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Abstract. Database schemes (winch, intuitively, are collecuons of table skeletons) can be wewed as 
hypergraphs (A hypergraph Is a generalization of an ordinary undirected graph, such that an edge need 
not contain exactly two nodes, but can instead contain an arbitrary nonzero number of nodes.) A class of 
"acychc" database schemes was recently introduced. A number of basic desirable propemes of database 
schemes have been shown to be equivalent to acyclicity This shows the naturalness of the concept. 
However, unlike the situation for ordinary, undirected graphs, there are several natural, noneqmvalent 
notions of acyclicity for hypergraphs (and hence for database schemes). Various desirable properties of 
database schemes are constdered and it is shown that they fall into several equivalence classes, each 
completely characterized by the degree of acycliclty of the scheme The results are also of interest from a 
purely graph-theoretic viewpomt. The original notion of aeyclicity has the countermtmtive property that 
a subhypergraph of an acychc hypergraph can be cyclic. This strange behavior does not occur for the new 
degrees of acyelicity that are considered. 

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory--graph algorithms; 
trees; H.2.1 [Database Management]: Logical Design--normal forms;, schema and subschema; H 3.3 
[Information Storage and Retrieval]' Information Search and Retrieval--query formulation 
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1. Introduction 

A hypergraph is a pa i r  (./if,, 8 ) ,  where  Jf f is  a f ini te  set o f  nodes a n d  8 is a set o f  
edges (or  hyperedges) which  a re  a rb i t r a ry  n o n e m p t y  subsets  o f  ~ A n  o r d i n a r y  
und i r ec t ed  g r a p h  (wi thout  self- loops)  is, o f  course,  a h y p e r g r a p h  where  every  edge  
has  exac t ly  two nodes.  A specia l  class o f  hype rg raphs ,  ca l led  acyclic, has  recent ly  
been  i n t roduced  [7, 8, 22, 23]. W e  shal l  cal l  this  class ¢t-acyclic in this  paper .  T h e r e  
is a n a t u r a l  co r r e spondence  be tween  d a t a b a s e  schemes,  each  o f  which  can  be  though t  
o f  as a col lec t ion  o f  tab le  skeletons,  as in  F igu re  1, a n d  hyperg raphs .  F o r  example ,  
the  h y p e r g r a p h  o f  F i g u r e  2 co r re sponds  to the  d a t a b a s e  scheme o f  F i g u r e  1. A 
d a t a b a s e  scheme is sa id  to be  a -acyc l i c  prec ise ly  i f  the  co r r e spond ing  h y p e r g r a p h  is. 
Eve ry  ~t-acyclic da t abase  scheme enjoys  a n u m b e r  o f  des i rab le  proper t ies ,  each  o f  
which  is in  fact  equ iva len t  to a -acyc l i c i ty  [7, 8, 22, 23, 25, 32]. F u r t h e r  [38], there  a re  
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problems that are NP-complete in general, but which have polynomial-time algo- 
rithms under the assumption of a-acyclicity. 

There are other, even nicer properties of database schemes that are too strong to 
be obeyed by all a-acyclic database schemes. We study some such properties and 
characterize graph-theoretically those database schemes which enjoy these properties. 
Once again, the properties fall into equivalence classes, which correspond to natural 
"degrees of acyclicity" for hypergraphs. For, unlike the situation for ordinary, 
undirected graphs, there are a number ofinequivalent, natural definitions of acyclicity 
for hypergraphs. It is appropriate to speak of "degrees of acydicity," rather than 
simply "types of acychcity," since it turns out that there is a linear ordering of the 
strengths of the types of acyclicity we consider; the weakest (least restrictive) is the 
previously studied notion of a-acyclicity. 

Our new degrees of acychcity remedy a mathematically unnatural property of the 
earlier notion of a-acyclicity; namely, it is possible for a hypergraph to be a-acyclic 
but have an t~-cyclic subhypergraph. (A subhypergraph contains a subset of the edges 
of the original hypergraph.) This strange phenomenon does not occur for our new 
degrees of acyclicity. 

Each of the degrees of hypergraph acyclicity that we consider is a generalization 
of the concept of acyclicity for ordinary undirected graphs; that is, an undirected 
graph is acyclic in the usual sense if and only if it is "acyclic," when viewed as a 
hypergraph, for any of our notions of "acyclic." 

There is an analogy between degrees of acyclicity for database schemes and normal 
forms [ 15, 20] for relation schemata (a relation scheme along with its set of depend- 
encies [21]). For, there is a hierarchy of normal forms for relation schemata, each 
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normal form being more restrictive than its predecessor. Codd has argued that we 
should not insist that a relation schema be in a given normal form. Rather, the 
database designer should be aware of the issues and have a warning flag that if the 
relation schema is not in a given normal form, then certain problems may arise. An 
identical comment applies to the question of whether a database scheme should obey 
a given degree of acyclicity. In practice, it might be reasonable to try to attain a given 
degree of  acyclicity in a user's view (which involves only a portion of  the database), 
rather than in the whole database scheme. This might be attainable, for example, by 
renaming attributes. An example is given in Section 8. 

We now give an example of a natural database property that is equivalent to one 
of our degrees of acyclicity ("y-acyclicity"). Assume that there are (among others) an 
EMP__INFO relation with attributes (column names) EMP (for "employee"), DEPT, 
and SALARY, and a DEPT___INFO relation with attributes DEPT, CITY, and 
MGR. An example of an "(EMP, CITY} relationship" is obtained by joining 
together the EMP__INFO and the DEPT__INFO relations on DEPT and projecting 
the result on EMP and CITY. It is conceivable that there could be other (EMP, 
CITY} relationships, obtained by taking one, two, or more other relations and 
joining them together in some manner and then projecting the result onto EMP and 
CITY. However, we show that a database scheme is y-acyclic if and only if for every 
set X of attributes (such as (EMP, CITY}) and every consistent database over the 
scheme, there is a unique X-relationship. 

Thus, in the above example, if the database scheme is 7-acyclic and the database 
is consistent, then there is a unique {EMP, CITY} relationship. This fact has a 
number of useful corollaries. For example, an SQL query [13] to fred all EMPs 
associated with the CITY San Jose would be 

SELECT EMP 
FROM EMP__INFO, DEPT__INFO 
WHERE EMP INFO.DEPT -- DEPT__INFO.DEPT 
AND DEPT___INFO.CITY -- 'San Jose'. 

However, by y-acyclicity it is possible instead to unambiguously pose the query 

SELECT EMP WHERE CITY = 'San Jose'. (1.1) 

The desirability of being able to pose queries such as (1.1), with such a simple syntax, 
has been discussed by UUman [37]. Not only is the latter query easier to pose and 
simpler to understand than the SQL query, but also the system has a great deal of  
flexibility in optimizing how to f'md the result of the query. The system's choice of 
which relations to join might depend, for example, on which indices are present. 

Languages such as SQL are considered high-level, since it is not necessary to 
explicitly state the access paths (such as which indices to utilize). Similarly, in a 
y-acychc database scheme it is possible to make use of a still higher level language, 
in which it is not even necessary to specify which relations must be joined to obtain 
the answer the user desires. 

We now discuss the organization of the paper. If  all the reader cares about are the 
database properties (as opposed to graph-theoretic properties), then he can simply 
skim Sections 2-6; for example, such a reader need only note one of the various 
equivalent det'mitions of a given degree of acyclicity. In Section 2 we present some 
basic definitions and define a-acyclicity. In Section 3 we define Berge's [10] noUon 
of acyclicity. In Section 4 we give several natural but different-looking definitions of 
one of our new degrees of acyclicity, namely, fl-acyclicity, and prove that the 
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detrmitions are equivalent. We also discuss the desirability of  ~-acyclic database 
schemes. In Section 5 we define -t-acyclicity and prove the equivalence of  various 
definitions of  y-acyclicity. In Section 6 we prove that Berge-acyclicity =* -t-acyclicity 
=* fl-acyclicity ~ o~-acyclicity but that none of  the reverse implications hold. We also 
contrast features of  the various degrees of  acyclicity and discuss their naturalness. In 
Section 7 we define join expressions, which correspond to "programs" for taking 
joins, and discuss some of their properties ( join expressions are useful for the 
discussion in Section 8). In Section 8 we describe a number of  desirable properties of  
database schemes, involving monotone-increasing joins and unique relationships 
among attributes, such that each property is equivalent to the scheme being ~,-acyclic. 
In Section 9 we give polynomial-time algorithms for determining the degree of  
acyclicity. In Section 10 we present our conclusions. 

2. a-acyclicity 

Let j~r be a finite set of distinct symbols, called attributes (or column names), and let 
Y be a subset of~VT. A Y-tuple (or simply a tuple, if  Y is understood) is a function with 
domain Y. Thus a tuple is a mapping that associates a value with each attribute in Y. 
I f  X is a subset of  Y and t is a Y-tuple, then t[X] denotes the X-tuple obtained by 
restricting the mapping to X. A Y-relation (or a relation over Y, or simply a relation, 
if  Y is understood) is a finite set of  Y-tuples. If  r is a Y-relation and X is a subset of  
Y, then by r[X], the projection of  r onto X, we mean the set of  all tuples t[X], where 
t is in r. We shall often denote sets of  attributes by uppercase letters and relations by 
lowercase letters. 

I f ~  r is a set of  attributes, then we deirme a database scheme R --- (Rx . . . . .  R,,) to 
be a set of  subsets of  ~ .  Intuitively, for each i, the set R, of  attributes is considered 
the set of  column names for a relation. We may call the R,'s relation schemes. I f  
rl . . . . .  r,, are relations, where r, is a relation over R, (1 ___ i ___ n), then we may say that 
r = (rl . . . .  , rn} is a database over R. We may call r, the R, relation. 

We have already defined a hypergraph to be a pair (~ ,  g) ,  where A/'is a set of  
nodes and 8 is a set of  edges (or hyperedges) which are arbitrary nonempty subsets of  

We sometimes refer to the edges as "'full" edges, to distinguish them from 
"partial" edges, which we discuss later. 

The hypergraph of  a database scheme (R~ . . . .  , R,,) has as its set of  nodes those 
attributes that appear in one or more of  the R,'s, and as its set o f  edges R = 
(R~ . . . . .  Rn). We shall often speak of  the "hypergraph R" without mentioning the 
set j l r  of  nodes; then we tacitly assume that Y = I.J (R,: 1 < i __- n}. 

Let us give some terminology for hypergraphs. A path from node s to node t is a 
sequence of  k ___ 1 edges E1 . . . .  , Ek such that 

(i) s is in El, 
(ii) t is in Ek, and 

(iii) E, n E,+a is nonempty if I <__ i < k. 

We also say that the above sequence of  edges is a path from E1 to Ek. 
Two nodes (or attributes) are connected i f  there is a path from one to the other. 

Similarly, two edges are connected if  there is a path from one to the other. A set of  
nodes or edges is connected if every pair is connected. A connected component is a 
maximal connected set of  edges. 

Let (..C, 8)  be a hypergraph. Its reduction (~, 8') is obtained by removing from 8 
each edge that is a proper subset of  another edge. A hypergraph is reduced if it 
equals its reduction, that is, if  no edge is a subset of  another edge. 
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Let ~ be a set of nodes of the hypergraph (..,V,, 8). The set of partial edgQs generated 
by ./g is defined to be obtained by intersecting the edges in 8 with J/ ,  that is, takin 8 
(E N J I : E  ~ 8} - {0} and then taking the reduction of this set of edges. The set 
of partial edges generated from (JV, 8)  by some set ~ is said to be a node,generated 
set of partial edges. 

Let ~ be a connected, reduced set of partial edges, and let E and F be in ~. Let 
Q = E N F. We say that Q is an articulation set of~  -~ if the result of removing Q from 
every edge of ~, that is, {E - Q: E ~ ~ }  - {O}, is not a connected set of partial 
edges. It is clear that an articulation set in a hypergraph is a generalization of  the 
concept of an articulation point in an ordinary graph. 

A block of a reduced hypergraph is a connected, node-generated set of partial 
edges with no articulation set. A set is trivial if it contains less than two members. A 
reduced hypergraph is a-acyclic if all its blocks are trivial; otherwise, it is e~,cy¢lic. A 
hypergraph is said to be a-cyclic or a-acyclic precisely if its reduction is. 

Example 2.1. It is straightforward to verify that Figure 3 shows an 0l-aey¢li¢ 
hypergraph. Its edges are ABC, CDE, EFA, and ACE. (We follow the usual database 
convention that {A, B, C} is abbreviated by ABC, etc.) An articulation set for the set 
of all edges is ABC N ACE = AC, since the result of removing A and C from each 
edge is to leave the set of edges B, DE, EF, and E, which is not connected (B is 
disconnected from the others). Note that the subset {ABC, CDE, EFA} of the ~dges 
(Figure 4) has no articulation set. However, this set is not node-generated, so there 
is no contradiction of our assertion that the hypergraph of Figure 3 is a-acycli¢. [2 

Let (.A', 6 ~) be a hypergraph, and let ~ be a subset of 6 ~. Let . g  be the set of nodes 
that is the union of members in ~. We say that ~ is closed if for each edge E of the 
hypergraph, there is an edge F in ~ such that E N . g  __ F. For example, {G, H, 1} 
in Figure 5 is a closed set of edges. Thus the intersection of edge K with G O H U 1 
is contained in edge H; similarly, the intersection of edge J with G O H LI I is 
contained in G, and the intersection of each of edges L and M with G O H LI I is 
contained in I. However, {L, M} is not a closed set of edges, if nodes x and y are 
present, as drawn in Figure 5. For, the intersection of edge I with L t.J M is contained 
in neither L nor M. Note that every closed set of (full) edges is always a node- 
generated set of partial edges. Note also that every set of edges in an ordinary 
undirected graph is automatically closed. 

Recall that a reduced hypergraph is a-acyclic if every nontrivial, connected, node- 
generated set of partial edges has an articulation set. It follows from results of Fagin 
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et al. [22] that a reduced hypergraph is ct-acyclic if and only if every nontrivial, 
connected, closed set of  (full) edges has an articulation set. We make use of  this 
characterization later. 

A database scheme R is said to a-acyclic (respectively, a-cyclic) precisely if  the 
corresponding hypergraph is. Every a-acyclic database scheme has a number of  
desirable properties, each of  which is equivalent to a-acyclicity [7, 8, 22, 23, 25, 32]. 
We discuss some of these properties in later sections. 

3. Berge-acyclicity 

We now present Berge's [10] concept of  acyclicity. A Berge cycle in a hypergraph 
is a sequence ($1, xl, $2, x2 . . . . .  Sr,, xm, Sin+l) such that 

(i) xl . . . . .  xm are distinct nodes of  ~,~; 
(ii) $1 . . . . .  Sm are distinct edges of  ~ ,  and S,,+1 = S1; 

(iii) m .>_ 2, that is, there are at least 2 edges involved; and 
(iv) x~ is in S~ and S~+~ (1 _< i _< m). 

A hypergraph is Berge-cyclic if it has a Berge cycle; otherwise, it is Berge-acyclic. 
As an example, the hypergraph of  Figure 6 is Berge-cyclic, because it contains the 

Berge cycle (ABC, C, BCD, B, AB...C), where, for clarity, the edges are underlined. 
We see from this example that if some pair of  edges of  a hypergraph have two or 
more nodes in common, then the hypergraph is Berge-cyclic. 

4. fl-acyclicity 

In this section we give various defmitions for another degree of  acyclicity, called 
fl-acyclicity. We show that the definitions are equivalent. One of  these definitions 
says that a hypergraph R is fl-acyclic if and only if every subhypergraph of  R is 
ct-acyclic (if S ___ R is a subset, not necessarily proper, of  the edges R, then S is a 
subhypergraph of R.) Thus, although the hypergraph in Figure 3 is a-aeyclic, it is not 
fl-acyclic, because the subhypergraph in Figure 4 is a-cychc. 

Because of  this characterization of  fl-acyclic hypergraphs, and because of  the 
importance of  a-acyclic database schemes [4, 7, 8, 14, 22, 23, 25, 29, 32, 38], it follows 
that fl-acyclic database schemes are also important. For it is very natural to deal with 
subschemes of  a relational database scheme. Thus a database scheme is fl-acyclic if 
and only if every subscheme is o~-acyclic. 

Properties of  a-acyclic schemes "relativize" to fl-acyclic schemes, as we mentioned 
in the introduction. Thus, if ~ is one of  the various desirable properties of  database 
schemes that is equivalent to e~-acyclicity, then a database scheme is fl-acyelic if and 
only if every one of  its subschemes enjoys property ~.  It is informative to give an 
example. 

A database scheme is a-acyclic if and only if there is a semijoin program that can 
assist a user who is interested in taking a join over all of  the relations in the database. 
By "assist a user" we mean that the semijom program converts the original database 
into a (globally) consistent database (for details and definitions, see [8] or [11]). 
Therefore, a database scheme is fl-acyclic if and only if no matter what subset of the 
relations in the database the user wants to join, there is a semijoin program that can 
assist hinl. 
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We now prepare to give our various definitions of  fl-acyclicity. Actually, it is 
convenient instead to define fl-cyclicity. Of course, we say that a hypergraph is 
fl-acyclic if  and only if  it is not B-cyclic. A database scheme is fl-acyclic (respectively, 
B-cyclic) precisely if  the corresponding hypergraph is. 

Let ($1, . . . ,  Sin, S,~+I) be a sequence of  sets, where $1 . . . . .  S,~ are distinct and 
Sra+l = S1. Let us call S, and S,+1 neighbors (1 _< i <__ m); note, in particular, that S,,, 
and $1 are neighbors. Let us call ( S t , . . . ,  Sin, Sin+a) apure cycle i fm  >_ 3 (i.e., at least 
three sets are involved) and if  whenever i # j ,  then S, tq Sj is nonempty if and only 
i f  S, and Sj are neighbors. Thus a pair is nondisjoint precisely if  it is a neighboring 
pair. Furthermore, if  m = 3, then we assume also that $1 t3 $2 tq $3 is empty. I f  
m _ 4, then the comparable assumption (i.e., the assumption that S~ 13 . . .  N Sm is 
empty) is unnecessary, since it is a consequence of our other assumptions. A pure 
cycle with seven edges appears in Figure 7, where two edges have nonempty 
intersection if  and only if  they are shown to intersect in Figure 7. Of  the types of  
cycles for hypergraphs which we discuss in this paper, a pure cycle is certainly the 
most natural and noncontroversial. (However, Kahn et al. [30] have defined several 
notions of  acyclicity for hypergraphs for which a pure cycle may be an acyclic 
hypergraph!) 

A B-cycle in a hypergraph ~ is a sequence (S~, . . . ,  Sin, S,,,+1) of  edges such that 
if X = S~ 13 . --  13 Sin, and S,' is the set difference S, - X (1 _ i _ m), then 
(Si . . . . .  S~, S~,+~) is a pure cycle. Thus every B-cycle is of the form (Si t.J X, . . . .  
S~ t.J X, S~+~ O X), where (Si . . . . .  S~, S~+~) is a pure cycle. S: need not be an 
edge of the hypergraph, although S~ is (1 _< i _ m + 1). Of  course, every pure cycle 
of  edges is also a B-cycle. 

We are now ready to give our first three definitions of fl-cyclicity (we shall give 
five definitions altogether). 

A hypergraph is B-cyclic if  it has a B-cycle. 

A hypergraph is B-cyclic if  some subhypergraph is a-cyclic. 

Definition 1. 

Definition 2. 

Definition 3. 
of  edges has no 

A hypergraph is B-cyclic if some nontrivial, connected, reduced set 
articulation set. 

In Definition 3 we can replace "nontrivial, connected, reduced set of edges" (which 
means "connected, reduced set of  at least two edges") by "connected, reduced set of  
at least three edges" and get an equivalent def'mition. This is because every connected, 
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reduced set of two edges clearly has an articulation set. Further, if  we work only with 
reduced hypergraphs, as is often the case, then we can drop the word "reduced" in 
Definition 3. 

Now a hypergraph is a-cyclic precisely if  some nontrivial, connected, reduced, 
closed set of edges has no articulation set (this statement follows immediately from 
results in [22]). Note that the only difference between this characterization of  
a-cyclicity and the characterization of B-cyclicity in Definition 3 is that in Definition 
3 the word "closed" does not appear. Thus B-cyclicity may be considered a more 
natural graph-theoretic concept than a-cyclicity, since the somewhat arbitrary con- 
cept of  closedness is dropped. Further, a hypergraph is a-cyclic precisely if  some 
nontrivial, connected, node-generated set of partial edges has no articulation set. This 
characterization of  a-cyclicity is identical to the characterization of  fl-cyclicity in 
Definition 3, except that Definition 3 deals with "reduced sets of  edges" rather than 
with the more complex "node-generated sets of partial edges." 

Our next definition of  fl-cyclicity is given to provide an analogy with Berge- 
acyclicity and with two of our definitions of 3,-cyclicity (Section 5). A weak B-cycle 
in a hypergraph g is a sequence (St, xl, Sz, x2 . . . . .  Sin, xm, Sin+l) such that 

(i) xt . . . . .  Xm are distinct nodes of  .~;  
(ii) $1 . . . . .  Sm are distinct edges of  ~ ,  and Sm+l -- $1; 

(iii) m ~ 3, that is, there are at least 3 edges involved; and 
(iv) x, is in S~ and S,+~ (1 <__ i ___ m) and in no other Sj. 

It is sometimes convenient to refer to the sequence ( S~ , . . . ,  Sin, Sin+l) of  edges alone 
of a weak B-cycle as a weak B-cycle. Under this notation, every B-cycle is clearly a 
weak B-cycle, but the converse is false, as we shall see. However, it is not hard to see 
that the shortest weak B-cycle in a hypergraph is a B-cycle (we shall prove a stronger 
result in the proof of Theorem 4.1). Note that if  we change "Y '  everywhere in (iii) to 
"2" and drop "and in no other Sj" in (iv), then we get the definition of  a Berge cycle. 

The sequence (St, xt, $2, x2, Sa, x3, $4, x4, $1) in Figure 8 is a weak B-cycle. 
However, it is not a B-cycle, because the node y is in S~, $3, and $4 but not in $2. 

Definition 4. A hypergraph is B-cyclic if it has a weak B-cycle. 

Our final definition of  fl-cyclicity is essentially due to Graham [26]. Let 
(St, . . . ,  S,n, Sm+~) be a sequence of edges, where $1, . . . ,  Sm are distinct and 
S,~÷1 = St. Assume further that m >_ 3 (i.e., that at least three edges are involved). 
Define & -- S, N Si+~ (1 ___ i _ m). We say that (S~ . . . . .  Sin, Sin+l) is a Graham cycle 
i f  each A, is nonempty (1 _ i _.< m) and whenever i ~ j ,  then A, and Aj are 
incomparable (i.e., A, ~ Aj and Aj ~ A,). Graham calls a hypergraph CAG-C i f  it has 
no Graham cycle. 
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Definition 5. A hypergraph is fl-cyclic if it has a Graham cycle. 

It is clear that every weak fl-cyde is a Graham cycle. 

THEOr.EM 4.1. Definitions 1-5 of  fl-cyclicity are equivalent. 

RONALD FAGIN 

PROOF. We show that (3) m (2) =* (3) =~ (4) = ,  (5) =* (1) = ,  (3). By "(i) = ,  ( j )"  
we mean that every hypergraph that is fl-cyclic by definition (i) is fl-cyclic by 
definition (j). 

(3) = ,  (2): Let ,~Wbe fl-cyclic by Definition 3. By Defmition 3, g h a s  a nontrivial, 
connected, reduced set E of  edges with no articulation set. Then E is an a-cyclic 
hypergraph, since the set E of  edges is a node-generated set of  partial edges in the 
hypergraph E. Hence oW is fl.cyclic by Defmition 2. 

(2) =* (3): Let g be a fl-cyclic hypergraph by Det'mition 2; we shall show that it 
is fl-cyclic by Definition 3. By Definition 2, g has a subhypergraph ~,~ that is 
a-cyclic. Let ,~ '  be the reduction of  ~ .  Then ~ '  is a reduced, a-cyclic subhypergraph 
of  .,W (recall that a hypergraph is a-cyclic precisely if its reduction is). Thus ,~r, has 
a nontrivial, connected set E of  edges with no articulation set (the set E is also closed 
in ~" ,  although we do not need this fact). Clearly E is reduced, since ~-' is. Hence, 
,YF is fl-cyclic, by Definition 3. 

(3) =* (4): Let . g  be fl-cyclic by Definition 3; we shall show that it is fl-cyclic by 
Definition 4. Since g is fl-cyclic by Definition 3, it has a connected, reduced set E 
of  at least three edges and with no articulation set. (See the comment following 
Definition 3.) Find two distinct edges V and W in E such that the number of  nodes 
in VN Wis as big as possible. Since E is connected, we know that some pair of  edges 
in E has nonempty intersection, and so V and W also have nonempty intersection. 
Let us denote V f3 W by Q. We know that Q is a proper subset of  each of  V and W, 
because E is reduced. Since E has no articulation set, we know that the result of  
removing Q from every edge in E leaves a connected set of  partial edges. Hence 
there is a sequence ($1 . . . .  , Sk) of  distinct edges in E for which 

(i) & =  g, 
0i) sk= w, 

('fii) (S, f) S~+1) - Q is nonempty for 1 ___ i < k. 

Let us choose the sequence ($1 . . . . .  Sk) as above so that k is as small as possible. 
Since (S, VI S,÷a) - Q is nonempty by (iii), it contains a node x, (1 <_ i < k). I f j  is not 
i or i + 1, then x, is not in Sj; otherwise the sequence ($1 . . . . .  Sk) could be shortened 
and still maintain properties (i)-(iii) above, and this would violate minimality of  k. 
Hence, if we can t'md m with 3 _< m _ k (and so, in particular, 3 - k)  such that Sa 
and Sm contain a node v that is not in Sj for 1 < j < m, then ($1, xl, $2, x2 . . . . .  $=, 
v, $1) is a weak r-cycle (where we are using the edge-node-edge notation for clarity), 
and we are done. 

Now Q ~ $1 N $2. For if Q _ S~ vI $2, then $1 V) $2 would have strictly more 
nodes than Q, since ($1 N S2) - Q is nonempty by (iii) above. However, this would 
contradict the maximality of  Q (recall that V and W were chosen in E such that 
Q = V N I4 / is as big as possible). 

Since ~ ~ S~ ~ $2, let v be a node in Q that is not in S~ f') S~. Now v ~ S~ (since 
~ V = 81). Hence, since v ~ $1 N $2, it follows that v ~ $2. Let m be minimal such 

that 3 _< m ~ k and v ~ $,,,. There is such an m, since v ~ Sk (because v ~ Q ~ W 
= Sk). Then $1 and S,~ contain the node v, which is not in S~ for 1 < j < m. This was 
to be shown. 
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(4) ~ (5): Let ~ be fl-cyclic by Definition 4; it is then B-cyclic by Definition 5, 
since, as we noted, every weak fl-cycle is a Graham cycle. 

(5) =m (1): Let . g b e  fl-cyclic by Definition 5; we shall show that it is fl-cyclic by 
Definition 1, Lot 6e = (S~, . . . .  Sm, Sm+~) be a minimal Graham cycle, that is, a 
Graham oyele with m, the number of  edges in the Graham cycle, as small as possible. 
We shall show that 6 a is a fl-cycle, which shows that . g  is fl-cyclic by Definition 1. 
Let X = S~ t3 . . .  N Sin, and let S '  be the set difference S= - X (1 _< i _< m). We must 
show that S~' -" (S~ . . . . .  S ' ,  S~,+x) is a pure cycle• 

Let 4~ (respectively, 4/) be S, fl S,+a (respectively, S[ tq S~+O, for 1 _ i _< m. Each 
4[ (1 z; i -< m) is nonempty. For if 4; were empty, then 4, _ 4j for each j ,  and in 
particular, for some j # i; this contradicts our assumption that 6a is a Graham cycle. 

We have shown that each pair of neighbors in 6e' is nondisjoint (since each A[ is 
nonompty), By construction we know that S~ tq . . .  tq S~, is empty. To show that 
6P' is a pure cycle, we need only show now that nonneighbors are disjoint. Assume 
not; we shall derive a contradiction• Let S~ and S~ be nonneighbors that are 
nondisjoint. Take a node v in S~ tq Sq. By construction of ~ ' ,  we know that v ~  S', 
for some r. By interchanging the roles of S~ and S~, if necessary, we can assume that 
proceeding "clockwise" on 6 a' from S~ to S~, we encounter S~ on the way. (The 
"clockwise" direction is from St to S~ to . .  to Sg to S '  . .  • 1 t o  . .) Consider the 
following conditions on a pair (s, j )  of  indices: 

(a) S '  and S; are distinct and nonneighbors, and 
(b) there is a node w in S'~ N Sj that is not in some S;~ that lies on the clockwise path 

from S; to Sj. 

These conditions can be fulfilled by letting w, s, j, and k be, respectively, v, p, q, and 
r. Select s and j such that (a) and (b) are satisfied, and such that the clockwise path 
from S; to S; is as short as possible• By doing a cyclic shift of  the subscripts, if 
necessary, we can assume that s = 1. Thus, 1 < j < m, and the node w ~ St  17 Sj, but 
w ~ S~ for some k, with 1 < k < j. Also, j --> 3, since S1 and S; are not neighbors. 
We now show that for each p with i < p < j, necessarily w ¢~ S~. For, assume 
w ~ S~ and 1 < p < j. There are two cases, depending on whether p < k 
or k < p, Assume p < k; the other case is similar. Then there is a node (namely, w) 
in S~, and S; but not in S~, and also S~ is on the clockwise path from S~, to S; (see 
Figure 9). Since the clockwise path from S~ to Sj is shorter than the clockwise path 
from S~ to $;, this contradicts our minimality assumption in the choice of s and j. 
Hence w ~ S~ whenever 1 < p < j. 

We now show that 

(s~ . . . . .  s , ,  $1) (4.1) 

is a Graham cycle. Let A, and A; be as before (1 _ i < j) ,  let A be S~ N $1, and 
let A' be S~ N S~. We already know that A, and Aj are pairwise incomparable when 
i # j,  since ($1 . . . . .  Sin, SO is a Graham cycle and j < m. Further, A and each A, are 
nonempty. Hence, to show that (4.1) is a Graham cycle, we need only show that A is 
incomparable with each of the A,'s. Now A contains w, which is not in any of the 
4,'s, Thus, A ~ 4, (1 ___ i < j).  So, to show that (4.1) is a Graham cycle, we need only 
show that A, g: A (1 _< i < j) .  Assume not; we shah derive a contradiction. Find n 
(1 _ n ~: j )  such that 4,= __C A. Therefore, since 4~ = 4 ,  - Xand  A' = A -- X, it follows 
that 

a"  __q A'. (4.2) 
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Let x be an arbitrary member of  A'. By (4.2), we know that x ~ A'. We now 
show that 

x E S[ for 1 5 i ~ j .  (4.3) 

Assume not. Find t (1 <_ t _ j )  such that x ~ St. Since x ~ A" and x E /v, we 
know that t is not any of  1, n, n + 1, or j .  There are now two cases, depending 
on whether t < n or n + 1 < t. Assume t < n; the other case is similar. Then (see 
Figure 10) 

(a) S~ and S" are distinct and normeighbors, and 
(b) node x is in S~ N S"  but not in Sh and St lies on the clockwise path from S~ 

to S~. 

But the clockwise path from S~ to S~ is strictly shorter than the clockwise path from 
Si  to Sj. This contradicts our minimality assumption in our  choice o f  s and j. This 
proves (4.3). Since S[ C_ S,, it follows from (4.3) that x E S,, for 1 _< i _ j. Therefore, 
x ~ A, (1 _< i < j) .  But x was an arbitrary member of  A~. Hence, A~ _ Ai (1 _< i < j ) .  
Thus, A,, __C_ A, (1 <_ i < j ) ,  since the only nodes in A,~ that are not in A" are the nodes 
X that are in every S,. Let a be arbitrary such that 1 _< a < j and a # n. There is such 
an a, since j > 3. Since A. C_ Aa, this contradicts the fact that the A,'s are pairwise 
incomparable. This contradiction establishes our claim that (4.1) is a Graham cycle. 
But (4.1) is a shorter Graham cycle than our allegedly smallest Graham cycle 
(Sx . . . . .  Sin, SO. This contradiction shows that the smallest Graham cycle is indeed 
a/8-cycle, which was to be shown. (As a matter of  interest, we note that although the 
smallest Graham cycle is always a fl-cycle, there may be a Graham cycle that is not 
even a weak/3-cycle.) 

(1) =* (3): Let ~ be /8-cyclic by Definition 1. Therefore, it has a fl-cycle 
(Sa . . . . .  S,,, Sin+0, where m >_ 3. The set ($1 . . . . .  Sin) of  edges is clearly a non- 
trivial, connected, reduced set of  edges with no articulation set. So . ~  is/~-cyclic by 
Definition 3. [] 

We note that recently Graham [27] has independently shown the equivalence of  
Definitions 2 and 5. 

5. y-acyclicity 

As in the case offl-cyclicity, we shall give several equivalent definitions of  ~,-cyclicity. 
A hypergraph is y-acyclic i f  it is not y-cyclic. A database scheme is ,/-acyclic 
(respectively, y-cyclic) precisely if  the corresponding hypergraph is. 

A W-cycle in a hypergraph ~ is a sequence 

($1, xl, $2, x~ . . . . .  Sin, xm, Sin+0 (5.1) 
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such that 

( i )  X1 . . . . .  Xm are distinct nodes of  .~;  
(ii) $1 . . . . .  Sm are distinct edges of  ~ ,  and S,,+1 = St; 

(iii) m --> 3, that is, there are at least 3 edges involved; 
(iv) x~ is in S, and S,+~ (1 _ i _ m); and 
(v) if 1 _ i < m, then x, is in no Sj except S, and S,+1. 

Note that the only difference between a y-cycle and a weak fl-cycle is that "1 _< i 
< m" in (v) is replaced by "1 <_ i _< m" to define a weak B-cycle. Thus every weak 
fl-cycle is a y-cycle. Note also that the only difference between a ,/-cycle and a Berge- 
cycle is that to define a Berge cycle, "3" is replaced everywhere in (iii) by "2," and 
also (v) is dropped. As before, it is sometimes convenient to refer to the sequence 
($1 . . . . .  Sin, Sin+0 of  edges alone of  a y-cycle as a y-cycle. We say that this T-cycle, 
with m distinct edges, is of  size m. 

Definition 1. A hypergraph is `/-cyclic if it has a V-cycle. 

We define a weak y-cycle just as we defined a y-cycle, except that "1 _< i < m" in 
(v) is replaced by "i --- 1 or i = 2" to define a weak y-cycle. Thus every T-cycle is a 
weak T-cycle. Although the converse is false, it is true that the shortest weak y-cycle 
in a hypergraph is a y-cycle (we shall prove a stronger result in the proof  of  Theorem 
5.1 below). 

Definition 2. A hypergraph is ,/-cyclic if it has a weak y-cycle. 

To help prevent confusion, we note that in an earlier version o f  this paper we 
referred to what we are now calling a weak y-cycle as a T-cycle. 

The next definition gives us a nice characterization of  y-cyclic hypergraphs. 

Definition 3. A hypergraph is T-cyclic if  it has either a ,/-cycle o f  size 3 or a pure 
cycle. 

It is easy to see that a hypergraph is V-cyclic according to Definition 3 precisely if  
it contains at least one of  two kinds of  "forbidden configurations" of  edges: either a 
pure cycle, as in Figure 7, or a set of  three edges that intersect at least as shown as in 
Figure 11. (By the latter, we mean that in Figure 11 there is at least one node in 
E tq F N G, there is at least one node in (E tq G) - F, and there is at least one node 
in (F  N G) - E. Other intersections involving combinations of  E, F, and G may also 
occur.) For, if there is a y-cycle of size 3, then either there is a configuration as in 
Figure 11 or else there is a pure cycle of  size 3. 

Our next def'mition (Definition 4) of  y-cyclicity is due to Goodman and Shmueli 
[24], who, after reading an early draft of  this paper, pointed out to the author that 
Definition 4 is equivalent to the author's Definitions 1-3. 

Definition 4. A hypergraph is y-cyclic if it has a pair E, F of  incomparable, 
nondisjoint edges such that in the hypergraph that results by removing E f'l F from 
every edge, what is left of  E is connected to what is left o f  F. 
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Remark.  We say that E and F are incomparable if  E ~ F and F ~ E. Definition 
4 says that hypergraph ~ i s  T-cyclic if  it has a pair E, F of  incomparable, nondisjoint 
edges such that if  Q ffi E N F, if  G' is G - Q for each edge G of  ~ ,  and if  ~ '  ffi 
(G':  G is an edge of  ,,'if} - { O}, then E '  and F '  are connected in ~ ' .  

There is a pretty algorithm (defined in [18]) for determining T-acyclicity. It is very 
similar in flavor to "Graham's  algorithm" for determining ~t-acyclicity. Both of  these 
algorithms will be presented in Section 9. 

THEOREM 5.1. Definitions 1-4 o f  y-cyclicity are equivalent. 

PROOF. We show that (1) =* (2) =* (3) =* (4) =* (1). By "(i) ~=~ (j)",  we mean that 
every hypergraph that is y-cyclic by definition (i) is y-cyclic by definition (j). 

(1) =* (2): This is immediate, since, as noted, every T-cycle is a weak y-cycle. 

(2) =* (3): Let .Y~be T-cyclic by Definition 2; we shall show that .Yt°is y-cyclic by 
Definition 3. Let (5.1) above be a minimal weak T-cycle in .Y~ (by minimal  we mean 
that m is as small as possible). I f  m ffi 3, then we are done (since a weak T-cycle of  
size 3 is clearly a T-cycle of  size 3). So, assume that m >- 4. We shall show that (5. l) 
is a pure cycle. We already know that neighbors intersect, so we need only show that 
nonneighbors do not intersect. 

We now show that $1 does not intersect a nonneighbor. Assume it does. Find k 
(3 <_ k < m) as small as possible so that $1 t3 Sk # @. Take v in S~ f3 Sk. Then 
(S~, xl . . . . .  Sk-~, xk-1, Sk, v, Sx) is a smaller weak y-cycle than (5. 0.  This is a 
contradiction. 

We now show that $2 does not intersect a nonneighbor. For, assume that v E 
$2 f3 Sk, with 4 _< k _< m. There are now two cases. 

Case I. v E So. We know that v ~ $1, since $1 does not intersect its non- 
neighbor $3. Find r as big as possible so that v E S,. It is then easy to see that ($1, x~, 
$2, v, S,, x . . . . . .  Sin, Xm, St)  is a smaller weak T-cycle than (5.1). This is a 
contradiction. 

Case 2. v ~ $3. Find r as small as possible so that v ~ S,. It is then easy to see 
that (S,, v, $2, x2, $3, xa . . . .  , S,)  is a smaller weak V-cycle than (5.1). This is a 
contradiction. 

We have shown that neither S~ nor S~ intersects a non.neighbor. Find j as small as 
possible so that S~ intersects a nonneighbor Sk; say v E $1 N Sk. Then 3 <_ j,  and 
j + 2 _< k _< m. It is easy to see that ($1, xx, $2, x2 . . . . .  Sj, v, S~ . . . . .  Sm+~) is a 
smaller weak T-cycle than (5.1). This contradiction completes the proof of (2) =* (3). 

(3) =~ (4): Let g be y-cyclic by Definition 3; we shall show that .g~ is V-cyclic 
by Definition 4. Since . ~  is T-cyclic by Definition 3, it has either a T-cycle of  size 
3 or a pure cycle. Assume first that .,~ has a T-cycle of  size 3, and let this y-cycle be 
(Sx, x~, $2, x2, $3, xa, S~). It is easy to verify that g i s  V-cyclic by Definition 4, where 
we let E and F be, respectively, S~ and $3. Now assume that .~f has a pure cycle. By 
letting E and F be neighboring edges in the pure cycle, we see once again that . ~  is 
T-cyclic by Definition 4. 

(4) =* (1): Let . ~ b e  T-cyclic by Definition 4; we shall show that H is y-cyclic l~y 
Definition 1. Take E and F as in Definition 4, and let Q ffi E N F. We know that 
there is a sequence (S~ . . . . .  Sin) of edges such that 

(i) S x f f i g ,  
(ii) S,~ -- F, and 

(iii) (S,O S,+x) - Q # O, for 1 _< i <_ m - 1. 
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Let us also assume that we have selected the S,'s so that (i)-(iii) above hold and m 
is as small as possible. If  m = 2, then $2 = F b y  (ii), and so $1 n $2 -- Q, 
which contradicts (iii) when i = 1. Hence m _> 3. By (iii), we can find a node x, in 
(S~ n S~+1) - Q, for 1 _< i ___ m - 1. Define also Sm+l to be E (=St), and def'me xm 
to be a node in E n F (by assumption, E n F is nonempty). We now show that 
(S~, x~, $2, x2 . . . . .  S=, xm, S,~+t) is a 7-cycle. The node xt is not in any of  
$3 . . . . .  S,~-~, by minimality of m (thus, if xx E S,, where 3 _ i --< m -- 1, then the 
sequence $1, S,, S,+~, . . . ,  Sm could be used in place of  S1, $2, . . . ,  S~). Further, 
x~ ~ Sm= F, since xa E E = $1 but xl ~ Q - E n F. So x~ is in Sa and $2 but in no 
other Sj. Similarly, x, is in S, and S,+~ but in no other S~, for 1 <_. i <_ m - 1. In 
particular, xa . . . . .  xm-~ are all distinct. Further, x,~ is distinct from any of  xl . . . . .  
xm-~, since x= ~ Q but x, f~ Q, for 1 <- i <_ m. Thus the nodes xx . . . . .  x,~ are all 
distinct. The edges $1 . . . . .  Sm are all distinct by minimality of  m. We have shown 
enough to prove that (Sa, x~, $2, x2, . . . ,  Sin, xm, S,~+1) is a -~-cyele. Hence ~ is 
-t-cyclic by Definition 1, which was to be shown. [] 

Later we shall identify some desirable properties of database schemes, involving 
monotone-increasing joins and unique relationships among attributes, such that each 
of  these properties is equivalent to ~,-acyclicity. 

6. Relationships Among the Various Degrees of Acyclicity 

We begin by proving the following simple theorem. 

Tm~OREM 6.1. Berge-acyclicity =* "[-acyclicity ==} fl-acyclicity =~, a-acyclicity. None 
of the reverse implications hold. 

PROOF. Every a-cyclic hypergraph is fl-cyclic, since a hypergraph is fl-cyclic 
if and only if  some subhypergraph (including the whole hypergraph itself) is 
a-cyclic. Also, it is clear from our definitions that every weak fl-cycle is a y-cycle 
and every 7-cycle is a Berge cycle. It follows that Berge-acyclicity =~ 7-acyclicity 
fl-acyclicity ~ a-acyclicity. 

We now show that none of the reverse implications hold. The hypergraph of 
Figure 3, with edges ABC, CDE, EFA, and ACE, is a-acyclic but fl-eycli¢ (since the 
subhypergraph of  Figure 4, with edges ABC, CDE, and EFA, is a-cyclic). The 
hypergraph of Figure 12, with edges AB, AC, and ABC, is fl-aeyclic. However, it is 
"t-cyclic, since (A__if_C, C, ABC, B, A__if_B, A, A_.~C) is a V-cycle, where, for clarity, the edges 
are underlined. The hypergraph of Figure 2 is a reduced hypergraph that is fl-acyclic 
but y-cyclic. 

Finally, the hypergraph of Figure 6, with edges ABC and BCD, is -~-acyclic. 
However, as we noted in Section 3, it is Berge-cyclic. [] 

We note that Zaniolo [41] defined two other notions of acyclicity for hypergraphs, 
in a pioneering effort to find some hypergraph condition that is equivalent to a 
certain desirable database condition ("every pairwise consistent database is consist- 
ent"; see Section 7). Unfortunately, one of his conditions was sufficient but not 
necessary, and the other was necessary but not sufficient. Neither of  his conditions 
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is equivalent to any of our degrees of acyclicity. We also note that Batini et al. [6] 
discuss the issue of generating various subclasses of a-acyclic hypergraphs by 
"hypergraph grammars." Further, Kahn et al. [30] have defined several notions of 
acyclicity for hypergraphs by generalizing various properties of acyclic graphs. 

We now discuss the naturalness of the various degrees of acyclicity, and then we 
make a few observations contrasting their features. 

Berge-acyclicity is too restrictive an assumption to make about database schemes. 
For, if some pair of distinct relation schemes R,, R+ in the database scheme R = 
{R1 . . . . .  Rn} have more than one attribute in common, then R is Berge-cyclic. For 
example, the hypergraph of Figure 6, with edges ABC and BCD, is Berge-cyclic, as 
we noted earlier. A restriction that no two relation schemes can have more than one 
attribute in common is far too severe. We now show that there are "natural" database 
schemes that are a-acyclic but ~8-cyclic, and natural schemes that are ~8-acyclic but 
~,-cychc. 

Assume that there are six attributes SUPPLIER, PART, PROJECT, COUNT, 
DATE, and COST, where SUPPLIERs supply PARTs to PROJECTs; where for 
each PART and PROJECT, the COUNT tells how many of that PART have been 
supplied to that PROJECT; where the DATE tells when a given supplier first 
supplied a given PROJECT; and where the COST is what a given SUPPLIER 
charges for a given PART. The only constraints are the functional dependen- 
cies [15] 

{PART, PROJECT} ~ COUNT, 
{SUPPLIER, PROJECT} --~ DATE, 
{SUPPLIER, PART} ~ COST, 

(and their logical consequences). The functional dependency {SUPPLIER, PART} 
COST says that there is only one COST that a given SUPPLIER charges for a 

given PART; the SUPPLIER does not, for example, charge different PROJECTs 
different COSTs for the same PART. By doing a standard decomposition to obtain 
Boyce-Codd normal form [16], the resulting database scheme has four relation 
schemes, with attributes, respectively, 

{SUPPLIER, PART, PROJECT), 
{SUPPLIER, PART, PROJECT}, 
{SUPPLIER, PART, COST}, 
{PART, PROJECT, COUNT}, 
{SUPPLIER, PROJECT, DATE}. 

The hypergraph of this scheme is as in Figure 13. But this is just an example of 
the hypergraph of Figure 2, which is a-acyclic but/~-cyclic. To obtain a scheme 
that is fl-acyclic but ,/-cyclic, we simply drop the COUNT attribute (and the 
{PART, PROJECT, COUNT) relation scheme) to obtain the hypergraph of Fig- 
ure 3. This hypergraph is ~,-cyclic, since ({SUPPLIER, PART, COST}, PART, 
{SUPPLIER, PART, PROJECT), PROJECT, {SUPPLIER, PROJECT, DATE}, 
SUPPLIER, {SUPPLIER, PART, COST)) is a -~-cycle. 

Although there are natural database schemes that are "y-cyclic (such as the example 
just shown), there are also a number of database schemes that are .y-acyclic. (An 
example appears later in this section, with a demonstration of-y-acyclicity.) Although 
we should not demand ~,-acyclicity, it is good to know when a given scheme is 
y-acyclic, so that we know that it enjoys the desirable properties discussed in Section 
8. Similar comments apply, of course, to/%acyclicity. 
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As observed in other papers, it is natural to demand a-acyclicity; indeed, Fagin et 
al. [22] and Maier and Ullman [32] argue that a-cyclic schemes represent a possible 
error in database design. In Section 8 we shall discuss an example of  an a-cyclic 
scheme (which is given in Figure 20) and its "conversion" (by renaming attributes) 
into a scheme (given in Figure 21) that is not only a-acyclic but even 7-aeyclic. 

We now contrast some of  the features of  the various degrees of  acyclicity. The 
proofs of the remarks we now make are straightforward and are left to the reader. 

A hypergraph is a-acyclic if and only if its reduction is a-acyclie. However, the 
analogous statement is false for the other kinds of  acyclicity. Thus, the hypergraph 
of  Figure 14 (with edges AB, BC, AC, and ABC) is fl-cyclic, y-cyclic, and Berge- 
cyclic, although its reduction (which consists of  the single edge ABC) is of  course 
acyclic in each of the four senses. 

By an isolated node we mean as before a node that is in exactly one edge. I f  . ~  is 
a hypergraph and .¢t ~' is the result of  deleting an isolated node, then . ~  is 0-acyclic 
if and only if ~e, is 0-acyclic, for 0 = c~, fl, or 7. Although it seems as though the same 
statement should be true for # -- Berge, there is a subtlety that prevents this. Let 
be the Berge-cyclic hypergraph of  Figure 6, with edges ABC and BCD. The result of  
deleting the isolated nodes A and D is to leave us with two edges, both BC. Since a 
hypergraph is a set of  edges (in which there are no duplicates), the resulting 
hypergraph has only one edge BC and is therefore Berge-acycli¢. However, the 
original hypergraph ~ was Berge-cyclic. 

By a singleton edge we mean an edge with exactly one node, which may or may 
not be isolated. By a global node we mean a node that is in every edge. If  A~' is the 
result of  deleting a singleton edge, then .,~ is 0-acyclic if and only if ~ '  is 0-acydic, 
for 0 = a, fl, Y, or Berge. I f  ~ '  is the result of  deleting a global node, then . ~  is 
0-acyclic if and only if .,~' is 0-acyclic, for 0 = a or/3. The statement is false if 0 --- 
7 or Berge. Thus the hypergraph of  Figure 12 with edges AB, A C, and ABC, is Berge- 
cyclic and y-cyclic. However, the hypergraph of Figure 15, which has edges B, C, 
and BC and is the result of  deleting the global node A, is acyclic in each of  the four 
senses. 

We say that two nodes are edge-equivalent if they are in precisely the same edges. 
We shall deal extensively with edge-equivalence in Section 9, where we discuss a 
polynomial-time algorithm for determining 7-acyclicity. If  ~,~' is the result of  deleting 
a node that is edge-equivalent to another node, then . ~  is 0-acyelic if  and only if 
~ '  is 0-acyclic, for 0 = a, fl, or 7. The statement is false if 0 =- Berge. Thus the 
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hypergraph of Figure 6, with edges ABC and BCD, is Berge-cyclic; however, the 
hypergraph of Figure 16, which is the result of deleting node C (which is edge- 
equivalent to B), is Berge-acyclic. 

We have just discussed various transformations of hypergraphs and considered 
whether or not the transformation preserves both O-acyclicity and 0-cyclicity. That is, 
we were concerned with the question of whether a hypergraph ~ is 0-acyclic if and 
only if its transform .,~' is 0-acyclic. Less restrictively, we might also consider whether 
or not certain transformations preserve 0-acyclicity (and not be concerned with 
whether the transformation preserves 0-cyclicity). As an important example, we say 
that a hypergraph ~ '  is the result of uniformly deleting nodes from .~if  there is a set 
X of nodes of .,~ such that the edges of .~ '  are precisely {E - X: E is an edge of 
~'~}. We note that Goodman and Shmueli [23] characterize a-acyclicity in terms of 
this concept. If ~ '  is the result of uniformly deleting nodes from ~ ,  and ,~  is 
0-acyclic, then so is ~ ' ,  for 0 = a, fl, or y. By the same example as we used in 
discussing the result of deleting isolated nodes, the statement is false for 0 -- Berge. 
It is easy to see that the result of uniformly deleting nodes from a 0-cyclic hypergraph 
may be 0-acyclic, for any 0. (For example, every node can be deleted, which leaves 
the empty hypergraph, a 0-acyclic hypergraph for every 0.) 

Another distinction among the various degrees of acyclicity is, as we observed 
earlier, that a subhypergraph of an a-acyclic hypergraph may be a-cyclic. However, 
each subhypergraph of a 0-acyclic hypergraph is 0-acyclic, for 0 = fl, y, or Berge. 

As we noted earlier, an ordinary undirected graph is acyclic in the usual sense if 
and only if it is 0-acyclic when viewed as a hypergraph, for 0 = a, fl, y, or Berge. 
Thus, each of these four concepts of 0-acyclicity is a generalization, from graphs to 
hypergraphs, of the usual concept of acyclicity. 

We close this section by considering the industrial database scheme of [19] and 
showing that it is y-acyclic. There are six relation schemes, with attributes, respec- 
tively, 

{SUPPLIER, PART, PROJECT}, 
{SUPPLIER, PART, COST}, 
{EMPLOYEE, SALARY, HIREDATE}, 
{EMPLOYEE, PROJECT}, 
{PROJECT, MANAGER}, 
{SUPPLIER, LOCATION}. 

The semantics of this database scheme is explained in [19]. The hypergraph is that 
of  Figure 17. It is easy to verify that by iteratively applying the rules that an isolated 
node or a singleton edge can be removed (without affecting y-acyclicity), we are left 
the empty set. Thus, by the rules of this section, we see that the hypergraph in Figure 
17 is y-acyclic. (In Section 9 we shall give a general polynomial-time algorithm for 
deciding y-acyclicity.) However, note that this hypergraph is Berge-cyclic, because 
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two edges (SUPPLIER, PART, PROJECT} and (SUPPLIER, PART, COST} share 
two nodes. 

7. Join Expressions 

Consider the following scenario. A user desires to take the join of  four relations rl, 
r2, r3, and r4. The following might happen. He might first form rl t~ r2, which might 
have, say, a thousand tuples. Then he might join the result with r3, to obtain rl t~ r2 
t~ ,'3, a relation with, say, a million tuples. He might trmally join the result with r4, to 
obtain his desired answer rl ~ r2 t~ ra t~ r4, which might have only ten tuples. Thus, 
even though the result he was seeking had only ten tuples, he might have had an 
intermediate result with a million tuples. In this section we discuss "monotone join 
expressions," which prevent this unpleasant behavior. We first def'me the important 
concept of consistency. 

Let r and s be relations, with attributes R and S, respectively. We say that r and s 
are consistent [8] if r[R tq S] = s i r  N S], that is, if the projections of  r and s onto 
their common attributes are the same. 

Let r = {ri . . . . .  rn} be an arbitrary database over R = (R1 . . . . .  R,}. We say that 
r is pairwise consistent if  r, and rj are consistent for each i and j. We say that r is 
globally consistent (or simply consistent) if there is a relation r over attributes ./ff = 
R1 L) . . .  URn such that r ~ [ R , ]  = r[R,] for each i. Thus r is consistent if there is a 
"universal relation" r such that each r, is a projection of  r. 

It is clear that if r is consistent, then it is pairwise consistent. I f  n = 2, that is, ff 
only two relations are involved, then it is easy to see that the converse is true. 
However, in general, the converse is false. For example, let rl, r2, and ra be the three 
relations in Figure 18, over attributes AB, BC, and AC, respectively. It is easy to 
verify that these relations are pairwise consistent but not consistent. Beeri et al. [8] 
prove that if  the database scheme is a-acyclic, then every pairwise consistent database 
is consistent. 

A join expression is a well-formed expression formed out of relation schemes, the 
symbol t~, and parentheses, in which every join is binary. For example, if  R1, R2, R3, 
and R4 are among the relation schemes, then ((R2 t~ Ra) t~ (R~ t~ R4)) is a join 
expression, which corresponds to joining the R2 and the R3 relations, joining the R1 
a n d / ~  relations, and then joining together the two results. 

Certain join expressions, called sequential join expressions, are of  special interest. 
Let O be a join expression over R. I f0  is of  the form ( . . .  ((R1 ~ R~) ~ Ra) . . .  t~ R,J, 
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where R1 . . . . .  Rn is an ordering of  the distinct members of  R, then we say that 0 is 
sequential. Intuitively, a sequential join expression ( . . .  ((R~ t~ R2) t~ Ra) . . .  t~ R,,) 
corresponds to first joining the R1 and the R2 relations, then joining the result with 
the R3 relation, then joining the result with the R4 relation, and so on. 

Let 0 be a join expression whose relation schemes are all in R, and let r be 
a database over R. By 0(r), we mean the relation that results by replacing each re- 
lation scheme R in 0 by r, where r E r and r has attributes R. For example, ff r ffi 
{r~, r2, r3, &} and 0 is the join expression (R2 t~ (R3 I~ R2)), where !"2 and ra have 
attributes R2 and R~, respectively, then 0(r) is the relation (r~ t~ (ra t~ r2)), that is, the 
relation r2 t~ ra. 

A subexpression of a join expression is defined in the usual way. Let 0 be a join 
expression containing relation schemes R, and let r be a database over R, We say 
that 0 is monotone with respect to r if  for every subexpression (01 t~ 02) of  0, the 
relations 01(r) and 02(r) are consistent. Intuitively, 0 is monotone with respect to r if  
no tuples are lost in taking any of  the binary joins obtained by "executing" 0(r) 
as dictated by the parentheses. (We say that no tuples are lost in taking the join 
of  relations r and s if  r and s are each projections of r t~ s, i.e., if r and s are con- 
sistent.) As an example, ((R2 t~ R3) t~ (Ra t~ R4)) is monotone with respect to r ffi 
(rl, r2,/'3, r4}, where r, has attributes R, (1 _< i ___ 4), if  

(a) r2 and ra are consistent, 
(b) rx and r4 are consistent, and 
(c) (r2 t~ ra) and (& t~ 1"4) are consistent. 

We say that 0 is monotone if  it is monotone with respect to every pairwise consistent 
database over R. If  0 involves precisely the relation schemes R, then we say that R 
has a monotone join expression. Monotone join expressions provide an efficient (both 
space-efficient and time-efficient) manner for taking a join, in that no "intermediate" 
join has more tuples than the " fmar '  join rl t~ . . .  t~ r,,. 

Beeri et al. [8] prove the following theorem. 

TH~ORE~ 7.1 [8]. The following are equivalent. 

(1) R is a-acyclic. 
(2) There is a monotone join expression over R. 
(3) There is a monotone, sequential join expression over R. 

Theorem 7.1(3) says that there is an ordering R1 . . . . .  R,, of R such that if  r = 
(rl . . . .  , r,,} is a pairwise consistent database over R, then the join r~ ~ - . .  ~ r, is 
consistent with r~+x (1 < i < n). Thus, f fwe first join rx with r2, join the result with ra, 
join the result with &, and so on, then no tuples are lost in taking any of  the joins; 
hence the number of tuples grows monotonically. Also, by taking the join in this 
manner, only one intermediate join needs to be maintained. 

We say that a join expression 0 is connected ff for each of  its subexpressions 
(01 t~ 0~), there is an attribute that appears in both 01 and 02. Intuitively, a join 
expression is connected ff none of  the binary joins of which it is composed is actually 
a Cartesian product. 

Let us now restrict our attention to database schemes R for which the corresponding 
hypergraph is connected. We close this section by showing that every monotone join 
expression over R is connected. In the next section we show (among other things) 
that R is ~,-acyclic i f  and only if  the converse holds, that is, if  and only if  every 
connected join expression over R is monotone. 
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THEOREM 7.2. Let  R be a connected hypergraph. Then every monotone join  expres- 
sion over R is connected. 

PROOF. Let 0 be a join expression over R that is not connected; we shall show 
that 0 is not monotone. Let r be a relation with attributes R1 U • - - t.J R,~ and with 
exactly two tuples: a tuple of  all O's and a tuple of  all l 's. Let r -- (rt, . . . ,  rn} be a 
database over R = (R1 . . . . .  Rn), where r, = r [Rd  for each i. So, r is consistent (and 
hence pairwise consistent). 

Since 0 is not a connected join expression, it has a subexpression 6 -- 01 t~ 02 such 
that the attributes of  01 are disjoint from the attributes of  0~. Now 01(r) and 02(r) each 
have at least two tuples, namely, a tuple of  all O's and a tuple of  all l 's. Since 6(r) = 
01(r) t~ 02(r) is the Cartesian product of  01(r) and 02(r), it follows that 6(r) has at least 
four tuples. We shall soon show that 0(r) = r. Hence, 0(r) has exactly two tuples, 
while 8(r) has at least four tuples. Since 8 is a subexpression of  0, it follows that 0 is 
not a monotone join expression, which was to be shown. 

Thus, we need only show that 0(r) -- r. Now 0(r) = rl 1~ - . .  I ~  rn, since 0 is a join 
expression over R. So, the proof  is complete once we show that r~ t~ . . .  t~ r,~ = r. 
Clearly r __C_ r~ t~ . . .  t~ rn, since each r, is a projection of r .  We now prove the opposite 
inclusion, that is, that 

rl ~ . . .  ~ rn C_ r. (7.1) 

Let u be a tuple in r~ ~ . . .  t~ rn; we must show that u is a tuple in r. Since u is in 
rl t~ . . .  t~ rn, we know that u[R,] is in r ,  for 1 ___ i _ n. But ri = r[Ri], so u[R~] is in 
r[R~], for 1 --< i ~ n. This means that there is a tuple q~ of  r such that u[R~] -~ q~[R~], 
for 1 _< i _< n. We shall show that all of  the q,'s are equal. It  then follows that u equals 
their common value. This implies that u is in r, which proves (7.1). 

So, to prove (7.1), we need only show that q~ -- qj for each i and j. Since 
R = (R1 . . . . .  Rn) is connected, there is a path from R~ to Rj. Therefore, to show that 
q, = qj, it is sufficient to show that whenever R, and Rt are nondisjoint, then 
q~ = qt. For then, by induction on the length of  the path f rom R~ to Rj, we see that 
q~ = qj. 

Assume now t h a t / L  and Rt are nondisjoint; say A E R~ f~ Rt.  Then q~[A] = u[A] 
= qt[A]. So q, and qt are two tuples of  r that agree on an attribute, namely, A. It 
follows from the definition of  r that q, and qt are therefore equal. This was to be 
shown. [] 

8. Properties o f  ~,-acyclic Database Schemes  

In this section we discuss several desirable properties for a relational database scheme 
R. Each of  these properties is equivalent to the scheme R being T-acyclie. For  
simplicity, we restrict our attention in this section to database schemes R with a 
connected hypergraph. This restriction is not essential. 

(1) R is y-acyclic. By this, o f  course, we mean that the hypergraph of  the database 
scheme is 3,-acyclic. 

(2) Every connected join expression over R Is monotone. Assume that R is con- 
nected. The equivalence of  this property (call it property (2)) with -/-acyclicity is o f  
interest because of  the close analogy with Theorem 7.1. Thus, Theorem 7.1 says that 
R is a-aeyclic if  and only if  some join expression over R is monotone; the equivalence 
of  3,-acyclicity with property (2) (almost) says that R is y-acyclic if  and only if  every 
join expression over R is monotone. We must say "almost"  in the previous sentence 
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because we actually restrict our attention to connected join expressions. By Theorem 
7,2, this is not really a restriction, since the only join expressions that can be monotone 
are connected. 

Property (2) guarantees a great deal of  freedom in taking joins. Thus, let r be a 
pairwise consistent database over a scheme that obeys property (2). Assume that the 
user wishes to take a join of  some subset of  the relations in the database. Property 
(2) guarantees that he can take his join however he wishes (i.e., he can use whatever 
join expression he wishes that involves the right relations), and as long as he does not 
act "foolishly," then he is guaranteed that he is acting in an efficient manner. By 
"never acting foolishly" we mean that he never joins two relations together whose 
attributes are disjoint, that is, he never takes a Cartesian product. By "efficient" we 
mean, as before, that no intermediate join has more tuples than the final join. His 
choice of  how to take the join, that is, which join expression to use, can be dictated 
by other performance considerations, such as the presence of indices that might speed 
up the process. 

(3) Every connected, sequential join expression over R is monotone. Property (3) 
is to property (2) as Theorem 7.1(3) is to Theorem 7.1(2). 

(4) The Join dependency t~R implies that every connected subset of  R has a lossless 
join. We say [1, 34] that a relation r with attributes R1 t.I • • • t.J Rn obeys the join 
dependency t~{R1 . . . . .  Rn} if  r -- t~{rl . . . . .  rn}, where r, = r[R,], for 1 _< i <_ n. It 
follows that the join dependency ~{Rx . . . . .  Rn} holds for the relation r if and only 
if r contains each tuple t for which there are tuples wl, . . . ,  wn of  r (not necessarily 
distinct) such that w,[R,] = t[R,] for each i (1 _< i _< n). As an example, the relation 
r in Figure 19 violates the join dependency t~{AB, ACD, BC}. For, let wl, w~, and w3 
be, respectively, the tuples (0, 1, 0, 0), (0, 2, 3, 4), and (5, 1, 3, 0) of r; let R1, R2, and 
R8 be, respectively, AB, ACD, and BC; and let t be the tuple (0, 1, 3, 4); then w,[R,] 

t[R~] for each i (1 < i < n), although t is not a tuple in the relation r. However, it 
is straightforward to verify that the same relation r obeys, for example, the join 
dependency t~{ABC, BCD, ABD }. 

Let S = {S~, . . . ,  Sin}. I f  Sx U . . .  U Sm is a subset of  the attributes of  the rela- 
tion r, then we say that r obeys the embedded join dependency t~S if  the projection 
r[S~ O . . .  U Sin] obeys the join dependency t~S. When we say that a set 
{$1 . . . . .  Sin} has a losslessjoin, we mean that the embedded join dependency t~S 
holds. Thus, property (4) says that every relation that obeys the join dependency 
t~R also obeys the embedded join dependency t~S whenever S is a connected 
subset of R. 

If  r is a database over R, if  S _ R, if  s _ r, and if  s is a database over S, then we 
say that s is the subdatabase over S. It is not hard to see that property (4) says that 
for every connected subset S of  R and every consistent database r over R, if  s is the 
subdatabase over S, then Ms is a projection of t~r. 

One of  the motivations for this paper was the question of whether every a-acyclic 
hypergraph R enjoys property (4). The answer is "no," since there are a-acyclic 
hypergraphs that are not y-acyclic, such as the hypergraph in Figure 13. This 
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hypergraph is not 7-acyclic and so violates property (4). In the case of this hypergraph, 
the join of the {SUPPLIER, PROJECT, DATE} relation with the {PROJECT, 
PART, COUNT} relation might introduce a SUPPLIER, PART, PROJECT triple 
that does not appear in the SUPPLIER, PART, PROJECT relation (the "connection 
trap" [ 15]). 

(5) There is a unique relationship among each set o f  attributes, for  each consistent 
database over R. Let r be a consistent database over R. By a relationship among a 
set X c U R of attributes, we mean a relation (r, 11><3 . . .  t~ r,,)[X], where X __ R~ 1 U 
• ..  U R~ k and {R,~ . . . . .  R,k} is connected. Thus, some of the "base" relations r are 
combined, as usual, by taking joins (where none of these joins are Cartesian products), 
and the result is projected onto X. Property (5) says that the resulting relation is 
unique. It is sometimes convenient to refer to a relationship among X as an X 
relationship. Atzeni and Parker [3] discuss the power of assuming a unique relation- 
ship anaong each set of attributes (they call this the Relationship Uniqueness Assump- 
tion). They and others (e.g., Sagiv [35]) note that this assumption is made commonly, 
either explicitly or implicitly, in many papers on database design. 

Let us consider an example which is slightly more elaborate than the example in 
the introduction. Assume that the database scheme consists of  three relation schemes: 
an EMP WORK relation scheme with attributes EMP (for "employee"), DEPT 
(for department), and SAL (for "salary"); a DEPT__INFO relation scheme with 
attributes DEPT, CITY, and MGR; and a EMP__HOME relation scheme with 
attributes EMP, STREET, CITY, and CHILD. See Figure 20 for an example of one 
tuple in each relation. In this example, there are two distinct {EMP, CITY} 
relationships. One, which has the tuple (Fagin, San Jose), relates an employee to the 
city where he works. The other, which has the tuple (Fagin, Los Gates), relates an 
employee to the city where he lives. The database scheme is y-cyclic (it is even a- 
cyclic). 

However, assume that we were to rename the attribute CITY in the DEPT__INFO 
relation scheme to be WORK CITY, and the attribute CITY in the EMP__HOME 
relation scheme to be HOME CITY (see Figure 21). There is now a unique 
{EMP, W O R L C I T Y }  relationship, which includes the tuple (Fagin, San Jose), 
and a unique (EMP, HOME._CITY) relationship, which includes the tuple (Fagin, 
Los Gates). The database scheme of Figure 21 is 7-acyclic. 

Knowing that relationships are unique make it possible to greatly simplify the 
form of" queries. Thus, the simplest SQL [13] query to fred all EMPs associated with 
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the WORK__CITY San Jose for the database scheme of Figure 21 is 

SELECT EMP 
FROM EMP WORK, DEPT__INFO 
WHERE EMP WORK.DEPT -- DEPT__INFO.DEPT 
AND DEPT___INFO.WORK__CITY = 'San Jose.' 

However, by property (5), it is possible instead to unambiguously pose the query 

SELECT EMP WHERE WORK._CITY = 'San Jose.' (8.1) 

The result is obtained by t'mding the unique (EMP, WORK__CITY} relationship 
and then selecting out those tuples where the CITY entry is 'San Jose.' The 
desirability of being able to pose queries such as (8.1), with such a simple syntax, has 
been discussed by Ullman [37]. Not only is the query (8.1) easier to pose and simpler 
to understand than the SQL query, but also the system has a great deal of flexibility 
in optimizing how to find the result of the query. The system's choice of which 
relations to join (if there are several possibilities) might depend, for example, on 
which indices are present. The system might be able to exploit the fact that whatever 
relations in the database are joined together, the join (i.e., the join expression, as 
def'med in Section 7) is guaranteed to be monotone, and so, efficient. For, we are 
only allowing joins over connected subsets S of R, which are themselves connected, 
7-acyclic hypergraphs, since R is; and, because S is 7-acyclic, it follows from Theorem 
8.1 below that every connected join expression over S is monotone. (However, when 
we project the result Of the join onto the desired attributes, the number of tuples 
might, of course, decrease.) 

Languages such as SQL are considered "high-level," since it is not necessary to 
state the access paths (such as which indices to utilize) explicitly. Similarly, we have 
seen that in a y-acyclic database scheme, it is possible to make use of a still higher- 
level language, in which it is not even necessary to specify which relations must be 
joined to obtain the answer the user desires. 

Aho and Kernighan [2] have developed a query system called "q." Given a set X 
of attributes, q searches through a "rel file" to determine which relations to join to 
fred the X relationship. If the database scheme obeys property (5), that is, if it is 
-t-acyclic, then a rel file is unnecessary. 
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(6) R has a loop-free Bachman diagram. If  R is a hypergraph, then we define 
Bachman(R) to be the hypergraph obtained by closing R under intersection. Thus, a 
set S is in Bachman01) if and only if either S E R or S is the intersection of  two or 
more members of R. We note that both Lien [31] and Yannakakis [38] include also 
in Bachman(R) all singleton edges {A}, for each node A. We do not do so, since (as 
noted in [31]), this is really unnecessary. We leave to the reader the exercise of  
showing that Bachman(R) is 7-acyclic if and only if R is. 

For our purposes it is convenient to define the Bachman diagram of R [5] to be an 
undirected graph, with nodes the members of Bachman(R), and with an edge between 
two nodes S and T o f  Bachman(R) iff(i) S ~ T, and (ii) there is no Win  Bachman(R) 
such that S ~ W ~ T. (The usual definition has a direction on these edges and thus 
yields a directed graph.) A loop-free Bachman diagram [31, 38] is a Bachman diagram 
that is a tree. I f  Bachman(R) is loop-free, then we say that R has a loop-free Bachman 
diagram. Yannakakis [38] discusses various properties of  loop-free Bachman dia- 
grams, and in particular shows the equivalence of properties (4) and (6). 

(7) R has a unique minimal connection among each set X of nodes. Assume that 
the user wishes to obtain the projection onto X of the union of all lossless joins that 
involve (among others) attributes X. For motivation as to why a user would wish to 
obtain such a union, the reader is referred to [33, 37, 38]. 

If  the database is consistent, then every lossless join (projected onto X) gives the 
same answer, and so it is easy to take such a union. If  we do not assume consistency, 
then in general it might be quite an undertaking computationally to obtain such a 
union. We now describe a situation where the union can be obtained via a single 
lossless join, even if  the database is not consistent. 

In ~/-acyclic schemes, lossless joins correspond to connected joins (see property 
(4)). Therefore we shall discuss connected, rather than lossless, joins. 

Instead of  assuming that the database is consistent, we shall make a weaker 
assumption, which we call the subset condition. The subset condition says that 
whenever R1 and R2 are relation schemes in the database scheme and R1 _C R2, then 
r2[R1] ~ rl, where r, is the R, relation in the database (i -- 1, 2). Yannakakis [38] calls 
the individual assumptions in the subset condition existence constraints. Existence 
constraints are special cases of inclusion dependencies [12]. We note that Codd [17] 
assumed existence constraints involving his E-relations. 

Let X be a subset of  the nodes of  R, and let V be a connected set of  k distinct 
members II1 . . . . .  Vk of  Bachman(R). Following Yannakakis [39], we say that V is a 
unique minimal connection (among members of X, or simply, among X) if  (i) X C_ 
111 U . . .  U Vk, and (ii)whenever W = { Wx . . . . .  Ire'p} is a connected subset of  
Bachman(R) with X _ 1¥1 U . . .  tJ Wp, then there are k distinct members ~ . . . . . .  
Wi, of W (where k is the cardinality of V) such that Vj C_ W,~, for 1 ~_ j _< k. 

Yannakakis [39] observed that if  R has a loop-free Bachinan diagram (property 
(6) above), then this set V can be obtained by simply taking the maximal members 
of the smallest connected subgraph of the Bachman diagram of R that contains X. In 
other words, let R,, . . . . .  R,q be a minimal (i.e., q is as small as possible) set of  nodes 
of Bachman(R) such that X __. (R,~ U . . .  U R,q), and let V contain Ri, (1 _< j ___ q) 
precisely if  there is n o p  (1 ___p ___ q) such that R~ ~ R~p. 

We now mention an application of  the unique minimal connection, which is of 
important practical use when the database is not necessarily consistent. This appli- 
cation was noted by Yannakakis [38]. (Yannakakis worked in the context of weak or 
containing instances [28], but the results are equivalent to what we shall state below.) 
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Assume now that the user requests an X relationship in the database, where X is 
a set of  attributes. At least in principle, the response of the system is as follows (we 
neglect the issue of  optimization, and describe the result in operational terms): 

(1) For each relation scheme S in Bachman(R) but not in R, the system forms a new 
relation s over S by letting s be LJ (r[S]:r ~ r and S is a subset of  the relation 
scheme of  r}. (Here r is the database over R.) The result is a new database s over 
Bachman(R), which contains all of the relations in the original database r, along 
with new relations over relation schemes in Bachman(R) - R. It is easy to see 
that since the original database r obeys the subset condition, so does the new 
database s over Bachman(R). 

(2) If  V is the unique minimal connection among X, then the response of  the system 
to the user's query is (~v)[X], where v is the subdatabase, over V, of  s. 

Let us denote by v this result (t~v)[X]. Let w -- (t~w)[X] be another X relationship. 
That is, (a) W is a connected subset of  Bachman(R), (b) X _C (3 W, and (c) w is the 
subdatabase over W. It follows easily from the definition of  unique minimal connec- 
tion that w _.C v. 

Thus, not only does the system answer the query by taking a connected join, but 
furthermore, this result contains every tuple that can be obtained by taking any 
connected join (which contains the desired attributes). The philosophy is that this 
response is probably what the user intends. I f  the user wants something different, 
then he can explicitly spell out what he wants. Thus, in the usual case, the user can 
specify what he wants in a high-level manner, and the system gives him a meaningful 
response, which should correspond exactly to what he desires a large proportion of  
the time. For a more extensive discussion of this philosophy, see [33, 37, 38]. 

Maier and Ullman [32] demonstrate another sense in which there is a unique 
connection among each set of  nodes in an o~-acyclic hypergraph. Yannakakis' notion 
of  unique minimal connection is not only stronger, but, we believe, more natural. 

PROOF OF EQUIVALENCE. We now show that the properties (1)-(7) described 
above are equivalent. 

THEOREM 8.1. Let R be a connected hypergraph. The following are equivalent: 

(1) R is 3,-acyclic. 
(2) Every connected#in expression over R is monotone. 
O) Every connected, sequential join expression over R is monotone. 
(4) The join dependency MR implies that every connected subset of R has a lossless 

join. 
(5) There is a unique relationship among each set of attributes for each consistent 

database over R. 
(6) R has a loop-free Bachman diagram. 
(7) R has a unique minimal connection among each set X of  nodes. 

PROOF. It is convenient for us to introduce two new properties, which we shall 
call properties (2') and (4'). We shall prove that (1) =* (3) ,=~ (4') =0 (4) =0 (2') =0 (1), 
that (4') =0 (2) =* (2'), and that (4) =* (5) =0 (4). Yannakakis shows that (4) and (6) 
are equivalent [38] and that (6) and (7) are equivalent [39] (we shall not show these 
equivalences). Taken together, these implications give us Theorem 8.1. 

It is an instructive exercise (left to the reader) to prove directly the equivalence of  
(1) and (6). A helpful lemma is the fact (noted above) that R is T-acyclic i f  and only 
if Bachman(R) is "t-acyclic. It is also helpful to make use of  Defmition 3 of't-cyclicity. 
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We now define properties (2') and (4'). 

(2') Let 0 be a connected join expression over R, let r be a conaistent database over 
R, and let (01 t~ 02) be a subexpression of 0. Then 01(r) and 02(0 are consistent. 

I f  we replace "consistent database" in (2') by "pairwise consistent database," then it 
is not hard to see that the result is exactly what (2) says. In particular, (2)=* (2'), 
since every consistent database is pairwise consistent. 

(4') Assume that S __C_ R is connected, that r is a pairwise consistent database over R, 
and that s is the subdatabase over S. Then ¢<s is a projection of  t~r. 

I f  we replace "pairwise consistent database" in (4') by "consistent database," then it 
is not hard to see that the result is exactly what (4) says. In particular, (4 ' )= ,  (4), 
since every consistent database is pairwise consistent. 

( l )  --~ (3): Assume that (3) is false. We shall show that (1) is false, that is, that R 
is T-cyclic. Since (3) is false, there is an ordering Rx . . . . .  Rn of  R ffi {R~ . . . .  , R~), a 
pairwise consistent database r ffi {r~ . . . . .  r~} over R, and an integer j (1 ~; j < n) such 
that 

(a) {Rt . . . . .  R~} is connected for each i (1 _< i _ n), and 
(b) rl t~ . . .  t~ r~ is not consistent with r~÷l. 

We assume tha t j  is minimal, so that (b) holds. Thus (r~ t~ . . .  t~ r~) is consistent with 
r,+~, if  i < j. 

Denote (R1 t9 . . .  t.J Rj) N R~+~ by S. Thus S is the set o f  attributvs that rl H " ' "  

t~ rj has in common with rj+t. We know that (r~ t~ . , .  t~ rj)[S] # r~+x[S], since r, 
. .  • M rj is not consistent with rj+l. 

Select k (1 __ k _ j )  so that Rk Iq S is as big as possible (i.e., has as many nodes as 
possible). Thus R, N S is no bigger than Rk N S if 1 __ i _< j. We now show that 
S ~ Rk. For, assume that S _c. Rk; we shall derive a contradiction. Since r is pair- 
wise consistent, it follows that rk and rj-~a are consistent. Thus rk[S] ffi rj+a[S]. By 
our mirtimality assumption on j,  we know that rl t~ . . .  ~ r, is consistent with 
r,+x, if  I ___ i < j .  Thus no tuples are lost in taking the sequence following of  joins: 

rl  M !"2, 

(rl ~ r~) ~1 ra, 

( - . .  ( (rl  t~ r2) N r3) . . .  ~ ,',). 

Since k _ j, it follows that rk is consistent with rt ~ - . .  ~ rj. Thus r~[S] = 
(rl t~ . . .  t~ rj)[S]. Since also rk[S] -- rj+l[S], we have (rl t~ . . .  t~ rj)[S] -- 
rj+l[S]. This is a contradiction. So, S ~ Rk. 

Since S ~ Rk, there is a node vl in S - R~. Since {R1 . . . .  , Rj} is a connected set 
of  edges, since Rk is an edge in this set, and since vl is a node that appears in this set, 
there are St . . . . .  Sp such that 

(i) $1 = Rk, 
(ii) S, N S,+l ~ ~ ,  for l <_ i < p, 

(iii) each St is one of  R1, . . . ,  Rj (l _ i<_p), 
(iv) vl ~ Sp, and 
(v) p is as small as possible. 
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Thus $1 . . . . .  S~ is the shortest path (within (R1 . . . .  , Rj}) from Rk to an edge 
containing vl. In particular, vl ~ S,, i f  1 <__ i < p. Note that S~ . . . . .  S~, are distinct, 
since Sx . . . . .  S ,  is a shortest path. 

Now Sp 13 S has no more nodes than Rk t3 S, by maximality of  R~ t3 S. Since 
Sp ¢3 S contains v~, which is not in Rk t3 S, it follows that Rk f3 S contains a node v2 
not in Sj, t3 S. 

Find m (1 _< m < p )  as big as possible so that Sm contains 1,2. There is such an m, 
since $1 (=Rk) contains v2. By (ii) above, we can fred nodes x, (m <_ i < p) such that 
x, E S, f3 S,+v We now show that 

(Sp, •1, Rj+I, v2, am, Xrn, Sin+l, Xm+l . . . .  Xp-1, Sp) (8.2) 

is a weak q-cycle. Note that V1 and v2 are both in Rj+~, since they are both in S C Rj+x. 
By construction, vl is in Sp but not in S,, for m _ i < p; similarly, v2 is in Sm but not 
in S,, for m < i __ p. In particular, Rj+I, Sp, and S= are all distinct, and so (8.2) 
contains at least three distinct edges. The nodes x, (m _< i < p) are distinct, or else the 
path $1 . . . .  , Sp could have been shorter. Further, vl does not equal any x,, since Vl 
is not in S, if  m _< i < p. Similarly, v2 does not equal any x,. Since we see also that 
Vx # v2 (because Vl is in Sp and v2 is not), this shows that all of  the nodes Vx, v2, Xm, 
x,~+l . . . . .  Xp-~ of  (8.2) are distinct. Similarly, the edges of  (8.2) are distinct. It follows 
from what we have just shown that (8.2) is indeed a weak y-cycle. Thus R is V-cyclic, 
which was to be shown. 

(3) =* (4'): Assume (3). Assume that S _ R is connected, that r is a pairwise 
consistent database over R, and that s is the subdatabase over S. We must show that 
Ms is a projection of  Mr. 

Since S and R are each connected, there is an ordering Rx . . . . .  Rn of  R such that 

(a) S = (RI . . . . .  Rm), where m is the cardinality of  S (thus the members of  S form 
an "initial segment" of  the ordering Rx . . . .  , R,,); and 

(b )  (R1 . . . . .  R,}  is connected for each i (1 ___ i _ n). 

Then ( . . .  ((R1 M R2) M Ra) . - -  M Rn) is a connected, sequential join expression 
over R. By (3), it is monotone. It follows easily that r l  M - . .  t~ r, is a projection of  
rl M . . -  M r,, for each i, and, in particular, for i ffi m. Thus, Ms is a projection of  Mr, 
which was to be shown. 

(4') =* (4): Already shown, in our  comments after the definition of  property (4'). 

(4) =* (2'): Assume (4). Let O be a connected join expression over R, let r be a 
consistent database over R, and let (81 M 02) be a subexpression o f  8. To prove (2'), 
we must show that Ol(r) and 02(0 are consistent. 

Assume that O~ is over S ___ R and that O~ is over T C__ R. By connectedness of  O we 
know that S and T are each connected. Let s (respectively, t) be the subdatabase 
over S (respectively, T). By (4), each of  Ms and Mt are projections of  Mr. Hence, Ms 
and Mt are consistent. Now 0a(r) -- Ms, and 02(0 --- Mt. So 01(r) and O2(r) are 
consistent. This was to be shown. 

(2') ~ (l): Assume that (1) is false, that is, that R = (R1 . . . . .  Rn} is ~,-cyclic. We 
shall show that (2') is false. 

Since R is T-cychc, we know by Definition 2 of  ~,-cyclicity that R has a weak 
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V-cycle (S1, xl, $2, x2 . . . . .  Sm, Xm, Sn+l). Defme 

E -- {$3, $4 . . . . .  Sn, St} ,  
Et = S1, 
E2 ---- $3, 
F ffi $2, 

A1 ~ Xl, 

A2 --- X2. 

It is easy to see that E is a connected set of  edges, that Et and E2 are distinct edges 
in E, that F is an edge not in E, and that At and A2 are distinct nodes such that 

(i) A 1 is in Et but in no other edge of  E, 
(ii) A2 is in E2 but in no other edge of  E, and 

(iii) A1 and A2 are in F. 

Let r be a relation with attributes R I O  . . .  O R~, and with exactly two tuples. The 
first tuple has all O's, and the second tuple has all O's except in the At and A2 entries, 
where it has l's. Let r = {rl . . . . .  r,,} be a database over R, where ri = r[Ri] for each 
i (1 _ i _< n). So, r is consistent. 

Assume that the distinct members of  E are E1 . . . . .  En. Let e = {et, . . .  en} be the 
subdatabase of  r over E, and let f be the member of  r that is over F. 

Clearly, et t~ e2 is a relation with exactly four tuples: the (Ax, A2) entries of  the four 
tuples are, respectively, (0, 0), (0, 1), (l,  0), and (1, 1). The remaining entries o f  all 
four tuples are all O's. Also, es t~ . .  • t~ en is a one-tuple relation, where the one tuple 
has all O's (recall that E3 0 . . .  0 Era does not contain either At or A2). Thus, el t~ e2 
t~ . . .  M em has exactly four tuples, where the (A1, A2) entries are as before and the 
other entries are all O's. However, there are only two (At, A2) entries in f ,  namely, 
(0, 0) and (1, 1). So el tm . . .  t~ en is not consistent with f .  

Since (E~ . . . . .  En}, {Et . . . .  , Era, F},  and R are each connected, there is an 
ordering R~ . . . . .  Rn of  R such that 

(a) E -- (R1 . . . . .  Rm) (i.e., E forms an initial segment), 
(b) F -- Rm+l (that is, F is next after E), and 
(c) {R1, . . . ,  R,} is connected for each i (1 _< i _< n). 

For  each k, with 1 _ k _ n, deFme the join expression 8~ to be ( . . .  ((Rt t~ R2) t~ R3) 
• . .  t~ Rk). Then 0~ is a connected join expression over R. Also, (On ~ Rn÷l) is a 
subexpression of  0n. However, if r is the consistent database described earlier, then 
0n(r) is not consistent with Rn+t(r), that is, (rl t~ . . .  ~ rm) is not consistent with rm+~, 
since r~ ~ . . .  ~ rm = el t~ . . .  t~ en, and rm+l -- f .  Thus (2') is false, which was to be 
shown. 

(4') ~ (2): This is the same as the proof  that (4)•* (2'), except that "pairwise 
consistent" is replaced by "consistent." 

(2) =~ (2'): Already shown, in our comments after the defmition of  property (2'). 

(4) ~ (5): Assume (4); we shall show (5). Let r be a consistent database over R. 
Let S = ( $1 . . . . .  Sp} and T = ( T~ . . . . .  Tq} be connected subsets of  R. Assume that 
X __ O S and X __ (.J T. Let s (respectively, t) be the subdatabase of  r over S 
(respectively, T). By (4), we know that t~s is a projection of  t~r. Hence, (t~s)[X] ffi 
(t, clr)[X]. Similarly, (t~t)[X] = (t~r)[X]. Hence, (~s)[X] -- (t~t)[X]. This was to be 
shown. 
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(5) =~ (4): Assume (5); we shaft show (4). Let r be a consistent database over R, 
let S be a connected subset of R, and let s be the subdatabase of r over S. Let X ~= 
U S. By (5), we know that (Ms)[X] = (Mr)[X], that is, Ms = (Mr)[X]. Hence, Ms is a 
projection of Mr. This proves (4). [] 

9. Polynomial-Time Algorithms for Determining Degree of Acyclicity 
We now show that there are polynomial-time algorithms for determining whether a 
hypergraph is Berge-acycfic, o~-acyclic, B-acycfic, and y-acycfic. 

In the algorithms we now describe, we make no attempt at optimal efficiency, 
since we are concerned here only with the question of polynomial-time recognition. 
It is an interesting problem to fred more efficient recognition algorithms. 

9.1 BERGE-ACYCLICITY. It is easy to see that the usual breadth-first search 
algorithm for determining acycficity of an ordinary undirected graph (in which we 
start with an edge and propagate the graph outward while watching to see if it "folds 
back on itself" by touching a previously used node) generalizes neatly and easily to 
determining Berge-acyclicity. The simple details are left to the reader. 

9.2 ~-ACYCLICITY. Beeri et al. [8] prove that the following simple algorithm, 
called Graham's algorithm [26, 40], is a test for a-acyclicity. The algorithm applies 
the following two rules to R = {R1 . . . . .  Rn} repeatedly until neither can be applied: 

(a) IfA is ~n attribute that appears in exactly one R,, then delete A from Ri. 
(b) Delete one R, if there is an R1 with j # i such that R~ _C Rj. 

Intuitively, rules of type (a) remove attributes that cannot have any effect on 
a-cyclicity or a-acyclicity, and rules of type (b) causes a hypergraph to be replaced 
by its reduction. 

If the algorithm terminates with the empty set, then the hypergraph is a-acyclic; 
otherwise, the hypergraph is a-cyclic. We note that it is not hard to show that the 
algorithm is Church-Rosser. That is, the set that the algorithm terminates with is 
independent of the sequence of steps taken in executing the algorithm and depends 
only on the input. 

Example 9.1. Let us apply Graham's algorithm to the hypergraph of Figure 3, 
with edges ABC, CDE, EFA, and ACE, Nodes B, D, and Feach  appear in only one 
edge, and so they are each deleted by applications of rule (a) of Graham's algorithm. 
We are then left with edges A C, CE, EA, and ACE. Now edge A C is a subset of edge 
ACE, so by an application of rule (b) of the algorithm, this edge is deleted. This 
leaves us with edges CE, EA, and ACE. Similarly, edges CE and EA are deleted by 
applications of rule (b). We are then left with only one edge, namely ACE. Each of 
the nodes A, C, and E now appear in only one edge, and so by applications of rule 
(a), they are each deleted. We are left with the empty set, and so the hypergraph is 
a-acyclic. [] 

It is obvious that Graham's algorithm is a polynomial-time algorithm. Tarjan and 
Yannakakis [36] have recently obtained a linear-time algorithm for determining 
a-acyclicity. 

9.3 /3-ACYCLICtTY. We shall base our polynomial-time algorithm on Def'mition 
1 of/~-acyclicity; that is, we shaft determine whether or not there is a E-cycle. 

If ($1 . . . . .  Sin, Sm+~) is a p-cycle (respectively, pure cycle), then we say that 
($1, $2, $8) begins the p-cycle (respectively, pure cycle). 
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We now give a polynomial-time algorithm for determining whether S: ffi 
(SI, $2, Sa) begins some//-cycle of  R, if S1, $2, and Sz are distinct edges in R. Let 
X =  S~A $2 O $3, and let S~ = S, - X, for i ffi 1, 2, 3. If  either S'I n S [ o r  
S [ n  S[ is empty, then 6: does not begin any//-cycle of  R. Therefore, assume that 
S~ n S[ and S~ O S~ are both nonempty. 

Let T -- {E E R : (E  ffi S1) or (E ffi $3) or ( X ~  E and E n S~ ffi ~3)}. Note in 
particular that $2 ~ T. Let T' = (E - X:E E T}. In particular, S t  and S~ are in T'. 
We now show that S~ and S~ are in the same connected component o f T '  if and only 
if 5 a begins a f-cycle of  R. 

Assume first that Se begins a//-cycle ($1, $2, $3 . . . .  , Sin+l) of  R (where, of  course, 
Sm+l --- S1). Then it is easy to see that S1 n . . .  n sm ffi St n Sz n $3, that is, 
S1 n . . .  n S,~ = x. It is clear that S~ and S~ are then in the same connected 
component of T'. Conversely, assume that S~ and S~ are in the same component of  
T'. Find E~, E '  . . . .  k in T' such that 

(i) E l  = S~, 
(ii) g~ = s L  

(iii) E~ o E',+I ~ 0, and 
(iv) k is as small as possibl~. 

• e t o  s ' ' ' ' ' ' " " " It is th n easy ee that (~i, $2, $3, E2, E3, . . . ,  Ek) is a pure cycle (m particular, 
by construction ofT ' ,  we kn~w that E', n S~ -~ O, for 2 <_ i < k). Define Ei ffi E', LI X, 
for 1 __. i _< k. By constructiofl~ of  T'  we know that each E, is an edge in R. So (S~, Sz, 
$3, E2, E3 . . . . .  Ek) is a//-cycle. 

There is a polynomial-time algorithm for determining connected components of  a 
hypergraph (such as T'). The algorithm is the obvious generalization of  the usual 
algorithm in the case of  ordinary undirected graphs for determining connected 
components. So, there is a polynomial-time algorithm for determining whether 6: 
begins a #-cycle. 

Our polynomial-time algorithm for determining //-acyclicity goes as follows. 
Systematically cycle through all triples 6" -- (S1, $2, $3) of  three distinct edges of  R 
to see if at least one such 6: begins a//-cycle. If  so, then R is//-cyclic; otherwise, R 
is #-acyclic. 

Graham [27] states that he has found a polynomial-time algorithm for determining 
whether a hypergraph has a Graham cycle. Thus, by the equivalence of  Definition 
4 of//-cyclicity with the other defmitions, this gives another polynomial-time algo- 
rithm for determining//-acyclicity. 

9.4 ,/-AC'CCLICIT'¢. The following algorithm for testing ,:-acyclicity is due to 
D'Atri and Moscarinl [18]. It is similar in spirit to Graham's algorithm for determin- 
ing a-cyclicity. 

Apply the following rules repeatedly, in any order, until none can be applied: 

(a) If  a node is isolated (i.e., if it belongs to precisely one edge), then delete that 
node. 

(b) If  an edge is a singleton (i.e., if it contains exactly one node), then delete that 
edge (but do not delete the node from other edges that might contain it). 

(c) If  an edge is empty, then delete it. 
(d) If  two edges contain precisely the same nodes, then delete one of  these edges. 
(e) I f  two nodes are edge-equivalent, then delete one of  them from every edge that 

contains it. (Recall that two nodes are edge-equivalent if they are in precisely the 
same edges.) 
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FIOLmE 22 

The algorithm clearly terminates. If the end result is the empty set of edges, then the 
original hypergraph is y-acyclic; otherwise, it is y-cyclic. 

As in the case of Graham's algorithm, we note that it is not hard to show that this 
algorithm is Church-Rosser. 

Remark. We shall often apply rule (d) implicitly, by simply dealing at all times 
with a set of edges (which has the effect of automatically removing duplicates). Also, 
it is natural to apply rule (c), the deletion of an empty edge, implicitly. 

Let us apply this algorithm to the hypergraph of Figure 22. The Example 9.2. 
edges are 

B C 

A B C 

C 

C 

D E F 

D 

D 

E F 

(For convenience, we have put common vertices in the same column.) Node A is 
isolated, and edge {C} is a singleton, so both are deleted, by rules (a) and (b). This 
leaves us with 

B C D E F 

B C D 

C D 

E F 

Nodes E and F are edge-equivalent, and so, by rule (e), we delete F from both edges 
that contain it. Similarly, nodes C and D are edge-equivalent, and so we delete D 
from all three edges that contain it. We are left with 

B C E 

B C 

C 

E 

The third and fourth edges above are singletons, and so they are eliminated. This 
leaves 

B C E 

B C 
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Node E is isolated; after it is deleted, we are left with 

B C 

B C 

These edges are identical, so we delete one by rule (d). We are left with 

B C 

Both nodes are now isolated, and so they are deleted. We are left with a single empty 
edge, which is deleted by rule (c). The end result is the empty set of  edges, and so the 
original hypergraph is `/-acyclic. []  

THEOREM 9.3. The algorithm just described correctly determines whether or not a 
hypergraph is `/-acyclic. 

PRoof.  Assume first that the hypergraph is -/-cyclic. By Definition 1 we know 
that the hypergraph has a V-cycle ($1, xl, $2, x~ . . . . .  S~, xm, Sm+0.-It is easy to verify 
inductively on the number of  steps that have been applied so far in running the 
algorithm (where a step consists of  one application of  a rule) that for each i 
(1 <__ i ___ m), whenever a rule of  the algorithm is applied, then either xi or some node 
that is edge-equivalent to x, at the time the rule is applied remains undeleted. In 
particular, after each step a -/-cycle of  size at least m remains. Therefore, when the 
algorithm terminates, there is a y-cycle of size at least m. Hence the algorithm does 
not terminate with the empty set, and so the algorithm correctly determines that the 
hypergraph is -/-cyclic. 

Conversely, assume that the algorithm says that the hypergraph is ~,-cyclic. We 
must show that the hypergraph is indeed -/-cyclic. Assume that the hypergraph is 
-/-acyclic; we shall derive a contradiction. Since the hypergraph (call it .~)  is 
-/-acyclic, we know by Definition 1 that ~ has no V-cycle. Let J~'  be the hyper- 
graph that is the end result of applying the algorithm to the hypergraph ,~. It is easy 
to see that when one of  the rules in the algorithm is applied to a hypergraph with no 
~,-cycle, then the result is a hypergraph with no -/-cycle. It follows inductively (on the 
number of  steps) that since J~ has no V-cycle, neither does Jff'. Thus J~'  is ,/-acyclic. 
Since none of the rules in the algorithm can be applied to g ' ,  it follows that each 
edge of  .~ '  contains at least two nodes, each node is contained in at least two edges, 
and no two distinct nodes are edge-equivalent. 

Let us say that a hypergraph is nesting if for each pair (El, Ez) of  edges, either 
(a) Ea C_ E~, (b) E~ C_ Ea, or (c) E1 N E~ ffi ~ .  Thus every pair of  edges is either 
comparable or disjoint. Let us call a hypergraph intersecting if it is not nesting. Thus 
a hypergraph is intersecting precisely if it has a pair of  incomparable, nondisjoint 
edges. 

We shall make use of  the following simple fact several times. 

FACT 1. Let J b e  a nesting hypergraph, and let E be a minimal edge of  J(i.e., there 
is no edge E' of J such that E' ~ E). Then the nodes of E are all edge-equivalent. 

PROOF OF FACT 1. Let J be a nesting hypergraph, let E be a minimal edge of  
~, and let x and y be distinct nodes of  E. We must show that x and y are edge- 
equivalent. Assume not. Then there is an edge F that contains exactly one of  x or y, 
say x. Since E is minimal, we know that F ~ E. Thus there is a node z in F but not 
E. Since also y is in E but not F, and since x is in E N F, it follows that E and F are 
incomparable and nondisjoint. This is a contradiction (since J is nesting), which 
proves Fact 1. 
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Let us say that a node in a hypergraph is bad if either (a) it is in exactly one edge, 
or (b) it is edge-equivalent to another node. If E1 and E2 are distinct edges, then let 
us say that the pair (El, E2) is a badpair of edges if there is a bad node in each of the 
set differences E~ - E~. and E2 - E~. 

Let us say that a hypergraph is nonsingular if every edge has at least two nodes. 
We shall prove the following. 

FACT 2. Every ~/-acyclic, intersecting, nonsingular hypergraph has a bad pair of 
edges. 

We now show that Fact 2 gives us a contradiction. As we showed, the hypergraph 
Y#' defined above is 3,-acydic and nonsingular and has no bad nodes. We now show 
that ~ '  is intersecting. Assume not. Then ~ '  is nesting. Let E be a minimal edge of 
YY'. Edge E (and every edge of .Yd') has at least two nodes. Let x and y be distinct 
nodes of E. By Fact 1, we know that x and y are edge-equivalent. But ~,~' has no pair 
of distinct edge-equivalent nodes. This contradiction shows that .,~' is intersecting. 
Since ~ '  is •-acyclic, intersecting, and nonsingular, it follows from Fact 2 that ~ '  
has a bad pair of edges, and so ~ '  has a bad node. But ~ '  has no bad node. This is 
the desired contradiction. Thus we need only prove Fact 2 to prove the theorem. 

We shall prove Fact 2 by induction on the number of edges in the hypergraph. 
The base case (of hypergraphs with only one edge) is immediate, since no hypergraph 
with only one edge is intersecting. Assume that Fact 2 holds for hypergraphs with 
less than n edges, and let • be a hypergraph with n edges that is ~,-acyclic, intersecting, 
and nonsingular. We must show that ,,~ has a bad pair of edges. 

Since a~ is intersecting, it has a pair (E, F)  of edges that are incomparable and 
nondisjoint. Find such a pair (E, F)  such that E n F is as small as possible. Thus, if 
E '  and F '  are incomparable and nondisjoint edges of ~, then IE' N F '  I _ IE n F I. 
(Here [ X I is the eardinality of set X.) 

Since J i s  ~-acyclic, it follows from Definition 4 that in the hypergraph that results 
by removing E f3 F from every edge, what is left of E is not connected to what is left 
of F. Let us write E I"1 F as Q. Let f# be a hypergraph with the same nodes as J and 
whose edges are precisely those edges of J that are not subsets of Q. Note that E and 
F are each edges in ~, since they are incomparable and their intersection is Q. For 
@, too, it is the case that in the hypergraph that results by removing Q from every 
edge, what is left of E is not connected to what is left of F. We can thus partition the 
edges of  .c#into two disjoint sets d~and ~ s u c h  that E ~  oaand F E  ~,  and such that 

whenever E'  ~ 6' and F '  ~ ~,  then E '  f3 F '  C_ Q. (9.1) 

Since we have several hypergraphs we are now dealing with (namely, 8, ~,  fa, and 
J ) ,  it is convenient for us to subscript the notion of "bad" with the hypergraph we 
are discussing. For example, if we say that x is a bade node, we mean that either (i) x 
is in exactly one edge of 8, or else (ii)x is edge-equivalent (with respect to 8) to 
another node of 6', that is, x is in precisely the same edges of 6' as another node of 
~f. Similarly, we can speak of  a bade pair of  edges, etc. 

We now prove three simple facts, each of which we shall use several times. 

FACT 3. Each edge of e either contains Q or is disjoint from Q. 

PROOF OF FACT 3. Assume that Fact 3 were false. Let E'  be an edge of 8 that 
neither contains Q nor is disjoint from Q. Now Q (Z E', by assumption, and so Q 
E' £1 F. If we put this together with the fact that E' N F C_. Q (which we know by 
(9.1)), it follows that E' £1 F is strictly smaller than Q = E N F. Also, E' and F are 
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nondisjoint, since by assumption E '  and Q = E O F are nondisjoint. Now E '  6 ~f 
c_. f~, and by delrmition of  f~ no edge of  f~ is contained in Q. Therefore E '  ~ Q. 
Hence there is a node e in E '  - Q. But E '  O F _  Q by (9.1), and so e ~ F. Since e E 
E '  - F, we know that E '  <Z F. Further, F ~  E':  for, if  F___ E' ,  then F =  E '  n F__ Q 
__. E, where the next-to-the-last inclusion follows from (9.1); however, by our choice 
of  E and F, we know that F ~ E. We have shown in this paragraph that E '  and F are 
incomparable and nondisjoint, and that E '  O F is strictly smaller than E O F. This 
contradicts our minimality assumption in the choice of  (E, F). Therefore, Fact 3 is 
proved. 

FACT 4. Assume that node a is in exactly one edge of  8, and that a f~ Q. Then a is 
bad:. 

PRoov or  FACT 4. It is sufficient to show that a is in exactly one edge of  J .  Let 
E '  be the edge of ~ that contains a. Assume that a is in another edge I of  J other 
than E'. By assumption, we know that I ~ 8. If  I E ~,, then by (9.1) we know 
a E Q, a contradiction. So I ~ f~. Therefore, I ~ J -  f~. But then a E Q by definition 
of ~. This contradiction completes the proof of  Fact 4. 

FACT 5. Assume that a and b are nodes in ~ that are edge-equivalent with respect 
to ~f. Assume also that neither a nor b is in Q. Then a is bad~. 

PRoof or  FACT 5. Let I be an edge of  J that contains node a. Then 1 E ~, since 
otherwise a E 1 ___ Q, a contradiction. We now show that I ~ 8. For if  not, then I E 
f~ - ~ = ~ ,  so a is a node in both # a n d  ~ ,  and so by (9.1) it follows that a ~ Q, a 
contradiction. We have shown that each edge of J that contains node a is an edge in 
d~. Similarly, the same is true about node b. Since a and b are edge-equivalent with 
respect to 8, it then follows immediately that a and b are edge-equivalent with respect 
to J .  Thus a is bad:. This completes the proof of  Fact 5. 

Now that Facts 3-5 are proved, we return to the proof of  Fact 2 (which will 
complete the proof of the theorem). 

We shall show that there is a bad:node e which is an edge E1 of 8bu t  which is not 
in Q. Identically, it follows that there is a bad~,node f w h i c h  is in an edge F1 of  ,~ but 
which is not in Q. From (9.1), we see that E1 N F1 C Q. Since e E E1 and e ~ Q, it 
follows that e ~ F1. Thus e E E1 - F1. Similarly, f ~ F1 - El. So (El, F1) is a bad/  
pair of edges. Hence, there is a bad:  pair of  edges, which is exactly what we wished 
to show to complete the proof. 

Thus, we need only show that 8 contains an edge Ea that contains a bad~, node e 
where e ~ Q. There are two cases. 

Case 1. 8 is  nesting. There are two subcases. 

Case la. There is an edge of e tha t  is disjoint from F. Let G be a minimal edge 
of  ~f. Since some edge of  d~ is disjoint from F, and since ~ is nesting, it is clear that G 
is disjoint from F. Let a and b be two distinct nodes of G. By Fact 1, nodes a and b 
are edge-equivalent with respect to 8. Since G is disjoint from F, it follows that 
neither a nor b is in Q (because Q ___ F). By Fact 5, a is bad~,. Therefore, a is the 
desired bad /node  which is in an edge of 8 but not in Q. 

Case lb. No edge of 8 is disjoint from F. Let G be a maximal edge of  ~. Then 
Q ~ E ..C_C G (where the last inclusion holds since G is maximal and 8 is nesting). 
Therefore, since G is maximal and g is nesting, it is clear that G contains a node e 
that is not in any other member of ~ and not in Q. By Fact 4, we know that e is bad/. 
Therefore, e is the desired bad/node  which is in an edge of  ~ but not in Q. 
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Case 2. 8 is intersecting. Since J is 7-acyclic and nonsingular and 6' __ ~ it 
follows that 6" is -t-acyclic and nonsingular. Therefore, by our inductive assumption 
about Fact 2, we know that 6" has a bade pair (Ea, E2) of  edges. Let el be a bade node 
in E1 - E2, and let e2 be a bade node in E2 - EI. We now show that it is impossible 
for both ea and e2 to be in Q. For, assume that ex and e2 are both in Q. Since e~ E 
E1 f3 Q, we know that E1 is not disjoint from Q. So, by Fact 3, it follows that 
Q __ E~. Since e2 E Q, it follows that e~. ~ EI, which is a contradiction. Therefore, one 
of  el or e2, say el, is not in Q. Since ex is bade, we know that either (i) el is in exactly 
one edge of  6", or else (ii) e~ is edge-equivaleut (with respect to 6") to another node el 
of  6". In case (i) it follows from Fact 4 that ex is the desired bad>, node which is in an 
edge of  6" but not in Q. So we can assume that case (ii) holds. If  e~ ~ Q, then it 
follows from Fact 5 that once again el is the desired bad>, node which is in an edge 
of  6, but not in Q. Therefore, we can assume that e; ~ Q. 

since e~ ~ E2 and since e~ and el are edge-equivaleut (with respect to 6,), it follows 
that e~ ~ E2. So, since e~ E Q, it follows that Q ~ E~. Since Q ~= E2, it follows from 
Fact 3 that Q is disjoint from E2. Since e2 is bade, we know that either (i) e2 is in 
exactly one edge of  6,, or else (ii) e2 is edge-equivalent (with respect to 6,) to another 
node e[ of  6". Now e2 ~ Q, since Q is disjoint from E2. Therefore, in case (i) it follows 
from Fact 4 that e~ is the desired bad /node  which is in an edge of  6,but not in Q. So 
we can assume that case (ii) holds. Now e~ ~ Q, since Q is disjoint from E2. 
Therefore, it follows from Fact 5 that once again, e2 is the desired bad>` node which 
is in an edge of  6" but not in Q. This completes the proof. []  

We note that the above proof was inspired by the proof in [8] that Graham's 
algorithm recognizes precisely the ,-acyclic hypergraphs. 

The algorithm clearly runs in polynomial time. We remark that Yannakakis [38] 
shows that i f R  has a loop-free Bachman diagram, then ] Bachman(R)[ _< I RI + 21 UI, 
where U = L)R is the set of  all attributes. This provides another polynomial- 
time algorithm for determining y-acyclicity, which we now describe. Start com- 
puting Bachman(R), but stop and announce -t-cyclicity if it becomes bigger than 
[R[ + 2] U]. Once Bachman(R) is computed (if we have not stopped and announced 
-t-cydicity already), form the Bachman diagram of  R, and see if it is loop-free. 

10. Conclusions 

We have discussed the concepts of  a-acyclicity, fl-acyclicity, and y-acyclicity for 
hypergraphs and for relational database schemes. These are all distinct, and each 
corresponds precisely to various desirable properties of  relational database schemes. 
These concepts are also of  interest from a graph-theoretic viewpoint, as natural 
generalizations of  the notion of  acyclicity from graphs to hypergraphs. 
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