embedded join dependency t~S if the projection
r[S~ O . . . U Sin] obeys the join dependency t~S. When we say that a set
{$1 Sin} has a losslessjoin, we mean that the embedded join dependency t~S
holds. Thus, property (4) says that every relation that obeys the join dependency
t~R also obeys the embedded join dependency t~S whenever S is a connected
subset of R.

If r is a database over R, if S _ R, if s _ r, and if s is a database over S, then we
say that s is the subdatabase over S. It is not hard to see that property (4) says that
for every connected subset S of R and every consistent database r over R, if s is the
subdatabase over S, then Ms is a projection of t~r.

One of the motivations for this paper was the question of whether every a-acyclic
hypergraph R enjoys property (4). The answer is "no," since there are a-acyclic
hypergraphs that are not y-acyclic, such as the hypergraph in Figure 13. This

Hypergraphs and Relational Database Schemes

EMP WORK: DEPT INFO:

EMP DEPT SAL DEPT

Fagin CS $20OK CS

CITY MGR

San Jose Peled

535

EMP HOME:

EMP CITY CHILD

Fagm

STREET [

162 Loma Alta I Los Gatos Joshua

FIGURE 20

hypergraph is not 7-acyclic and so violates property (4). In the case of this hypergraph,
the join of the {SUPPLIER, PROJECT, DATE} relation with the {PROJECT,
PART, COUNT} relation might introduce a SUPPLIER, PART, PROJECT triple
that does not appear in the SUPPLIER, PART, PROJECT relation (the "connection
trap" [15]).

(5) There is a unique relationship among each set o f attributes, for each consistent
database over R. Let r be a consistent database over R. By a relationship among a
set X c U R of attributes, we mean a relation (r, 11><3 . . . t~ r,,)[X], where X __ R~ 1 U
• .. U R~ k and {R,~ R,k} is connected. Thus, some of the "base" relations r are
combined, as usual, by taking joins (where none of these joins are Cartesian products),
and the result is projected onto X. Property (5) says that the resulting relation is
unique. It is sometimes convenient to refer to a relationship among X as an X
relationship. Atzeni and Parker [3] discuss the power of assuming a unique relation-
ship anaong each set of attributes (they call this the Relationship Uniqueness Assump-
tion). They and others (e.g., Sagiv [35]) note that this assumption is made commonly,
either explicitly or implicitly, in many papers on database design.

Let us consider an example which is slightly more elaborate than the example in
the introduction. Assume that the database scheme consists of three relation schemes:
an EMP WORK relation scheme with attributes EMP (for "employee"), DEPT
(for department), and SAL (for "salary"); a DEPT__INFO relation scheme with
attributes DEPT, CITY, and MGR; and a EMP__HOME relation scheme with
attributes EMP, STREET, CITY, and CHILD. See Figure 20 for an example of one
tuple in each relation. In this example, there are two distinct {EMP, CITY}
relationships. One, which has the tuple (Fagin, San Jose), relates an employee to the
city where he works. The other, which has the tuple (Fagin, Los Gates), relates an
employee to the city where he lives. The database scheme is y-cyclic (it is even a-
cyclic).

However, assume that we were to rename the attribute CITY in the DEPT__INFO
relation scheme to be WORK CITY, and the attribute CITY in the EMP__HOME
relation scheme to be HOME CITY (see Figure 21). There is now a unique
{EMP, W O R L C I T Y } relationship, which includes the tuple (Fagin, San Jose),
and a unique (EMP, HOME._CITY) relationship, which includes the tuple (Fagin,
Los Gates). The database scheme of Figure 21 is 7-acyclic.

Knowing that relationships are unique make it possible to greatly simplify the
form of" queries. Thus, the simplest SQL [13] query to fred all EMPs associated with

536 RONALD FAGIN

EMP WORK:
EMP

Fagin

DEPT

CS

SAL

$200K

DEPT INFO:
DEPT IWORK_CIT¥] MGR

CS I SanJ°se I Peled

EMP HOME:
EMP STREET CHI LD

Fagm 162 Loma AIt~

HOME_CITY [

Los Gatos I Joshua

FIGtmE 21

the WORK__CITY San Jose for the database scheme of Figure 21 is

SELECT EMP
FROM EMP WORK, DEPT__INFO
WHERE EMP WORK.DEPT -- DEPT__INFO.DEPT
AND DEPT___INFO.WORK__CITY = 'San Jose.'

However, by property (5), it is possible instead to unambiguously pose the query

SELECT EMP WHERE WORK._CITY = 'San Jose.' (8.1)

The result is obtained by t'mding the unique (EMP, WORK__CITY} relationship
and then selecting out those tuples where the CITY entry is 'San Jose.' The
desirability of being able to pose queries such as (8.1), with such a simple syntax, has
been discussed by Ullman [37]. Not only is the query (8.1) easier to pose and simpler
to understand than the SQL query, but also the system has a great deal of flexibility
in optimizing how to find the result of the query. The system's choice of which
relations to join (if there are several possibilities) might depend, for example, on
which indices are present. The system might be able to exploit the fact that whatever
relations in the database are joined together, the join (i.e., the join expression, as
def'med in Section 7) is guaranteed to be monotone, and so, efficient. For, we are
only allowing joins over connected subsets S of R, which are themselves connected,
7-acyclic hypergraphs, since R is; and, because S is 7-acyclic, it follows from Theorem
8.1 below that every connected join expression over S is monotone. (However, when
we project the result Of the join onto the desired attributes, the number of tuples
might, of course, decrease.)

Languages such as SQL are considered "high-level," since it is not necessary to
state the access paths (such as which indices to utilize) explicitly. Similarly, we have
seen that in a y-acyclic database scheme, it is possible to make use of a still higher-
level language, in which it is not even necessary to specify which relations must be
joined to obtain the answer the user desires.

Aho and Kernighan [2] have developed a query system called "q." Given a set X
of attributes, q searches through a "rel file" to determine which relations to join to
fred the X relationship. If the database scheme obeys property (5), that is, if it is
-t-acyclic, then a rel file is unnecessary.

Hypergraphs and Relational Database Schemes 537

(6) R has a loop-free Bachman diagram. If R is a hypergraph, then we define
Bachman(R) to be the hypergraph obtained by closing R under intersection. Thus, a
set S is in Bachman01) if and only if either S E R or S is the intersection of two or
more members of R. We note that both Lien [31] and Yannakakis [38] include also
in Bachman(R) all singleton edges {A}, for each node A. We do not do so, since (as
noted in [31]), this is really unnecessary. We leave to the reader the exercise of
showing that Bachman(R) is 7-acyclic if and only if R is.

For our purposes it is convenient to define the Bachman diagram of R [5] to be an
undirected graph, with nodes the members of Bachman(R), and with an edge between
two nodes S and T o f Bachman(R) iff(i) S ~ T, and (ii) there is no Win Bachman(R)
such that S ~ W ~ T. (The usual definition has a direction on these edges and thus
yields a directed graph.) A loop-free Bachman diagram [31, 38] is a Bachman diagram
that is a tree. I f Bachman(R) is loop-free, then we say that R has a loop-free Bachman
diagram. Yannakakis [38] discusses various properties of loop-free Bachman dia-
grams, and in particular shows the equivalence of properties (4) and (6).

(7) R has a unique minimal connection among each set X of nodes. Assume that
the user wishes to obtain the projection onto X of the union of all lossless joins that
involve (among others) attributes X. For motivation as to why a user would wish to
obtain such a union, the reader is referred to [33, 37, 38].

If the database is consistent, then every lossless join (projected onto X) gives the
same answer, and so it is easy to take such a union. If we do not assume consistency,
then in general it might be quite an undertaking computationally to obtain such a
union. We now describe a situation where the union can be obtained via a single
lossless join, even if the database is not consistent.

In ~/-acyclic schemes, lossless joins correspond to connected joins (see property
(4)). Therefore we shall discuss connected, rather than lossless, joins.

Instead of assuming that the database is consistent, we shall make a weaker
assumption, which we call the subset condition. The subset condition says that
whenever R1 and R2 are relation schemes in the database scheme and R1 _C R2, then
r2[R1] ~ rl, where r, is the R, relation in the database (i -- 1, 2). Yannakakis [38] calls
the individual assumptions in the subset condition existence constraints. Existence
constraints are special cases of inclusion dependencies [12]. We note that Codd [17]
assumed existence constraints involving his E-relations.

Let X be a subset of the nodes of R, and let V be a connected set of k distinct
members II1 Vk of Bachman(R). Following Yannakakis [39], we say that V is a
unique minimal connection (among members of X, or simply, among X) if (i) X C_
111 U . . . U Vk, and (ii)whenever W = { Wx Ire'p} is a connected subset of
Bachman(R) with X _ 1¥1 U . . . tJ Wp, then there are k distinct members ~
Wi, of W (where k is the cardinality of V) such that Vj C_ W,~, for 1 ~_ j _< k.

Yannakakis [39] observed that if R has a loop-free Bachinan diagram (property
(6) above), then this set V can be obtained by simply taking the maximal members
of the smallest connected subgraph of the Bachman diagram of R that contains X. In
other words, let R,, R,q be a minimal (i.e., q is as small as possible) set of nodes
of Bachman(R) such that X __. (R,~ U . . . U R,q), and let V contain Ri, (1 _< j ___ q)
precisely if there is n o p (1 ___p ___ q) such that R~ ~ R~p.

We now mention an application of the unique minimal connection, which is of
important practical use when the database is not necessarily consistent. This appli-
cation was noted by Yannakakis [38]. (Yannakakis worked in the context of weak or
containing instances [28], but the results are equivalent to what we shall state below.)

538 RONALD FAGIN

Assume now that the user requests an X relationship in the database, where X is
a set of attributes. At least in principle, the response of the system is as follows (we
neglect the issue of optimization, and describe the result in operational terms):

(1) For each relation scheme S in Bachman(R) but not in R, the system forms a new
relation s over S by letting s be LJ (r[S]:r ~ r and S is a subset of the relation
scheme of r}. (Here r is the database over R.) The result is a new database s over
Bachman(R), which contains all of the relations in the original database r, along
with new relations over relation schemes in Bachman(R) - R. It is easy to see
that since the original database r obeys the subset condition, so does the new
database s over Bachman(R).

(2) If V is the unique minimal connection among X, then the response of the system
to the user's query is (~v)[X], where v is the subdatabase, over V, of s.

Let us denote by v this result (t~v)[X]. Let w -- (t~w)[X] be another X relationship.
That is, (a) W is a connected subset of Bachman(R), (b) X _C (3 W, and (c) w is the
subdatabase over W. It follows easily from the definition of unique minimal connec-
tion that w _.C v.

Thus, not only does the system answer the query by taking a connected join, but
furthermore, this result contains every tuple that can be obtained by taking any
connected join (which contains the desired attributes). The philosophy is that this
response is probably what the user intends. I f the user wants something different,
then he can explicitly spell out what he wants. Thus, in the usual case, the user can
specify what he wants in a high-level manner, and the system gives him a meaningful
response, which should correspond exactly to what he desires a large proportion of
the time. For a more extensive discussion of this philosophy, see [33, 37, 38].

Maier and Ullman [32] demonstrate another sense in which there is a unique
connection among each set of nodes in an o~-acyclic hypergraph. Yannakakis' notion
of unique minimal connection is not only stronger, but, we believe, more natural.

PROOF OF EQUIVALENCE. We now show that the properties (1)-(7) described
above are equivalent.

THEOREM 8.1. Let R be a connected hypergraph. The following are equivalent:

(1) R is 3,-acyclic.
(2) Every connected#in expression over R is monotone.
O) Every connected, sequential join expression over R is monotone.
(4) The join dependency MR implies that every connected subset of R has a lossless

join.
(5) There is a unique relationship among each set of attributes for each consistent

database over R.
(6) R has a loop-free Bachman diagram.
(7) R has a unique minimal connection among each set X of nodes.

PROOF. It is convenient for us to introduce two new properties, which we shall
call properties (2') and (4'). We shall prove that (1) =* (3) ,=~ (4') =0 (4) =0 (2') =0 (1),
that (4') =0 (2) =* (2'), and that (4) =* (5) =0 (4). Yannakakis shows that (4) and (6)
are equivalent [38] and that (6) and (7) are equivalent [39] (we shall not show these
equivalences). Taken together, these implications give us Theorem 8.1.

It is an instructive exercise (left to the reader) to prove directly the equivalence of
(1) and (6). A helpful lemma is the fact (noted above) that R is T-acyclic i f and only
if Bachman(R) is "t-acyclic. It is also helpful to make use of Defmition 3 of't-cyclicity.

Hypergraphs and Relational Database Schemes 539

We now define properties (2') and (4').

(2') Let 0 be a connected join expression over R, let r be a conaistent database over
R, and let (01 t~ 02) be a subexpression of 0. Then 01(r) and 02(0 are consistent.

I f we replace "consistent database" in (2') by "pairwise consistent database," then it
is not hard to see that the result is exactly what (2) says. In particular, (2)=* (2'),
since every consistent database is pairwise consistent.

(4') Assume that S __C_ R is connected, that r is a pairwise consistent database over R,
and that s is the subdatabase over S. Then ¢<s is a projection of t~r.

I f we replace "pairwise consistent database" in (4') by "consistent database," then it
is not hard to see that the result is exactly what (4) says. In particular, (4 ')= , (4),
since every consistent database is pairwise consistent.

(l) --~ (3): Assume that (3) is false. We shall show that (1) is false, that is, that R
is T-cyclic. Since (3) is false, there is an ordering Rx Rn of R ffi {R~ , R~), a
pairwise consistent database r ffi {r~ r~} over R, and an integer j (1 ~; j < n) such
that

(a) {Rt R~} is connected for each i (1 _< i _ n), and
(b) rl t~ . . . t~ r~ is not consistent with r~÷l.

We assume tha t j is minimal, so that (b) holds. Thus (r~ t~ . . . t~ r~) is consistent with
r,+~, if i < j.

Denote (R1 t9 . . . t.J Rj) N R~+~ by S. Thus S is the set o f attributvs that rl H " ' "

t~ rj has in common with rj+t. We know that (r~ t~ . , . t~ rj)[S] # r~+x[S], since r,
. . • M rj is not consistent with rj+l.

Select k (1 __ k _ j) so that Rk Iq S is as big as possible (i.e., has as many nodes as
possible). Thus R, N S is no bigger than Rk N S if 1 __ i _< j. We now show that
S ~ Rk. For, assume that S _c. Rk; we shall derive a contradiction. Since r is pair-
wise consistent, it follows that rk and rj-~a are consistent. Thus rk[S] ffi rj+a[S]. By
our mirtimality assumption on j, we know that rl t~ . . . ~ r, is consistent with
r,+x, if I ___ i < j . Thus no tuples are lost in taking the sequence following of joins:

rl M !"2,

(rl ~ r~) ~1 ra,

(- . . ((rl t~ r2) N r3) . . . ~ ,',).

Since k _ j, it follows that rk is consistent with rt ~ - . . ~ rj. Thus r~[S] =
(rl t~ . . . t~ rj)[S]. Since also rk[S] -- rj+l[S], we have (rl t~ . . . t~ rj)[S] --
rj+l[S]. This is a contradiction. So, S ~ Rk.

Since S ~ Rk, there is a node vl in S - R~. Since {R1 , Rj} is a connected set
of edges, since Rk is an edge in this set, and since vl is a node that appears in this set,
there are St Sp such that

(i) $1 = Rk,
(ii) S, N S,+l ~ ~ , for l <_ i < p,

(iii) each St is one of R1, . . . , Rj (l _ i<_p),
(iv) vl ~ Sp, and
(v) p is as small as possible.

540 RONALD FAGIN

Thus $1 S~ is the shortest path (within (R1 , Rj}) from Rk to an edge
containing vl. In particular, vl ~ S,, i f 1 <__ i < p. Note that S~ S~, are distinct,
since Sx S , is a shortest path.

Now Sp 13 S has no more nodes than Rk t3 S, by maximality of R~ t3 S. Since
Sp ¢3 S contains v~, which is not in Rk t3 S, it follows that Rk f3 S contains a node v2
not in Sj, t3 S.

Find m (1 _< m < p) as big as possible so that Sm contains 1,2. There is such an m,
since $1 (=Rk) contains v2. By (ii) above, we can fred nodes x, (m <_ i < p) such that
x, E S, f3 S,+v We now show that

(Sp, •1, Rj+I, v2, am, Xrn, Sin+l, Xm+l Xp-1, Sp) (8.2)

is a weak q-cycle. Note that V1 and v2 are both in Rj+~, since they are both in S C Rj+x.
By construction, vl is in Sp but not in S,, for m _ i < p; similarly, v2 is in Sm but not
in S,, for m < i __ p. In particular, Rj+I, Sp, and S= are all distinct, and so (8.2)
contains at least three distinct edges. The nodes x, (m _< i < p) are distinct, or else the
path $1 , Sp could have been shorter. Further, vl does not equal any x,, since Vl
is not in S, if m _< i < p. Similarly, v2 does not equal any x,. Since we see also that
Vx # v2 (because Vl is in Sp and v2 is not), this shows that all of the nodes Vx, v2, Xm,
x,~+l Xp-~ of (8.2) are distinct. Similarly, the edges of (8.2) are distinct. It follows
from what we have just shown that (8.2) is indeed a weak y-cycle. Thus R is V-cyclic,
which was to be shown.

(3) =* (4'): Assume (3). Assume that S _ R is connected, that r is a pairwise
consistent database over R, and that s is the subdatabase over S. We must show that
Ms is a projection of Mr.

Since S and R are each connected, there is an ordering Rx Rn of R such that

(a) S = (RI Rm), where m is the cardinality of S (thus the members of S form
an "initial segment" of the ordering Rx , R,,); and

(b) (R1 R,} is connected for each i (1 ___ i _ n).

Then (. . . ((R1 M R2) M Ra) . - - M Rn) is a connected, sequential join expression
over R. By (3), it is monotone. It follows easily that r l M - . . t~ r, is a projection of
rl M . . - M r,, for each i, and, in particular, for i ffi m. Thus, Ms is a projection of Mr,
which was to be shown.

(4') =* (4): Already shown, in our comments after the definition of property (4').

(4) =* (2'): Assume (4). Let O be a connected join expression over R, let r be a
consistent database over R, and let (81 M 02) be a subexpression o f 8. To prove (2'),
we must show that Ol(r) and 02(0 are consistent.

Assume that O~ is over S ___ R and that O~ is over T C__ R. By connectedness of O we
know that S and T are each connected. Let s (respectively, t) be the subdatabase
over S (respectively, T). By (4), each of Ms and Mt are projections of Mr. Hence, Ms
and Mt are consistent. Now 0a(r) -- Ms, and 02(0 --- Mt. So 01(r) and O2(r) are
consistent. This was to be shown.

(2') ~ (l): Assume that (1) is false, that is, that R = (R1 Rn} is ~,-cyclic. We
shall show that (2') is false.

Since R is T-cychc, we know by Definition 2 of ~,-cyclicity that R has a weak

Hypergraphs and Relational Database Schemes 541

V-cycle (S1, xl, $2, x2 Sm, Xm, Sn+l). Defme

E -- {$3, $4 Sn, St} ,
Et = S1,
E2 ---- $3,
F ffi $2,

A1 ~ Xl,

A2 --- X2.

It is easy to see that E is a connected set of edges, that Et and E2 are distinct edges
in E, that F is an edge not in E, and that At and A2 are distinct nodes such that

(i) A 1 is in Et but in no other edge of E,
(ii) A2 is in E2 but in no other edge of E, and

(iii) A1 and A2 are in F.

Let r be a relation with attributes R I O . . . O R~, and with exactly two tuples. The
first tuple has all O's, and the second tuple has all O's except in the At and A2 entries,
where it has l's. Let r = {rl r,,} be a database over R, where ri = r[Ri] for each
i (1 _ i _< n). So, r is consistent.

Assume that the distinct members of E are E1 En. Let e = {et, . . . en} be the
subdatabase of r over E, and let f be the member of r that is over F.

Clearly, et t~ e2 is a relation with exactly four tuples: the (Ax, A2) entries of the four
tuples are, respectively, (0, 0), (0, 1), (l, 0), and (1, 1). The remaining entries o f all
four tuples are all O's. Also, es t~ . . • t~ en is a one-tuple relation, where the one tuple
has all O's (recall that E3 0 . . . 0 Era does not contain either At or A2). Thus, el t~ e2
t~ . . . M em has exactly four tuples, where the (A1, A2) entries are as before and the
other entries are all O's. However, there are only two (At, A2) entries in f , namely,
(0, 0) and (1, 1). So el tm . . . t~ en is not consistent with f .

Since (E~ En}, {Et , Era, F}, and R are each connected, there is an
ordering R~ Rn of R such that

(a) E -- (R1 Rm) (i.e., E forms an initial segment),
(b) F -- Rm+l (that is, F is next after E), and
(c) {R1, . . . , R,} is connected for each i (1 _< i _< n).

For each k, with 1 _ k _ n, deFme the join expression 8~ to be (. . . ((Rt t~ R2) t~ R3)
• . . t~ Rk). Then 0~ is a connected join expression over R. Also, (On ~ Rn÷l) is a
subexpression of 0n. However, if r is the consistent database described earlier, then
0n(r) is not consistent with Rn+t(r), that is, (rl t~ . . . ~ rm) is not consistent with rm+~,
since r~ ~ . . . ~ rm = el t~ . . . t~ en, and rm+l -- f . Thus (2') is false, which was to be
shown.

(4') ~ (2): This is the same as the proof that (4)•* (2'), except that "pairwise
consistent" is replaced by "consistent."

(2) =~ (2'): Already shown, in our comments after the defmition of property (2').

(4) ~ (5): Assume (4); we shall show (5). Let r be a consistent database over R.
Let S = ($1 Sp} and T = (T~ Tq} be connected subsets of R. Assume that
X __ O S and X __ (.J T. Let s (respectively, t) be the subdatabase of r over S
(respectively, T). By (4), we know that t~s is a projection of t~r. Hence, (t~s)[X] ffi
(t, clr)[X]. Similarly, (t~t)[X] = (t~r)[X]. Hence, (~s)[X] -- (t~t)[X]. This was to be
shown.

542 RONALD FAGIN

(5) =~ (4): Assume (5); we shaft show (4). Let r be a consistent database over R,
let S be a connected subset of R, and let s be the subdatabase of r over S. Let X ~=
U S. By (5), we know that (Ms)[X] = (Mr)[X], that is, Ms = (Mr)[X]. Hence, Ms is a
projection of Mr. This proves (4). []

9. Polynomial-Time Algorithms for Determining Degree of Acyclicity
We now show that there are polynomial-time algorithms for determining whether a
hypergraph is Berge-acycfic, o~-acyclic, B-acycfic, and y-acycfic.

In the algorithms we now describe, we make no attempt at optimal efficiency,
since we are concerned here only with the question of polynomial-time recognition.
It is an interesting problem to fred more efficient recognition algorithms.

9.1 BERGE-ACYCLICITY. It is easy to see that the usual breadth-first search
algorithm for determining acycficity of an ordinary undirected graph (in which we
start with an edge and propagate the graph outward while watching to see if it "folds
back on itself" by touching a previously used node) generalizes neatly and easily to
determining Berge-acyclicity. The simple details are left to the reader.

9.2 ~-ACYCLICITY. Beeri et al. [8] prove that the following simple algorithm,
called Graham's algorithm [26, 40], is a test for a-acyclicity. The algorithm applies
the following two rules to R = {R1 Rn} repeatedly until neither can be applied:

(a) IfA is ~n attribute that appears in exactly one R,, then delete A from Ri.
(b) Delete one R, if there is an R1 with j # i such that R~ _C Rj.

Intuitively, rules of type (a) remove attributes that cannot have any effect on
a-cyclicity or a-acyclicity, and rules of type (b) causes a hypergraph to be replaced
by its reduction.

If the algorithm terminates with the empty set, then the hypergraph is a-acyclic;
otherwise, the hypergraph is a-cyclic. We note that it is not hard to show that the
algorithm is Church-Rosser. That is, the set that the algorithm terminates with is
independent of the sequence of steps taken in executing the algorithm and depends
only on the input.

Example 9.1. Let us apply Graham's algorithm to the hypergraph of Figure 3,
with edges ABC, CDE, EFA, and ACE, Nodes B, D, and Feach appear in only one
edge, and so they are each deleted by applications of rule (a) of Graham's algorithm.
We are then left with edges A C, CE, EA, and ACE. Now edge A C is a subset of edge
ACE, so by an application of rule (b) of the algorithm, this edge is deleted. This
leaves us with edges CE, EA, and ACE. Similarly, edges CE and EA are deleted by
applications of rule (b). We are then left with only one edge, namely ACE. Each of
the nodes A, C, and E now appear in only one edge, and so by applications of rule
(a), they are each deleted. We are left with the empty set, and so the hypergraph is
a-acyclic. []

It is obvious that Graham's algorithm is a polynomial-time algorithm. Tarjan and
Yannakakis [36] have recently obtained a linear-time algorithm for determining
a-acyclicity.

9.3 /3-ACYCLICtTY. We shall base our polynomial-time algorithm on Def'mition
1 of/~-acyclicity; that is, we shaft determine whether or not there is a E-cycle.

If ($1 Sin, Sm+~) is a p-cycle (respectively, pure cycle), then we say that
($1, $2, $8) begins the p-cycle (respectively, pure cycle).

Hypergraphs and Relational Database Schemes 543

We now give a polynomial-time algorithm for determining whether S: ffi
(SI, $2, Sa) begins some//-cycle of R, if S1, $2, and Sz are distinct edges in R. Let
X = S~A $2 O $3, and let S~ = S, - X, for i ffi 1, 2, 3. If either S'I n S [o r
S [n S[is empty, then 6: does not begin any//-cycle of R. Therefore, assume that
S~ n S[and S~ O S~ are both nonempty.

Let T -- {E E R : (E ffi S1) or (E ffi $3) or (X ~ E and E n S~ ffi ~3)}. Note in
particular that $2 ~ T. Let T' = (E - X:E E T}. In particular, S t and S~ are in T'.
We now show that S~ and S~ are in the same connected component o f T ' if and only
if 5 a begins a f-cycle of R.

Assume first that Se begins a//-cycle ($1, $2, $3 , Sin+l) of R (where, of course,
Sm+l --- S1). Then it is easy to see that S1 n . . . n sm ffi St n Sz n $3, that is,
S1 n . . . n S,~ = x. It is clear that S~ and S~ are then in the same connected
component of T'. Conversely, assume that S~ and S~ are in the same component of
T'. Find E~, E ' k in T' such that

(i) E l = S~,
(ii) g~ = s L

(iii) E~ o E',+I ~ 0, and
(iv) k is as small as possibl~.

• e t o s ' ' ' ' ' ' " " " It is th n easy ee that (~i, $2, $3, E2, E3, . . . , Ek) is a pure cycle (m particular,
by construction ofT ' , we kn~w that E', n S~ -~ O, for 2 <_ i < k). Define Ei ffi E', LI X,
for 1 __. i _< k. By constructiofl~ of T' we know that each E, is an edge in R. So (S~, Sz,
$3, E2, E3 Ek) is a//-cycle.

There is a polynomial-time algorithm for determining connected components of a
hypergraph (such as T'). The algorithm is the obvious generalization of the usual
algorithm in the case of ordinary undirected graphs for determining connected
components. So, there is a polynomial-time algorithm for determining whether 6:
begins a #-cycle.

Our polynomial-time algorithm for determining //-acyclicity goes as follows.
Systematically cycle through all triples 6" -- (S1, $2, $3) of three distinct edges of R
to see if at least one such 6: begins a//-cycle. If so, then R is//-cyclic; otherwise, R
is #-acyclic.

Graham [27] states that he has found a polynomial-time algorithm for determining
whether a hypergraph has a Graham cycle. Thus, by the equivalence of Definition
4 of//-cyclicity with the other defmitions, this gives another polynomial-time algo-
rithm for determining//-acyclicity.

9.4 ,/-AC'CCLICIT'¢. The following algorithm for testing ,:-acyclicity is due to
D'Atri and Moscarinl [18]. It is similar in spirit to Graham's algorithm for determin-
ing a-cyclicity.

Apply the following rules repeatedly, in any order, until none can be applied:

(a) If a node is isolated (i.e., if it belongs to precisely one edge), then delete that
node.

(b) If an edge is a singleton (i.e., if it contains exactly one node), then delete that
edge (but do not delete the node from other edges that might contain it).

(c) If an edge is empty, then delete it.
(d) If two edges contain precisely the same nodes, then delete one of these edges.
(e) I f two nodes are edge-equivalent, then delete one of them from every edge that

contains it. (Recall that two nodes are edge-equivalent if they are in precisely the
same edges.)

544 RONALD FAGIN

FIOLmE 22

The algorithm clearly terminates. If the end result is the empty set of edges, then the
original hypergraph is y-acyclic; otherwise, it is y-cyclic.

As in the case of Graham's algorithm, we note that it is not hard to show that this
algorithm is Church-Rosser.

Remark. We shall often apply rule (d) implicitly, by simply dealing at all times
with a set of edges (which has the effect of automatically removing duplicates). Also,
it is natural to apply rule (c), the deletion of an empty edge, implicitly.

Let us apply this algorithm to the hypergraph of Figure 22. The Example 9.2.
edges are

B C

A B C

C

C

D E F

D

D

E F

(For convenience, we have put common vertices in the same column.) Node A is
isolated, and edge {C} is a singleton, so both are deleted, by rules (a) and (b). This
leaves us with

B C D E F

B C D

C D

E F

Nodes E and F are edge-equivalent, and so, by rule (e), we delete F from both edges
that contain it. Similarly, nodes C and D are edge-equivalent, and so we delete D
from all three edges that contain it. We are left with

B C E

B C

C

E

The third and fourth edges above are singletons, and so they are eliminated. This
leaves

B C E

B C

Hypergraphs and Relational Database Schemes 545

Node E is isolated; after it is deleted, we are left with

B C

B C

These edges are identical, so we delete one by rule (d). We are left with

B C

Both nodes are now isolated, and so they are deleted. We are left with a single empty
edge, which is deleted by rule (c). The end result is the empty set of edges, and so the
original hypergraph is `/-acyclic. []

THEOREM 9.3. The algorithm just described correctly determines whether or not a
hypergraph is `/-acyclic.

PRoof. Assume first that the hypergraph is -/-cyclic. By Definition 1 we know
that the hypergraph has a V-cycle ($1, xl, $2, x~ S~, xm, Sm+0.-It is easy to verify
inductively on the number of steps that have been applied so far in running the
algorithm (where a step consists of one application of a rule) that for each i
(1 <__ i ___ m), whenever a rule of the algorithm is applied, then either xi or some node
that is edge-equivalent to x, at the time the rule is applied remains undeleted. In
particular, after each step a -/-cycle of size at least m remains. Therefore, when the
algorithm terminates, there is a y-cycle of size at least m. Hence the algorithm does
not terminate with the empty set, and so the algorithm correctly determines that the
hypergraph is -/-cyclic.

Conversely, assume that the algorithm says that the hypergraph is ~,-cyclic. We
must show that the hypergraph is indeed -/-cyclic. Assume that the hypergraph is
-/-acyclic; we shall derive a contradiction. Since the hypergraph (call it .~) is
-/-acyclic, we know by Definition 1 that ~ has no V-cycle. Let J~' be the hyper-
graph that is the end result of applying the algorithm to the hypergraph ,~. It is easy
to see that when one of the rules in the algorithm is applied to a hypergraph with no
~,-cycle, then the result is a hypergraph with no -/-cycle. It follows inductively (on the
number of steps) that since J~ has no V-cycle, neither does Jff'. Thus J~' is ,/-acyclic.
Since none of the rules in the algorithm can be applied to g ' , it follows that each
edge of .~ ' contains at least two nodes, each node is contained in at least two edges,
and no two distinct nodes are edge-equivalent.

Let us say that a hypergraph is nesting if for each pair (El, Ez) of edges, either
(a) Ea C_ E~, (b) E~ C_ Ea, or (c) E1 N E~ ffi ~ . Thus every pair of edges is either
comparable or disjoint. Let us call a hypergraph intersecting if it is not nesting. Thus
a hypergraph is intersecting precisely if it has a pair of incomparable, nondisjoint
edges.

We shall make use of the following simple fact several times.

FACT 1. Let J b e a nesting hypergraph, and let E be a minimal edge of J(i.e., there
is no edge E' of J such that E' ~ E). Then the nodes of E are all edge-equivalent.

PROOF OF FACT 1. Let J be a nesting hypergraph, let E be a minimal edge of
~, and let x and y be distinct nodes of E. We must show that x and y are edge-
equivalent. Assume not. Then there is an edge F that contains exactly one of x or y,
say x. Since E is minimal, we know that F ~ E. Thus there is a node z in F but not
E. Since also y is in E but not F, and since x is in E N F, it follows that E and F are
incomparable and nondisjoint. This is a contradiction (since J is nesting), which
proves Fact 1.

546 RONALD FAGIN

Let us say that a node in a hypergraph is bad if either (a) it is in exactly one edge,
or (b) it is edge-equivalent to another node. If E1 and E2 are distinct edges, then let
us say that the pair (El, E2) is a badpair of edges if there is a bad node in each of the
set differences E~ - E~. and E2 - E~.

Let us say that a hypergraph is nonsingular if every edge has at least two nodes.
We shall prove the following.

FACT 2. Every ~/-acyclic, intersecting, nonsingular hypergraph has a bad pair of
edges.

We now show that Fact 2 gives us a contradiction. As we showed, the hypergraph
Y#' defined above is 3,-acydic and nonsingular and has no bad nodes. We now show
that ~ ' is intersecting. Assume not. Then ~ ' is nesting. Let E be a minimal edge of
YY'. Edge E (and every edge of .Yd') has at least two nodes. Let x and y be distinct
nodes of E. By Fact 1, we know that x and y are edge-equivalent. But ~,~' has no pair
of distinct edge-equivalent nodes. This contradiction shows that .,~' is intersecting.
Since ~ ' is •-acyclic, intersecting, and nonsingular, it follows from Fact 2 that ~ '
has a bad pair of edges, and so ~ ' has a bad node. But ~ ' has no bad node. This is
the desired contradiction. Thus we need only prove Fact 2 to prove the theorem.

We shall prove Fact 2 by induction on the number of edges in the hypergraph.
The base case (of hypergraphs with only one edge) is immediate, since no hypergraph
with only one edge is intersecting. Assume that Fact 2 holds for hypergraphs with
less than n edges, and let • be a hypergraph with n edges that is ~,-acyclic, intersecting,
and nonsingular. We must show that ,,~ has a bad pair of edges.

Since a~ is intersecting, it has a pair (E, F) of edges that are incomparable and
nondisjoint. Find such a pair (E, F) such that E n F is as small as possible. Thus, if
E ' and F ' are incomparable and nondisjoint edges of ~, then IE' N F ' I _ IE n F I.
(Here [X I is the eardinality of set X.)

Since J i s ~-acyclic, it follows from Definition 4 that in the hypergraph that results
by removing E f3 F from every edge, what is left of E is not connected to what is left
of F. Let us write E I"1 F as Q. Let f# be a hypergraph with the same nodes as J and
whose edges are precisely those edges of J that are not subsets of Q. Note that E and
F are each edges in ~, since they are incomparable and their intersection is Q. For
@, too, it is the case that in the hypergraph that results by removing Q from every
edge, what is left of E is not connected to what is left of F. We can thus partition the
edges of .c#into two disjoint sets d~and ~ s u c h that E ~ oaand F E ~, and such that

whenever E' ~ 6' and F ' ~ ~, then E ' f3 F ' C_ Q. (9.1)

Since we have several hypergraphs we are now dealing with (namely, 8, ~, fa, and
J) , it is convenient for us to subscript the notion of "bad" with the hypergraph we
are discussing. For example, if we say that x is a bade node, we mean that either (i) x
is in exactly one edge of 8, or else (ii)x is edge-equivalent (with respect to 8) to
another node of 6', that is, x is in precisely the same edges of 6' as another node of
~f. Similarly, we can speak of a bade pair of edges, etc.

We now prove three simple facts, each of which we shall use several times.

FACT 3. Each edge of e either contains Q or is disjoint from Q.

PROOF OF FACT 3. Assume that Fact 3 were false. Let E' be an edge of 8 that
neither contains Q nor is disjoint from Q. Now Q (Z E', by assumption, and so Q
E' £1 F. If we put this together with the fact that E' N F C_. Q (which we know by
(9.1)), it follows that E' £1 F is strictly smaller than Q = E N F. Also, E' and F are

Hypergraphs and Relational Database Schemes 547

nondisjoint, since by assumption E ' and Q = E O F are nondisjoint. Now E ' 6 ~f
c_. f~, and by delrmition of f~ no edge of f~ is contained in Q. Therefore E ' ~ Q.
Hence there is a node e in E ' - Q. But E ' O F _ Q by (9.1), and so e ~ F. Since e E
E ' - F, we know that E ' <Z F. Further, F ~ E': for, if F___ E' , then F = E ' n F__ Q
__. E, where the next-to-the-last inclusion follows from (9.1); however, by our choice
of E and F, we know that F ~ E. We have shown in this paragraph that E ' and F are
incomparable and nondisjoint, and that E ' O F is strictly smaller than E O F. This
contradicts our minimality assumption in the choice of (E, F). Therefore, Fact 3 is
proved.

FACT 4. Assume that node a is in exactly one edge of 8, and that a f~ Q. Then a is
bad:.

PRoov or FACT 4. It is sufficient to show that a is in exactly one edge of J . Let
E ' be the edge of ~ that contains a. Assume that a is in another edge I of J other
than E'. By assumption, we know that I ~ 8. If I E ~,, then by (9.1) we know
a E Q, a contradiction. So I ~ f~. Therefore, I ~ J - f~. But then a E Q by definition
of ~. This contradiction completes the proof of Fact 4.

FACT 5. Assume that a and b are nodes in ~ that are edge-equivalent with respect
to ~f. Assume also that neither a nor b is in Q. Then a is bad~.

PRoof or FACT 5. Let I be an edge of J that contains node a. Then 1 E ~, since
otherwise a E 1 ___ Q, a contradiction. We now show that I ~ 8. For if not, then I E
f~ - ~ = ~ , so a is a node in both # a n d ~ , and so by (9.1) it follows that a ~ Q, a
contradiction. We have shown that each edge of J that contains node a is an edge in
d~. Similarly, the same is true about node b. Since a and b are edge-equivalent with
respect to 8, it then follows immediately that a and b are edge-equivalent with respect
to J . Thus a is bad:. This completes the proof of Fact 5.

Now that Facts 3-5 are proved, we return to the proof of Fact 2 (which will
complete the proof of the theorem).

We shall show that there is a bad:node e which is an edge E1 of 8bu t which is not
in Q. Identically, it follows that there is a bad~,node f w h i c h is in an edge F1 of ,~ but
which is not in Q. From (9.1), we see that E1 N F1 C Q. Since e E E1 and e ~ Q, it
follows that e ~ F1. Thus e E E1 - F1. Similarly, f ~ F1 - El. So (El, F1) is a bad/
pair of edges. Hence, there is a bad: pair of edges, which is exactly what we wished
to show to complete the proof.

Thus, we need only show that 8 contains an edge Ea that contains a bad~, node e
where e ~ Q. There are two cases.

Case 1. 8 is nesting. There are two subcases.

Case la. There is an edge of e tha t is disjoint from F. Let G be a minimal edge
of ~f. Since some edge of d~ is disjoint from F, and since ~ is nesting, it is clear that G
is disjoint from F. Let a and b be two distinct nodes of G. By Fact 1, nodes a and b
are edge-equivalent with respect to 8. Since G is disjoint from F, it follows that
neither a nor b is in Q (because Q ___ F). By Fact 5, a is bad~,. Therefore, a is the
desired bad /node which is in an edge of 8 but not in Q.

Case lb. No edge of 8 is disjoint from F. Let G be a maximal edge of ~. Then
Q ~ E ..C_C G (where the last inclusion holds since G is maximal and 8 is nesting).
Therefore, since G is maximal and g is nesting, it is clear that G contains a node e
that is not in any other member of ~ and not in Q. By Fact 4, we know that e is bad/.
Therefore, e is the desired bad/node which is in an edge of ~ but not in Q.

548 RONALD FAGIN

Case 2. 8 is intersecting. Since J is 7-acyclic and nonsingular and 6' __ ~ it
follows that 6" is -t-acyclic and nonsingular. Therefore, by our inductive assumption
about Fact 2, we know that 6" has a bade pair (Ea, E2) of edges. Let el be a bade node
in E1 - E2, and let e2 be a bade node in E2 - EI. We now show that it is impossible
for both ea and e2 to be in Q. For, assume that ex and e2 are both in Q. Since e~ E
E1 f3 Q, we know that E1 is not disjoint from Q. So, by Fact 3, it follows that
Q __ E~. Since e2 E Q, it follows that e~. ~ EI, which is a contradiction. Therefore, one
of el or e2, say el, is not in Q. Since ex is bade, we know that either (i) el is in exactly
one edge of 6", or else (ii) e~ is edge-equivaleut (with respect to 6") to another node el
of 6". In case (i) it follows from Fact 4 that ex is the desired bad>, node which is in an
edge of 6" but not in Q. So we can assume that case (ii) holds. If e~ ~ Q, then it
follows from Fact 5 that once again el is the desired bad>, node which is in an edge
of 6, but not in Q. Therefore, we can assume that e; ~ Q.

since e~ ~ E2 and since e~ and el are edge-equivaleut (with respect to 6,), it follows
that e~ ~ E2. So, since e~ E Q, it follows that Q ~ E~. Since Q ~= E2, it follows from
Fact 3 that Q is disjoint from E2. Since e2 is bade, we know that either (i) e2 is in
exactly one edge of 6,, or else (ii) e2 is edge-equivalent (with respect to 6,) to another
node e[of 6". Now e2 ~ Q, since Q is disjoint from E2. Therefore, in case (i) it follows
from Fact 4 that e~ is the desired bad /node which is in an edge of 6,but not in Q. So
we can assume that case (ii) holds. Now e~ ~ Q, since Q is disjoint from E2.
Therefore, it follows from Fact 5 that once again, e2 is the desired bad>` node which
is in an edge of 6" but not in Q. This completes the proof. []

We note that the above proof was inspired by the proof in [8] that Graham's
algorithm recognizes precisely the ,-acyclic hypergraphs.

The algorithm clearly runs in polynomial time. We remark that Yannakakis [38]
shows that i f R has a loop-free Bachman diagram, then] Bachman(R)[_< I RI + 21 UI,
where U = L)R is the set of all attributes. This provides another polynomial-
time algorithm for determining y-acyclicity, which we now describe. Start com-
puting Bachman(R), but stop and announce -t-cyclicity if it becomes bigger than
[R[+ 2] U]. Once Bachman(R) is computed (if we have not stopped and announced
-t-cydicity already), form the Bachman diagram of R, and see if it is loop-free.

10. Conclusions

We have discussed the concepts of a-acyclicity, fl-acyclicity, and y-acyclicity for
hypergraphs and for relational database schemes. These are all distinct, and each
corresponds precisely to various desirable properties of relational database schemes.
These concepts are also of interest from a graph-theoretic viewpoint, as natural
generalizations of the notion of acyclicity from graphs to hypergraphs.

ACKNOWLEDGMENTS. The author is grateful to Shel Finkelstein and Jorma Rissanen
for interesting discussions about Theorem 8.1(4) that led the author to consider the
concept of-y-acyclicity. He is also grateful to Nat Goodman, Marc Graham, Dave
Maier, Alberto Mendelzon, Oded Shmueli, Jeff Ullman, and Mihalis Yannakakis
for helpful discussions. Special thanks go to Moshe Vardi for his careful reading
of the paper and numerous suggestions, including a way to simplify the proof of
Theorem 9.3.

REFERENCES
(Note. Reference [9] is not cited m the text.)

1. AHO, A.V., BEERI, C., AND ULLMAN, J.D.
Database Syst. 4, 3 (Sept. 1979), 297-314

The theory of joms in relational databases. A CM Trans.

Hypergraphs and Rela t ional Database S ch emes 549

2. A,o , A.V., AND KERNIGHAN, B.W. Private communication, Nov. 1981.
3 ATZENI, P., AND PARKER, D S., JR. Assumptions m relaUonal database theory. In Proc. 1st ACM

SIGACT-SIGMOD Syrup on Principles of Database Systems (Los Angeles, Calif., Mar. 29-31, 1982),
ACM, New York, 1982, pp. 1-9.

4. AUSIELLO, G , D'ATRI, A, AND MOSCARINI, M. Minimal coverings of acyclic database schemata.
Prec. ONERA-CERT Toulouse Workshop on Logical Bases for Data Bases, Toulouse, France, 1982.

5 BACrtStAN, C.W. Data structure ehagrams. Data Base 1, 2 (1969), 4-10.
6 BATINI, C., D'ATRI, A., AND MOSCARINI, M Formal tools for top-down and bottom-up generation

of acyclic relational schemata. Prec 7th Int. Conf. on Graph-Theoretic Concepts in Computer Science,
Lixhz, Ausma, 1981.

7. BEERI, C., FAGIN, R., MAIER, D., MENDELZON, A.O, ULLMAN, J D., AND YANNAKAKIS, M. Properties
of acyclic database schemes. In Proc. 13th Ann. ACM Syrup. on Theory of Computing (Milwaukee,
Wise., May 11-13, 1981), ACM, New York, 1981, pp. 355-362.

8. BEERI, C., FAGIN, R., MAIER, D, AND YANNAKAKIS, M. On the desirability of acyclic database
schemes. J. ACM 30, 3 (July 1983), 479-513

9. BEERI, C, MENDELZON, A.O., SAGIV, Y., AND ULLMAN, J.D. Equivalence of relational database
schemes S I A M J Comput. 10, 2 (June 1981), 352-370

10. BERGE, C. Graphs and Hypergraphs. North-Holland, New York, 1976.
11. BERNSTEIN, P.A., AND GOODMAN, N. The power of natural semijoins. SIAMJ. Comput. 10, 4 (Nov.

1981), 751-771.
12. CASANOVA, M.A., FAGIN, R., AND P~PAD~TRIOU, C. Inclusion dependencies and their interacuon

with functional dependencies. In Proc. ACM Symp on Principles of Database Systems (Los Angeles,
Cahf., Mar. 29-31, 1982), ACM, New York, 1982, pp. 171-176

13 CHAMBERLIN, D D., ASTRAHAN, M.M., ESWARAN, K.P., GRIFFITHS, P.P., LORIE, R.A., MI~HL, J.W.,
RClSN~R, P., AND WADE, B.W. SEQUEL 2: A untried approach to data definition, manipulation,
and control. IBM J Res. Dev. 20, 6 (Nov. 1976), 560-575

14. CHASE, K. Join graphs and acychc data base schemes. In Proc. 7th Int. Conf. on Very Large
Databases (Cannes, France, Sept 9-11, 1981), ACM, New York, 1981, pp. 95-100.

15. CODD, E.F. Further normalization of the database relational model. In Data Base Systems, Courant
Computer Science Symposm 6, R Rustm, Ed, prentice-Hall, 1971, pp. 65-98.

16. CODD, E.F. Recent investigations into relational database systems. In Proc. IFIP Congress 74,
North-Holland, New York, 1974, pp. 1017-1021.

17. CODD, E.F. Extending the database relational model to capture more meaning. ACM Trans.
Database Syst. 4, 4 (Dec. 1979), 397-434.

18. D'ATRI, A., AND MOSCARINI, M. Acyclic hypergraphs' Their recognition and top-down versus
bottom-up generation. Tech. Rep. R.29, Conslglio Nazlonale Delle Richerche, Istituto di Anahsl dei
Sisteml ed Informauca, 1982.

19. FAGIN, R. The decomposition versus the syntheUc approach to relational database design. In Proc.
3rd Int. Conf. on Very Large Databases (Tokyo, Japan, Oct. 6-8, 1977), ACM, New York, 1977, pp.
441-446 Also in Tutorial: Data Base Management m the 1980s, J A. Larson and H.A. Freeman, Eds.,
IEEE, NY, 1981, pp. 269-274.

20. FAGIN, R A normal form for relaUonal databases that is based on domains and keys. ACM Trans.
Database Syst. 6, 3 (Sept 1981), 387-415.

21. FAGIN, R. Horn clauses and database dependencies. J. ACM 29, 4 (Oct. 1982), 952-985. Extended
abstract appeared in Proc 12th Ann. A CM Symp. on Theory of Computing (Los Angeles, Calif., Apr.
28-30, 1980), ACM, New York, 1980, pp. 123-134.

22 FAGIN, R, MENDELZON, A.O., AND ULLMAN, J.D. A simphfied umversal relation assumption and
its properties. ACM Trans. Database Syst 7, 3 (Sept. 1982), 343-360.

23. GOODMAN, N., AND SHMUELI, O Charactenzauons of tree database schemas. Tech. Rep., Harvard
Univ., Cambridge, Mass., 1981.

24 GOODMAN, N., AND SHMUELI, O. Private commumcauon, Jan 1982.
25. GOODMAN, N., AND SHMLrEH, O. Tree queries: A simple class of relaUonal queries. ACM Trans.

Database Syst. 7, 4 (Dec. 1982), 653-677.
26. GSASAM, M.H. On the universal relation. Tech Pep, Univ. of Toronto, Toronto, Ont., Can., Sept.

1979
27 GRAHAM, M H. Facts about CAG-C database schemas Unpubhshed manuscript, Sept. 1981.
28 HONEYMAN, P Testing satisfaction of functional dependencLes. J ACM 29, 3 (July 1982), 668-677.
29 HULL, R Acychc jom dependency and database projections. Tech. Rep., Univ of Southern Calffor-

ma, Los Angeles, Calif, June 1981.
30 KAHN, J., KLEITMAN, D., AND LINIAL, W Private commumcation, Aug. 1982.
31 LIEN, Y.E On the equivalence of database models. J. A CM 29, 2 (Apr. 1982), 333-363.
32 MAIER, D., AND ULLMAN, J D. Connections m acyclic hypergraphs. In Proc. ACM Syrup. on

550 RONALD FAGIN

Principles of Database Systems (Los Angeles, Calif., Mar. 29-31, 1982), ACM, New York, 1982, pp.
34-39.

33. MAIER, D., ULLMAI~, J.D, AND VARDI, M Y. The revenge of the JD. In Proc. 2nd ACM Symp. on
Principles of Database Systems (Atlanta, Ga., Mar 21-23, 1983), ACM, New York, 1983, pp. 279-287.

34. RISSANEN, J. Theory of relations for databases--A tutorial survey. In Proc. 7th Symp. on Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science 64, J. Winkowski, Ed.,
Springer-Vedag, New York, pp. 537-551.

35. S^GIV, Y Can we use the universal instance assumpuon without using nulls? In Proc. Int. Conf. on
Management of Data (Ann Arbor, Mich., Apr. 29-May 1, 1981), ACM, New York, 1981, pp 108-120.

36. TAIOAN, R.E., AND YAI~NAKAKIS, M. Simple hnear-time algonthms to test chordality of graphs, test
acychcity of hypergraphs, and selecUvely reduce acyclic hypergraphs. Tech. Rep., Bell Labs, Murray
Hill, N.J., Mar. 1982.

37. ULLMAN, J.D. The U.R. smkes back. In Proc. ACM Symp. on Principles of Database Systems (Los
Angeles, Calif., Mar. 29-31, 1982), ACM, New York, 1982, pp. 10-22

38. YAmaAKAIOS, M. Algorithms for acyclic database schemes. In Proc 7th Int. Conf. on Very Large
Databases (Cannes, France, Mar. 29-31, 1982), ACM, New York, 1982, pp. 82-94.

39. YANNAKArdS, M. Private commumcation, Sept. 1981.
40. Yu, C.T., AND OZSOYOGLU, M.Z. An algorithm for tree-query memberslnp of a distnbuted query.

In Proc 1979 IEEE COMPSAC, IEEE, New York, 1979, pp. 306-312.
41. ZANIOLO, C Analys is and design of relational schemata for database systems. Ph D. Dissertation,

Umv. of California, Los Angeles, Cahf, July 1976, available as Tech. Rep UCLA ENG-7669.

RECEIVED DECEMBER 1981; REVISED JULY 1982, ACCEPTED SEPTEMBER 1982

Journal of the Assocmuon for Computing Machinery, Vol 30, No 3, July 1983

