Degrees of Acyclicity for Hypergraphs
and Relational Database Schemes

RONALD FAGIN

IBM Research Laboratory, San Jose, California

Abstract. Database schemes (which, intuitively, are collections of table skeletons) can be viewed as
hypergraphs (A hypergraph 1s a generalization of an ordinary undirected graph, such that an edge need
nol contain exactly two nodes, but can instead conian an arbiirary nonzero number of nodes.) A class of
“acychic™ database schemes was recently introduced. A number of basic desirable properties of database
schemes have been shown to be equivalent to acyclicity This shows the naturainess of the concept.
However, unlike the situauon for ordmary, undirected graphs, there are several natural, nonequivalent
notions ef acyclicity for hypergraphs (and hence for database schemes). Various desirable properties of
database schemes are considered and it is shown that they fall into several equivalence classes, each
completely characterized by the degree of acyclicity of the scheme The results are also of interest from a
purely graph-theoretic viewpomt. The original notion of acyclicity has the counterintuitive property that
a subhypergraph of an acychc hypergraph can be cyclic. This sirange behavior does not occur for the new
degrees of acyclicity that are considered.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics}: Graph Theory—graph aigorithms;
trees; H.2.1 [Database Management]: Logical Design—rormal forms; schema and subschema, H 3.3
[Information Storage and Retrieval] Information Search and Retrieval—gquery formulation

General Terms: Algorithms, Design, Languages, Management, Theory

Addiuonal Key Words and Phrases. Acyclicity, hypergraph, database scheme, relational database, join
dependency, loop-free Bachman diagram

1. Introduction

A hypergraph is a pair (4] &), where #is a finite set of nodes and &£ is a set of
edges (or hyperedges) which are arbitrary nonempty subsets of 47 An ordinary
undirected graph (without self-loops) is, of course, a hypergraph where every edge
has exactly two nodes. A special class of hypergraphs, called acyclic, has recenily
been introduced [7, 8, 22, 23]. We shall call this class a-acyclic in this paper. There
is a natural correspondence between database schemes, each of which can be thought
of as a collection of table skeletons, as in Figure 1, and hypergraphs. For example,
the hypergraph of Figure 2 corresponds to the database scheme of Figure L. A
database scheme is said to be a-acyclic precisely if the corresponding hypergraph is.
Every a-acyclic database scheme enjoys a number of desirable properties, each of
which is in fact equivalent to a-acyclicity [7, 8, 22, 23, 25, 32]. Further [38], there are

Most of this research was conducted while the author was a Visiting Research Fellow at Pontificia
Universidade Catolica do Rio de Janeiro and was supporied 1 part by a grant from IBM Brazl
Aunthor’s address: IBM Research Laboratory K51/281, 5600 Cottle Road, San Jose, CA 95193,
Permission 1o copy without fee all or part of this material 15 granted provided that the copres are not made
or <hstribuied for direct commeraial advantage, the ACM copyright notice and the title of the pubhication
and 1its date appear, and notice 1s given that copying 1s by permission of the Assocation for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0004-5411/83/0700-0514 $00 75

Journal of the Association for Compuung Machinery, Vol 30, Na 3, July 1983, pp 514-550

Hypergraphs and Relational Database Schemes 515

SUPPLIER | PROJECT | DATE SUPPLIER | PART |COST

FIGURE 1

SUPPLIER | PART | PROJECT

@‘\

problems that are NP-complete in general, but which have polynomial-time algo-
rithms under the assumption of a-acyclicity.

There are other, even nicer properties of database schemes that are too strong to
be obeyed by all a-acyclic database schemes. We study some such properties and
characterize graph-theoretically those database schemes which enjoy these properties.
Once again, the properties fall into equivalence classes, which correspond to natural
“degrees of acyclicity” for hypergraphs. For, unlike the sitnation for ordinary,
undirected graphs, there are a number of inequivalent, natural definitions of acyclicity
for hypergraphs. It is appropriate to speak of “degrees of acyclicity,” rather than
simply “types of acyclicity,” since it turns out that there is a linear ordering of the
strengths of the types of acyclicity we consider; the weakest (least restrictive) is the
previously studied notion of a-acyclicity.

Our new degrees of acyclicity remedy a mathematically unnatural property of the
earlier notion of a-acyclicity; namely, it is possible for a hypergraph to be a-acyclic
but have an a-cyclic subhypergraph. (A subhypergraph contains a subset of the edges
of the original hypergraph.) This strange phenomenon does not occur for our new
degrees of acyclicity.

Each of the degrees of hypergraph acyclicity that we consider is a generalization
of the concept of acyclicity for ordinary undirected graphs; that is, an undirected
graph is acyclic in the usual sense if and only if it is “acyclic,” when viewed as a
hypergraph, for any of our notions of “acyclic.”

There is an analogy between degrees of acycticity for database schemes and normal
forms [15, 20] for relation schemata (a relation scheme along with its set of depend-
encies {21]). For, there is a hierarchy of normal forms for relation schemata, ¢ach

516 RONALD FAGIN

normal form being more restrictive than its predecessor, Codd has argued that we
should not insist that a relation schema be in a given normal form. Rather, the
database designer should be aware of the issues and have a warning flag that if the
relation schema is not in a given normal form, then certain problems may arise. An
identical comment applies to the question of whether a database scheme should obey
a given degree of acyclicity. In practice, it might be reasonable to try to attain a given
degree of acyclicity in a user’s view (which involves only a portion of the database),
rather than in the whole database scheme. This might be attainable, for example, by
renaming attributes. An example is given in Section 8.

‘We now give an example of a natural database property that is equivalent 1o one
of our degrees of acyclicity (“y-acyclicity™). Assume that there are (among others) an
EMP__INFO relation with attributes (column names) EMP (for “employee”), DEPT,
and SALARY, and a DEPT__INFO relation with attributes DEPT, CITY, and
MGR. An example of an “{EMP, CITY} relationship” is obtained by joining
together the EMP__INFO and the DEPT__INFO relations on DEPT and projecting
the result on EMP and CITY. It is conceivable that there could be other {EMP,
CITY} relationships, obtained by taking one, two, or more other relations and
joining them together in some manner and then projecting the result onto EMP and
CITY. However, we show that a database scheme is y-acyclic if and only if for every
set X of attributes (such as {EMP, CITY}) and every consistent database over the
scheme, there is a unique X-relationship.

Thus, in the above example, if the database scheme is y-acyclic and the database
is consistent, then there is a unique {(EMP, CITY} relationship. This fact has a
number of useful corollaries. For example, an SQL query [13] to find all EMPs
associated with the CITY San Jose would be

SELECT EMP

FROM EMP__INFO, DEPT__INFO

WHERE EMP_INFO.DEPT = DEPT_INFO.DEPT
AND DEPT__INFO.CITY = ‘San Jose’.

However, by y-acyclicity it is possible instead to unambiguously pose the query
SELECT EMP WHERE CITY = ‘San Jos¢’. (1.1

The desirability of being able to pose queries such as (1.1), with such a simple syntax,
has been discussed by Ullman [37]. Not only is the latter query easier to pose and
simpler to understand than the SQL query, but also the system has a great deal of
flexibility in optimizing how to find the result of the query. The system’s choice of
which relations to join might depend, for example, on which indices are present.

Languages such as SQL are considered high-level, since it is not necessary to
explicitly state the access paths (such as which indices to utilize). Similasly, in a
y-acyclic database scheme it is possible to make use of a stll higher level language,
in which it is not even necessary to specify which relations must be joined to obtain
the answer the user desires.

We now discuss the organization of the paper. If all the reader cares about are the
database properties (as opposed to graph-theoretic properties), then he can simply
skim Sections 2-6; for example, such a reader need only note one of the various
equivalent definitions of a given degree of acyclicity. In Section 2 we present some
basic definitions and define a-acyclicity. In Section 3 we define Berge’s [10] notion
of acyclicity. In Section 4 we give several natural but different-loaking definitions of
one of our new degrees of acyclicity, namely, B-acyclicity, and prove that the

Hypergraphs and Relational Database Schemes 517

definitions are equivalent. We also discuss the desirability of S-acyclic database
schemes. In Section 5 we define y-acyclicity and prove the equivalence of various
definitions of y-acyclicity. In Section 6 we prove that Berge-acyclicity = y-acyclicity
= B-acyclicity =+ a-acyclicity but that none of the reverse implications hold. We also
contrast features of the various degrees of acyclicity and discuss their naturalness. In
Section 7 we define join expressions, which correspond to “programs™ for taking
joins, and discuss some of their properties (join expressions are useful for the
discussion in Section 8). In Section 8 we describe a number of desirable properties of
database schemes, involving monotone-increasing joins and unique relationships
among attributes, such that each property is equivalent to the scheme being y-acyclic.
In Section 9 we give polynomial-time algorithms for determining the degree of
acyclicity. In Section 10 we present our conclusions.

2. w-acyclicity

Let .4 be a finite set of distinct symbols, called atfributes (or column names), and let
Y be a subset of A, A Y-tuple (or simply a tuple, if Y is understood) is a function with
domain Y. Thus a tuple is a mapping that associates a value with each attribute in Y.
If X is a subset of Y and ¢ is a Y-tuple, then 4 X] denotes the X-tuple obtained by
restricting the mapping to X. A Y-relation (or a relation over Y, ot simply a relation,
if Y is understood) is a finite set of Y-tuples. If is a Y-relation and X is a subset of
Y, then by r[X], the projection of r onto X, we mean the set of all tuples { X], where
tis in r, We shall often denote sets of attributes by uppercase letters and relations by
lowercase letters.

If 4" is a set of attributes, then we define a database scheme R = {Ry, ..., R,} to
be a set of subsets of A~ Intuitively, for each i, the set R, of attributes is considered
the sei of colomn names for a relation. We may call the R/’s relation schemes. If
Fi, ..., Is are relations, where r, is a relation over R, (1 =i <), then we may say that
r={rn,..., s} is a database over R. We may call r, the R, relation.

We have already defined a hypergraph to be a pair (4, &), where .4"is a set of
nodes and & is a set of edges (or hyperedges) which are arbitrary nonempty subsets of
A We sometimes refer to the edges as “full” edges, to distingvish them from
“partial” edges, which we discuss later.

The hypergraph of a database scheme {R,, ..., R.} has as its set of nodes those
attributes that appear in one or more of the R/’s, and as its set of edges R =
{Ri, ..., R.}. We shall often speak of the “hypergraph R” without mentioning the
set A" of nodes; then we tacitly assume that 4" = U {R.:1 i< n).

Let us give some terminology for hypergraphs. A path from node stonode fis a
sequence of kK = 1 edges £y, ..., E; such that

(i) sisin E;,
(ii) tis in £, and
(iii) E, N E,qis nonempty if 1 <i< k.

We also say that the above sequence of edges is a path from E; to E;.

Two nodes {or attributes) are connecied if there is a path from one to the other.
Similarly, two edges are connected if there is a path from one to the other. A set of
nodes or edges is connected if every pair is connected. A connected component is a
maximal connected set of edges.

Let (#; &) be a hypergraph. Its reduction (A; £') is obtained by removing from &
each edge that is a proper subset of another ¢dge. A hypergraph is reduced if it
equals its reduction, that is, if no edge is a subset of another edge.

518 RONALD FAGIN

FIGURE 5

FIGURE 4

Let .# be a set of nodes of the hypergraph (4, £). The set of partial edges generated
by # is defined to be obtained by intersecting the edges in & with .#, that is, taking
{EN.#:E € &} — {} and then taking the reduction of this set of edges. The set
of partial edges generated from (4] &) by some set .# is said to be a node-generated
set of partial edges.

Let # be a connected, reduced set of partial edges, and let E and F be in & Let
@ = E N F. We say that Q is an articulaiion set of F if the result of removing Q from
every gdge of & that is, {E — Q:E € #} — {J}, is not a connected set of partial
edges. It is clear that an articulation set in a hypergraph is a generalization of the
concept of an articulation point in an ordinary graph.

A block of a reduced hypergraph is a connected, node-generated set of partial
edges with no articulation set. A set is trivigl if it contains less than two members, A
reduced hypergraph is a-acyclic if all its blocks are trivial; otherwise, it is a-¢yclic. A
hypergraph is said to be a-cyclic or a-acyclic precisely if its reduction is.

Example 2.1. It is straightforward to verify that Figure 3 shows an a-acyclic
hypergraph. Its edges are ABC, CDE, EFA, and ACE. (We follow the usual database
convention that {4, B, C} is abbreviated by ABC, etc.) An articulation set for the set
of all edges is ABC N ACE = AC, since the result of removing 4 and C from each
edge is to leave the set of edges B, DE, EF, and E, which is not connected (B is
disconnected from the others). Note that the subset {4BC, CDE, EFA} of the edges
(Figure 4) has no articulation set. However, this set is not node-generated, so there
is no contradiction of our assertion that the hypergraph of Figure 3 is a-acyclic. O

Let (.4, &) be a hypergraph, and let 5 be a subset of & Let .# be the set of nodes
that is the union of members in & We say that & is closed if for each edge E of the
hypergraph, there is an edge F in % such that EN .# C F. For example, (G, H, I}
in Figure 5 is a closed set of edges. Thus the intersection of edge K with GU H U J
is contained in edge H; similarly, the intersection of edge J with G U H U I is
contained in G, and the intersection of each of edges L and M with G U H U I is
contained in 7. However, {L, M} is not a closed set of edges, if nodes x and y are
present, as drawn in Figure 5. For, the intersection of edge 7 with L U M is contained
in neither L nor M. Note that every closed set of (full) edges is always a node-
generated set of partial edges. Note also that every set of edges in an ordinary
undirected graph is automatically closed.

Recall that a reduced hypergraph is a~acyclic if every nontrivial, connected, node-
generated set of partial edges has an articulation set. It follows from results of Fagin

Hypergraphs and Relational Database Schemes 519

GG

et al. [22] that a reduced hypergraph is a-acyclic if and only if every nontrivial,
connected, closed set of (full) edges has an articulation set. We make use of this
characterization later.

A database scheme R is said to a-acyclic (respectively, a-cyclic) precisely if the
corresponding hypergraph is. Every a-acyclic database scheme has a number of
desirable properties, each of which is equivalent to a-acyclicity [7, 8, 22, 23, 25, 32).
We discuss some of these properties in later sections.

3. Berge-acyclicity

We now present Berge’s [10] concept of acyclicity. A Berge cycle in a hypergraph
15 a sequence (Sh, x1, So, X2, . . ., Smy Xm, Sm+1) such that

(i} x1, ..., xm are distinct nodes of %,

(i) 81, ..., Sn are distinct edges of #, and Sps = S
(iii) m = 2, that is, there are at least 2 edges involved; and
(iv) x.isin S.and .. (1 = i< m).

A hypergraph is Berge-cyclic if it has a Berge cycle; otherwise, it is Berge-acyclic.

As an example, the hypergraph of Figure 6 is Berge-cyclic, because it contains the
Berge cycle (4BC, C, BCD, B, ABC), where, for clarity, the edges are underlined.
We see from this example that if some pair of edges of a hypergraph have two or
more nodes in common, then the hypergraph is Berge-cyclic,

4. B-acyclicity

In this section we give various definitions for another degree of acyclicity, called
B-acyclicity, We show that the definitions are equivalent. One of these definitions
says that a hypergraph R is f-acyclic if and only if every subhypergraph of R is
a-acyclic (if § C R is a subset, not necessarily proper, of the edges R, then Sis a
subhypergraph of R.) Thus, although the hypergraph in Figure 3 is a-acyclic, it is not
B-acyclic, because the subhypergraph in Figure 4 is a-cyclic.

Because of this characterization of B-acyclic hypergraphs, and because of the
importance of a-acyclic database schemes [4, 7, 8, 14, 22, 23, 25, 29, 32, 38], it follows
that 8-acyclic database schemes are also important. For it is very natural to deal with
subschemes of a relational database scheme. Thus a databas¢ scheme is 8-acyclic if
and only if every subscheme is a-acyclic.

Properties of a-acyclic schemes “relativize’ to S-acyclic schemes, as we mentioned
in the introduction. Thus, if 2 is one of the various desirable properties of database
schemes that is equivalent to «-acyclicity, then a database scheme is S-acyclic if and
only if every one of its subschemes enjoys property #. It is informative to give an
exampie.

A database scheme is a-acyclic if and only if there is a semijoin program that can
assist a user who is interested in taking a join over all of the relations in the database.
By “assist a user” we mean that the semijoin program converts the original database
into a (globally) consistent database (for details and definitions, see [8] or {11]).
Therefore, a database scheme is B-acyclic if and only if no matier whar subset of the
relations in the database the user wants to join, there is a semijoin program that can
assist him.

520 RONALD FAGIN

FIGURE 7

We now prepare to give our various definitions of B-acyclicity. Actually, it is
convenient instead to define S-cyclicity. Of course, we say that a hypergraph is
B-acyclic if and only if it is not 8-cyclic. A database scheme is f-acyclic (respectively,
B-cyclic) precisely if the corresponding hypergraph is.

Let (S1, ..., Sm, Sm+1) be a sequence of sets, where Sy, ..., Su are distinct and
Sm+1 = S1. Let us call S, and ;.3 neighbors (1 < i < m); note, in particular, that S
and S are neighbors. Let us call (Sy, .. ., Spm, Sw+1) @ pure cycleif m = 3 (i.e., at least
three sets are involved) and if whenever i # j, then S, N S, is nonempty if and only
if S, and S, are neighbors. Thus a pair is nondisjoint precisely if it is a neighboring
pair. Furthermore, if m = 3, then we assume also that S; N Sz N S; is empty. If
m = 4, then the comparable assumption (i.e., the assumption that $; N --- N Sy is
empty) is unnecessary, since it is a consequence of our other assumptions. A pure
cycle with seven edges appears in Figure 7, where two edges have nonempty
intersection if and only if they are shown to intersect in Figure 7. Of the types of
cycles for hypergraphs which we discuss in this paper, a pure cycle is certainly the
most natural and noncontroversial. (However, Kahn et al. [30] have defined several
notions of acyclicity for hypergraphs for which a pure cycle may be an acyclic
hypergraph!)

A B-cycle in a hypergraph »#is a sequence (51, ..., Su, Sna) of edges such that
HfX=58nMN-:.NS, and §/ is the set difference S, — X (1 < i = m), then
(8% ..., 8m, Sm+1) is a pure cycle. Thus every -cycle is of the form (S1U X, ...,
SnU X, S U X)), where (S1, ..., Sn, Ske) is a pure cycle. 8, need not be an
edge of the hypergraph, although S. is (1 < i =< m + 1). Of course, every pure cycle
of edges is also a B-cycle.

We are now ready to give our first three definitions of S-cyclicity (we shall give
five definitions altogether).

Definition 1. A hypergraph is 8-cyclic if it has a B-cycle.
Definition 2. A hypergraph is S-cyclic if some subhypergraph is a-cyclic.

Definition 3. A hypergraph is B-cyclic if some nontrivial, connected, reduced set
of edges has no arnticulation set.

In Definition 3 we can replace “nontrivial, connected, reduced set of edges” (which
means “connected, reduced set of at least two edges”) by “connected, reduced set of
at least three edges™ and get an equivalent definition. This is because every connected,

Hypergraphs and Relational Database Schemes 521
5

L) e
S

S3

reduced set of two edges clearly has an articulation set. Further, if we work only with
reduced hypergraphs, as is often the case, then we can drop the word “reduced” in
Definition 3.

Now a hypergraph is a-cyclic precisely if some nontrivial, connected, reduced,
closed set of edges has no articulation set (this statement follows immediately from
results in [22]). Note that the only difference between this characterization of
a-cyclicity and the characterization of 8-cyclicity in Definition 3 is that in Definition
3 the word “closed” does not appear. Thus f-cyclicity may be considered a more
natural graph-theoretic concept than e-cyclicity, since the somewhat arbitrary con-
cept of closedness is dropped. Further, a hypergraph is a-cyclic precisely if some
nontrivial, connected, node-generated set of partial edges has no articulation set. This
characterization of a-cyclicity is identical to the characterization of B-cyclicity in
Definition 3, except that Definition 3 deals with “reduced sets of edges” rather than
with the more complex “node-generated sets of partial edges.”

Our next definition of B-cyclicity is given to provide an analogy with Berge-
acyclicity and with two of our definitions of y-cyclicity (Section 5). A weak B-cycle
in a hypergraph ¢ is a sequence (S, x1, Sz, X2, . . ., Sy X, Sim+a) Such that

(i) xi, ..., X, are distinct nodes of J#;

(i) S1, ..., S are distinct edges of A, and S,41 = Sy
(iii) m = 3, thaxt is, there are at least 3 edges involved; and
(iv) x,isin S; and S,1 (1 = i < m) and in no other §,.

It is sometimes convenient to refer to the sequence (51, . . ., Sm, Sm+1) of edges alone
of a weak f-cycle as a weak f8-cycle. Under this notation, every S-cycle is clearly a
weak B-cycle, but the converse is false, as we shall see. However, it is not hard to see
that the shortest weak f3-cycle in a hypergraph is a 8-cycle (we shall prove a stronger
result in the proof of Theorem 4.1). Note that if we change “3” everywhere in (iii) to
“2” and drop “and in no other §;” in (iv), then we get the definition of a Berge cycle.
The sequence (S, x1, S, X2, 83, X3, S5 X4, S1) in Figure 8 is a weak S-cycle.
However, it is not a -cycle, because the node y is in §, S3, and Sy but not in Ss.

Definition 4. A hypergraph is 8-cyclic if it has a weak S-cycle.

Our final definition of B-cyclicity is essentially due to Graham [26]. Let
(51, ++.» Sm Swm+1) be a sequence of edges, where Sy, ..., Sn are distinct and
Sme1 = S1. Assume farther that m = 3 (i.¢., that at least three edges are involved).
Define A, = 8. N S (1 <7 =< m). We say that (S, .. ., S, Sm+1) is a Graham cycle
if each A, is nonempty (1 < i < m) and whenever i # J, then A, and A, are
incomparable (i.e., A, € A, and A, € A,). Graham calls a hypergraph CAG-C if it has
no Graham cycle,

522 RONALD FAGIN
Definition 3. A hypergraph is B-cyclic if it has a Graham cycle.
It is clear that every weak B-cycle is a Graham cycle.

TrEOREM 4.1. Definitions 1-5 of B~cyciicity are equivalent,

PrROOF. We show that (3) = (2) = (3) = (@)= (5) = (1) = (3). By “(i) == (j)”
we mean that every hypergraph that is B-cyclic by definition (i) is f-cyclic by
definition (j).

(3)=(2): Let # be B-cyclic by Definition 3. By Definition 3, # has a nontrivial,
connected, reduced set E of edges with no articulation set. Then E is an a-cyclic
hypergraph, since the set E of edges is a node-generated set of partial edges in the
hypergraph E. Hence 5 is #-cyclic by Definition 2.

(@)= (3. Let #be a B-cyclic hypergraph by Definition 2; we shall show that it
is B-cyclic by Definition 3. By Definition 2, 2 has a subhypergraph # that is
a-cyclic. Let #' be the reduction of %, Then & is a reduced, a-cyclic subhypergraph
of 3 (recall that a hypergraph is a-cyclic precisely if its reduction is). Thus #* has
a nontrivial, connected set E of edges with no articulation set (the set E is also ¢closed
in #’, although we do not need this fact). Clearly E is reduced, since #' is. Hence,
is B~cyclic, by Definition 3.

(3)=> (4): Let 2 be B-cyclic by Definition 3; we shall show that it is A-cyclic by
Definition 4. Since 3 is B-cyclic by Definition 3, it has a connected, reduced set E
of at least three edges and with no articulation set. (See the comment following
Definition 3.) Find two distinct edges V" and W in E such that the number of nodes
in V' Wis as big as possible. Since E is connected, we know that some pair of edges
in E has nonempty intersection, and so ¥ and W also have nonempty intersection.
Let us denote ¥’ N Wby Q. We know that O is a proper subset of each of F and W,
because E is reduced. Since E has no articulation set, we know that the result of
removing Q from every edge in E leaves a connected set of partial edges. Hence
there is a sequence (S, . . ., Sx) of distinct edges in E for which

i S$i=V,
(i) S =W,
(iil) ($: N $i41) — Q is nonempty for 1 <i< k.

Let us choose the sequence (51, ..., Sk) as above so that & is as small as possible.
Since (S, N S.41) — Q is nonempty by (iii), it contains a node x, (1 = i< k). If jis not
iori+ 1, then x, is not in S,; otherwise the sequence (Sy, . . ., Si) could be shortened
and still maintain properties (i)-(iii) above, and this would violate minimality of k.
Hence, if we can find m with 3 < m =< k (and so, in particular, 3 < &) such that §,
and S, contain a node v thatis not in S, for 1 < j < m, then (S}, x1, S3, X2, . .., Sm,
v, $1) is a weak B-cycle (where we are using the edge-node-edge notation for clarity),
and we are done.

Now @ € S§; N So. For if Q C S1 N S;, then §; N §: would have strictly more
nodes than @, since (§1 N S2) — @ is nonempty by (iii) above. However, this would
contradict the maximality of Q (recall that ¥ and W were chosen in E such that
Q@ = VN Wis as big as possible).

Since Q € $: N S, let v be a node in O that is not in S, N §; Now v € .5, (since
Q G V= $,). Hence, since v S§1 N Sq, it follows that v & S.. Let m be minimal such
that 3 = m = k and v € §,,. There is such an m, since v € S (becguse vE Q C W
= S3). Then §; and S,, contain the node v, which is not in §, for 1 < j < m. This was
to be shown.

Hypergraphs and Relational Database Schemes 523

(4)=» (5): Let o be S-cyclic by Definition 4; it is then g-cyclic by Definition 3,
since, as we noted, every weak B-cycle is a Graham cycle.

(5) = (1): Let # be B-cyclic by Definition 5; we shall show that it is 8-cyclic by
Definition 1. Let &= (S, ..., Sm, Sm+1) be a minimal Graham cycle, that is, a
Graham cycle with m, the number of edges in the Graham cycle, as small as possible.
We shall show that & is a 8-cycle, which shows that # is 8-cyclic by Definition 1.
Let X = 81 --- N S, and let S, be the set difference S, — X (1 =i =< m). We must
show that & = (81, ..., S}, Sn+) is a pure cycle.)

Let 4; (respectively, A)) be S, N 8,41 (Tespectively, S; N $i), for 1 <i=m. Each
Af (1 =i = m) is nonempty. For if A] were empty, then A, C A, for each j, and in
particular, for some j # i; this contradicts our assumption that & is a Graham cycle.

We have shown that each pair of neighbors in &’ is nondisjoint (since each Af is
nonempty). By construction we know that §1 N +.. N §}, is empty. To show that
&’ is a pure cycle, we need only show now that nonneighbors are disjoint. Assume
not; we shall derlve a contradiction. Let S, and S/ be nonneighbors that are
nondisjoint. Take a node v in S, N S%. By construction of &/, we know that v& S
for some r. By interchanging the roles of S, and Sy, if necessary, we can assume that
proceeding “clockwise” on &’ from S to S, we encounter S; on the way. (The
“clockwise” direction is from S7 to Si to ... to Si to S} to) Consider the
following conditions on a pair (s, j) of indices:

(a) S, and S; are distinct and nonneighbors, and
(b) there is a node w in SN S, that is not in some S} that lies on the clockwise path
from S;to §).

These conditions can be fulfilled by letting w, s, j, and k be, respectively, v, p, ¢, and
r. Select s and j such that (a) and (b) are satisfied, and such that the clockwise path
from §{ to S; is as short as possible. By doing a cyclic shift of the subscripts, if
necessary, we can assume that s = 1. Thus, 1 < j < m, and the node w € §1 N §;, but
w & S% for some k, with 1 < k < j. Also, j = 3, since S| and S are not neighbors.
We now show that for each p with 1 < p < j, necessarily w & S, For, assume
we& S; and 1 < p < j There are two cases, depending on whether p < &
or k < p. Assume p < k; the other case is similar. Then there is a node (namely, w)
in 87 and §7 but not in S%, and also S% is on the clockwise path from S5 to 57 (see
Figure 9). Since the clockwise path from S} to S; is shorter than the clockwise path
from S7 to §;, this contradicts our minimality assumption in the choice of s and J.
Hence w & S, whenever 1 < p < j.
We now show that

(Sn, ..., 8, 8) 4.1)

is a Graham cycle. Let A, and A/ be as before (1 < i < j), let A be §, N S, and
let &’ be §; N §1. We already know that A, and A, are pairwise incomparable when
is j since (8, ..., Sm, 1) is a Graham cycle and j < m. Further, A and ¢ach 4, are
nonempty. Hence, to show that (4.1) is a Graham cycle, we need only show that A is
incomparable with each of the A’s. Now A contains w, which is not in any of the
A's. Thus, A Z A, (1 =i <). So, to show that (4.1) is a Graham cycle, we need only
show that A, ¢ A (1 = i < j). Assume not; we shall derive a contradiction. Find n
(1 = n << j) such that A, € A. Therefore, since A, = A, — Xand A’ = A — X, it follows
that

AL C A #2)

524 RONALD FAGIN

\\ st
\\ ™~
s, \
\ s,
FIGURE 9 /' , FIGURE 10
!
v/
s :
/k f"/
// -
Sl o S L

Let x be an arbitrary member of 4. By (4.2), we know that x € A". We now
show that

xeE S for I=si<j. 4.3)

Assume not. Find ¢ (1 < ¢ < j) such that x € Si. Since x € A, and x € A, we
know that ¢ is not any of 1, n, n + 1, or j. There are now two cases, depending
on whether t < nor n + | < £, Assume ¢ < m; the other case is similar. Then (see
Figure 10)

(a) S and S}, are distinct and nonneighbors, and
(b) node x is in §; N S}, but not in 57, and S} lies on the clockwise path from S
to ST

But the clockwise path from 1 to S is stricily shorter than the clockwise path from
S1 te §;. This contradicts our minimality assumption in our choice of s and j. This
proves (4.3). Since S; C S,, it follows from (4.3) that x € S,, for | < i = j. Therefore,
x € A, (1 = i< j). But x was an arbitrary member of A},. Hence, 8, C A; (1 =i < j).
Thus, &, C A, (1 =i < j), since the only nodes in A, that are not in A, are the nodes
X that are in every S.. Let a be arbitrary such that 1 < a < jand @ #. There is such
an a, since j = 3. Since A, C A,, this contradicts the fact that the 4.’s are pairwise
incomparable. This contradiction establishes our claim that (4.1) is a Graham cycle.
But (4.1) is a shorter Graham cycle than our allegedly smallest Graham cycle
(SL - - -, Sm, S1). This contradiction shows that the smallest Graham cycle is indeed
a B-cycle, which was to be shown. {As a matter of interest, we note that although the
smallest Graham cycle is always a 8-cycle, there may be a Graham cycle that is not
even a weak B-cycle.)

(I) = (3): Let 3 be B-cyclic by Definition 1. Therefore, it has a S-cycle
(S1 - .., Sm, Sm+r), where m = 3. The set {S), ..., Su} of edges is clearly a non-

trivial, connected, reduced set of edges with no articulation set. So 2 is B-cyclic by
Definition 3. [J

We note that recently Graham [27] has independently shown the equivalence of
Definitions 2 and 5.

5. y-acyclicity
As in the case of B-cyclicity, we shall give several equivalent definitions of y-cyclicity.
A hypergraph is y-acypclic if it is not y-cyclic. A database scheme is y-acyclic
(respectively, y-cyclic) precisely if the corresponding hypergraph is.

A y-cycle in a hypergraph 3% is a sequence

(SI’ xl, S25 x2, seny Sm, xm, Sm+]) (5.1)

Hypergraphs and Relational Database Schemes 525
E F

Figure 11

such that

@) x1 ..., Xm are distinct nodes of 3¢,

(i) Sy, ..., Sn are distinct edges of #, and S,41 = Sy
(iii) m = 3, that is, there are at least 3 edges involved;
(iv) x;isin S. and S41 (1 <7 = m); and

(v) if 1 =i < m, then x, is in no S, except S; and S.+1.

Note that the only difference between a y-cycle and a weak B-cycle is that “1 <
< m” in (¥) is replaced by “1 =i =< m” to define a weak B-cycle. Thus every weak
B-cycle is a y-cycle. Note also that the only difference between a y-cycle and a Berge-
cycle is that to define a Berge cycle, “3” is replaced everywhere in (iii) by “2,” and
also (v) is dropped. As before, it is sometimes convenient to refer to the sequence
(81, ..+, Sm, S} Of edges alone of a y-cycle as a y-cycle. We say that this y-cycle,
with m distinct edges, is of size m. ’

Definition 1. A hypergraph is y-cyclic if it has a y-cycle.

We define a weak y-cycle just as we defined a y-cycle, except that “1 <i<m”in
(v) is replaced by “i = 1 or i = 2” to define a weak y-cycle. Thus every y-cycle is a
weak y-cycle. Although the converse is false, it is true that the shortest weak y-cycle
in a hypergraph is a y-cycle (we shall prove a stronger result in the proof of Theorem
5.1 below).

Definition 2. A hypergraph is y-cyclic if it has a weak y-cycle.

To help prevent confusion, we note that in an earlier version of this paper we
referred 1o what we are now calling a weak y-cycle as a y-cycle.
The next definition gives us a nice characterization of y-cyclic hypergraphs.

Definition 3. A hypergraph is y-cyclic if it has either a y-cycle of size 3 or a pure
cycle.

It is easy to see that a hypergraph is y-cyclic according to Definition 3 precisely if
it contains at least one of two kinds of “forbidden configurations™ of edges: either a
pure cycle, as in Figure 7, or a set of three edges that intersect at least as shown as in
Figure 11. (By the latter, we mean that in Figure 11 there is at least one node in
E N FN G, there is at least one node in (£ N G) — F, and there is at least one node
in (F N G) — E. Other inersections involving combinations of E, F, and G may also
occur.) For, if there is a y-cycle of size 3, then either there is a configuration as in
Figure 11 or else there is a pure cycle of size 3.

Our next definition (Definition 4) of y-cyclicity is due to Goodman and Shmueli
[24], who, after reading an early draft of this paper, pointed out to the author that
Definition 4 is equivalent to the author’s Definitions 1-3.

Definition 4. A hypergraph is y-cyclic if it has a pair E, F of incomparable,
nondisjoint edges such that in the hypergraph that resulis by removing E N F from
every edge, what is left of E is connected to what is left of F.

526 RONALD FAGIN

Remark. We say that E and F are incomparable if E¢ F and F ¢ E. Definition
4 says that hypergraph &#is y-cyclic if it has a pair E, F of incomparable, nondisjoint
edges such that if @ = EN F, if G’ is G — Q for each edge G of #, and if ' =
{G": G is an edge of #} — { I}, then E’ and F’ are connected in %"

There is a pretty algorithm (defined in [18]) for determining y-acyclicity. It is very
similar in flavor to “Graham’s algorithm™ for determining «-acyclicity. Both of these
algorithms will be presented in Section 9.

TureorReM 5.1. Definitions 1-4 of y-cyclicity are equivalent.

ProOOF. We show that (1) = (2) = (3) = (4) = (1). By “(i) = (}j)”, we mean that
every hypergraph that is y-cyclic by definition (i) is y-cyclic by definition (j).

() = (2 This is immediate, since, as noted, every y-cycle is a weak y-cycle.

(2)=> (3): Let 2 be y-cyclic by Definition 2; we shall show that »#is y-cyclic by
Definition 3. Let (5.1) above be a minimal weak y-cycle in 2# (by minimal we mean
that m is as small as pessible). If m = 3, then we are done (since a weak y-cycle of
size 3 is clearly a y-cycle of size 3). So, assume that m = 4. We shall show that (5.1)
is a pure cycle. We already know that neighbors intersect, so we need only show that
nonneighbors do not intersect.

We now show that S, does not intersect a nonneighbor. Assume it does. Find
(3 = k < m) as small as possible so that §; N §; » . Take v in S; N Si. Then
(81, x1, ..., Se-1, Xp-1, Sk, v, 81) is a smaller weak y-cycle than (5.1). This is a
contradiction.

We now show that S; does not intersect a nonneighbor. For, assume that v €
S2 N S, with 4 < k =< m. There are now two cases.

Case 1. v € Ss. We know that v &€ §), since §; does not intersect its non-
neighbor Ss. Find r as big as possible so that v € S, It is then easy to see that (51, x1,
Sz, v, Sr, X, ..., Sm Xm, S1) is a smaller weak y-cycle than (5.1). This is a
contradiction.

Case 2. v & Ss. Find r as small as possible so that v € §.. It is then easy to see
that (S, v, 82, x2, S5, X3, ..., S») is a smaller weak y-cycle than (5.1). This is a
contradiction.

‘We have shown that neither S nor S: intersects a nonneighbor. Find j as small as
possible so that S, intersects a nonneighbor Si; say v € §, N 3. Then 3 = j, and
j+2=<k=<m Itis easy to see that (51, x1, Sz, X2, ..., 85, ¥, 8k, ..., Sme1) iS5 @
smaller weak y-cycle than (5.1). This contradiction completes the proof of (2) => (3).

(3) = (4% Let i be y-cyclic by Definition 3; we shall show that #’is y-cyclic
by Definition 4. Since # is y-cyclic by Definition 3, it has either a y-cycle of size
3 or a pure cycle. Assume first that # has a vy-cycle of size 3, and let this y-cycle be
(S1, X1, Sz, X2, S3, x3, $1). It is easy to verify that 5#is y-cyclic by Definition 4, where
we let E and F be, respectively, $) and ;. Now assume that 5 has a pure cycle. By
letting E and F be neighboring edges in the pure cycle, we see once again that #is
y-cyclic by Definition 4.

(4)=> (1): Let 3¢ be y-cyclic by Definition 4; we shall show that H is y-cyclic by
Definition 1. Take E and F as in Definition 4, and let Q = £ N F. We know that
there is a sequence (S, ..., Sx) of edges such that

(i) S:=E.

(i) Sn=F, and
(i) (S, N Su) — Q% D, forl<i=m— L.

Hypergraphs and Relational Database Schemes 527

O,
, \ FIGURE 12

Let us also assume that we have selecied the S,’s so that (i)-(iii) above hold and m
is as small as possible. If m = 2, then S; = F by (ii), and so §1 N S2 = @,
which contradicts (iii) when i = 1. Hence m = 3. By (iii), we can find a node x, in
(5.N Si1) — @, for 1 =i =< m— L. Define also Sp+ to be E (=S1), and defive x,.
to be a node in E N F (by assumption, E N F is nonempty). We now show that
(S, %1, Sz, X2, -.., Sm, Xm, Sms1) is @ y-cycle. The node x; is not in any of
S3, ..., Sm—1, by minimality of m (thus, if x, € §,, where 3 =i=m — |, then the
sequence S1, Si, Si+y, ..., S could be used in place of S, Sa, ..., Sm). Further,
x1 & S, = F, since x1 € E= S, but x; & @ = EN F. So x, is in §1 and §; but in no
other §,. Similarly, x, is in S, and S..; but in no other Sj, for 1 =i=m— L. In
particular, x,, . .., X are all distinct. Further, x» is distinct from any of xy, ...,
Xm-1, Since X, € O but x, & Q, for | < i < m. Thus the nodes x;, ..., X= are all
distinct. The edges Sy, ..., S, are all distinct by minimality of m. We have shown
enough to prove that (S1, X3, Sz, X2, ..., Sm, Xm, Sme1) is @ y-cycle. Hence 5 is
y-cyclic by Definition 1, which was to be shown. [

Later we shall identify some desirable properties of database schemes, involving
monotone-increasing joins and unique relationships among attributes, such that each
of these properties is equivalent to y-acyclicity.

6. Relationships Among the Various Degrees of Acyclicity
We begin by proving the following simple theorem.

THEOREM 6.1, Berge-acyclicity = y-acyclicity = f-acyclicity = a-acyclicity. None
of the reverse implications hold.

Proor. Every a-cyclic hypergraph is B-cyclic, since a hypergraph is f-cyclic
if and only if some subhypergraph (including the whole hypergraph itself) is
a-cyclic. Also, it is clear from our definitions that every weak B-cycle is a y-cycle
and every y-cycle is a Berge cycle. It follows that Berge-acyclicity = y-acyclicity =
B-acyclicity = a-acyclicity.

We now show that none of the reverse implications hold. The hypergraph of
Figure 3, with edges ABC, CDE, EFA, and ACE, is a-acyclic but B-cyclic (since the
subhypergraph of Figure 4, with edges ABC, CDE, and EFA, is a-cyclic). The
hypergraph of Figure 12, with edges AB, AC, and ABC, is f-acyclic. However, it is
y-cyclic, since (AC, C, 4BC, B, AB, A, AC) is a y-cycle, where, for clarity, the edges
are underlined. The hypergraph of Figure 2 is a reduced hypergraph that is S-acyclic
but y-cyclic.

Finally, the bypergraph of Figure 6, with edges ABC and BCD, is y-acyclic.
However, as we noted in Section 3, it is Berge-cyclic. O

We note that Zaniolo [41] defined two other notions of acyclicity for hypergraphs,
in a pioneering effort to find some hypergraph condition that is equivalent to a
certain desirable database condition (“every pairwise consistent database is consist-
ent”; see Section 7). Unforiunately, one of his conditions was sufficient but not
necessary, and the other was necessary but not sufficient. Neither of his conditions

528 RONALD FAGIN

is equivalent to any of our degrees of acyclicity. We also note that Batini et al. [6)
discuss the issue of generating various subclasses of a-acyclic hypergraphs by
“hypergraph grammars.” Further, Kahn et al. [30] have defined several notions of
acyclicity for hypergraphs by generalizing various properties of acyclic graphs.

We now discuss the naturalness of the various degrees of acyclicity, and then we
make a few observations contrasting their features.

Berge-acyclicity is too restrictive an assumption to make about database schemes.
For, if some pair of distinct relation schemes R,, R, in the database scheme R =
{Ry, ..., Ra) have more than one attribute in common, then R is Berge-cyclic. For
example, the hypergraph of Figure 6, with edges ABC and BCD, is Berge-cyclic, as
we noted earlier. A restriction that no two relation schemes can have more than one
attribute in common is far too severe. We now show that there are “natural” database
schemes that are a-acyclic but S-cyclic, and natural schemes that are S-acyclic but
y-cyche,

Assume that there are six attributes SUPPLIER, PART, PROJECT, COUNT,
DATE, and COST, where SUPPLIERs supply PARTs to PROJECTS; where for
each PART and PROJECT, the COUNT tells how many of that PART have been
supplied to that PROJECT; where the DATE tells when a given supplier first
supplied a given PROJECT; and where the COST is what a given SUPPLIER
charges for a given PART. The only constraints are the functional dependen-
cies [15]

{PART, PROJECT} — COUNT,
{SUPPLIER, PROJECT} — DATE,
{SUPPLIER, PART)} — COST,

(and their logical consequences). The functional dependency {SUPPLIER, PART}
— COST says that there is only one COST that a given SUPPLIER charges for a
given PART; the SUPPLIER does not, for example, charge different PROJECTs
different COSTs for the same PART. By doing a standard decomposition to obtain
Boyce—Codd normal form [16], the resulting database scheme has four relation
schemes, with attributes, respectively,

{SUPPLIER, PART, PROJECT},
(SUPPLIER, PART, PROJECT},
{SUPPLIER, PART, COST},
{PART, PROJECT, COUNT},
{SUPPLIER, PROJECT, DATE)}.

The hypergraph of this scheme is as in Figure 13. But this is just an example of
the hypergraph of Figure 2, which is a-acyclic but fB-cyclic. To obtain a scheme
that is B-acyclic but y-cyclic, we simply drop the COUNT attribute (and the
{PART, PROJECT, COUNT]} relation scheme) to obtain the hypergraph of Fig-
ure 3. This hypergraph is y-cyclic, since ({SUPPLIER, PART, COST}, PART,
{SUPPLIER, PART, PROJECT}, PROJECT, {SUPPLIER, PROJECT, DATE},
SUPPLIER, {SUPPLIER, PART, COST}) is a y-cycle.

Although there are natural database schemes that are y~cyclic (such as the example
just shown), there are also a number of database schemes that are y-acyclic. (An
example appears later in this section, with a demonstration of y-acyclicity.) Although
we should not demand y-acyclicity, it is good to know when a given scheme is
y-acyclic, so that we know that it enjoys the desirable properties discussed in Section
8. Similar comments apply, of course, to S-acyclicity.

Hypergraphs and Relational Database Schemes 529

FIGURE 13

PROJECT COUNT

As observed in other papers, it is natural to demand a-acyclicity; indeed, Fagin et
al. [22] and Maier and Ullman {32] argue that a-cyclic schemes represent a possible
error in database design. In Section 8 we shall discuss an example of an a-cyclic
scheme (which is given in Figure 20) and its “conversion” (by renaming attributes)
into a scheme (given in Figure 21) that is not only a-acyclic but even y-acyclic.

We now contrast some of the features of the various degrees of acyclicity. The
proofs of the remarks we now make are siraightforward and are left to the reader.

A hypergraph is a-acyclic if and only if its reduction is a-acyclic. However, the
analogous statement is false for the other kinds of acyclicity. Thus, the hypergraph
of Figure 14 (with edges AB, BC, AC, and ABC) is g-cyclic, y-cyclic, and Berge-
cyclic, although its reduction (which consists of the single edge 4BC) is of course
acyclic in each of the four senses.

By an isolated node we mean as before a node that is in exactly one edge. If ' is
a hypergraph and 2" is the result of deleting an isolated node, then 2 is @-acyclic
if and only if 2 is f-acyclic, for § = a, 8, or y. Although it seems as though the same
statement should be true for ¢ = Berge, there is a subtlety that prevents this. Let 2
be the Berge-cyclic hypergraph of Figure 6, with edges ABC and BCD. The result of
deleting the isolated nodes 4 and D is to leave us with two edges, both BC. Since a
hypergraph is a sef of edges (in which there are no duplicates), the resulting
hypergraph has only one edge BC and is therefore Berge-acyclic. However, the
original hypergraph »# was Berge-cyclic.

By a singleton edge we mean an edge with exactly one node, which may or may
not be isolated. By a global node we mean a node that is in every edge. If 3 is the
result of deleting a singleton edge, then # is 8-acyclic if and only if # is -acyclic,
for 6 = a, B, v, or Berge. If " is the result of deleting a global node, then 5 is
#-acyclic if and only if #” is §-acyclic, for & = a or 8. The statement is false if 8 =
y or Berge. Thus the hypergraph of Figure 12 with edges AB, AC, and ABC, is Berge-
cyclic and y-cyclic. However, the hypergraph of Figure 15, which has edges B, C,
and BC and is the result of deleting the global node A, is acyclic in each of the four
senses.

We say that two nodes are edge-equivalent if they are in precisely the same edges.
We shall deal extensively with edge-equivalence in Section 9, where we discuss a
polynomial-time algorithm for determining y-acyclicity. If 3 is the result of deleting
a node that is edge-equivalent to another node, then 2 is #-acyclic if and only if
' is B-acyclic, for 8 = a, B, or y. The statement is false if # = Berge. Thus the

530 RONALD FAGIN

Frcure 15

SO

Ficusk 16

FIGURE 14

hypergraph of Figure 6, with edges ABC and BCD, is Berge-cyclic; however, the
hypergraph of Figure 16, which is the result of deleting node C (which is edge-
equivalent to B), is Berge-acyclic.

We have just discussed various transformations of hypergraphs and considered
whether or not the iransformation preserves both §-acyclicity and #-cyclicity. That is,
we were concerned with the question of whether a hypergraph 2 is #-acyclic if and
only if its transform 3" is #-acyclic. Less restrictively, we might also consider whether
or not certain transformations preserve f-acyclicity (and not be concerned with
whether the transformation preserves f-cyclicity). As an important example, we say
that a hypergraph %" is the result of uniformly deleting nodes from 3¢ if there is a set
X of nodes of # such that the edges of " are precisely {E — X: E is an edge of
H#'}. We note that Goodman and Shmueli [23] characterize a-acyclicity in terms of
this concept. If #” is the result of uniformly deleting nodes from % and J# is
#-acyclic, then so is #, for § = «, B, or y. By the same example as we used in
discussing the result of deleting isolated nodes, the statement is false for # = Berge.
It is easy to see that the result of uniformly deleting nodes from a #-cyclic hypergraph
may be §-acyclic, for any 8. (For example, every node can be deleted, which leaves
the empty hypergraph, a é-acyclic hypergraph for every ¢.)

Another distinction among the various degrees of acyclicity is, as we observed
earlier, that a subhypergraph of an a-acyclic hypergraph may be a-cyclic. However,
each subhypergraph of a §-acyclic hypergraph is #-acyclic, for 8 = 3, v, or Berge.

As we noted earlier, an ordinary undirected graph is acyclic in the usual sense if
and only if it is #-acyclic when viewed as a hypergraph, for & = a, 8, v, or Berge.
Thus, each of these four concepts of #-acyclicity is a generalization, from graphs to
hypergraphs, of the usual concept of acyclicity.

We close this section by considering the industrial database scheme of [19] and
showing that it is y-acyclic. There are six relation schemes, with attributes, respec-
tively,

{SUPPLIER, PART, PROJECT],

{SUPPLIER, PART, COST},

{EMPLOYEE, SALARY, HIREDATE},

{EMPLOYEE, PROJECT],

{PROJECT, MANAGER]},

{SUPPLIER, LOCATION}.
The semantics of this database scheme is explained in [19]. The hypergraph is that
of Figure 17. It is easy to verify that by iteratively applying the rules that an isolated
node or a singleton edge can be removed (without affecting y-acyclicity), we are left
the empty set. Thus, by the rules of this section, we see that the hypergraph in Figure
17 is y-acyclic. (In Section 9 we shall give a general polynomial-time algorithm for
deciding y-acyclicity.) However, note that this hypergraph is Berge-cyclic, because

Hypergraphs and Relational Database Schemes 531

LOCATION P
PROJECT)

(Cemrmke

SALARY
HIRE DATE
A A1C
FiGure 18 00 |0 o1
111 1(1 110

two edges {SUPPLIER, PART, PROJECT} and {SUPPLIER, PART, COST} share
two nodes.

1. Join Expressions

Consider the following scenario. A user desires to take the join of four relations ry,
rz, r3, and ry. The following might happen. He might first form r; ¥4 72, which might
have, say, a thousand tuples. Then he might join the result with 73, (o obtain r1 X rg
b4 r3, a relation with, say, a million tuples. He might finally join the result with r4, to
obtain his desired answer r; & r; X 73 X r4, which might have only ten tuples. Thus,
even though the result he was seeking had only ten tuples, he might have had an
intermediate result with a million tuples. In this section we discuss “monotone join
expressions,” which prevent this unpleasant behavior. We first define the important
concept of consistency.

Let r and s be relations, with attributes R and S, respectively. We say that r and s
are consistent [8] if r[R N §] = s[R N §], that is, if the projections of r and s onto
their common attributes are the same.

Letr= {r,..., r.} be an arbitrary database over R = {R;, ..., R.}. We say that
r is pairwise consistent if r, and r, are consistent for each 7 and j. We say that r is
globally consistent (or simply consistent) if there is a relation r over aitributes A" =
Ry U .« U R, such that n[R.] = r[R;] for each i. Thus r is consistent if there is a
“aniversal relation” r such that each r, is a projection of r.

It is clear that if r is consistent, then it is pairwise consistent. If » = 2, chat is, v’
only two relations are involved, then it is easy to see that the converse is true.
However, in general, the converse is false. For example, let ry, 72, and 73 be the three
relations in Figure 18, over attributes 4B, BC, and AC, respectively. It is easy 1o
verify that these relations are pairwise consistent but not consistent. Beeri et al. [§]
prove that if the database scheme is a-acyclic, then every pairwise consistent database
is consistent.

A join expression is a well-formed expression formed out of relation schemes, the
symbol 4, and parentheses, in which every join is binary. For example, if Ri, Ra, R,
and R, are among the relation schemes, then ((R: M R3) ™ (R M Ry)) is 2 join
expression, which corresponds to joming the R; and the Rs relations, joining the R;
and R, relations, and then joining together the two results.

Certain join expressions, called sequential join expressions, are of special interest.
Let 4 be a join expression over R. 1f 8 is of the form (. + + {(R1 X Rg) W Ry) «»« W R,),

532 RONALD FAGIN

where Ry, ..., R, is an ordering of the distinct members of R, then we say that @ is
sequential. Intuitively, a sequential join expression (++« ((R1 M Ra) M Ry) -+« M Ry)
corresponds to first joining the R; and the R; relations, then joining the result with
the R; relation, then joining the result with the R, relation, and so on.

Let & be a join expression whose relation schemes are all in R, and let r be
a database over R. By #(r), we mean the relation that results by replacing each re-
lation scheme R in @ by r, where r € r and r has attributes R. For example, if r =
{r, 72, rs, 11} and @ is the join expression (R &4 (Rs M4 Rz)), where r2 and rs have
attributes Rz and Rs, respectively, then 8(r) is the relation (r2 ™4 (r3 X r2)), that is, the
relation r; X ;.

A subexpression of a join expression is defined in the usual way. Let @ be a join
expression containing relation schemes R, and let r be a database over R. We say
that ¢ is monotone with respect io r if for every subexpression (#; ™ &) of &, the
relations #h(r) and @x(r) are consistent. Intuitively, # is monotone with respect to r if
no tuples are lost in taking any of the binary joins obtained by “executing” 6(r)
as dictated by the parentheses. (We say that no tuples are lost in taking the join
of relations r and s if r and s are each projections of » 4 s, i.e., if r and 5 are con-
sistent.) As an example, ((R; ™ Rg) ™ (R, W Ry)) is monotone with respect to r =
{ry, rs, 13, r4}, where r, has atiributes R, (1 si<4), if

(a) r: and ry are consistent,
(b) r, and r, are consistent, and
(¢) (2™ r3) and (r, % ry) are consistent.

We say that 4 is monotone if it is monotone with respect to every pairwise consistent
database over R. If 4 involves precisely the relation schemes R, then we say that R
has a monotone join expression. Monotone join expressions provide an efficient (both
space-efficient and time-efficient) manner for taking a join, in that no “intermediate™
join has more tuples than the “final” join r;1 &4 <.« K ry,.

Beeri et al. [8] prove the following theorem.

THEOREM 7.1 [8]. The following are equivalent.

(1} R is a-acyclic.
(2) There is a monotone join expression over R.
(3} There is a monotone, sequential join expression over R.

Theorem 7.1(3) says that there is an ordering R,, ..., R, of R such that if r =
{r, ..., ra} is a pairwise consistent database over R, then the join r, &4 ... M 7, is
consistent with .41 (1 < § < n). Thus, if we first join », with r2, join the result with r;,
join the result with r,, and so on, then no tuples are lost in taking any of the joins;
hence the number of tuples grows monotonically. Also, by taking the join in this
manner, only one intermediate join needs to be maintained.

We say that a join expression @ is comnected if for each of its subexpressions
(6104 &), there is an aitribute that appears in both &, and #,. Intuitively, a join
expression is connected if none of the binary joins of which it is composed is actually
a Cartesian product.

Let us now restrict our attention to database schemes R for which the corresponding
hypergraph is connected. We close this section by showing that every monotone join
expression over R is connected. In the next section we show (among other things)
that R is y-acyclic if and only if the converse holds, that is, if and only if every
connected join expression over R is monotone.

Hypergraphs and Relational Database Schemes 533

THEOREM 7.2. Let R be a connected hypergraph. Then every monotone join expres-
sion over R is connected.

Proor. Let 4 be a join expression over R that is not connected; we shall show
that @ is not monotone. Let r be a relation with attributes R; U -+ U R, and with
exactly two tuples: a tuple of all 0’s and a tuple of all I’s. Letr = {r1, ..., 7a} bea
database over R = (R,, ..., R.}, where r, = r[R,] for each i. So, r is consistent (and
hence pairwise consistent).

Since 4 is not a connected join expression, it has a subexpression & = #, 04 8; such
that the attributes of 8, are disjoint from the attributes of ;. Now &i(r) and #x(r) each
have at feast two tuples, namely, a tuple of all O’s and a tuple of all 1’s. Since 8(r) =
6,(r) X Bx(r) is the Cartesian product of 8.(r) and 8:(r), it follows that 5(r) has at least
four tuples. We shall soon show that 8(r) = r. Hence, 8(r) has exactly two tuples,
while 8(r) has at least four tuples. Since 8 is a subexpression of 4, it follows that 8 is
not a monotone join expression, which was to be shown.

Thus, we need only show that 8(r) = r. Now 8(r) = 71 - - - W p,, since § is a join
expression over R. So, the proof is complete once we show that ry 4 <. W7, = 1.
Clearly r C r1 ™ - - - X r,,, since each 7, is a projection of . We now prove the opposite
inclusion, that is, that

WX Cr a.n

Let u be a tuple in r, X « + « W ry; we must show that u is a tuple in 7. Since # is in
r1 B ..« My, we know that u[R;]isin 7, for | =i=<n. Butr; = r[R;], sou[R,] is in
r[R.], for 1 =/ =< n. This means that there is a tuple ¢, of r such that u[R,] = ¢.[R.],
for 1 = i = n. We shall show that all of the ¢,’s are equal. It then follows that z equals
their common value. This implies that # is in r, which proves (7.1).

So, to prove (7.1), we need only show that ¢, = ¢, for each / and j. Since
R = {Ry, ..., R.) is connected, there is a path from R, to R,. Therefore, to show that
q. = q;, it is sufficient to show that whenever R, and R. are nondisjoint, then
qs = q.. For then, by induction on the length of the path from R; to R;, we see that
q:=4g;.

Assume now that R, and R, are nondisjoint; say 4 € R; N R,. Then ¢;[A] = ulA]
= q:[A]. So g, and q; are two tuples of 7 that agree on an attribute, namely, 4. It
follows from the definition of r that g, and g, are therefore equal. This was to be
shown. 0

8. Properties of y-acyclic Database Schemes

In this section we discuss several desirable properties for a relational database scheme
R. Each of these properties is equivalent to the scheme R being y-acyclic. For
simplicity, we restrict our attention in this section to database schemes R with a
connected hypergraph. This restriction is not essential.

(1) Risy-acyclic. By this, of course, we mean that the hypergraph of the database
scheme is y-acyclic.

(2) Every connected join expression over R 1s monotone. Assume that R is con-
nected. The equivalence of this property (call it property (2)) with y-acyclicity is of
interest because of the close analogy with Theorem 7.1. Thus, Theorem 7.1 says that
R is a-acyclic if and only if some join expression over R is monotone; the equivalence
of y-acyclicity with property (2) (almost) says that R is y-acyclic if and only if every
join expression over R is monotone. We must say “almost” in the previous sentence

534 RONALD FAGIN

FiGure 19

ool
-_h) - |
wwolo
oro|o

because we actually restrict our attention to connected join expressions. By Theorem
7.2, this is not really a restriction, since the only join expressions that can be monotone
are connected.

Property (2) guarantees a great deal of freedom in taking joins. Thus, let r be a
pairwise consistent database over a scheme that obeys property (2). Assume that the
user wishes to take a join of some subset of the relations in the database. Property
(2) guarantees that he can take his join however he wishes (i.e., he can use whatever
join expression he wishes that involves the right relations), and as long as he does not
act “foolishly,” then he is guaranteed that he is acting in an efficient manner. By
“never acting foolishly” we mean that he never joins two relations together whose
attributes are disjoint, that is, he never takes a Cartesian product. By “efficient” we
mean, as before, that no intermediate join has more tuples than the final join. His
choice of how to take the join, that is, which join expression to use, can be dictated
by other performance considerations, such as the presence of indices that might speed
up the process.

(3) Every connected, sequential join expression over R is monotone. Property (3)
is to property (2} as Theorem 7.1(3) is to Theorem 7.1(2).

(4) The join dependency MR implies that every connected subset of R has a lossless
Joir. We say [1, 34] that a relation » with atiributes Ry U - -- U R, obeys the join

dependency W(Ry, ..., R} if r=0{(ry, ..., 7.}, where ,=r[R], for 1 =i=a It
follows that the join dependency b4{R, ..., R,} holds for the relation r if and only
if r contains each tuple r for which there are tuples wy, ..., w, of r (not necessarily

distinct) such that w.[R,] = ¢[R.] for each i (1 = i = n). As an example, the relation
r in Figure 19 violates the join dependency ba{4B, ACD, BC}. For, let wy, wz, and w;
be, respectively, the tuples (0, 1, 0, 0), (0, 2, 3, 4), and (5, 1, 3, 0) of r; let Ry, R;, and
R; be, respectively, AB, ACD, and BC, and let ¢ be the tuple (0, 1, 3, 4); then w,[R.]
= ¢{R:] for each i (1 =i =< n), although ¢ is not a tuple in the relation r. However, it
is straightforward to verify that the same relation r obeys, for example, the join
dependency {4 BC, BCD, ABD}.

Let S = {8, ..., $n). If S U -.- U 8, is a subset of the attributes of the rela-
tion r, then we say that r obeys the embedded join dependency X8 if the projection
r{$U +«+ U Sy] obeys the join dependency XS. When we say that a set
{S1, ..., Su) has a lossless join, we mean that the embedded join dependency S
holds. Thus, property (4) says that every relation that obeys the join dependency
WR also obeys the embedded join dependency WS whenever S is a connected
subset of R.

If r is a database over R, if SC R, if s Cr, and if s is a database over S, then we
say that s is the subdarabase over S. It is not hard to see that property (4) says that
for every connected subset S of R and every consistent database r over R, if s is the
subdatabase over S, then s is a projection of t4r.

One of the motivations for this paper was the question of whether every a-acyelic
hypergraph R enjoys property (4). The answer is “no,” since there are w-acyclic
hypergraphs that are not y-acyclic, such as the hypergraph in Figure 13. This

Hypergraphs and Relational Database Schemes 535

EMP__WORK: DEPT_INFO:
EMP DEPT SAL DEPT CITY MGR
Fagin cs $200K C5 San Jose Peled
EMP_HOME:
EMP STREET CITY CHILD
Fagin 162 Loma Alta| Los Gatos Joshua
FiGure 20

hypergraph is not y-acyclic and so violates property (4). In the case of this hypergraph,
the join of the {SUPPLIER, PROJECT, DATE]} relation with the {PROJECT,
PART, COUNT]) relation might introduce a SUPPLIER, PART, PROJECT triple
that does not appear in the SUPPLIER, PART, PROJECT relation (the “connection

trap” [15]).

(5) There is a unique relationship among each set of attributes, for each consistent
database over R. Let r be a consistent database over R. By a relationship among a
set X C U R of attributes, we mean a relation (r, ™ .. X r,)[X], where X C R, U
«++ UR, and {R,, ..., R, } is connected. Thus, some of the “base™ relations r are
combined, as usval, by taking joins (where none of these joins are Cartesian products),
and the result is projected onto X. Property (5) says that the resulting relation is
unique. It is sometimes convenient to refer to a relationship among X as an X
relationship. Atzeni and Parker [3] discuss the power of assuming a unique relation-
ship among each set of attributes (they call this the Relationship Unigueness Assump-
fion). They and others (e.g., Sagiv [35]) note that this assumption is made commonly,
either explicitly or implicitly, in many papers on database design.

Let us consider an example which is slightly more elaborate than the example in
the introduction. Assume that the database scheme consists of three relation schemes:
an EMP__WORK relation scheme with attributes EMP (for “employee’), DEPT
{for department), and SAL (for “salary’”), a DEPT__INFO relation scheme with
attribates DEPT, CITY, and MGR; and a EMP_HOME relation scheme with
attributes EMP, STREET, CITY, and CHILD. See Figure 20 for an example of one
tuple in each relation. In this example, there are two distinct {EMP, CITY}
relationships. One, which has the tuple (Fagin, San Jose), relates an employee to the
city where he works. The other, which has the tuple (Fagin, Los Gatos), relates an
employee to the city where he lives. The database scheme is y-cyclic (it is even a-
cyclic).

However, assume that we were to rename the attribute CITY in the DEPT__INFO
relation scheme to be WORK_CITY, and the attribute CITY in the EMP__HOME
relation scheme to be HOME__CITY (see Figure 21). There is now a unique
{EMP, WORK_CITY} relationship, which includes the tuple (Fagin, San Jose),
and a unique {EMP, HOME__CITY} relationship, which includes the tuple (Fagin,
Los Gatos). The database scheme of Figure 21 is y-acyclic.

Knowing that relationships are unique make it possible to greatly simplify the
form of queries. Thus, the simplest SQL [13] query to find all EMPs associated with

536 RONALD FAGIN

EMP_WORK: DEPT_INFO:
EMP DEPT SAL DEPT WORK_CITY MGR
Fagin Ccs $200K cs San Jose Peled
EMP_HOME:
EMP STREET |HOME_CITY CHILD
Fagin 162 Loma Alta| Los Gatos Joshua
Ficurs 21

the WORK__CITY San Jose for the database scheme of Figure 21 is

SELECT EMP

FROM EMP_WORK, DEPT__INFO

WHERE EMP_WORK.DEPT = DEPT__INFO.DEPT
AND DEPT__INFO.WORK__CITY = ‘San Jose.’

However, by property (5), it is possible instead to unambiguousty pose the query
SELECT EMP WHERE WORK__CITY = ‘San Jose.’ (8.1)

The result is obtained by finding the unique {EMP, WORK__CITY} relationship
and then selecting out those tuples where the CITY entry is ‘San Jose. The
desirability of being able to pose queries such as (8.1), with such a simple syntax, has
been discussed by Ullman {37]. Not only is the query (8.1) easier to pose and simpler
to understand than the SQL query, but also the system has a great deal of flexibility
in optimizing how to find the result of the query. The system’s choice of which
relations to join (if there are several possibilities) might depend, for example, on
which indices are present. The system might be able to exploit the fact that whatever
relations in the database are joined together, the join (i.e., the join expression, as
defined in Section 7) is guaranteed to be monotone, and so, efficient. For, we are
only allowing joins over connected subsets S of R, which are themselves connected,
y-acyclic hypergraphs, since R is; and, because 8 is y-acyclic, it follows from Theorem
8.1 below that every connected join expression over § is monotone. (However, when
we project the result of the join onto the desired attributes, the number of tuples
might, of course, decrease.)

Languages such as SQL are considered “high-level,” since it is not necessary (o
state the access paths (such as which indices to utilize) explicitly. Similarly, we have
seen that in a y-acyclic database scheme, it is possible to make use of a still higher-
level language, in which it is not even necessary to specify which relations must be
joined to obtain the answer the user desires.

Aho and Kernighan [2] have developed a query system called “g.” Given a set X
of attributes, q searches through a “rel file” to determine which relations to join to
find the X relationship. If the database scheme obeys property (5), that is, if it is
y-acyclic, then a rel file is unnecessary.

Hypergraphs and Relational Database Schemes 537

(6) R has a loop-free Bachman diagram. 1f R is a hypergraph, then we define
Bachman(R) to be the hypergraph obtained by closing R under intersection. Thus, a
set S is in Bachman(R) if and only if either S € R or § is the intersection of two or
more members of R. We note that both Lien [31] and Yannakakis {38] include also
in Bachman(R) all singleton edges {4}, for each node 4. We do not do so, since (as
noted in [31]), this is really unnecessary. We leave to the reader the exercise of
showing that Bachman(R) is y-acyclic if and only if R is.

For our purposes it is convenient to define the Bachman diagram of R [5] t0 be an
undirected graph, with nodes the members of Bachman(R), and with an edge between
two nodes S and 7 of Bachman(R) iff (i) $ G 7, and (ii) there is no W in Bachman(R)
such that S WG T. (The usual definition has a direction on these edges and thus
yields a directed graph.) A loop-free Bachman diagram [31, 38] is a Bachman diagram
that is a tree. If Bachman(R) is loop-free, then we say that R has a loop-free Bachman
diagram. Yannakakis [38] discusses various properties of loop-free Bachman dia-
grams, and in particular shows the equivalence of properties (4) and (6).

(7} R has a unigue minimal connection among each set X of nodes. Assume that
the user wishes to obtain the projection onto X of the union of all lossless joins that
involve (among others) attributes X. For motivation as to why a user would wish to
obtain such a union, the reader is referred to [33, 37, 38].

If the database is consistent, then every lossless join (projected onto X) gives the
same answer, and so it is easy to take such a union. If we do not assume consistency,
then in general it might be quite an undertaking computationally to obtain such a
union. We now describe a situation where the union can be obtained via a single
lossless join, even if the database is not consistent.

In y-acyclic schemes, losstess joins correspond to connected joins (see property
(4)). Therefore we shall discuss connected, rather than lossless, joins.

Instead of assuming that the database is consistent, we shall make a weaker
assumption, which we call the subset condition. The subset condition says that
whenever R, and R; are relation schemes in the database scheme and Ry C R, then
r:§ R1] C ri, where r, is the R, relation in the database (i = 1, 2). Yannakakis [38] calls
the individual assumptions in the subset condition existence constraints. Existence
constraints are special cases of inclusion dependencies [12]. We note that Codd [17}
assumed existence constraints involving his E-relations.

Let X be a subset of the nodes of R, and let V be a connected set of &k distinct
members ¥, ..., ¥; of Bachman(R). Following Yannakakis [39], we say that ¥ is a
unique minimal connection (among members of X, or simply, among X) if (i) X C
Vil «-- U Vi, and (ii) whenever W = (W, ..., W,} is a connecied subset of
Bachman(R) with X C W, J --- U W,, then there are k distinet members W, ...,
W, of W (where k is the cardinality of V) such that ¥, C W',I, forl=j=<k

Yannakakis [39] observed that if R has a loop-free Bachman diagram (property
(6) above), then this set V can be obtained by simply taking the maximal members
of the smallest connected subgraph of the Bachman diagram of R that contains X. In
other words, let R,, ..., R, be a minimal (i.e., g is as small as possible) set of nodes
of Bachman(R) such that X C (R, U :-- U R,), and let V contain R; (1 = j = ¢)
precisely if thereisno p (1 < p < g) such that R, G R, .

We now mention an application of the unique minimal connection, which is of
important practical use when the database is not necessarily consistent. This appli-
cation was noted by Yannakakis [38]. (Yannakakis worked in the context of weak or
containing instances [28], but the results are equivalent toc what we shall state below.)

538 RONALD FAGIN

Assume now that the user requests an X relationship in the database, where X is
a set of attributes. At least in principle, the response of the system is as follows (we
neglect the issue of optimization, and describe the result in operational terms):

(1) For each relation scheme § in Bachman(R) but not in R, the system forms a new
relation s over S by letting s be U {r{S]:r € r and S is a subset of the relation
scheme of r}. (Here r is the database over R.) The result is a new database s over
Bachman(R), which contains all of the relations in the original database r, along
with new relations over relation schemes in Bachman(R) — R. It is easy to see
that since the original database r obeys the subset condition, so does the new
database s over Bachman(R).

(2) If V is the unique minimal connection among X, then the response of the system
to the user’s query is (}v)[X], where v is the subdatabase, over V, of s.

Let us denote by v this result (Xv){ X]. Let w = (}w)[X] be another X relationship.
That is, (a) W is a connected subset of Bachman(R), (b) X C U W, and (c) w is the
subdatabase over W. It follows easily from the definition of unique minimal connec-
tion that w C v.

Thus, not only does the system answer the query by taking a connected join, but
furthermore, this result contains every tuple that can be obtained by taking any
connected join (which contains the desired attributes). The philosophy is that this
response is probably what the user intends. If the user wants something different,
then he can explicitly spell out what he wants. Thus, in the usual case, the user can
specify what he wants in a high-level manner, and the system gives him a meaningful
response, which should correspond exactly to what he desires a large proportion of
the time. For a more extensive discussion of this philosophy, see [33, 37, 38].

Maier and Ullman [32] demonstrate another sense in which there is a unique
connection among each set of nodes in an a-acyclic hypergraph. Yannakakis® notion
of unique minimal connection is not only stronger, but, we believe, more natural.

ProoF OF EQUIVALENCE. We now show that the properties (1)-(7) described
above are equivalent.

TueOREM 8.1. Ler R be a connected hypergraph. The following are equivalent:

(1) R is v-acyclic.

(2) Every connected join expression over R is monotone.

(3) Every connected, sequential join expression over R is monotone.

(4) The join dependency MR implies that every connected subset of R has a lossless
Jjoin.

(5) There is a unique relationship among each set of attributes for each consistent
database over R.

(6) R has a loop-free Bachman diagram.

(7) R has a unique minimal connection among each set X of nodes.

Proor. Tt is convenient for us to introduce two new properties, which we shall
call properties (2') and (4'). We shall prove that (1) = (3} = (4"} = (4) = 2") == (1),
that (4) = (2) = (2", and that (4) = (5) = (4). Yannakakis shows that (4) and (6)
are equivalent [38] and that (6) and (7) are equivalent [39] (we shall not show these
equivalences). Taken together, these implications give us Theorem §.1.

It is an instructive exercise (left to the reader) to prove directly the equivalence of
(1) and (6). A helpful lemma is the fact (noted above) that R is y-acyclic if and only
if Bachman(R) is y-acyclic. It is also helpful to make use of Definition 3 of y-cyclicity.

Hypergraphs and Relational Database Schemes 539
We now define properties (2') and (4').

(2") Let @ be a connected join expression over R, let r be a consistent database over
R, and let (§, 0 82) be a subexpression of f. Then 6y(r) and #(r) are consistent.

If we replace “consistent database™ in (2") by “pairwise consistent database,” then it
is not hard io see that the result is exactly what (2) says. In particular, (2) = (27),
since every consistent database is pairwise consistent.

(4") Assume that 8 C R is connected, that r is a pairwise consistent database over R,
and that s is the subdatabase over 8, Then s is a projection of .

If we replace “pairwise consistent database” in (4°) by “consistent database,” then it
is not hard 1o see that the result is exactly what (4) says. In particular, (4)=> (4),
since every consistent database is pairwise consistent,

() => (3): Assume that (3) is false. We shall show that (1) is false, that is, that R
is y-cyclic. Since (3) is false, there is an ordering Ry, ..., Raof R= {Ry, ..., Rn}, 2
pairwise consistent database r = (r,, ..., r,) over R, and an integer j (1 = j< n) such
that

(a) {Ry ..., R} is connected foreach i (1 =i=n), and
(b) 7154 ... ™7 15 not consistent with 7,1,

We assume that j is minimal, so that (b) holds. Thus (r; M » - - M ;) is consistent with
Vit ifi < J

Denote (R; U -++ U R;) N Ryv1 by S. Thus S is the set of attributes that ri >4 « -
™ 7, has in common with ry.;, We know that (r; ™4 - ««) R)S] # 14 S], since ri @
+++ b4 7; 15 ot consistent with 774y,

Select k (1 < k = j) so that Rx M S is as big as possible (i.e., has as many nodes as
possible). Thus R, N S is no bigger than Ry N S if | =/ = j. We now show that
S & R:.. For, assume that S C Rs; we shall derive a contradiction. Since r is pair-
wise consistent, it follows that r, and r., are consistent. Thus 7S] = r..a[S]. By
our minimality assumption on j, we know that r, ™ ... M r, is consistent with
re, if 1 < i <j. Thus no tuples are lost in taking the sequence following of joins:

r1 M re,
(r1 M ry) ™ rs,

.

(o {(n™r)Xrg) -ne M)

Since k£ = j, it follows that rx is consistent with r, b ... b4 r;. Thus £,[S] =
(n ™ ... ™ r)[S] Since also 7S] = r.a[S], we have (rn ™M .. M 7)[S] =
t;+1[S]. This is a contradiction. So, § € R».

Since S € R., there is a node v; in § — R,. Since {R,, ..., R;} is a connected set
of edges, since Ry, is an edge in this set, and since v, is a node that appears in this set,
there are S4, ..., 8, such that

(i) S1= Ru,
@ $:N S =@, for 1l si<p,
(iit) each S.isone of Ry, ..., R, (1 =i=p),
(iv) m € S,, and
(v) p is as small as possible.

540 RONALD FAGIN

Thus 8y, ..., Sp is the shortest path (within (Ry, ..., R;}) from R to an edge
containing v,. In particular, v, € S., if 1 =< i < p. Note that Sy, ..., S, are distinct,
since Sy, ..., Sp is a shortest path.

Now Sp N S has no more nodes than R; N S, by maximality of R, N S. Since
Sy N § contains v;, which is not in Ry N S, it follows that R; N S contains a node v»
notin S, N S.

Find m (1 = m < p) as big as possible so that §,, contains vo. There is such an m,
since S, (=R;) contains v;. By (ii) above, we can find nodes x, (m < i < p) such that
X, € 8. N 8,.;. We now show that

(Sp, Y1, RJ+19 Va2, Sm, Xms Smetls Xmals « o+ » Xp-15 Sp) (82)

is a weak y-cycle. Note that v, and v; are both in R4, since they are both in § € Ry+1.
By construction, v, is in S, but not in S, for m < i < p; similarly, v; is in S, but not
in §;, for m < i < p. In particular, R+, Sp, and S are all distinct, and so (8.2)
contains at least three distinct edges. The nodes x, (m < i < p) are distinct, or else the
path Sy, ..., Sp could have been shorter. Further, v does not equal any x,, since v
is not in 8, if m < i < p. Similarly, v, does not equal any x,. Since we see also that
v % v, (because v, is in 5, and v; is not), this shows that all of the nodes vy, vz, Xy,
Xma1s . .« Xp-1 Of (8.2) are distinct. Similarly, the edges of (8.2) are distinct. It follows
from what we have just shown that (8.2) is indeed a weak y-cycle. Thus R is y-cyclic,
which was to be shown.

(3) = (4): Assume (3). Assume that § C R is connected, that r is a pairwise
consistent database over R, and that s is the subdatabase over S. We must show that
Ns is a projection of Kr.

Since § and R are each connected, there is an ordering R;, ..., R, of R such that

(3) S= {Ry, ..., Rx}, where m is the cardinality of S (thus the members of S form
an “initial segment” of the ordering Ry, ..., R.); and
(b) {Ry, ..., R) is connected for each i (1 = i< n).

Then (--- ((R. % Rz) 04 Ry) --- W R,) is a connected, sequential join expression
over R. By (3), it is monotone. It follows easily that ri 4 -- . & r, is a projection of
n™ - -- M7, for each J, and, in particular, for # = m. Thus, Xs is a projection of xr,
which was to be shown.

(4= (4): Already shown, in our comments after the definition of property (4'}.

(4) = (2): Assume (4). Let § be a connected join expression over R, let r be a
consistent database over R, and let (6 29 #;) be a subexpression of 8. To prove (2'),
we must show that ,(r) and 8,(r) are consistent,

Assume that ¢, is over S C R and that #; is over T C R. By connectedness of 8 we
know that S and T are each connected. Let s (tespectively, t) be the subdatabase
over S (respectively, T). By (4), each of s and it are projections of Mr. Hence, s
and tdt are consistent. Now 6y(r) = ids, and fx(r) = Xt. So 8(r) and &(r) are
consistent. This was to be shown.

(2y=>(1): Assume that (1) is false, that is, that R = {Ry, ..., R,} is y-cyclic. We
shall show that (2'} is false.
Since R is y-cyclic, we know by Definition 2 of y-cyclicity that R has a weak

Hypergraphs and Relational Database Schemes 541
'Y-CYCIC (S]_, X1, 52, X2, .0 vy Sy Xy Sm+1). Define
E= {Sg, S4, ey Sm, Si},

Ei=5,
E; = S,
F= Sz,
AL = x,
Az = X2

It is easy to see that E is a connected set of edges, that E, and E; are distinct edges
in E, that F is an edge not in E, and that 4, and A4, are distin¢t nodes such that

(i) A, isin £, but in no other edge of E,
(ii} A3 is in E; but in no other edge of E, and
(ll.l) Ax and A2 are in F.

Let r be a relation with attributes R, U - - - U R,, and with exactly two tuples. The
first tuple has all 0’s, and the second tuple has all 0’s except in the 4, and A4, entries,
where it has I’s. Letr = {r, ..., r.) be a database over R, where r; = r[R;] for each
i {1 =i=n). So, ris consistent.

Assume that the distinct members of E are £y, ..., En. Lete = {1, ... &.} be the
subdatabase of r over E, and let f be the member of r that is over F.

Clearly, e, X e is a relation with exactly four tuples: the (4., Az} entries of the four
tuples are, respectively, (0, 0), (0, 1), (1, 0), and (1, 1). The remaining entries of all
four tuples are all (°s. Also, e3 4 - - - X &, is a one-tuple relation, where the one tuple
has all s (recall that E3 U ... U E,, does not contain either 4, or 43). Thus, e1 ™ e;
™ ... M e, has exactly four tuples, where the (4,, A2) entries are as before and the
other entries are all 0’s. However, there are only two (4,, 4z) entries in f, namely,
(0,0) and (1, 1). So e; W «++ ™ ey, is not consistent with f.

Since {E\, ..., En}, {Ey, ..., En, F}, and R are each connected, there is an
ordering Ry, ..., R, of R such that

(a) E= {R,, ..., Rx} (i, E forms an initial segment),
(b) F = R, (that is, F is next after E), and
(€) {Ry, ..., R} is connected for each i (1 = i= n).

For each &, with | < k =< n, define the join expression 8; to be (- - - (R X R;) & Rs)
««« I Rz). Then 8, is a connected join expression over R. Also, (6 M Rpi) is a
subexpression of 8.. However, if r is the consistent database described eartier, then
0,.(t) is not consistent with R,...(r), that is, (1 ™ - - - 04 1) is not consisient with #,.+1,

since 71 P4 « o M ry =€ M <+« 4 €, and 7,541 = f. Thus (2') is false, which was to be
shown.

(4") => (2): This is the same as the proof that (4) = (2'), except that “pairwise
consistent™ is replaced by “consistent,”

(2)=(2): Already shown, in our comments after the definition of property (2).

(4) = (5): Assume (4); we shall show (5). Let r be a consistent database over R.
LetS=(8y,...,5}and T= {Ty,..., T} be connected subsets of R. Assume that
X CUS and X € UT. Let s (respectively, t) be the subdatabase of r over S
(respectively, T). By (4), we know that Ms is a projection of dr. Hence, (Ms)[X] =
(<r)[X]. Similarly, (0O[X] = Mar)[X]. Hence, (Ms)[X] = (»t)[X]. This was to be
shown.

542 RONALD FAGIN

(3) = (4): Assume (5); we shall show (4). Let r be a consistent database over R,
let S be a connected subset of R, and let s be the subdatabase of r over S. Let X =
US. By (5), we know that (Ms)[X] = (xar)[X], that is, s = (par)[X]. Hence, Ms is a
projection of bdr. This proves (4). O

9. Polynomial-Time Algorithms for Determining Degree of Acyclicity

We now show that there are polynomial-time algorithms for determining whether a
hypergraph is Berge-acyclic, a-acyclic, B-acyclic, and y-acyclic.

In the algorithms we now describe, we make no attempt at optimal efficiency,
since we are concerned here only with the question of polynomial-time recognition.
It is an interesting problem to find more efficient recognition algorithms.

9.1 BerGe-AcycrLiciTY. It is easy to see that the usual breadth-first search
algorithm for determining acyclicity of an ordinary undirected graph (in which we
start with an edge and propagate the graph outward while watching to see if it “folds
back on itself” by touching a previously used node) generalizes neatly and easily to
determining Berge-acyclicity. The simple details are left to the reader.

9.2 a-acycricrry. Beeri et al. {8] prove that the following simple algorithm,
called Graham’s algorithm [26, 40], is a test for a-acyclicity. The algorithm applies
the following two rules to R = {R,, ..., R,} repeatedly until neither can be applied:

(a) If A4 is 4n attribute that appears in exactly one R,, then delete A from R..
(b) Delete one R, if there is an R, with j = i such that R. C R,.

Intuitively, rules of type (a) remove attributes that cannot have any effect on
a-cyclicity or a-acyclicity, and rules of type (b) causes a hypergraph to be replaced
by its reduction.

If the algorithm terminates with the empty set, then the hypergraph is a-acyclic;
otherwise, the hypergraph is a-cyclic. We note that it is not hard to show that the
algorithm is Church-Rosser. That is, the set that the algorithm terminates with is
independent of the sequence of steps taken in executing the algorithm and depends
only on the input.

Example 9.1. Let us apply Graham’s algorithm to the hypergraph of Figure 3,
with edges ABC, CDE, EFA, and ACE. Nodes B, D, and F each appear in only one
edge, and so they are each deleted by applications of rule (a) of Graham’s algorithm.
We are then left with edges AC, CE, E4, and ACE. Now edge AC is a subset of edge
ACE, so by an application of rule (b) of the algorithm, this edge is deleted. This
leaves us with edges CE, EA, and ACE. Similarly, edges CE and EA are deleted by
applications of rule (b). We are then lefi with only one edge, namely ACE. Each of
the nodes 4, C, and E now appear in only on¢ edge, and so by applications of rule
(), they are each deleted. We are left with the empty set, and so the hypergraph is
a-acyclic. O

It is obvious that Graham’s algorithm is a polynomial-time algorithm. Tarjan and
Yannakakis [36] have recenily obtained a linear-time algorithm for determining
a-acyclicity.

9.3 B-acvcLiciry. We shall base our polynomial-time algorithm on Definition
1 of B-acyclicity; that is, we shall determine whether or not there is a S-cycle.

If (81, ..., Sm, Sms+) is & B-cycle (respectively, pure cycle), then we say that
(81, 82, 83) begins the f-cycle (respectively, pure cycle).

Hypergraphs and Relational Database Schemes 543

We now give a polynomial-time algorithm for determining whether & =
(S1, S3, 53) begins some B-cycle of R, if S, Sz, and S: are distinct ¢dges in R. Let
X=85NS:N S8, and let §;, =8, - X, fori =12, 3. If either $7 N 53 or
8§32 N Siis empty, then & does not begin any B-cycle of R. Therefore, assume that

1N S2and 83 N § are both nonempty.

Let T={EER(E=S8)or(E=S;)or(X& Eand EN S} = 2)}. Note in
particular that S: € T. Let T' = (£ — X:E € T}. In particular, §$1 and S5 are in T".
We now show that 8% and S} are in the same connected component of T' if and only
if % begins a 8-cycle of R.

Assume first that & begins a 8-cycle (S5, Sz, S, ..., Sm+1) of R (where, of course,
Sm+1 = S1). Then it is easy to see that §1 N --- N 8, = §1 N $; N Ss, that is,
SiN+.« N S, = X It is clear that §1 and 8% are then in the same connected
component of T'. Conversely, assume that S| and S5 are in the same component of
T.Find EY, ..., E}in T such that

(iy E1= 8%,
(i) Ei=
(iii) E{ N Ej., #J, and
(iv) k is as small as possible.

It is then easy to see that (S, S%, S5, E3, Ej, ..., Eb) is a pure cycle (in particular,
by construction of T/, we kn W that E; N S5 = @ for 2=<i<k).Define E;=E1U X,
forl i<k By constructmn of T' we know that each E; is an edge in R. S0 (8, Sz,
S3, Ep, Ej, ..., Ez) is a B-cycle.

There is a polynonﬁal-time algorithm for determining connected components of a
hypergraph (such as T'). The algorithm is the obvious generalization of the usual
algorithm in the case of ordinary undirected graphs for determining connected
components. S0, there is a polynomial-time algorithm for determining whether &
begins a 8-cycle.

Our polynomial-time algorithm for determining B-acyclicity goes as follows.
Systematically cycle through all triples & = (S, Sz, Ss) of three distinct edges of R
to see if at least one such & begins a B-cycle. If so, then R is B-cyclic; otherwise, R
is B-acyclic.

Graham [27] states that he has found a polynomial-time algorithm for determining
whether a hypergraph has a Graham cycle. Thus, by the equivalence of Definition
4 of B-cyclicity with the other definitions, this gives another polynomial-time algo-
rithm for determining 8-acyclicity.

9.4 y-acycuciry. The following algorithm for testing y-acyclicity is due to
D’Atri and Moscarini [18]. It is similar in spirit to Graham’s algorithm for determin-
ing a-cyclicity.

Apply the following rules repeatedly, in any order, until none can be applied:

(a) If a node is isolated (i.e., if it belongs to precisely one edge), then delete that
node.

(b) If an edge is a singleton (ie., if it contains exactly one node), then delete that
edge (but do not delete the node from other edges that might contain it).

{c) If an edge is empty, then delete it.

(d) If two edges contain precisely the same nodes, then delete one of these edges.

(e) If two nodes are edge-equivalent, then delete one of them from every edge that
contains it. (Recall that two nodes are edge-eguivalent if they are in precisely the
same edges.)

544 RONALD FAGIN

FIGURE 22

The algorithm clearly terminates. If the end result is the empty set of edges, then the
original hypergraph is y-acyclic; otherwise, it is y-cyclic.

As in the case of Graham’s algorithm, we note that it is not hard to show that this
algorithm is Church-Rosser.

Remark. We shall often apply rule (d) implicitly, by simply dealing at all times
with a set of edges (which has the effect of automatically removing duplicates). Also,
it is natural to apply rule (c), the deletion of an empty edge, implicitly.

Exampie 9.2. Let us apply this algorithm to the hypergraph of Figure 22. The
edges are

B C D E F
4 B C D
C
C D
E F

(For convenience, we have put common vertices in the same column.) Node A is
isolated, and edge {C} is a singleton, so both are deleted, by rules (a) and (b). This
leaves us with

B C D E F
B C D
C D
E F

Nodes E and F are edge-equivalent, and so, by rule (e), we delete F from both edges
that contain it. Similarly, nodes C and D are edge-equivalent, and so we delete D
from all three edges that contain it. We are left with

B C E
B C
C
E

The third and fourth edges above are singletons, and so they are eliminated. This
leaves

Hypergraphs and Relational Database Schemes 545

Node £ is isolated; after it is deleted, we are left with
B C

B C
These edges are identical, so we delete one by rule (d). We are left with
B C

Both nodes are now isolated, and so they are deleted. We are left with a single empty
edge, which is deleted by rule (). The end result is the empty set of edges, and so the
original hypergraph is y-acyclic. [

THeOREM 9.3. The algorithm just described correctly determines whether or not a
hypergraph is y-acyclic.

ProoF. Assume first that the hypergraph is y-cyclic. By Definition 1 we know
that the hypergraph has a y-cycle (81, x1, Sz, X2, . . ., Sm, Xm, Sm+1). It is easy to verify
inductively on the number of steps that have been applied so far in running the
algorithm (where a step consists of one application of a rule) that for each i
(1 =i = m), whenever a rule of the algorithm is applied, then either x; or some node
that is edge-equivalent to x, at the time the rule is applied remains undeleted. In
particular, after each step a y-cycle of size at least m remains. Therefore, when the
algorithm terminates, there is a y-cycle of size at least m. Hence the algorithm does
not terminate with the empty set, and so the algorithm correctly determines that the
hypergraph is y-cyclic.

Conversely, assume that the algorithm says that the hypergraph is y-cyclic. We
must show that the hypergraph is indeed y-cyclic. Assume that the hypergraph is
y-acyclic; we shall derive a contradiction. Since the hypergraph (call it) is
y-acyclic, we know by Definition 1 that 5 has no y-cycle. Let 3 be the hyper-
graph that is the end result of applying the algorithm to the hypergraph 2. It is easy
to see that when one of the rules in the algorithm is applied to a hypergraph with no
y-cycle, then the result is a hypergraph with no y-cycle. It follows inductively (on the
number of steps) that since 5 has no y-cycle, neither does . Thus 2 is y-acyclic.
Since none of the rules in the algorithm can be applied to 27, it follows that each
edge of 2 contains at least two nodes, each node is contained in at least two edges,
and no two distinct nodes are edge-equivalent.

Let us say that a hypergraph is nesting if for each pair (E;, Ez) of edges, ¢ither
(a) Er C Es, (b)Y E; C Ey, or (¢) £y N Ex = . Thus every pair of edges is either
comparable or disjoint. Let us call a hypergraph intersecting if it is not nesting, Thus
a hypergraph is intersecting precisely if it has a pair of incomparable, nondisjoint
edges.

We shall make use of the following simple fact several times.

Fact |. Let J be a nesting hypergraph, and let E be a minimal edge of 7 (i.e., there
is no edge E’ of .# such that E' G E). Then the nodes of E are all edge-equivalent.

Proor oF Fact 1. Let .# be a nesting hypergraph, let £ be a minimai edge of
4, and let x and y be distinct nodes of E. We must show that x and y are edge-
equivalent. Assume not. Then there is an edge F that contains exactly one of x or »,
say x. Since E is minimal, we know that F ¢ E. Thus there is a node z in F but not
E. Since also p is in £ but not F, and since x is in E N F, it follows that E and F are
incomparable and nondisjoint. This is a contradiction (since .# is nesting), which
proves Fact 1.

546 RONALD FAGIN

Let us say that a node in a hypergraph is bad if either (a) it is in exactly one edge,
or (b} it is edge-equivalent to another node. If E, and E, are distinct edges, then let
us say that the pair (E\, Ez) is a bad pair of edges if there is a bad node in each of the
set differences E; — E; and E: — E;.

Let us say that a hypergraph is nonsingular if every edge has at least two nodes.
We shall prove the following.

Facr 2. Every y-acyclic, intersecting, nonsingular hypergraph has a bad pair of
edges.

We now show that Fact 2 gives us a contradiction. As we showed, the hypergraph
' defined above is y-acyclic and nonsingular and has no bad nodes. We now show
that 5 is intersecting. Assume not. Then 5" is nesting. Let E be a minimal edge of
2. Edge £ (and every edge of 57} has at least two nodes. Let x and y be distinct
nodes of E. By Fact 1, we know that x and y are edge-equivalent. But #” has no pair
of distinct edge-equivalent nodes. This contradiction shows that 3 is intersecting.
Since J# is y-acyclic, intersecting, and nonsingular, it follows from Fact 2 that 2%’
has a bad pair of edges, and s0 #” has a bad node. But " has no bad node. This is
the desired contradiction. Thus we need only prove Fact 2 to prove the theorem.

We shall prove Fact 2 by induction on the number of edges in the hypergraph.
The base case (of hypergraphs with only one edge) is immediate, since no hypergraph
with only one edge is intersecting. Assume that Fact 2 holds for hypergraphs with
less than » edges, and let # be a hypergraph with n edges that is y-acyclic, intersecting,
and nonsingular. We must show that # has a bad pair of edges.

Since # is intersecting, it has a pair (E, F) of edges that are incomparable and
nondisjoint. Find such a pair (E, F) such that £ N F is as small as possible. Thus, if
E’ and F’ are incomparable and nondisjoint edges of &, then |E'N F'|= |EN F|.
(Here | X| is the cardinality of set X.)

Since ¢ is y-acyclic, it follows from Definition 4 that in the hypergraph that results
by removing E N F from every edge, what is left of E is not connected to what is left
of F. Let us write EN Fas Q. Let ¢ be a hypergraph with the same nodes as ¢ and
whose edges are precisely those edges of ¢ that are not subsets of @. Note that £ and
F are each edges in %, since they are incomparable and their intersection is Q. For
%, too, it is the case that in the hypergraph that results by removing @ from every
edge, what is left of E is not connected to what is left of F. We can thus partition the
edges of ¥into two disjoint sets &£ and F such that £ € £and F € &, and such that

whenever E'€ 4 and F' € # then E'NF CQ. .10

Since we have several hypergraphs we are now dealing with (namely, &, %, %, and
F), it is convenient for us to subscript the notion of “bad” with the hypergraph we
are discussing. For example, if we say that x is a badg node, we mean that either (i) x
1s in exactly one edge of &, or else (ii) x is edge-equivalent (with respect to &) to
another node of &, that is, x is in precisely the same edges of & as another node of
&. Similarly, we can speak of a bad, pair of edges, etc.

We now prove three simple facts, each of which we shall use several times.

Fact 3. Each edge of & either contains Q or is disjoint from Q.

Proor oF FAcT 3. Assume that Fact 3 were false. Let E’ be an edge of & that
neither contains @ nor is disjoint from @. Now @ ¢ £, by assumption, and so @ €
E’ N F. If we put this together with the fact that £’ N F € Q (which we know by
(9.1), it follows that £’ N F is strictly smaller than Q = E N F. Also, E’ and F are

Hypergraphs and Relational Database Schemes 547

nondisjoint, since by assumption E’ and @ = E N F are nondisjoint. Now E' €
C %, and by definition of % no edge of ¥ is contained in Q. Therefore E' € Q.
Hence thereisanode ein E' — Q. Bwt E'NFC @by (9.1), andso e & F. Since e €
E’' — F,we know that £' ¢ F. Further, FC E: for, { FC E',then F=E'NFCQ
C E, where the next-to-the-last inclusion follows from (9.1); however, by our choice
of E and F, we know that F ¢ E. We have shown in this paragraph that £’ and F are
incomparable and nondisjoint, and that E’ N F is strictly smaller than EN F. This
contradicts our minimality assumption in the choice of (E, F). Therefore, Fact 3 is
proved.

Fact 4. Assume that node a is in exactly one edge of & and that a & Q. Then a is
badl.

Proor oF Fact 4. Tt is sufficient to show that a is in exactly one edge of £ Let
E’ be the edge of & that contains a. Assume that g is in another edge [of ¢ other
than E’. By assumption, we know that / & & If I € #, then by (9.1) we know
a € Q, a contradiction. So I & ¥ Therefore, I € # — % But then a € Q by definition
of % This contradiction completes the proof of Fact 4.

FACT 5. Assume that a and b are nodes in & that are edge-equivalent with respect
to & Assume also that neither a nor b is in Q. Ther a is bad,.

ProoF oF FAcT 5. Let I be an edge of ,# that contains node 4. Then f € ¥, since
otherwise @ € I C Q, a contradiction. We now show that J € & For if not, then I €
% — &= #, 50 ais anodein both & and % and so by (9.1) it follows thata € Q, a
contradiction. We have shown that each edge of # that contains node a is an edge in
&. Similarly, the same is true about node b. Since a and b are edge-equivalent with
respect to &, it then follows immediately that @ and b are edge-equivalent with respect
to % Thus a is bad,. This completes the proof of Fact 5.

Now that Facts 3-5 are proved, we return to the proof of Fact 2 (which will
complete the proof of the theorem).

We shall show that there is a bad,;node e which is an edge E, of £ but which is not
in Q. Identically, it follows that there is a bad,;node f which is in an edge F; of # but
which is not in Q. From (9.1), wesee that E; N F; € Q. Since e € Eyand e & Q, it
follows that e & Fy. Thus e € E; — F;. Similarly, f € F, — E,. So (Ey, F1) is a bady
pair of edges. Hence, there is a bad; pair of edges, which is exactly what we wished
to show to complete the proof.

Thus, we need only show that & contains an edge E, that contains a bad, node e
where e € Q. There are two cases.

Case }. & is nesting. There are two subcases.

Case la. There is an edge of & that is disjoint from F. Let G be a minimal edge
of &. Since some edge of & is disjoint from F, and since £ is nesting, it is clear that G
is disjoint from F. Let a and b be two distinct nodes of G. By Fact 1, nodes a and b
are edge-equivalent with respect to &. Since G is disjoint from F, it follows that
neither a nor b is in @ (because Q C F). By Fact 5, a is bad,. Therefore, a is the
desired bad, node which is in an edge of & but not in Q.

Case 1b. No edge of & is disjoint from F. Let G be a maximal edge of £ Then
@ S E C G (where the last inclusion holds since G is maximal and & is nesting).
Therefore, since G is maximal and £ is nesting, it is clear that G contains a node ¢
that is not in any other member of & and not in Q. By Fact 4, we know that e is bad,.
Therefore, ¢ is the desired bad, node which is in an edge of £ but not in Q.

548 RONALD FAGIN

Case 2. & is intersecting. Since # is y-acyclic and nonsingular and & C # it
follows that & is y-acyclic and nonsingular. Therefore, by our inductive assumption
about Fact 2, we know that £ has a bad, pair (E,, Ez) of edges. Let ¢, be a bad, node
in E; — Es, and let e; be a bads node in E» — E,. We now show that it is impossible
for both e; and e to be in (. For, assume that ¢; and e: are both in (. Since ¢; €
E, N Q, we know that E; is not disjoint from Q. So, by Fact 3, it follows that
Q C E,;. Since e; € (, it follows that e; € Ey, which is a contradiction. Therefore, one
of &) or e, say ey, is not in . Since ¢, is bad,, we know that either (i) &, is in exactly
one edge of &, or else (1) e is edge-equivalent (with respect to &) to another node e}
of & In case (i) it follows from Fact 4 that ¢; is the desired bad, node which is in an
edge of & but not in Q. So we can assume that case (ii) holds. If €] & @, then it
follows from Fact 5 that once again e, is the desired bady node which is in an edge
of £but not in Q. Therefore, we can assume that) € Q.

Since e, & E; and since e, and e are edge-equivalent (with respect to &), it follows
that e} & E». So, since &f € Q, it follows that ¢ € E;. Since ¢ ¢ E», it follows from
Fact 3 that Q is disjoint from E,. Since ¢, is bad,, we know that either (i) &: is in
exactly one edge of &, or else (ii) ¢: is edge-equivalent (with respect to &) to another
node e3 of £ Now e: & (2, since Q is disjoint from E,. Therefore, in case (i) it follows
from Fact 4 that e; is the desired bad,node which is in an edge of £ but not in Q. So
we can assume that case (i) holds. Now ez &), since @ is disjoint from E..
Therefore, it follows from Fact 5 that once again, &, is the desired bad, node which
is in an edge of & but not in Q. This completes the proof. [I

We note that the above proof was inspired by the proof in [8] that Graham’s
algorithm recognizes precisely the a-acyclic hypergraphs.

The algorithm clearly runs in polynomial time. We remark that Yannakakis [38)
shows that if R has a loop-free Bachman diagram, then | Bachman(R)| < |R}| + 2| U],
where U = UR is the set of all attributes. This provides another polynomial-
time algorithm for determining y-acyclicity, which we now describe. Start com-
puting Bachman(R), but stop and announce y-cyclicity if it becomes bigger than
IR| + 2| U]. Once Bachman(R) is computed (if we have not stopped and announced
y-cyclicity already), form the Bachman diagram of R, and see if it is loop-free.

10. Conclusions

We have discussed the concepts of a-acyclicity, S-acyclicity, and y-acyclicity for
hypergraphs and for relational database schemes. These are all distinct, and each
corresponds precisely to various desirable properties of relational database schemes.
These concepts are also of interest from a graph-theoretic viewpoint, as natural
generalizations of the notion of acyclicity from graphs to hypergraphs.

ACKNOWLEDGMENTS. The author is grateful to Shel Finkelstein and Jorma Rissanen
for interesting discussions about Theorem 8.1(4) that led the author to consider the
concept of y-acyclicity. He is aiso grateful to Nat Goodman, Marc Graham, Dave
Maier, Alberto Mendelzon, Oded Shmueli, Jeff Ullman, and Mihalis Yannakakis
for helpful discussions. Special thanks go to Moshe Vardi for his careful reading
of the paper and numerous suggestions, including a way to simplify the proof of
Theorem 9.3.

REFERENCES
{Note. Reference [9] is not cuted in the text.)

1. AHO, A.V., Beery, C,, AND UriMan, I.D. The theory of joins in relational databases. ACM Trans.
Darabase Syst. 4, 3 (Sept. 1979), 297-314

Hypergraphs and Relational Database Schemes 549

10.
1.

12,

13

14.

15.

19.

20.

2L

22

23.

24

25.

26.

27
28
29

30
31
32

. AHO, AV, anD KERNIGHAN, B.W. Private communication, Nov. 1981,

ATZERL, P., AND PARKER, D S, JR. Assumptions in relatonal database theory. In Proc. Ist ACM
SIGACT-SIGMOD Symp on Principles of Database Systems (Los Angeles, Calif., Mar. 29-31, 1932),
ACM, New York, 1982, pp. 1-9.

. AUSIELLO, G, IDYATRI, A, AND MoscariNl, M. Minimal coverings of acyclic database schemata.

Proc. ONERA-CERT Toulouse Workshop on Logical Bases for Data Bases, Toulouse, France, 1982,
BacumMan, C.W. Data structure diagrams. Data Base 1, 2 {1969), 4-10.

Bating, C., D’ATRI, A, AND MoscariN, M Formal tools for top-down and bottom-up generation
of acyclic relational schemata. Proc 7th Int. Conf. on Graph-Theoretic Concepts in Contputer Scaence,
Linz, Austria, 1981.

. Beerl, C., FAGIN, R, MAIER, D, MENDELZON, A.O , ULLMAN, J D, AND YANNAKAKIS, M. Properties

of acyclic database schemes. In Proc. 13th Arn. ACM Symp. on Theory of Computing (Milwaukee,
Wisc., May 11-13, 1981), ACM, New York, 1981, pp. 355-362.

. Beery, C., FacIn, R, MaIer, D, aND YaNNakakis, M. On the desirability of acyclic database

schemes. J. ACM 30, 3 (July 1983), 479-513

. BEerl, C, MENDELZON, A.O, SaGly, Y., AND ULiman, .D. Equivalence of relational database

schemes SIAM J Comput. 10, 2 (June 1981), 352-370

BeraEe, C. Graphs and Hypergraphs. North-Holland, New York, 1976.

BERNSTEIN, P.A,, AND GooDMaN, N. The power of natural semijoins. STAM J. Comput. 10, 4 (Nov.
1981), 751-771.

CAsANOVA, MLA,, FAGIN, R, AND ParapiMITRIOU, C. Inclusion dependencies and their interaction
with functional dependencies. In Proc. ACM Symp on Prmciples af Database Systems (Los Angeles,
Cabf, Mar. 29-31, 1982), ACM, New York, 1982, pp. 171-176

CHAMBERLIN, D D., ASTRAHAN, M.M., EswaraN, K.P., GrirritHs, P.P.,, LoniE, R.A., MEHL, W,
RESNER, P, AND WaDE, BW, SEQUEL 2: A unified approach to data definition, manipulation,
and control. JBM J Res. Dev. 20, 6 (Nov. 1976), 560-375

Crase, K. Join graphs and acyclic data base schemes. In Proc. 7th Int. Conf. on Very Large
Databases (Cannes, France, Sept 9-11, 1981), ACM, New York, 1981, pp. 95-100.

Copp, EF. Further normalization of the database relational model. In Data Base Systems, Courant
Computer Science Symposia 6, R Rustin, Ed, Prentice-Hall, 1971, pp. 65-98.

. Cobp, E.F. Recent mvestigations mto relational database systems. In Proe. IFIP Congress 74,

North-Holland, New York, 1974, pp. 1017-1021.

. Copp, EF. Exiending the database relational model to capture more meaning. ACM Trans.

Database Syst. 4, 4 (Dec. 1979), 397-434.

. D’Atrr, A, anD MoscariNg, M. Acyclic hypergraphs: Their recogeition and top-down versus

bottom-up generation. Tech. Rep. R.29, Consiglio Nazionale Delle Richerche, Istituto di Analiss dei
Sistenu ed Informatica, 1982.

Facin, R. The decomposition versus the synthetic approach to relational database design. In Proc.
3rd Int. Conf. on Very Large Databases (Tokyo, Japan, Oct. 6-8, 1977), ACM, New York, 1977, pp.
441-446 Also in Tutorial: Data Buse Management in the 1980s, J A. Lacson and FLA. Freeman, Eds.,
[EEE, NY, 1981, pp. 269-274.

Faem, R A normal form for relatonal databases that 1s based on domains and keys. ACM Trans.
Database Syst. 6, 3 (Sept 1981), 387415.

Facin, R. Horn clauses and database dependencies. J. 4CM 29, 4 (Oct. 1982), 952-985. Extended
abstract appeared in Proc 12th Ann. ACM Symp. on Theory of Computing (Los Angeles, Calif,, Apr.
28-30, 1980), ACM, New York, 1980, pp. 123-134,

Facm, R, MENDELZON, A.O., aND UriMan, I.D. A simphfied umivessal relation assumption and
its properties. ACM Trans. Database Syst 7, 3 (Sept. 1982), 343-360.

GoopMaN, N, AND SHMUELL, O Characterizations of tree database schemas. Tech. Rep., Harvard
Univ,, Cambridge, Mass., 1981

GOODMAN, N, AND SHMUEL], Q. Private commumecation, Jan 1982,

GoobMman, N, aND SHMUELL, Q. Tree quenes: A simple class of relational queries. ACM Trans.
Database Syst. 7, 4 (Dec. 1982), 653-677.

GrataM, M\H. On the unwversal relation. Tech Rep, Univ. of Toronto, Toronto, Ont., Can., Sept.
1979

GramaM, MH. Facts about CAG-C database schemas Unpublished manuscript, Sepi. 1981
HoNevyMan, P Testing satisfaction of functional dependencies. J ACM 29, 3 (July 1982), 668-677.
HuiLrL, R Acychic jomn dependency and database projections. Tech. Rep., Univ of Southern Califor-
ma, Los Angeles, Calif , June 1981.

Kanw, J., KLEITMAN, D., AND LINIAL, W Private communication, Aug. 1982.

LN, Y.E On the equivalence of database models. J. ACM 29, 2 (Apr. 1982), 333-363.

Mater, D., anp ULiman, JD. Connections m acyclic hypergraphs. In Proc. ACM Symp. on

550 RONALD FAGIN

33.

34,

35.

36.

37.
38

39.
. Yu, C.T,, AN OzsovoGLU, M.Z. An algorsthm for tree-query membership of a distzibuted query.

41.

Principles of Database Systems (Los Angeles, Calif,, Mar. 29-31, 1982), ACM, New York, 1982, pp.
34-39.

MAIER, D., ULLMAN, J.D, AND VARDL, M Y. The revenge of the JD. In Proc. 2nd ACM Symp. on
Principles of Database Systems (Atlanta, Ga., Mar 21-23, 1983), ACM, New York, 1983, pp. 279-287.
Ri1ssAKEN, J. Theory of relations for databases—A tutorial survey. In Proc. 7rh Symp. on Mathe-
matical Foundations of Computer Science, Lecture Notes in Computer Science 64, J. Winkowski, Ed.,
Springer-Verlag, New York, pp. 537-551.

Saciv, Y Can we use the universal instance assumption without using nulls? In Proc. Int. Conf. on
Management of Data (Ann Arbor, Mich., Apr. 29-May 1, 1981), ACM, New York, 1981, pp 108-120.
Tarian, R.E., AND Yannakakis, M. Simple linear-time algorithms to test chordality of graphs, test
acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. Tech. Rep., Bell Labs, Murray
Hill, N.J., Mar. 1982.

ULiMan, JD. The U.R. strikes back. In Proc. ACM Symp. on Principles of Database Systems (Los
Angeles, Cahf., Mar. 29-31, 1982), ACM, New York, 1982, pp. 10-22

YAKNAKAKIS, M. Algonthms for acyclic database schemes. In Proc 7th Int. Conf on Very Large
Databases (Cannes, France, Mar. 29-31, 1982), ACM, New York, 1982, pp. 82-94.

YANNARAKIS, M. Pnvate communication, Sept. 1981.

In Proc 1979 IEEE COMPSAC, IEEE, New York, 1979, pp. 306-312.
ZanioLo, € Analysis and design of relational schemata for database systems. Ph D). Dassertation,
Umwv. of Cahfornia, Los Angeles, Calif, July 1976, available as Tech. Rep UCLA ENG-7669.

RECEIVED DECEMRER 1981; REVISED JULY 1982, ACCEPTED SEPTEMBER 1982

Journal of the Association for Computing Machinery, Voi 30, No 3, July 1983

