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1. Introduction 

I n  t h e  r e l a t i o n a l  m o d e l  o f  da ta ,  as  d e f i n e d  b y  C o d d  [14], a n  a r b i t r a r y  d a t a b a s e  

s c h e m e  is poss ib le .  A database scheme c a n  be  t h o u g h t  o f  as a c o l l e c t i o n  o f  t ab le  
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skeletons (as in Figure 1), or, alternatively, as a set of subsets of attributes. For 
example, ifJff--- (.4, B, C, D} (or, for short, simplyABCD) is the set of attributes, or 
column names, then one example of a database scheme is (AB, BCD, AD, BCE). 
This database scheme corresponds to having four relations in the database, as in 
Figure 1. The first relation has columns A and B, the second has columns B, C, D, 
and so on. 

Beeri et al. [6] introduced a special class of database schemes, called acyclic. Fagin 
et al. [17] have shown that this class enjoys a certain desirable property (which we 
describe later). Our goal in this paper is to identify a number of other desirable 
properties, which have been studied by other researchers in quite different contexts, 
and show that each of these properties is equivalent to acyclicity. Thus the class of 
acyclic database schemes is a natural, important class, since it can be characterized 
in a number of ways, each corresponding to a desirable property of database schemes 
or to a natural graph-theoretic property. As we shall see, there are various undesirable 
and pathological phenomena that can take place for general database schemes but 
not for acyclic database schemes. So, by restricting our attention to the acyclic case, 
the theory is more elegant. Furthermore, it has been conjectured [17] that acyclic 
database schemes are sufficiently general to encompass most "real-world" situations. 
At the very least, database designers should be aware of acyclicity and strive for it. 
Assuming the conjecture, it follows that by focusing on the acyclic case, researchers 
can develop a powerful, elegant theory that often applies to "real-world" schemes. 
For acyclic schemes there are efficient (polynomial-time) algorithms for solving 
problems that are NP-complete in the unrestricted case. We shall give one such 
example (determining global consistency); other examples are shown by Yannakakis 
[43]. Further, we shall give a simple algorithm for determining acyclicity. 

There are various interesting problems concerning relational databases where some 
type of object can be viewed as a collection of sets, and a property of the object 
depends on the structure of this collection. Now a collection of sets can be viewed as 
being a hypergraph. It turns out that for various properties ~, acyclicity of the 
hypergraph is equivalent to ~ holding. Such properties ~ occur in (at least) three 
distinct areas. The first area arises when a database scheme is viewed as a collection 
of attribute sets. We shall discuss certain properties of relational databases that 
depend on the structure of the scheme (one such property is whether or not every 
pairwise consistent database over the scheme is globally consistent). A second area 
is the theory of dependencies. One of the important types of dependencies is the join 
dependency, which can be viewed as a collection of sets. The desired property here 
is that the join dependency is logically equivalent to a collection of binary join 
dependencies (i.e., multivalued dependencies). A third area is query processing. Here, 
join expressions are of importance, and these again are collections of sets. The 
interesting problems are the existence of time-efficient and/or space-efficient access 
paths. All these problems from distinct areas are linked together by acyelicity 
conditions on a hypergraph structure. 

In Section 2 we present definitions. In Section 3 we define a number of conditions 
that are equivalent to acyclicity. In Section 4 we discuss the significance of our results 
and their relationship to other work. In Section 5 we discuss several other types of 
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acyclicity for hypergraphs. Our main theorem, that the various properties discussed 
in Section 3 are all equivalent to acyclicity, is proved in Section 6. In Section 7 we 
give several characterizations of  those sets M of  multivalued dependencies such that 
M is the set of  multivalued dependencies that are the consequences of  a given join 
dependency. In Section 8 we give several characterizations for a conflict-free (in the 
sense of  [26]) set of  multivalued dependencies. We also show that an arbitrary acyclic 
join dependency t~ (R1 , . . . ,  R~} is equivalent to a conflict-free set of  at most n - 1 
multivalued dependencies. This strengthens the result of  [17] that each acyclic join 
dependency is equivalent to a set of  multivalued dependencies whose size is poly- 
nomial in the size of  the join dependency. 

2. Definitions 

Let ~ r  be a fmite set of distinct symbols, called attributes (or column names), and let 
Y be a subset of  ~ .  In the spirit o f  Armstrong [2] and of  Aho et al. [1] we det'me a 
Y-tuple (or simply a tuple, i f  Y is understood) to be a function with domain Y. Thus 
a tuple is a mapping that associates a value with each attribute in Y. I f  X is a subset 
of  Y and t is a Y-tuple, then t[X] denotes the X-tuple obtained by restricting the 
mapping to X. A Y-relation (or a relation over Y, or simply a relation, i f  Y is 
understood), is a fmite set of  Y-tuples. If  r is a Y-relation and Xis  a subset of  Y, then 
by f iX],  the projection of  r onto X, we mean the set of  all tuples t[X], where t is in 
r. We shall usually denote sets of  attributes by uppercase letters and relations by 
lowercase letters. 

If./ff is a set of  attributes, then we define a database scheme R ~- (R1 . . . . .  Rn) to 
be a set of  subsets of  sff. Intuitively, for each i, the set Rz of  attributes is considered 
the set of  column names for a relation. We may call the Ri's relation schemes. If  
rl . . . . .  rn are relations, where r, is a relation over R, (1 _ i _< n), then we call 
r = (rl . . . . .  rn} a database over R. 

If  r is a relation over R, and X and Y are subsets of  R, then we say [15] that the 
multivalued dependency (MVD) X-->---~ Y holds for r if whenever tl and t2 are tuples 
of  r with tl[X] = t2[X], then there exists a tuple t3 of  r such that 

(1) t3[X] = tx[X] = t2[X], 
(2) t3[Y] = tl[Y], and 
(3) t3[R - XY]  = t2[R - XY].  

Intuitively, the set of  Y-values associated with each given X-value is independent of  
the values in all other attributes. By X Y  in (3) above, we mean X U Y. 

Let r = (rl . . . . .  rn } be a database over R. The join of  the relations r (where the 
join is denoted by either rl t~ • . .  t~ rn or t~r) is the set of  all tuples t with attributes 
R1 U - . .  URn, such that t[R,] is in r, for each i. 

We say [l, 32] that a relation r with attributes R1 U . . -  U R,, obeys the join 
dependency t~(R~ . . . . .  R,}  if  r - -  I x l ( r l  . . . . .  r,}, where r, ffi r[R,], for 1 _< i _< n. It 
follows that the join dependency t~(Rx . . . .  , Rn} holds for the relation r if  and only 
if  r contains each tuple t for which there are tuples Wl, • • •, wn of  r (not necessarily 
distinct) such that w,[R,] -- t[R,] for each i (1 _< i _ n). As an example, the relation 
r in Figure 2 violates the join dependency t~{AB, ACD, BC}. For, let w~, w2, w3 be, 
respectively, the tuples (0, 1, 0, 0), (0, 2, 3, 4), and (5, 1, 3, 0) of  r, let R1, R2, R3 be, 
respectively, AB, ACD, and BC; and let t be the tuple (0, 1, 3, 4); then w~[R,] -~ t[R~] 
for each i (1 _< i _ n), although t is not a tuple in the relation r. However, it is 
straightforward to verify that the same relation r obeys, for example, the join 
dependency t~{ABC, BCD, ABD }. 
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Let 52 be a set of  dependencies, and let o be a single dependency. When we say 
that 52 logically implies o or that o is a logical consequence of 52, we mean that 
whenever every dependency in 52 holds for a relation r, then o also holds for r. That  
is, there is no "counterexample relation" or "witness" r such that every sentence in 
52 holds for r but o does not hold for r. We write 52 ~ o to mean that 52 logically 
implies o. For  example, {A --->---> B, B --->---~ C} ~ A --->---> C. 

3. Conditions Equivalent to Acyclicity 

Let R = (R1 . . . .  , R,} be a database scheme, as defined in the introduction. Thus 
there is a fLxed set vKof attributes, and R, C_ JK for each i. We always assume that 
every attribute of  vK appears in at least one R,. We now consider a number of  
conditions on R, all o f  which will turn out to be equivalent. 

Condition 3.1. R is an acyclic hypergraph. 

A hypergraph is a pair (~ ,  8), where ./K is a finite set of  nodes and 8 is a set of  
edges (or hyperedges) which are arbitrary subsets of  ~ .  An ordinary undirected 
graph (without self-loops) is, of  course, a hypergraph whose every edge is of  size two. 

The hypergraph of  a database scheme {R1 . . . . .  Rn } has as its set of  nodes those 
attributes that appear in one or more of  the R,'s, and as its set of  edges R = 
{R1 . . . . .  R,}. We shall often speak of  the "hypergraph R"  without mentioning the 
set vK of  nodes, since, as noted, we tacitly assume that vK = U(R, :  1 _< i _< n}. 

Let us give some terminology for hypergraphs. A path from node s to node t is a 
sequence of  k _ 1 edges E1 . . . . .  Ek such that 

(1) sis in E~, 
(2) t is in Ek, and 
(3) E, N E~+I is nonempty if  1 _< i < k. 

We also say the above sequence of  edges is an edge path (or just path when no 
confusion arises) from E~ to Ek. 

Two nodes (or attributes) are connected i f  there is a path from one to the other. 
Similarly, two edges are connected if  there is an edge path from one to the other. A 
set of  nodes or edges is connected if  every pair is connected. The connected components 
are the maximal connected sets of  edges. 

Let (~ ,  8)  be a hypergraph. Its reduction (~, 8') is obtained by removing from 
dr each edge that is a proper subset of  another edge. A hypergraph is reduced if  it 
equals its reduction, that is, if  no edge is a subset of  another edge. I f  we say that 
t~{R~ . . . . .  Rn} (or, for short, t~R) is the join dependency corresponding to the 
hypergraph (R1 . . . . .  Rn}, then the join dependency corresponding to a hypergraph 
and the join dependency corresponding to its reduction are logically equivalent [7]. 

Let .~¢ be a set of  nodes of  the hypergraph (~ ,  6'). The set of partial edges generated 
by ..¢[ is defined to be obtained by intersecting the edges in 6' with ~¢/, that is, taking 
{E N ..¢/: E E dr} - (O} and then taking the reduction of  this set. The set of  partial 
edges generated from (~,  dr) by some set . / / i s  said to be a node-generated set of 
partial edges. 
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Let ~ be a connected, reduced set of partial edges, and let E and F be in ~ Let 
Q = E n F. We say that (E, F)  is an articulation pair, and that Q is an articulation set 
of ~,  if the result of  removing Q from every edge of ~ that is, {D - Q: D E ~ )  - 
(O), is not a connected set of partial edges. More generally, if ~ is a (not necessarily 
connected) set of partial edges and E and F are in ~ then we say that (E, F) is an 
articulation pair, and that Q = E n F is an articulation set of  ~,  if the result of  
removing Q from every edge in ~-strictly increases the number of  connected 
components o f ~  It is clear that an articulation set in a hypergraph is a generalization 
of the concept of an articulation point in an ordinary graph. 

A block of a reduced hypergraph is a connected, node-generated set of  partial 
edges with no articulation set. A set is trivial if it contains less than two members. A 
reduced hypergraph is acyclic if all its blocks are trivial; otherwise, it is cyclic. A 
hypergraph is said to be cyclic or acyclic precisely if its reduction is. 

Example 3.1. It is straightforward to verify that Figure 3 shows an acydic 
hypergraph. Its edges are ABC, CDE, EFA, and ACE. An articulation set for the set 
of  all edges is ABC O ACE -- AC, since the result of  removing A and C from each 
edge is to leave the set of  edges B, DE, EF, and E, which is not connected (B is 
disconnected from the others). Note that the set of  edges {ABC, CDE, EFA ) has no 
articulation set. However, this set is not node generated, so there is no contradiction 
of our assertion that the hypergraph of Figure 3 is acyclic. [] 

Condition 3.2. R is a closed-acyclic hypergraph. 

Let (X, d~) be a hypergraph, and let ~ be a subset of  8. Let Jr '  be the set of nodes 
that is the union of members in ~.  We say that ~ is closed i f  for each edge E of  the 
hypergraph there is an edge F in ~ such that E n ./g _c F. Note that every dosed set 
of edges is a node-generated set of partial edges, generated by ~/. 

Recall that a reduced hypergraph is acyclic if every nontrivial, connected, node- 
generated set of partial edges has an articulation set. We say that a reduced 
hypergraph is closed-acyclic if  every nontrivial, connected, closed set of  edges has an 
articulation set. A hypergraph is said to be closed-acyclic precisely if  its reduction is. 
Since every closed set of  edges is a node-generated set of partial edges, it follows 
immediately that every acyclic hypergraph is closed-acydic. We shall show that, in 
fact, "acyclic" and "closed-acyclic" are equivalent. The intuitive advantage of  dealing 
with the closed-acyclic definition rather than with the acydic defmition is that under 
the closed-acyclic definition it is not necessary to consider partial edges that are not 
edges. 

Condition 3.3. R is a chordal, conformal hypergraph. 

We begin with some detrmitions for (ordinary, undirected) graphs. A clique in a 
graph is a set of  nodes such that every pair forms an edge of  the graph. A cycle in a 
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graph is a sequence (al . . . .  , am) of  nodes, m >__ 3, such that 

(i) each a, is distinct, except that al = am, and 
(ii) (a,, a,+l) is an edge for 1 _ i < m. 

Let .Ydbe a hypergraph. The graph G(~) of oWhas the same nodes as ~ a n d  an 
edge between every pair of  nodes that are in the same hyperedge of  ~ .  Thus, the 
edges of  G ( ~ )  are precisely the set of  all pairs (a, b) for which there is a hyperedge 
E of.Ydthat contains both a and b (and possibly other nodes). 

A hypergraph .,~ is conformal [10] if for every clique V in G ( ~ )  there is a 
hyperedge o f ~  that contains V. We now prove the following simple characterization 
of  reduced, conformal hypergraphs. 

THEOREM 3.2. Hypergraph .YC is reduced and conformal if and only f i ts  hyperedges 
are precisely the maximal cliques of a graph. I f  there is such a graph, then the graph is 
G(,,'e). 

PROOf. (=*): Let ~ be a reduced, conformal hypergraph, and let G = G ( ~ )  be 
its graph. We now show that the hyperedges of  ~f~are precisely the maximal cliques 
of  G. Let V be a hyperedge of ~ .  By de£mition of  G it follows that V is a clique of  G. 
If  V were not a maximal clique of  G, then there would be a clique W of G that 
properly contains V. Since ~ i s  a conformal hypergraph, there is a hyperedge X of  
.Yl that contains W. But then hyperedge X properly contains hyperedge V; this 
contradicts our assumption that ~ i s  reduced. 

(~) :  Let ~,W be a hypergraph whose hyperedges are precisely the maximal cliques 
of  a graph D. It is clear that ~ is reduced; we shall show that it is conformal. Further, 
let G = G(~? ~) be the graph of  ~ ;  we shall show that G = D. 

Now (a, b) ~ D if and only if {a, b} is in a maximal clique of  D, if and only if  
(a, b} is a subset of an edge of ~ ,  if and only if (a, b) E G. Hence, G = D. Since 
G = D, it follows by assumption that the hyperedges of ~/fare precisely the maximal 
cliques of G - G(H). In particular, for every clique V in G ( ~ )  there is a hyperedge 
of J~that contains V. Thus A'~is conformal. [] 

A graph is chordal [18] if every cycle with at least four distinct nodes has a chord, 
that is, an edge connecting two nonconsecutive nodes of  the cycle. Chordal graphs 
are sometimes called triangulated. A hypergraph ~ i s  chordal if  its graph G ( ~ )  is 
chordal. We note that in [6] a hypergraph is called chordal if it is not only chordal 
(under our definition), but also conformal. We have decided that it is useful to 
change this convention. We note some important, well-known properties of  chordal 
graphs. 

(1) Chordality of graphs is a hereditary property; that is, deleting nodes (and their 
incident edges) from a chordal graph leaves a subgraph that is also chordal. 

(2) Every chordal graph has a node v whose neighborhood is a clique; that is, there 
is an edge between every pair of nodes, each of which is adjacent to v. Such a 
node is called simplicial (e.g., see [18]). 

Condition 3.4. Graham's algorithm succeeds with input R. 

Graham's algorithm [21] applies the following two operations to R = 
(R~ . . . .  , Rn ) repeatedly until neither can be applied: 

(a) If  A is an attribute that appears in exactly one R,, then delete A from R,. 
(b) Delete one R, if  there is an Rj w i th j  # i such that R~ __ Rj. 
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Intuitively, operations of  type (a) remove attributes that cannot have any effect on 
cyclicity or acyclicity, and operations of  type (b) cause a hypergraph to be replaced 
by its reduction. 

The algorithm succeeds if  it terminates with the empty set; otherwise, it fails. We 
note that it is not hard to show that the algorithm is Church-Rosser. That is, the set 
that the algorithm terminates with is independent of  the sequence of  steps taken in 
executing the algorithm but depends only on the input. 

Example 3.3. Let us apply Graham's algorithm to the hypergraph of  Example 
3.1, with edges ABC, CDE, EFA, and ACE. Nodes B, D, and F e a c h  appear in only 
one edge, and so they are each deleted by applications of  rule (a) of  Graham's 
algorithm. We are then left with edges A C, CE, EA, and ACE. Now edge A C is a 
subset of edge ACE, so by an application of rule (b) of  the algorithm, this edge is 
deleted. This leaves us with edges CE, EA, and A CE. Similarly, edges CE and EA 
are deleted by applications of  rule (b). We are then left with only one edge, namely 
ACE. Each of  the nodes A, C, and E now appears in only one edge, and so by 
applications of rule (a), each of  them is deleted. We are left with the empty set, and 
so Graham's algorithm succeeds. [] 

Condition 3.5. The join dependency MR is equivalent to a set of  multivalued 
dependencies. 

Since multivalued dependencies are simpler than join dependencies (they are 
special cases of join dependencies), it is a desirable property of  a join dependency for 
it to be equivalent to a set of multivalued dependencies. Moreover, it is easy to test 
(by sorting and counting) whether a given multivalued dependency holds for a 
relation; however, the problem of whether a given join dependency holds for a given 
relation is NP-complete [24, 30]. 

Fagin et al. [17] showed that if a join dependency is equivalent to a set of 
multivalued dependencies, then it is equivalent to a set M of multivalued depend- 
encies whose size is polynomial in the size of  the join dependency. In Section 8 we 
strengthen this result by showing that if the join dependency is t~ (R1 , . . . ,  Rn), then 
the set M can be taken to be a set of  at most n - 1 multivalued dependencies. 

Condition 3.6. The join dependency t~R is equivalent to a conflict-free set of 
multivalued dependencies. 

We def'me conflict free in Section 8. 

Condition 3.7. Every pairwise consistent database over R is globally consistent. 

Let r and s be relations with attributes R and S, respectively, and let Q = R N S. 
Thus Q is precisely the set of  attributes that r and s have in common. We say that r 
and s are consistent if r[Q] = s[Q], that is, the projections of  r and s onto their 
common attributes are the same. 

Let r = (rl . . . . .  r,,} be an arbitrary database over R = (R1 . . . .  , R,~}. We say that 
r is pairwise consistent if  each pair r, and r 1 is consistent, that is, if  r,[R, N Rj] = 
rj[R, N Rj] for each i andj .  We say that r is globally consistent if  there is a relation r 
over attributes JV-- R1 t3 . . .  t.J R,~ such that r, = r[R,] for each i. Thus r is globally 
consistent if  there is a "universal relation" r such that each r, is a projection of  r. It 
is known [1] that if  there is such a universal relation r, then t~r is also such a universal 
relation. Note that a pair of relations is globally consistent if  and only if the two 
relations are consistent. Rissanen [33] calls a globally consistent set of relations 
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joinable. Joinability is a critical assumption in Rissanen's theory of  independent 
components of  relations. A globally consistent database is also called join compatible 
[8], join consistent [24], valid [34], consistent [16], or decomposed [40]. 

It is clear that ff r is globally consistent, then it is pairwise consistent. If  n -- 2, that 
is, if only two relations are involved, then, as noted above, the converse is true. 
However, in general, the converse is false. For example, let rt, r2, and r3 be the three 
relations in Figure 4, over attributes AB, BC, and A C, respectively. It is easy to verify 
that these relations are pairwise consistent but not globally consistent. 

We say that every pairwise consistent database over R is globally consistent if for 
every database r over R, pairwise consistency of  r implies global consistency of  r 
(and thus pairwise consistency and global consistency are equivalent for r). 

Honeyman et al. [24] have shown that the problem of  deciding whether a database 
r is globally consistent is NP-complete. However, if every pairwise consistent database 
over R is globally consistent, then there is a simple polynomial-time test for global 
consistency, namely, pairwise consistency. 

By our definitions, a database is required to contain a finite number of  tuples. We 
could define a possibly infinite database by removing this restriction. It is then not 
obvious that the following two statements are equivalent: 

(a) Every pairwise consistent database over R is globally consistent. 
(b) Every pairwise consistent, possibly infinite database over R is globally consistent. 

However, it follows from our proof  of  Theorem 3.4 below that (a) and (b) are indeed 
equivalent. 

Condition 3.8. Every database over R has a full reducer. 

The semijoin [11, 12] r ~< s of  relations r and s (over attributes R and S, respectively) 
is (r t~ s)[R]. A semijoinprogram is a sequence of  semijoin statements r~ :-- r, ¢< rj. A 
full reducer for a database r is a semijoin program that converts r into a globally 
consistent database. 

If  it is necessary to join a number of  relations, each of  which is at a different site, 
and if the amount of  communication is to be minimized, then it is frequently 
advantangeous to perform semijoins first, by sending only certain projections of  
relations from site to site, until the relations have been pruned (by removing tuples) 
to the point that every remaining tuple actually participates in the join with one or 
more tuples from the other relations. At that time, the pruned relations can be 
shipped to a single site and their join taken [12]. 

Condition 3.9. R has a join tree. 

A join tree for R is a tree with set R of  nodes, such that 

(1) Each edge (R,, Rj) is labeled by the set of  attributes R~ A Rj, and 
(2) For every pair R,, R~ (R, ~ Rj) for every A in R~ N Rj, each edge along the unique 

path between R, and Rj includes label A (possibly among others). We call this 
path an A-labeledpath. 

A join tree is so named because it yields a "good" (in a manner to be defined 
soon) way to join together all of  the relations. For, let T be a join tree for R -- 
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{ R 1 , . . . ,  R,}. Select a root for the tree T. Let $1, . . . ,  S,  be Rt, .., . ;  R,~ ordered by 
increasing depth. Thus, if Sj is the parent of  S,, then j < i. A "good" way to join 
together all of the relations is first to take the join of the St and $2 relations, then join 
the result with the Sz relation, then join the result with the $4 relation, and so on. 
"Good"  means that if the database is pairwise consistent, then by joining the relations 
in this manner, the number of tuples grows monotonically (this fact follows from our 
proof of  Theorem 3.4 below; see Condition 3.11 below for an explanation of  
monotonicity). 

Condition 3.10. R has the running intersection property. 

We say that R has the running intersection property if  there is an ordering R1 . . . . .  
Rn of R such that for 2 _< i _< n there exists j ,  < i such that R, N (RI O , . .  t.J Ri-a) 
C Rj. That is, the intersection of each R~ with the union of  the previous Rfs is 
contained in one of these. 

Condition 3. I I. R has a monotone join expression. 

Consider the following scenario. A user desires to take the join of four relations r~, 
r2, ra, and r4. The following might happen. He might first form rl t~ r2, which might 
have, say, a thousand tuples. Then he might join the result with ra, to obtain rl ~ r2 
t~ rs, a relation with, say, a million tuples. He might fmally join the result with r4, to 
obtain his desired answer rl t~ r2 t~ ra t~ r4, which might have only ten tuples. Thus, 
even though the result he was seeking had only ten tuples, he might have had an 
intermediate result with a million tuples. We now discuss "monotone join expres- 
sions," which prevent this unpleasant behavior. 

A join expression is a well-formed expression formed out of  relation schemes, the 
symbol "t~," and parentheses, in which every join is binary. For example, if R~, R2, 
Ra, and R4 are among the relation schemes, then ((R2 M R3) t~ (R1 ~ R4)) is a join 
expression, which corresponds to joining the R2 and the R3 relations, joining the R1 
and R4 relations, and then joining together the two results. 

Let 0 be a join expression whose relation schemes are all in R, and let r be 
a database over R. By 0(r) we mean the relation that results by replacing each rela- 
tion scheme R in 0 by r, where r E r and r has attributes R. For example, if  r = 
(rl, r2, rs, r4} and 0 is the join expression (R2 t~ (Ra t~ R2)), where r2 and ra have 
attributes R2 and R3, respectively, then 0(r) is the relation (r2 t~ (r3 t~ r2)), that is, the 
relation ,'2 t~ ra. 

A subexpression of a join expression is defined in the usual way. Let 0 be a join 
expression containing relation schemes R, and let r be a database over R. We say 
that 0 is monotone with respect to r if for every subexpression (01 t~ 02) of 0, the 
relations 0x(r) and 02(r) are consistent. Intuitively, 0 is monotone with respect to r if 
no tuples are lost in taking any of the binary joins obtained by "executing" 0(r) as 
dictated by the parentheses. (We say that no tuples are lost in taking the join of 
relations r and s if r and s are each projections of  r t~ s, i.e., if r and s are con- 
sistent.) As an example, ((R2 t~ Ra) t~ (Rt t~ R4)) is monotone with respect to r = 
{rl, r2, r3, r4), where r, has attributes R, (1 ___ i ___ 4), if 

(a) r2 and ra are consistent, 
(b) r~ and r4 are consistent, and 
(c) (r2 t~ ra) and (r~ t~ r4) are consistent. 

We say that 8 is monotone if it is monotone with respect to every pairwise consistent 
database over R. If  0 involves precisely the relation schemes R, then we say that R 
has a monotone join expression. Monotone join expressions provide a "space-efficient" 
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manner for taking a join, in that no "intermediate" join has more tuples than the 
"fmar '  join rl t~ . . .  ~ rn. 

Condition 3.12. R has a monotone, sequentialjoin expression. 

Certain join expressions, called sequential join expressions, are of  special interest. 
Let 0 be a join expression over R. I f0  is of  the form ( . . .  ((R1 t~ R2) t~ R3) . . .  t~ Rn), 
where R1 . . . . .  Rn is an ordering of  the distinct members of  R, then we say that 0 is 
sequential. Intuitively, a sequential join expression ( . . .  ((R~ t~ R2) t~ R3) . . .  t~ Rn) 
corresponds to first joining the Rx and the Re relations, then joining the result with 
the Rs relation, then joining the result with the R4 relation, and so on. 

Saying that there is a monotone, sequential join expression over R means that 
there is an ordering R~ . . . . .  Rn of R such that if r ffi {rl . . . . .  rn) is a pair- 
wise consistent database over R, then the join rl t~ . . .  t~ r, is consistent with r,+a 
(1 _ i < n). Thus, if we first join r~ with r2, join the result with r3, join the result with 
r4, and so on, then no tnples are lost in taking any of  the joins; hence the number of  
tuples grows monotonically. As we noted, having a monotone join expression 
(Condition 3.11 above) guarantees that no intermediate join has more tuples than 
the final join. Having a monotone, sequential join expression has the further advan- 
tage that only one intermediate join needs to be maintained at a time. 

The main result of  this paper is that each of  the above conditions on R are 
equivalent. Thus we shall prove the following theorem. 

THEOREM 3.4. The following conditions on R are equivalent: 

(1) R is an acyclic hypergraph. 
(2) R is a closed-acyclic hypergraph. 
(3) R is a chordal, conformal hypergraph. 
(4) Graham's algorithm succeeds with input R. 
(5) The join dependency t~R is equivalent to a set of multil, alued dependencies. 
(6) The join dependency MR is equivalent to a conflict-free set of multivalued depend- 

encies. 
(7) Every pairwise consistent database over R is globally consistent. 
(8) Every database over R has a full reducer. 
(9) R has a join tree. 

(10) R has the running intersection property. 
(11) R has a monotone join expression. 
(12) R has a monotone, sequential join expression. 

4. Significance of Results and Relationship to Other Work 

Before anyone considered the question as to when a join dependency is equivalent 
to a set of  multivalued dependencies (condition (5) of  Theorem 3.4), the converse 
question was studied, as to which sets of  multivahied dependencies are equivalent to 
a single join dependency. The desirability of  such sets of  multivalued dependencies 
was discussed by Sciore [36]. The points made there depend on the detailed analysis 
of  the way the schematic notion of"objects"  interacts with multivahied dependencies 
and with the insertion and deletion of  information in the database, which analysis 
was done by Sciore [35]. The notion of  "conflict freedom" [26] is another attempt to 
put restrictions on sets of  multivalued dependencies in order to avoid problems in 
defining how the database is to be updated, and also is an attempt to establish the 
equivalence between relational descriptions of  the real world and descriptions in 
more "classical" terms, such as Bachman diagrams [3, 26, 431, which are certain 
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directed graphs on collections of attributes. Conflict-free sets of multivalued depend- 
encies have several nice properties: (1) they allow a unique fourth-normal-form [15] 
decomposition, and (2) all multivalued dependencies participate in the decomposition 
process; that is, the phenomenon where decomposing according to one multivalued 
dependency prevents another multivalued dependency from being applied does not 
O c c u r .  

Conditions (8) and (9) concerning full reducers and join trees were motivated not 
by issues of the structure of databases, but by the problem of implementing a query 
efficiently in a distributed database. Semijoins can be used to help cut down on the 
amount of communication required in taking a join of a collection of relations at 
distinct sites. 

Condition (7), that pairwise and global consistency be the same, was originally 
considered as a way of testing whether a database is the projection of a universal 
relation. The equivalence of (1) and (7) also says that if the relations of the database 
satisfy an acyclic join dependency, then we can maintain a universal relation, of 
which each database relation is a projection, if we agree that nulls will be used where 
necessary to fill out tuples of the universal relation, as described in numerous works 
on the subject [25, 27, 29, 35, 41, 42]. When inserting or deleting from some relation 
r,, we adjust the universal relation by considering interactions among the tuples of r, 
and the other relations, where we insert tuples with nulls into these relations only 
when necessary. In the more general (not necessary acyclic) case, the problem of 
adjusting the relations to maintain the property that they are the projection of a 
universal relation is NP-complete [24]. 

Condition (4) gives a polynomial-time algorithm for testing the acyclicity property. 
A linear-time algorithm has recently been given by Tarjan and Yannakakis [38]. 
Condition (10), the running intersection property, is a convenient tool for proving 
properties of acyclic hypergraphs. Conditions (11) and (12) are of interest because of 
the space-efficiency of monotone join expressions. Monotone join expressions (as in 
condition (11)) guarantee that no intermediate join has more tuples than the final 
join. Monotone, sequential join expressions (as in condition (12)) have the further 
advantage that only one intermediate join needs to be maintained at a time. 

The equivalence of (1)-(4), (9), and (10) is an interesting graph-theoretic fact in its 
own right. 

Some of the implications of Theorem 3.4 were shown previously by others. In 
particular, the equivalence of (1) and (5) was shown by Fagin et al. [17], the 
equivalence of (8) and (9) by Bernstein and Goodman [121, the equivalence of (4) 
and (8) by Yu and Ozsoyoglu [44], and the equivalence of (7) and (8) by Honeyman 
[23]. Graham [211 showed that (4) implies (7). By making use of results of Mendelzon 
and Maier [31] and Beeri and Vardi [9], it follows easily that (4) implies that t~R is 
equivalent to a set of embedded multivalued dependencies [ 15], which is a slightly 
weaker statement than (5). 

Other implications of Theorem 3.4 were shown independently by others. In 
particular, Goodman and Shmueli [19] have independently shown the equivalence 
of (7) and (9). Further, they give [19] a characterization of (9) from which they easily 
show [20] independently the equivalence of (3) and (9). 

This paper makes several contributions. (1) By using hypergraphs, we unify three 
distinct areas of relational database theory, involving (a) relation schemes, (b) 
dependencies, and (c) query processing (see the introduction for more discussion); 
(2) we present new equivalences among previously studied concepts; and (3) we give 
much simpler proofs for some previously known equivalences. 
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FIGURE 5 

5. Other Types of Acyclicity for Hypergraphs 

Several other types of  acyclicity, none equivalent to our definition, have been defined 
for hypergraphs. All but one of  these other types of  acyclicity are more restrictive 
than our definition. Each of  them coincides with the usual definition of  acyclicity 
when we restrict our attention to ordinary undirected graphs. That is, an ordinary 
graph is acyclic in the usual sense if and only if it is acyclic in any or all of  these 
hypergraph senses, when it is considered as a hypergraph. 

We begin with the classic definition, which is due to Berge [10] and is the most 
restrictive type of  acyclicity for hypergraphs. 

A Berge cycle in a hypergraph ~ffis a sequence ($1, Xl, $2, x2 . . . .  , S,~, xm, Sin+l) 
such that 

(i) xl . . . .  , xm are distinct nodes of  Jff; 
(ii) $ 1 , . . . ,  S,,, are distinct edges o f ~ ,  and S,,,+1 -- S1; 

(iii) m _ 2, that is, there are at least two edges involved; and 
(iv) x, is in S, and S,+~ (1 <_ i <_ m). 

A hypergraph is Berge-cyclic if it has a Berge cycle; otherwise, it is Berge-acyclic. 
The hypergraph of  Figure 5, with edges ABC and BCD, is Berge-cyclic, because it 
contains the Berge cycle (ABC, C, BCD, B, ABC), where, for clarity, we have 
underlined the edges. However, this hypergraph is acyclic under our definition. As 
we see by this example, if the hypergraph contains a pair of  edges with more than 
one node in common, then the hypergraph is Berge-cyclic. A restriction that no two 
relation schemes can have more than one attribute in common is far too severe. 
Hence, Berge-acyclicity is too restrictive an assumption to make about database 
schemes. 

Zaniolo [45] defined two types of  acylicity for hypergraphs in a pioneering effort 
to fred a condition on a hypergraph R that is equivalent to a certain desirable 
database condition ("every pairwise consistent database over R is globally consistent"; 
see the discussion of  condition 3.7 above). Unfortunately, one of  his conditions was 
sufficient but not necessary, and the other was necessary but not sufficient. Of  course, 
our definition of  acyclicity is both necessary and sufficient. The second of  Zaniolo's 
definitions gives the only type of  acyclicity that has been defmed in the hypergraph 
literature that is less restrictive than ours. 

Graham [21] weakened Zaniolo's first definition of  acyclicity in another attempt 
to fred a condition on a hypergraph R equivalent to "every pairwise consistent 
database over R is globally consistent." Like Zaniolo's first def'mition, Graham's 
condition was sufficient but not necessary. 

Fagin [16] has recently defined two types of  acyclicity for hypergraphs, which he 
calls fl-acyclicity and y-acyclicity (where our type of  acyclicity he calls a-acyclicity). 
A hypergraph is fl-acyclic if and only if every subset of  its edges forms a hypergraph 
that is acyclic in our sense. Thus, for each of  the various desirable properties ~ that 
we show are equivalent to acyclicity for database schemes, it then follows that a 
database scheme is fl-acyclic if and only every subscheme enjoys property ~. (A 
subscheme of  a database scheme is a subset of  the relation schemes.) I f  turns out that 
fl-acyclicity is equivalent to Graham's condition. Fagin's ~,-acyclicity is even more 
restrictive than fl-acyclicity. He shows that T-acyclicity is equivalent to several 
desirable database conditions involving monotone-increasing joins and unique rela- 
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FIGURE 6 

tionships among attributes. A hypergraph is -y-acyclic if and only its Bachman 
diagram [3] is loop-free [26, 43]. 

We also note that Batini et al. [4] discuss the issue of generating various subclasses 
of acyclic hypergraphs by "hypergraph grammars." 

6. Proof of Main Theorem 

In this section we prove our main result, Theorem 3.4, which we repeat below. We 
begin with a definition and a useful lemma. 

Let (~,  ~f) be a hypergraph, and let ~ be a subset of  the set dr of  edges. Let ./4 be 
the set of  nodes that is the union of  the members of ~.  We say that ~ is guarded if  
there is an edge F (called the guard) in ~ such that for each edge E of  the hypergraph 
that is not in ~,  we have E n J / _  F. Recall that we say that ~" is closed if for each 
edge E of  the hypergraph there is an edge F in ~ such that E n .1~ c_ F. It follows 
easily that every guarded set of edges is closed. The converse is false. For exam- 
ple, consider the hypergraph in Figure 6, with edges {AB, BC, CD, DA }. The set 
(AB, BC} of edges is closed but not guarded. 

LEMMA 6.1. Let ~ be a guarded set of edges of a hypergraph. An articulation set 
for ,~ is an articulation set for the entire hypergraph. 

Note. The lemma is false if we replace "guarded" by "closed." For example, B 
is an articulation set for the subset ~ - {AB, BC} of the hypergraph in Figure 6 but 
not for the whole hypergraph. As we noted, ~,~ is closed but not guarded. 

PROOF. Let (E, F )  be an articulation pair for the guarded set . ~ o f  edges of 
hypergraph ~ .  We shall show that (E, F) is an articulation pair for the whole 
hypergraph ~ .  Let ~ be a connected component of  ~ that is split into at least 
two connected components after articulation by Q = E n F. Let call and 
cd2 be two nonempty disjoint subsets of  ~ such that the reductions of  ~, - Q = 
{ C - Q: C E ~, ) (i = 1, 2) are connected components of  cd - Q. Thus, if  T1 and 
T2 are arbitrary members of ~1 and ~2, respectively, then there is no sequence 
3(1 . . . . .  Xt of members of  ~ such that 

(a) T l f  X1, 
(b) T2 = Xt, and 
(c) X, O X,+~ - Q is nonempty, for 1 < i _< t. 

We know that ~ is part of a connected component of the whole hypergraph. To 
prove the lemma, it is sufficient to show that qf~ and ~2 are subsets of  distinct 
connected components of ~ a f t e r  articulation by Q. That is, it is sufficient to show 
that there is no sequence 3(1,. . . ,  Xt of members o f ~ s u c h  that for some 7"1 in ~ and 
7"2 in ~z, each of  (a)-(c) above hold. 

Assume not. Then (a)-(c) hold for appropriate choices of T~, T2, and Xx . . . . .  Xt. 
We know that some X, is not in ~ ,  since by assumption, (a)-(c) are false i f  every X~ 
is in J~. Let u be the minimum value of i and v the maximum value of  i such that X, 
is not in ~ Then 1 < u __ v < t. Denote by F t h e  guard of  the guarded set ~ of  edges. 
Consider the sequence of  edges )(1, X2 . . . . .  X,-1, F, Xv+x . . . . .  Xt, in Which we have 
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"spliced" the guard F in place of Xu . . . . .  X~. Since each edge in this sequence is in 
.~, we can derive a contradiction by showing that this sequence of edges is one in 
which each consecutive pair has a node in common that is not in Q. We already 
know that X, N X,+t has a node that is not in Q (1 _< i < t). So we need only show 
that Xu-1 N F and F N X~+I each have a node that is not in Q. Now X~-I f') X~ has 
a node A that is not in Q, by assumption. Since X~-I is in ~ a n d  X~ is not, and since 

is guarded, with guard F, it follows that A E F. Hence, Xu-1 N F has a node 
(namely, A) that is not in Q, and similarly for F N Xv+~. This contradiction completes 
the proof. [] 

THEOREM 3.4. The following conditions on R are equivalent: 

(1) R is an acyclic hypergraph. 
(2) R is a closed-acyclic hypergraph. 
(3) R is a chordal, conformal hypergraph. 
(4) Graham's algorithm succeeds with input R. 
(5) The#in dependency t~R is equivalent to a set of  multivalued dependencies. 
(6) The#in dependency t~R is equivalent to a conflict-free set of multivalued depend- 

encies. 
(7) Every pairwise consistent database over R is globally consistent. 
(8) Every database over R has a full reducer. 
(9) R has a join tree. 

(10) R has the running intersection property. 
(11) R has a monotone join expression. 
(12) R has a monotone, sequential join expression. 

PROOF. We shall neglect condition (6) until Section 8. We now prove the 
equivalence of the other conditions. We shall show that (4) ==~ (3) ~ (4) =* (9) =* 
(10) =* (8) =* (7) ~ (2) =* (5) ~ (1) ~ (2) ==~ (4), which shows that conditions 
(1)-(5) and (7)-(10) are all equivalent, and then (10) ~ (12) ~ (11) ~ (7), which 
shows that (11) and (12) are equivalent to each of these. It is an instructive exercise 
for the reader to prove for himself directly some of the other implications. 

(4) =* (3): Assume that Graham's algorithm succeeds with input R. Recall that 
Graham's algorithm [21] applies the following two operations to R = (R~ . . . . .  Rn} 
repeatedly until neither can be applied: 

(at If A is an attribute that appears in exactly one R,, then delete A from R,. 
(b) Delete one R, if there is an Rj wi th j  # i such that R, _ Rj. 

Since Graham's algorithm succeeds with input R, this means that with input R the 
algorithm terminates with the empty set. We shall show that R is a chordal, conformal 
hypergraph. Let us denote the hypergraph R by ~ .  Let G - G(~ )  be the graph of 
the hypergraph ~ .  Recall that this means that the nodes of G are the nodes of ~ and 
that there is an edge between two nodes of G precisely if they both lie in some 
hyperedge of ~ .  

We first show that ~ i s  chordal, that is, that its graph G(Yd) is chordal. Suppose 
that G(~ )  contains a chordless cycle C with at least fou r nodes. Since Graham's 
algorithm succeeds, it is easy to see that every node is eliminated by an application 
of rule (at of Graham's algorithm (namely, when it is deleted for the very last time). 
Let v be the node of the chordless cycle C that is first eliminated by an application 
of rule (at of Graham's algorithm, and let x, y be the nodes of C adjacent to v. Since 
v belongs to only one hyperedge of ~ when it is eliminated, this hyperedge must 
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contain x and y. Therefore, G(.,~) contains an edge (x, y). This contradicts the fact 
that C was assumed to be chordless. 

We now show that ~ i s  conformal; that is, for every clique V in G(~ '~) there is a 
hyperedge o f ~  that contains V. Let Vbe a clique in G(.~), and let v be the node of 
V that is first eliminated by an application of rule (a) of Graham's algorithm. Since 
v belongs to only one hyperedge of ~ when it is eliminated, the hyperedge must 
contain V. 

(3) ~ (4): Assume that R is a chordal, conformal hypergraph. We shall show that 
Graham's algorithm succeeds with input R. Let us denote the hypergraph R by ~.. 

Since G = G ( ~ )  is chordal, it contains a simplicial node v, as noted in Section 3. 
That is, v together with all of its neighbors in G forms a clique V in G (a neighbor of 
v in G is a node w such that (v, w) is an edge of G). Since ~t~is eonformal, there is a 
hyperedge W of .,~ that contains V. Let X be an arbitrary hyperedge of  ~ that 
contains v as a member. By construction of  G, we know that X _ V (for, if  w is an' 
arbitrary node other than v in X, then (v, w) is an edge of G, and so w ~ V). Since 
also V _ W, it follows that X C_C_ W. Thus every hyperedge X of ~ that contains v is 
a subset of W. So, by applications of  rule (b) of Graham's algorithm, we are left with 
a hypergraph in which there is only one hyperedge (namely, W) of  ~ t h a t  contains 
v. By an application of rule (a) of Graham's algorithm, node v is then deleted, since 
it appears in only one hyperedge. 

It is easy to verify that the hypergraph that remains after applying a step of  
Graham's algorithm to a chordal, conformal hypergraph yields a chordal, conformal 
hypergraph. Thus it is possible to proceed inductively by selecting a simplicial node 
for the remaining hypergraph. In this way all nodes arc eventually deleted, and so 
Graham's algorithm succeeds with input R. 

(4) =* (9): Assume that Graham's algorithm succeeds with input R. We shall show 
that R has a join tree. We build a join tree Tfor  R as follows. We take the members 
R1 . . . . .  Rn of R as nodes of  T. Run Graham's algorithm on R. At the end of the mth 
step of  the algorithm (where a step consists of an application of  one of  rules (a) or 
(b) as described above), denote by remm(R,) what is left of R,. I f  rem,,,(R,) is empty 
but remm-l(R,) is not, then we say that "R~ is deleted on the ruth step." On any given 
step at most one R, is deleted. If  R, is deleted on the mth step because remm-l(R,) _ 
remm_l(Rj) and because rule (b) of Graham's algorithm was applied on the mth step, 
then add edge (R,, Rj) to T with label R, N Rj. (If there are several such j 's ,  then 
arbitrarily select just one of them.) We say that R, is a child of Rj and Rj is the parent 
of R,. Obviously, Rj is deleted on a later step than R, is. It is clear that we obtain a 
forest (a collection of trees) in this manner. By adding some edges we can convert the 
forest into a tlee. (We simply add just enough edges, chosen arbitrarily, to "connect" 
the trees in the forest into a single tree.) We now show that the resulting tree T is a 
join tree. 

I f  T is not a join tree, then there are i a n d j  (i # j )  and a node A such that 

(i) A ~ R, N R j, and 
(ii) the path in T between R, and R~ is not A-labeled, that is, some edge along the 

path does not have label A (possibly among others). 

Choose R, and Rj so that (i) and (ii) hold and the earlier of  the times that R, or Rj 
was deleted is as late as possible. Assume without loss of  generality that R, was 
deleted before Rj. Since R, and Rj have a node (namely, A) in common, we know 
that R, was deleted by an application of rule (b) of Graham's algorithm and not by 
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an application of  rule (a). Thus there is some k (k # i) such that remm-l(R,) _C 
remm-l(Rk), where m is the step on which R~ is deleted and Rk is the parent of ~i in 
the tree T. So Rk was deleted on a later step than R,. Now Rk and Rj both contain 
node A,  and so, by our maximality assumption in our choice of i and j ,  we know that 
either k = j or the path in T between Rk and R~ is A-labeled. In the latter case this 
path can be extended to an A-labeled path between Ri and Rj, since R~ is a child of 
Rk. In the former case the edge between R~ and Rj is an A-labeled path between R~ 
and R s. So in either case the path between R~ and R~ is A-labeled. This is a 
contradiction. 

(9) =* (10): Assume that R has a join tree. We shall show that R has the running 
intersection property. Recall that we say that R has the running intersection property 
if there is an ordering R I , . . . ,  R,, of R such that for 2 _< i ___ n there existsfl < i such 
that R, N (R~ 0 . . .  U R~-I) C.C_ Rj .  That is, the intersection of  each R~ with the union 
of  the previous Rj's is contained in one of  these. 

Let T be a join tree for R. Select a root for the tree T. Let R~ . . . . .  Rn be an 
ordering of  R by increasing depth. Thus, ifR~ is the parent o f R , ,  t h e n j  < i. Clearly, 
each path from R~ to any of  R1 . . . . .  R , - I  must pass through R{s parent Rj. Now if  
A is a node in R, N R~ for some k < i, then the path between R~ and Rk is 
A-labeled. Since this path passes through Rj, it follows that A E Rj. It follows that 
Rj f3 (R, O . . .  U R~- 0 __. Rj. Thus j is the fi demanded in the defmition of  the 
running intersection property. 

(10) ==~ (8): Assume that R has the running intersection property. We now give a 
semijoin program (which is modeled after one by Berustein and Chiu [11]) that we 
shall prove is a full reducer for R, that is, which converts the relations r~ . . . .  , r,, into 
new relations r'~ . . . . .  r'~ that are globally consistent. (Recall that a set of relations is 
globally consistent i f  there is a universal relation such that each is the appropriate 
projection of  the universal relation. Further, as we noted, if  there is any such 
universal relation, then the join of  the set of  relations is such a universal relation.) 
Let R~ . . . . .  R,, be an ordering of  R as guaranteed by the running intersection 
property. Thus, for 2 _ i _< n there exists fi < i such that R, f3 (R~ 0 . . .  U R,-~) 
__C_ Rjr For later reference we have labeled the lines of the program, some labels with 
negative integers and some with positive integers: 

( - n )  rj := rj t~ rn 

( - n  + 1) rj~_~ := rj~_~ ~< r~-~ 

( - i )  rj, := r~, ~ r, 

( -2)  rj~ := rj2 ~< r2 
(2) r2 :-- r2 t>< rj2 

(n) r~ :-- r,, t~ r~n 

Note that j2 -- 1 in lines ( -2)  and (2) above. 
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Let us denote by 6, . . . , rL the result of the program, starting with input r-1, . . . , 
r,. We shall show that r;, . . . , rL are globally consistent. We begin by proving 
that r: and r;, are consistent for each i (2 I i I n), that is, that r:[R, n RJz ] = 
r:JR, fl R,J for each i (2 I i I n). Let us write j for j, and Q for R, fi RP Thus, to 
show that r: and r; are consistent, we must show that r:[Q] = ri[Q]. 

Let us denote by rk (‘) the “current value” of the relation with attributes Rk 
immediately after line (p) of the program is executed (where 1 5 k zz n and (p) is a 
line number of the program). In particular, rk = rc’ for each k. 

In what follows we shall frequently make tacit use of the following two simple 
facts about semijoins (where r and s are relations with attributes R and S, respec- 
tively): (r K s) G r, and (r K s)[R fl S] C s[R n S]. 

From line (-i) of the semijoin program, we see that 

r:-“[Q] G ri-“[Q]. (6.1) 

In those lines of the program strictly between lines (-i) and (i) the expression rr 
never appears on the left-hand side of an assignment. For, if line (-k) is one of the 
negatively numbered lines with k < i, then the left-hand side of the assignment is 
r,,, and jk < k < i; and if line (k) is a positively numbered line with k < i, then the 
left-hand side of the assignment is rk, and k < i. So, 

p = (r-1) 
& rr . (6.2) 

From (6.1) and (6.2) it follows that 

r:-“[Q] G ri’-“[Q]. (6.3) 

Because relations can only lose, never gain, tuples in a semijoin program, it is easy 
to see that for every k, p, 4 such that p I q, necessarily r$’ C rf’ . In particular, 

‘3 
b-1) c p* 

Hence, 

rj’-“[ Q ] G rj-“[ Q 1. (6.4) 

From (6.4) and (6.3) and transitivity of set inclusion it follows that 

rf-“[Q] c r,‘“-l’[Q]. (6.5) 

Because of (6.5), an application of line (i) of the semijoin program causes 

rF’[Q] = rj”‘[Q]. (6.6) 

Since no line (p) withp > i has either r, or r, on the left-hand side of an assignment 
(because j < i < p), it follows that ry) = r:) and ry’ = rf’ From this fact and from 
(6.6) we find that 

ry’[Q] = r,‘“‘[Q]. (6.7) 

But (6.7) simply says that r:[Q] = ri[Q], which was to be shown. 
We have shown that for each i (2 5 i 5 n), the relations r: and ri are consistent. 

We now show that from this fact and the fact that R, n (RI U - e. U R,-1) C R,, for 
each i (2 s i 5 n), it follows that d, . . . , rk are globally consistent. Define qk 

(1 5 k 5 n) to be r’l w . . . w r;. We shall prove ,by induction on k (1 5 k I n) that 

r: = qk[&] for 15 is k. (64 

The k = 1 case is trivial. Assume that (6.8) is true for k (1 5 k < n); we shall show 
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it for k + 1. That is, we shall show that 

r~ = qk+x[R,] for 1 __. i _ k + 1. (6.9) 

Let V = Rk+l 63 (Rx O . . .  O Rk), and let j = jk+x. By defmition o f j  --jk+x we know 
that V = Rk+x (3 Rj. We have shown that r~+a and rj are consistent, that is, that 

r~+l[V] -- r~[V]. (6.10) 

Now by (6.8) and the fact that j = jk+l < k + 1, it follows that r~ = qk[Rj]• 
So, since V _ Rj, we know that r:[V] = qk[V]. This fact, along with (6.10), im- 
plies that r~+l[V] = qk[V]. Hence r~+l and qh are consistent. Therefore r~+l = 
(r'k+l t~ @)[Rk+x]. But r~+l t~ qk = qk+l. Hence, 

r~+~ ffi qk+~[Rk+,]. (6.1 l) 

This proves (6.9) when i = k + 1. 
We now prove (6.9) when 1 < i < k. By (6.8) we know that r~ ffi qk[R,]. By 

consistency of  r~+x and qk (which we showed above), it follows that qk[R,] equals 
(r~+a ~ qk)[R,], which in turn equals qk+a[R~]. Putting together the equalities we have 
shown in this paragraph, it follows that 

r~ = qk+x[R,] for 1 < i _< k. (6.12) 

Now (6.11) and (6.12) give us (6.9), which completes the induction step. Hence (6.8) 
holds for each k (1 < k _< n), and, in particular, when k ffi n. So r~, . .  r '  •, n are 
globally consistent, since they are each projections of qn. Thus R has a full reducer, 
which was to be shown. 

(8)  =*  (7): Assume that every database over R has a full reducer. We shall show 
that every pairwise consistent database over R is globally consistent. Let r = 
{r~ . . . . .  rn} be a pairwise consistent database over R. We must show that r is globally 
consistent. By assumption, r has a full reducer• However, the input and output to this 
semijoin program (the full reducer) are the same, by pairwise consistency. But we are 
guaranteed that the output of  the full reducer is a globally consistent database. So r 
is globally consistent, which was to be shown. 

(7) =* (2): We must show that if  every pairwise consistent database over R is 
globally consistent, then R is a closed-acyclic hypergraph. If  this implication is false, 
then let R --  {R1 . . . . .  Rn} be a counterexample with n as small as possible and such 
that, relative to n, the number of  attributes is minimized. By minimality, it follows 
easily that R is necessarily connected. 

We first show that the Graham algorithm leaves R unchanged. That is, we shall 
show that 

(a) R, C_ t.J {Rs :j ~ i} for each i. In other words, each attribute is in at least two R;s. 
(b) R, f~ R~ if  i ~ j. In other words, no R, is a subset of  any other Rj. 

Assume that either (a) or (b) were false. Then we could apply one step of Graham's 
algorithm to obtain R' from R, wherein either an attribute that appears in only one 
R, is deleted or else an R, that is a subset of  a different Rj is deleted. It is simple to 
see that because every pairwise consistent database over R is globally consistent, it 
follows that every pairwise consistent database over R' is globally consistent. We 
now show that R'  is not a closed-acydic hypergraph, which contradicts our assumed 
minimality of R. If  R' were obtained from R by deleting an attribute that appears in 
only one R~, then it is easy to see that a nontrivial, connected, dosed set of  edges with 
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no art iculation set in R (which exists since R is not  closed-acyclic) immedia te ly  gives 
us the same in R' .  I f  R '  were obta ined f rom R by deleting an  R, that  is a subset o f  a 
different Rj, then R '  and R would  have the same reductio n. So R '  is not  closed- 
acyclic, because R is not  (recall that  we defined a hypergraph  to be closed-acyclic 
precisely i f  its reduct ion is). This contradicts our  assumed minimal i ty  o f  R. Hence 
(a) and  (b) above hold• 

There  are now two cases, depending on  whether  or  not  R2 - Rx, Ra - R1, . . . ,  
R n  - R 1  are connected.  

Case 1. R2 - -  R b  R 3  - R 1  . . . . .  R n  - R1 are connected.  Assume that  R1 has 
attributes A1, A2 . . . . .  Ap, and that  Ap+x, . . . ,  Am are the other  attributes ~4/'- R1 
(where JV is the set o f  all attributes). Let relation r be as in Figure 7. There  are p 
tuples wx . . . . .  wp. Tup!e w, has 1 in co lumn A,, 0 in the other  columns o f  R~, and  i 
in the columns o f  Jt /  - R1. Let r, = r[R,], for 1 _ i _ n. We  now show that  

r = r2 t~ r3 t~ . . .  t~ r,~. (6.13) 

Note  that  the r ight-hand side o f  the equali ty in (6.13) is a relation over  all o f  the 
attributes, by  (a) above, and so (6.13) at least makes sense• The  inclusion 

r CC_ r2 t~ ra t~ . . .  t~ rn 

is automatic,  since each r, is a projection o f  r. We now prove the opposite inclusion, 
that  is, that  

/ '2 t>¢3 . . .  I>~ rn __. r. (6.14) 

Let u be a tuple in r2 ~ • .-  t~ r,; we must  show that  u is a tuple in r. Since u is in 
r2 t~ . . .  t~ r,, we know that  u[R,] is in r, for 2 -< i _< n. But r, = r[Ri], s o  u [ R i ]  is in 
r[R,], for 2 -- i _ n. This means  that  there is a tuple q, o f  r such that  u[R,] = q,[R,], 
for 2 _< i _< n. We  shall show that  all o f  the q,'s are equal• It then follows that  
u equals their c o m m o n  value, since by (a) above, all o f  the attributes appear  in 
O ( R j : j  # 1}. This implies that  u is in r, which completes the p roo f  o f  (6.14), and  
hence o f  (6.13). 

Thus,  to prove (6.13), we need only show that  all o f  the q,'s are equal. I f  they are 
not  all equal, then fmd j and k such that q~ # qk. By assumption,  R2 - R1, Ra - R1, 
. . . .  Rn - R~ are connected.  Hence there is a sequence/1 . . . . .  im o f  integers, each in 
(2 . . . . .  n}, so that  

(i) il = j ,  
(ii) i,, = k, and 

(iii) R,^ - R1 and  R,h÷ 1 -- R1 have in c o m m o n  an attribute Bh (1 ~ h < m). 

Let  B^ be as in (iii). Then  q,h[Bh] = U[Bh] = q,h÷~[Bh], for 1 ___ h < m. So 
q,h and q,h÷, are two tuples o f  r that  agree on an  attribute, namely,  Bh, that  is not  in 
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R1. Therefore, q,h and q,^+l are equal (1 ___ h < u), as we see by the definition of  r. 
Hence, all of  the qih's are equal, and, in particular, q,x ffi q,m. But q,~ ffi qj # qk ffi q,m. 
This contradiction completes the proof of  (6.13). 

Let us define rl  (with attributes Rx) to contain the tuples of  i'1, along with a new 
tuple of  all O's. I f  2 <_ i <_ n, then R1 f') R, is a proper subset of R~, by condition (b) 
above. So, it is easy to see that r'~[R1 f'l R~] -- r~[Ra f3 R,], for 2 _< i _< n. Hence, r' ffi 
{r'~, r2 . . . .  , rn} is pairwise consistent, because r -- {rl, r2 . . . . .  r,,} is pairwise consistent 
(in fact, r is even globally consistent, since each member of r is a projection of r). 
However, we now show that r' is not globally consistent. I f r '  were globally consistent, 
then, as we noted in the discussion following Condition 3.7, each member of r '  would 
be a projection of  r'~ t~ r2 t~ . . .  ~ rn, which equals r~ M (r2 ~ . . .  t~ rn), which, by 
(6.13), equals r'~ ~ r, which, in turn, equals r. But rl is not a projection er r .  Thus r' 
is not globally consistent. However, we assumed that every pairwise consistent 
database over R is globally consistent. This is a contradiction. 

Case 2. R2 - R~, Ra - RI  . . . . .  R,, - R~ are not connected. We now show that if 
P = (P~ . . . .  , Pt)  is a closed set of  edges of  R, then every pairwise consistent database 
over P is globally consistent. Let p ffi {p~ . . . . .  pt}  be a database over P that is 
pairwise consistent, where p, has attributes P, (1 _< i ___ t). We must show that p is 
globally consistent. We define a database r over R that we shall show is pairwise 
(and hence globally) consistent. Let R~ be a member of  R. If  R, is in P (say R, ffi Pj), 
then let r, be pj. I f  R, is not in P, then, since P is closed, we know that there is a 
member E of  P such that R,  N ~ C_ E,  where ~ is the set of  nodes in P. We define r~ 
by letting r,[R, f'l E]  be e[R,  f3 E]  (where e is the member of P with attributes E)  and 
letting all other entries (in the other columns) in every tuple in r, be 0. We now show 
that r is pairwise consistent. Let R, and Rj be two distinct members of  R. We shall 
show that r, and r~ are consistent. There are three possibilities. 

(a) Assume that R,  and Rj are both in P. The consistency of  the corresponding 
relations r, and rj follows from the pairwise consistency of p. 

(b) Assume that R,  is not in P but Rj is. Let E and e be as above. Denote R, N R~ by 
Q. Since Rj is in P, it follows by defmition of E that Q _ (R, N E). So, since r, 
and e are consistent by construction, it follows that 

r,[Q] -- e[Q].  (6.15) 

We already saw that Q c_ (R, N E) ___ E. Hence, since Q ___ Rj, it follows that 
Q c_C_ (Rj N E). Now rj and e are consistent (because both are in the pairwise 
consistent database p). Therefore, 

r~[Q ] = e[Q ]. (6.16) 

It follows from (6.15) and (6.16) that r,[ Q ] = rj[ Q ]. Hence, r, and rj are consistent. 
(c) Assume that neither R, nor Rj is in P. Let E and e be as above, and let F 

and f be the corresponding items, when we consider Rj instead of R,. Then 
(R, N Rj N : )  C__ (E N F).  Since e and f a r e  consistent (being members of  p), and 
since r, and rj contain only 0 entries for attributes not in : ,  it follows that r, and 
rj are consistent. 

Thus we have shown that r is pairwise consistent. Since every pairwise consistent 
database over R is globally consistent, we know that r is globally consistent. By 
restricting our attention to ~ we see that this implies that p is globally consistent. 
Hence every pairwise consistent database over P is globally consistent, which was to 
be shown. 
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Since every pairwise consistent database over P is globally consistent, for every 
closed subset P of R, it follows by our minimality assumption on R that every proper 
closed subset of  R is closed-acyclic. Since R itself is not closed-acy¢lic, we know that 
some nontrivial, connected, closed set P of edges of  R has no articulation set. But P 
cannot be a proper subset of  R, since if it were, then it would have an articulation set 
(because, as we just showed, P is closed-acyclic). Hence R itself is a nontrivial, 
connected, closed set of edges with no articulation set. 

Now by assumption, R2 - R1, /~ - R1 . . . . .  Rn - R1 are not connected. Let ~ be 
a maximal subset of R2 . . . . .  Rn such that {F - R~: F E ~ }  is connected. We know 
that ~ is a proper subset of  {R2 . . . .  , Rn}. If  ~ is {F~; . . . ,  F~}, then let ~ '  be 
{F~, . . . ,  F~, R~}, the result of  adding R~ to the set ~.. Since the only attributes in 
common between any member of  J "  and any member of  R not in ~ '  lies in R1, 
which is in ~ ' ,  it follows that ~ '  is a guarded set, with guard R~. Also, ~ '  contains 
at least two edges, since ~ contains at least one edge and ~ '  also contains/~1. We 
now show that ~ '  is connected. 

Clearly ~ is connected. We now show that ~ '  is connected. Assume not; we shall 
derive a contradiction. Since ~ is connected and ~ '  is not, it is clear from the 
definition o f ~ '  that R~ is disjoint from every member o f ~ .  Since R is connected and 

is a proper subset of  R, it follows that there is an edge S of  R that is not in 
but which intersects some member E of ~.. Let A be a node in S N E. Then A ~ Rx, 
since R~ is disjoint from E. So E - R~ and S - Rz intersect (because both 
contain A). Therefore {F - R1 : F E ~ }  l..J {S  - R1} is connected. This contradicts 
maximality of  ~.  

We have shown that ~ '  is a connected, guarded set of  at least two edges. Now 
~"  is closed, since it is guarded. We also know that ~-' is a proper subset of R, since 

is a proper subset of Re . . . . .  Rn. We showed that every proper, closed subset of  
R is closed-acyclic. Hence ~ '  is closed-acyclic, and so it has an articulation set. By 
Lemma 6.1, this articulation set is an articulation set for the whole hypergraph R. 
However, we showed that R has no articulation set. This is a contradiction. 

(2) =* (5) =* (1) = ,  (2): In the proof in [17] that conditions (1) and (5) are 
equivalent (i.e., that R is an acyclic hypergraph if and only i f  the join dependency 
t~R is equivalent to a set of  multivalued dependencies), the proof actually showed 
the stronger result that if R is a closed-acyclic hypergraph (condition (2)), then the 
join dependency t~R is equivalent to a set of  multivalued dependencies (condition 
(5)), which in turn was shown to imply that R is an acyclic hypergraph (condition 
(1)). And, as noted before, the fact that acyclic implies closed-acyclic (i.e., (1) ~=~ (2)) 
is almost immediate. Thus the implications (2) ~ (5) =* (1) =* (2) are shown in [17]. 

(2) ~ (4): Assume that R is a closed-acyclic hypergraph. We must show that 
Graham's algorithm succeeds with input R. Assume not; we shall derive a contradic- 
tion. Recall that Graham's algorithm [21] applies the following two operations to 
R = {R~ . . . . .  Rn} repeatedly until neither can be applied: 

(a) If  A is an attribute that appears in exactly one R,, then delete A from R,. 
(b) Delete one R, if  there is an Rj with j # i such that R, _ Rj. 

The algorithm succeeds if it terminates with the empty set; otherwise, it fails. 
We now show that if one step of Graham's algorithm (the application of one of 

rules (a) or (b)) is applied to a closed-acyclic hypergraph ~ ,  then the result ~o, is a 
closed-acyclic hypergraph. It follows inductively (on the number of  steps of Graham's 
algorithm that are applied) that if the input to the algorithm is a closed-acyclic 
hypergraph, then the algorithm terminates with a dosed-acyclic hypergraph. 
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Assume first that rule (b) is applied. Then the hypergraphs ~ and v'f' have the 
same reduction. Recall that under our definition of"closed-acyclic," a hypergrapli is 
closed-acydic precisely ff its reduction is. Thus, since owls closed-acyclic, and since 
it has the same reduction as .~ ' ,  also v'f' is closed-acyclic. 

Now assume that rule (a) is applied. Let us call a node of  a hypergraph isolated if  
it appears in exactly one edge. Let us denote by D the edge of  .Yt°tliat contains the 
isolated node A that is deleted by the application of  rule (a). If  S is an edge of  
then let S'  be S ff S # D, and S '  -- D - {/4} otherwise. We say that S and S'  are 
corresponding edges of  .Ytand ~e,,. Let ~ '  be a nontrivial, connected, closed set of  
edges, with no articulation set, in the reduction of Yt'. To show that ~ '  is closed- 
acyclic, we must show that ~ '  has an articulation set. Let ~ be the set of  correspond- 
hag edges in the reduction of  ~ .  It is easy to see that ~ is closed, nontrivial, and 
connected, and hence has an articulation pair (E, F).  It is straightforward (except for 
one subtlety) to verify that the corresponding edges E',  F '  o f ~ '  form an articulation 
pair for ~ ' .  The subtlety is as follows. Assume that E = D, where D is the edge with 
the isolated node A that was just deleted. Assume that after articulation of  J~ by the 
articulation set E tq F, there are two connected components, one of  which consists of  
the node A by itself. Then why should E '  t3 F '  be an articulation set for ~ ' ?  The 
answer is as follows. Under the circumstances we have described, D'  is a proper 
subset ofF .  But then D'  is not an edge in the reduction o f ~ ' .  This is a contradiction, 
since we have assumed that ~ '  is in the reduction of Y~'. Thus ~ '  has an articulation 
set E '  f3 F' ,  as desired. 

By assumption, the input to Graham's algorithm is a closed-acyclic hypergraph, 
and Graham's algorithm does not succeed. That is, the algorithm terminates with a 
hypergraph (call it ~ )  that is not empty. We just showed that because the input to 
Graham's algorithm is closed-acyclic, so is the output. Thus, f# is a closed-acyclic 
hypergraph that is nonempty, and to which we cannot apply either of  rules (a) or (b) 
of  Grabam's algorithm. We shall derive a contradiction. 

Let us define a knob of a hypergraph to be an edge that contains an isolated node. 
(Recall that a node is isolated if it appears in exactly one edge.) We now prove 
inductively on the number n of  edges in a hypergraph that each reduced, dosed- 
acyclic hypergraph with at least two edges contains at least two knobs. We shall then 
have our contradiction. For, hypergrapli ~ above is reduced and closed-acyclic. It 
has at least two edges: it is nonempty, and if  it had only one edge, then every node 
would be isolated, and we could apply rule (a) of  Graham's algorithm. It has no 
knobs, or else we could apply rule (a) of Graham's algorithm. 

The basis (n = 1) of  the induction is trivial, since it doesn't occur. For the induction 
step, assume that ~ is a reduced, closed-acyclic hypergraph with n edges (n > 1), 
and that every closed-acydic hypergraph with at least two edges but less than n edges 
has at least two knobs. We must show that ~ has at least two knobs. 

Since ~ is reduced, closed-acyclic, and has at least two edges, it has an articulation 
pair (E, F).  Let us write the articulation set E tq F as Q. We can thus partition the 
edges of H into two disjoint, nonempty sets ~ and 4 such that whenever F1 ~ ~1 
and F2 ~ 4 ,  then F1 f3 F2 __C Q. There are three cases. 

Case 1. ~ and 4 are both singletons. The single member of ~1 is then a knob, 
as is the single member of  4 .  

Case 2. One of  ~ and 4 ,  say ~ ,  is a singleton, and the other is not. The edge in 
is a knob, since it contains a node not in Q and hence not in any member of  4 .  

Now 4 contains at least one of  E or F (since ~1 is a singleton). It follows easily that 
4 is closed. Now a closed subset of  a closed-acyclic hypergraph is a closed-acyclic 
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hypergraph; this follows easily from the simple fact [17] that a dosed  subsot of  a 
closed subset is closed. Thus ~ ,  considered as a hypergraph, is dosed-acyclic. So by 
the induction hypothesis, it contains at least two knobs. We shall show that at least 
one of  these knobs is a knob of  the original hypergraph ~ .  There are two subcases. 

Case 2a. The edge in 4 is one of  E or F, say E. Then F ~  ~ ,  but E ~ ~ .  Now 
at least one of  the knobs o f ~  is not F. Call this knob V. Then  Vhas a node v not in 
any other edge in ~ .  Hence v ~ F. So v ~ Q, and so v is not in the edge E of  4 
(because every node in both an edge of  4 and an edge o f  ,~  is in Q). We have 
shown that V is a knob of  ~ .  

Case 2b. The edge in 4 is neither E nor F. So E and F are both in ~ .  Now 
has two knobs V and W. Since V is a knob of  ~ ,  let v be a node of  V that is in 

no other member of ~ .  Since E and F are both in ~ ,  we know that v is not in 
E N F = Q, and so v is not in the edge of  4 .  Hence V is a knob of  ~ .  

Case 3. 4 and ~ each have at least two edges. There are two subcases. 

Case 3a. E and F are not both in the same 4 ;  say E ~ 4 and F ~ ~z. Then, 
as in case 2, each of  4 and ~ is closed and acyclic, and so by the induction 
hypothesis, each contains at least two knobs. Now at least one of  the knobs of  4 
(respectively, ~ )  is not E (respectively, F); call one such knob Vx (respectively, V2). 
By an argument almost identical to that in case 2a, it follows that V1 and V2 are 
knobs of  the hypergraph ~ .  

Case 3b. E and F are both in the same 4 ,  say 4 .  Let . ,~ = 4 ,  and let ~ = 
U {E}. Thus ~ has all of  the edges o f ~ ,  along with one more edge, namely, E. 

It is easy to see that #-~ and ~-~ are closed. Hence, as before, each is a ¢losed-acyclic 
hypergraph with at least two edges. It is clear that ~ has strictly fewer edges than 
A~, since ff~ has none of  the edges in ~z. Further, Y~ has strictly fewer edges than 
~ ,  since ~ does not contain the edge F. So by the induction hypothesis, ~ and 
~ each have at least two knobs, and in particular, each has some knob that is not 
E. Let V~ be a knob of  ~ ,  where E # E (i = 1, 2). Clearly 111 # V-2, since the only 
edge that ~ and ~,~ have in common is E. We now show that V1 and V2 are each 
knobs of  the hypergraph ~ .  Let v be a node in /I1 that does not appear in any other 
edge in 4 .  Then v ~ E, and so v is not in any edge of  ~ (because every node that is 
in both an edge of  4 and an edge of  ~ is in E tq F). Thus v is an isolated node of  
~ ,  and so V~ is a knob o f ~ .  Similarly, II2 is a knob o f ~ .  

(10) =* (12): Assume that R has the running intersection property. Let R 1 , . . . ,  Rn 
be an ordering of  R as guaranteed by the running intersection property. Thus for 
2 _ i ___ n there exists j ,  < i such that R, (q (RI 0 . . .  to R,-~) C. Rj .  We now show 
that ( . . .  ((R~ t~ R~) t~ R~) . . .  t~ Rn) is a monotone, sequential join expression. 
That  is, we shall show that if  r = (r~ . . . . .  rn) is a pairwise consistent database over 
R = (R1 . . . . .  R,~), then the join r~ t~ . . .  t~ r~ (which we abbreviate as q,) is consistent 
with r,+~ (1 _ i < n). 

By an identical argument to that used to prove (6.8), except with r, playing the role 
of  r', in (6.8), it follows that rm = q,[Rm] whenever m <_ i. In particular, let m = ji+l, 
and let V = R~+~ ~ (R~ tA . . .  tO R,). Since V _  Rm, it follows that r,~[ 1I] = q,[ V]. But 
also r,+~[V] = r,~[V], since r,+~ and rm are consistent. Hence r~+x[V] = q)[V]. So r,+t 
is consistent with q,, which was to be shown. 

(12) =~ (11): This is immediate, since every monotone, sequential join expression 
is a monotone join expression. 
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(11) ,,~ (7): Assume that R has a monotone join expression. We must show that 
every pairwise consistent database over R is globally consistent. Let r be a pairwise 
consistent database over R. It is not hard to see that since no tuples are lost in joining 
together the relations in r as dictated by the monotone join expression, it follows that 
every member of  r is a projection of  the final result Mr. Hence r is globally consistent, 
which was to be shown. 

This completes the proof. [] 

7. The MVDs That Are Implied by a Join Dependency 

In this section we obtain several characterizations of  sets M of  MVDs (multivalued 
dependencies) such that M is the set of MVDs that are the consequences of a given 
join dependency. For simplicity of notation we shall consider only MVDs with the 
left-hand and right-hand sides disjoint (recall [15] that every MVD X-->--* Z is 
equivalent to an MVD, namely, X-->--~ Z - X, with the left-hand side and right- 
hand side disjoint). Thus M + will denote the set of  all MVDs X--->--} Y, with X and 
Y disjoint, that are implied by the set M. We begin with some definitions. 

I f  .,~ is a hypergraph, then the set of  multivalued dependencies generated by 
is the set of  MVDs X --->--, Y, where X and Y are (disjoint) sets of  nodes and Y is 
the union of  some connected components of  the hypergraph . , ~ -  X. (A ,~ - X 
is the hypergraph obtained from ~ by deleting the set X of  nodes, i.e., g~ - X --- 
{E - X: E is an edge of A '~) - ( 0 )  .) We then say that X separates off Y (from the rest 
of the nodes). A set M of multivalued dependencies is hypergraph generated i f  there 
is a hypergraph that generates M. Similarly, M is graph generated if  there is a graph 
(treated as a hypergraph) that generates M. The following theorem is quite helpful. 

THF.O~M 7.1 [17, 30, 39]. The set of MVDs implied by a join dependency t~R is 
exactly the set of MVDs generated by the hypergraph R. 

A multivalued dependency X-->--> Y (with X and Y disjoint) splits two attributes 
A and B if  one of them is in Y and the other is in U - XY, where U is the set of all 
the attributes. A set M of  MVDs splits .4 and B if  some MVD in M splits them. 

LEMMA 7.2. Two attributes A and B are split by a set M of MVDs if and only if 
they are split by its closure M +. 

PROOF. The "only i f"  direction is obvious, since M C M +. For the " if"  direction, 
consider a relation r with two tuples that agree in all attributes except A and B. It is 
easy to see that this relation satisfies exactly those MVDs that do not split A and B. 
If  M does not split A and B, then r satisfies M and therefore also has to satisfy M+; 
hence M + does not split A and B. [] 

Thus, two logically equivalent sets of  MVDs split exactly the same pairs of  
attributes. Given a set M of  multivalued dependencies, we can construct a graph 
G(M) with the attributes as nodes and an edge (A, B) between two attributes A and 
B if A and B are not split by M. 

Example 7.3. Let U -- {-4, B, C, D} and M = {A --->---> C, C--->--> D).  The first 
MVD splits C and B, and C and D, and the second MVD splits D and A, and D and 
B. The graph G(M) of  M is shown in Figure 8. [] 

LEMMA 7.4. Let M be a set of MVDs, G(M) its graph, and N the set of MVDs 
generated by G(M). Then M + CC. N. 

PROOF. Let X --->--> Y be an MVD in M +. For every A in Y and B in U - XY, 
the MVD X--->-* Ysplits A and B. From Lemma 7.2, M splits A and B, and therefore 
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there is no edge in G(M) connecting a node in Y to a node in U - XY.  Thus X 
separates off Y from the rest of the nodes, and X--->---> Y is in N. [] 

The converse to the lemma does not hold; in Example 7.3, the MVD O --->---> D is 
generated by G(M) but is not implied by M. We shall show below that the converse 
holds exactly for those sets of MVDs that form a cover of the set of MVDs implied 
by a given join dependency. (We say that M1 is a cover of Ms if M~ -- M~.) 

Let M be a set of MVDs. Two disjoint sets X and Y are called orthogonal if the 
MVD U - X Y  --->---> X (or equivalently, by the complementation rule for MVDs 
[15], U - XY---~---> Y )  is implied by M. It follows from Lemma 7.2 and from the 
rules for manipulating MVDs [51 that two attributes A and B are orthogonal (i.e., the 
singleton sets {A} and {B) are orthogonal) if and only if they are split by M. It 
follows from the rules for manipulating MVDs [5] that if X and Y are orthogonal, 
then for every pair A, B of attributes where A E X and B E Y, necessarily A and B 
are orthogonal. We shall say that M has the orthogonality property if the converse 
also holds, that is, two sets X and Y are orthogonal whenever every attribute of X is 
orthogonal to every attribute of Y. 

We say that M has the intersection property if whenever the MVDs X --->---~ Z 
and Y -->---> Z are implied by M (with Z disjoint from both X and 10, then also 
X N Y---~---> Z is implied by M. 

THEOP, EM 7.5. Let M be a set of  multivalued dependencies. The following are 
equivalent: 

(1) M is a cover of  the set of  M V D s  implied by some join dependency. 
(2) M + is hypergraph generated. 
(3) M + is graph generated. 
(4) There is exactly one graph that generates M r. 
(5) M + is the set of  MVDs  generated by G(M). 
(6) M has the intersection property. 
(7) M has the orthogonality property. 

PROOF. We shall show that (1) and (2) are equivalent and (2) and O) are 
equivalent. We then show that (3) =* (6) ~=~ (7) =~ (5) =* (3). Thus, conditions 
(1)-(3) and (5)-(7) are all equivalent. We then show that (5) ~=~ (4) ==~ (3), which 
shows that (4) is equivalent to the others. 

(1) ,~, (2): If M is the set of MVDs implied by the join dependency R, then by 
Theorem 7.1 we know that M r is the set of MVDs generated by the hypergraph R. 

(2) ~ (3): Let ~ be a hypergraph, and let G = G(~f ~) be the graph o f .~ ;  that is, 
G has the same nodes as JCfand an edge between every pair of nodes that are in the 
same hyperedge of ~ .  It is easy to see that a set X of nodes separates off another set 
Y in g fff X separates off Y in G. Therefore, the set of MVDs generated by .,~ is the 
same as the set of MVDs generated by G. 

(3) =* (2): Obvious, since every graph is a hypergraph. 

(3) =* (6): Let G be a graph that generates M r. Suppose that X-->---> Z and 
Y--->---~ Z are in M r. Because X---~---> Z is in M r, there is no edge in G connecting 
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a node in Z to a node in U - X Z.  Similarly, there is no edge in G connecting a 
node in Z to a node in U - YZ.  Therefore, there is no edge in G connecting a node 
in Z to a node in U - [(X n Y) u Z]. Thus X n Y separates off  Z in G, and 
X n Y ---~---~ Z is in M +. 

(6) =* (7): Let X = (A1, A2 . . . . .  Ak} and Y = (Bx, B2 . . . . .  Bm} be two disjoint 
sets with every A, orthogonal to every B~. Let Z = U - X Y ,  let X, = X - A, (i = 
1 . . . . .  k), and let Yj = Y - B~ ( j  -- 1 . . . .  , m). Since every A, is orthogonal to every 
Bj, we have ZX,  Y~ --,---~ A,  for each i and j. Since M has the intersection property, we 
have O ( Z X ,  Y~:j = 1 . . . . .  m} ---~---~ A,. But A { Z X ,  Y j : j  = 1 . . . .  , m )  = ZX,.  Thus 
ZX,  ---~---~ A,  or, equivalently, by the complementation rule [15] for multivalued 
dependencies, ZX ,  ---~---~ Y, for each i. Again from the intersection property, 
N{ZX, : i  = 1 . . . . .  k} ---~--, Y. Since N(ZX, : i  = 1 . . . . .  k} -- Z, we have Z---~---~ Y 
or, equivalently, Z--~---~ X. 

(7) =* (5): Suppose that M has the orthogonality property, and let N be the set of  
MVDs generated by G(M). From Lemma 7.4, M + _ N. For the other inclusion, let 
X---~--* Ybe an MVD in N, and let Z -~ U - XY .  From the definition of N, there is 
no edge in G(M) connecting a node in Y to a node in Z. Thus every attribute of  Y 
is orthogonal to every attribute of  Z. Therefore, because of  the orthogonality property, 
Yis orthogonal to Z, and X---~---~ Yis in M ÷. 

(5) =* (3): Obvious. 

(5) ~ (4): Let G be a graph that generates M ÷. Let A and B be attributes. A and 
B are split by M iff the edge (A, B) is not in G. But also, A and B are split by M iff 
the edge (A, B) is not in G(M). Therefore G ffi G(M).  

(4) ~ (3): Obvious. [] 

We can use Theorem 7.5 (and its proof) to give a necessary and sufficient condition 
for two join dependencies to imply the same set of multivalued dependencies. 

COROLLARY 7.6. Two join dependencies t~R1 and ~R2 imply the same set o f  
multivalued dependencies i f  and only i f  G(R1) = G(R2). 

PRoof. (~) :  From the proof of Theorem 7.5, the set of MVDs implied by a join 
dependency MR is equal to the set of  MVDs generated by the hypergraph R and 
equal to the set of MVDs generated by the graph G-(R). The result follows easily. 

(=*): Let M be the set of  MVDs implied by ~R~. By assumption, M is also the set 
of  MVDs implied by t~R2. Note that M = M +, since M is clearly closed under 
implication. From the proof of  Theorem 7.5, we see that M is generated by G(R1), 
and, similarly, M is generated by G(R2). We know that (1) of Theorem 7.5 holds. 
Therefore, by Theorem 7.5 we know that (4) of  Theorem 7.5 holds. By (4) of 
Theorem 7.5 it follows that G(R1) -- G(R2). [] 

8. Conflict-Free Sets o f  M V D s  

The notion of conflict-free sets of MVDs was introduced by Lien [26], who examined 
the relationship between the network and relational models. He showed that certain 
network structures can be mapped to relational structures whose semantics are 
described by a set of  MVDs with the contlict-free property (and another additional 
property). 

As we stated in Section 4, conflict-free sets of MVDs have several nice properties: 
(1) They allow a unique fourth-normal-form [15] decomposition, and (2) all MVDs 
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participate in the decomposition process; that is, the phenomenon where decomposing 
according to one MVD prevents another MVD from being applied does not occur. 
Furthermore, Sciore [36, 37] claims that "real-world" sets of  MVDs are conflict free. 
He argues that if  the specified set of MVDs is not conflict free, then this indicates 
that part of the semantics is not adequately captured, and he presents ways for 
enforcing conflict-freedom. 

Let M be a set o f  multivalued dependencies. The left-hand sides of  the MVDs of  
M are called the k e y s  of M. This is, of course, a nonstandard use of  the word "key." 
For all sets X, Y, Z, whenever the MVDs X--->---> Y and X--->--> Z hold (are implied 
by M), then also MVDs X--->---> Y A  Z,  X--->---> Y Z ,  and X--+---> Y -  Z h o l d  [15]; 
that is, the family of sets S such that X --->----> S holds is closed under intersection, 
union, and set difference. A consequence of  this fact is [15] that there is a partition 
of U - X such that X--*---> Y holds iff Y is the union of  some sets in this partition. 
This partition is called [5] the dependency  basis of X and is denoted by DEP(X). 

Let us say that an MVD (or set of MVDs) splits a set X if it splits two attributes in 
X. Recall that a multivalued dependency V--->---> W splits two attributes A and B if  
one of  them is in W and the other is in U - VW, where U is the set of  all the 
attributes. Recall also that a set M of MVDs splits A and B if some MVD in M splits 
them. If  M is a set of  MVDs, then we say that a key X of  M splits attributes A and 
B if some MVD in M with key X splits A and B. 

Defini t ion A. A set M of MVDs is confl ict  f r e e  if 

(1) M does not split its keys, and 
(2) DEP(X) fq DEP(Y) ___ DEP(X f3 Y); that is, those sets that are in the dependency 

bases of  both X and Y are also in the dependency basis of  X f') Y. 

We shall show later (Corollary 8.10) that part (2) of  Definition A can be replaced 
by any of the equivalent conditions of Theorem 7.5. Part (2) above is a weak form of  
the intersection property of Section 7, restricted only to keys. We shall discuss this 
fact in more detail later in this section. 

In Theorem 8.9 below, we shall show that a set ~ of  MVDs has a conflict-free 
cover if  and only if  X is equivalent to an acyclic join dependency. The (weaker) fact 
that a conflict-free set of MVDs is equivalent to a join dependency has been shown 
by Sciore [37], with a different proof. 

The following definition, which is not very intuitive, is technically useful. 

Defini t ion B.  " Let X, Y be two keys with dependency bases DEP(X), DEP(Y). X 
and Y are confl ict  f r e e  if  

(1) DEP(X) = (V1, . . . ,  Vk, X , ,  . . . ,  X ,  Z a Y ,  . . .  Y j )  and DEP(Y) -- (V1 . . . . .  V~, 
YI . . . . .  Yj ,  Z b X t  . . .  X , ) ,  with Z a X  = ZbY ,  and 

(2) the sets II1, . . . ,  Vk that are common to the dependency bases are also in the 
dependency basis of X t3 Y; that is, { 1"1 . . . . .  Vk} __ DEP(X N Y). 

Part (1) of Definition B requires that the attributes of Y - X belong to the same 
set in the dependency basis of X, and similarly for the attributes in X -  IT. In Lemma 
8.1 below, we shall relate Def'mitions A and B. 

We shall make use several times of  the following useful inference rule [22], which 
Biskup [13] calls the subset  rule for MVDs. 

Subse t  rule f o r  M V D s .  Assume that Y and W are disjoint. Then the MVDs 
X ---~---~ Y and W --->---~ V taken together imply the MVDs X -+-+ Y f) V and 
X--)--) Y- V. 
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LEMMA 8.1. The dependency bases of the keys of M have the form of part (1) in 
Definition B if and only if M does not split its keys. In particular, a set M of MVDs is 
conflict free by Definition A if and only if every pair of its keys is conflict free by 
Definition B. 

Pt~oor. (=,): Suppose that the dependency bases o f  the keys o f  M are as in part 
(1) in Definition B. Let N = (X--->-, Z : X i s  a key of  M and Z E DEP(X)}. Then N 
is a cover of  M, and no MVD of N splits a key. Therefore M does not split its keys. 

(4=): Let X, Y be two keys. Let 111, . . . ,  Vk be the sets common to DEP(X) and 
DEP(Y). 

Case 1. X -  Y # O and Y - X # 0 .  Since keys are not split, Y -  X is contained 
in one set of DEP(X), say Z, which cannot be any of  the V~'s, since V~ n Y = 0 .  
Similarly, X -  Yis contained in a set WofDEP(Y) .  Let X1,' . . . .  Xi be the rest of  the 
sets in DEP(X) (other than V1 . . . . .  Vh, Z), and Y1, . . . ,  Y~ the rest of  the sets in 
DEP(Y) (other than Vx . . . . .  Vk, W). If  for some m, n, we had Xm O Y,, not equal to 
any of X~, Yn, or ~ ,  then Xm (respectively, Yn) should be replaced in the dependency 
basis DEP(X) (respectively, DEP(Y)) by Xm n Yn and Xm - Y,, (respectively, 
Xm n Yn and Yn - Xm); this follows from the subset rule for MVDs (above) and 
the fact that Xm and Yn are each disjoint from each of X and Y. Therefore, for every 
X,~, Yn, either Xm n Yn = O or Xm n Y,, -- Xm ---- Yn. The last case is impossible, 
since the common sets are Vx . . . . .  Vk. Thus Xm n Yn = @. Since Xm n Y = @ for 
each m and Y,, n X = O for each n, we must have Xm __C W and Yn _C Z. Let L -- 
U -  XYV~ . . .  VkX~ . . .  X,Y~ . . .  Yj. Then Z = ( Y -  X)LYx . . .  Yj and W - -  
( X -  Y)LX1 . . .  X,. Let Za = ( Y -  X)L and Zb -- ( X -  Y)L. Then Z~,X= 
XYL  = ZbY. 

Case 2. X___ Y(or Y _  X). The arguments are similar. The idea is that DEP(Y) 
is a refinement of  DEP(X). However, only one set of  DEP(X) is refined, namely, the 
one that contains Y -  X (or X - Y, if Y __C_ X). 

Finally, the second sentence of  Lemma 8.1 follows immediately from the first 
sentence. [] 

As we noted earlier, part (2) of  Definition A is a weak form of the intersection 
property of  Section 7, restricted only to keys. The definition depends on the keys of  
M. That is, a set of  MVDs that is not conflict free may have a conflict-free cover. For 
example, one can always add to a conflict-free set of MVDs some redundant MVDs 
to destroy conflict-freedom. 

Example 8.2. Suppose M = (E -->---> B, EA --->---> C} where U = (.4, B, C, D, 
E}. Clearly, M is conflict free: DEP(E) = (B, ACD}, and DEP(EA) - (B, C, D}. 
However, i f  we add the (redundant) MVD EAB --->---> C to M, it is no longer conflict 
free, since the key EAB is split by E --->---> B. [] 

Lien [26] circumvents this problem by requiring that every pair of essential keys be 
conflict free. A key is essential if  deleting from M all the MVDs that have it as the 
key will change the closure M +. Lien deals with a different kind of  MVDs than we 
do, called "MVDs with nulls," where pseudotransitivity [5] does not hold. In this 
case, (1) DEP(X) for a key X is determined by those MVDs whose key is contained 
in X, and, as a consequence, (2) two logically equivalent sets of  MVDs have the same 
essential keys. 

Since here we are dealing with ordinary MVDs, we shall first revisit some of  the 
properties of conflict-free sets of MVDs in our context. First, let us note that 
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properties (1) and (2) above do not hold for sets of  ordinary M-VDS~ event i f  t l~  set 
is conflict free. 

Example 8.3. Failure of  property (1): Let U = (A, B, C, D} and M - 
{.4 ---~--, B, AB ---~--, C}. Clearly, M is conflict free: DEP(A) = {B, C, D} 
and DEP(AB) = {C, D}. However, the MVD A --~--* C cannot be derived with- 
out AB ---~---~ C. Failure of  property (2): Let U = {.4, B, C, D, E} and N = 
(E ---~.--, B, EAB ----~---, C}. It is easy to see that N is logically equivalent to the set M 
of  Example 8.2. Both sets are minimal covers of  M + and N +, and thus each key is 
essential for the corresponding sets. However, M and N have distinct (essential) keys, 
and moreover N is not even conflict-free, since the key EAB is split. O 

Properties (1) and (2) above hold in some form even for conflict-free sets of  
ordinary MVDs. Let us call a set M of  MVDs full i f  it contains all MVDs in 
the dependency basis of  its keys; that is, if  the dependency basis of  a key X is 
DEP(X)  = (X1 . . . . .  Xn}, then M contains the MVDs X---~---~ X, for i = 1 . . . . .  n. I f  
N is any set of  MVDs, the full version of N is the full set M of  MVDs that has the 
same keys as N and is logically equivalent to N. From the definition it follows that 
N is conflict free if  and only if  its full version is also conflict free. 

LEMMA 8.4. Let M be a full set of MVDs that does not split its keys. Then for every 
set X, the dependency basis of X is determined by the keys that are contained in X; that 
is, if  Mx is the set of  those MVDs in M whose key is contained in X, then M implies an 
MVD X---~---~ Y if and only if Mx implies it. 

PROOF. Let ~- be the dependency basis of  X with respect to Mx. We need only 
show that ~ is the dependency basis of  X with respect to M. Assume not; we shall 
derive a contradiction. Since ~ i s  not the dependency basis of  X with respect to M, 
it follows from a result of  Hagihara et al. [22], which is essentially a converse to the 
subset rule for MVDs, that there is an MVD V---~---* W in M but not in Mx (thus 
V ~ X), and there is a set S in ~ s u c h  that V f~ S = ~ and W N S~is neither empty 
nor equal to S. Since V ¢3 S = O and V ~ X, there is some attribute in V - X that 
is in a different member of  ~ t h a n  S, and so there is a key X1 _ X of  M that splits 
an attribute of  V - X and an attribute of  S. Since S is a set in ~ we know that S is 
not split by the key X1; since keys are not split, V - X1 is also not split by X1. But by 
the subset rule for MVDs, the dependency V--,---~ W can be used to split the set 
containing S in the dependency basis of  X1. Thus there is a nonempty proper subset 
S~ of  S such that the MVD Xx ---~--* S~ is a consequence of  M. Since M is a full set 
of MVDs and X~ is a key of  M, it follows that the MVD X~ --*---~ S~ is in M. By 
definition of  Mx, it follows that this MVD is also in Mx. By augmentation [5], this 
MVD X1 ---~---~ S~ logically implies the MVD X ---~--* $1. Thus Mx logically implies 
the MVD X---~--~ Sa, and so S ~ ~ since $1 is a nonempty proper subset of  S. This 
is a contradiction. [] 

LEMMA 8.5. Let M be a full set of MVDs that does not split its keys. Then X is an 
essential key if and only if there are two attributes A and B that are split by an MVD 
implied by M with key X but not by an MVD in M with key properly contained in X. 

PROOF. ( 7 ) :  Let X be an essential key. Define M '  to be the result of  deleting 
from M all MVDs with key X. The dependency basis of  X with respect to M must be 
a freer partition of  U - X than the dependency basis of  X with respect to M' ,  since 
X is an essential key. Let S '  be the set in the dependency basis of  X with respect to 
M' ,  such that S '  properly contains a set S of  the dependency basis of  X with respect 
to M. Let A be an attribute in S, and let B be an attribute in S '  - S. Clearly, A and 
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B are split by the MVD X---,--, S, which is an MVD implied by M. We need only 
show that A and B are not split by any MVD in M with key properly contained in 
X. Assume not; we shall derive a contradiction. Thus we assume that A and B are 
split by an MVD X' ---~---~ Y in M with key X' ~ X. Since X' ---~---, Y is in M' ,  it 
follows by augmentation [5] that M'  implies the MVD X--*---~ Y. Since S'  N Y and 
S'  - Y are each nonempty (one contains A and one contains B), this contradicts the 
fact that S '  is in the dependency basis of X with respect to M'.  

(~) :  Let A and B be two attributes that are split by an MVD implied by M with 
key X but not by any MVD in M with key that is a proper subset of X. Assume that 
X is not an essential key; we shall derive a contradiction. By assumption, there is an 
MVD X ---.--, Y that is implied by M such that one of A or B is in Y - X and the 
other is in U - XY. As before, define M '  to be the result of deleting from M all 
MVDs with key X. Since X is not an essential key, and since M ~ X --*---~ Y, we 
know that M '  ~ X---,---~ Y. By Lemma 8.4 it follows that M ~  X---.---~ Y. Now M~ 
does not split A and B, and so, by Lemma 7.2, neither does (M~) ÷. However, 
X---~---~ Y splits A and B, and we just showed that X---~---. Y is in (M~) ÷. This is a 
contradiction. [] 

COROLLARY 8.6. Let M and N be two logically equivalent full sets of MVDs that 
do not split keys. Then M and N have the same essential keys. 

PROOF. Let X be an essential key of M; we must show that X is an essential key 
of  N. By Lemma 8.5 there is an MVD X ---~--, Y with key X in M that splits two 
attributes A and B that are not split by any key of  M properly contained in X. Since 
X --*---~ Y is in M and M ÷ = N ÷, it follows that N ~ X --*--* IT. So, to show that X 
is an essential key of  N, it follows from Lemma 8.5 that we need only show that A 
and B are not split by any MVD )(1 ---~---~ Y1 of  N where X~ is a proper subset of  X. 
If  not, then since Xx ---~---* Y~ is in N and M + = N +, it would follow that M 
Xt --*---~ Y~. By Lemma 8.4 it would follow that Mxl ~ XI ---~---~ Yx. But then A and 
B would be split by a key of  M that is contained in X~ and hence properly contained 
in X. This is a contradiction. [] 

Given a set M of MVDs, a decomposition algorithm replaces a relation scheme 
R by the two relation schemes R N X Y  and R N XZ, on the basis of an MVD 
X ---~---~ Y in M (where Z = R - XY); these new relation schemes can be further 
decomposed on the basis of another MVD in M, etc. Lien proposed [28] a decom- 
position algorithm which from a set M of  MVDs produces a fourth normal form [15] 
nonredundant database scheme R, that is, a fourth normal form database scheme R 
that cannot be further decomposed and such that no relation scheme is contained in 
another relation scheme. This algorithm is a modification of  Fagin's decomposition 
algorithm [15], where (1) the full version of  the set M of MVDs is used, that is, for 
every key K we include all MVDs K---*--, Y, where Y E DEP(K), and (2) keys are 
processed in nondecreasmg order, that ts, the keys are ordered as K1 . . . . .  Kn with 
K, ~ Kj if  t > j,  and in the ith stage (i = 1 . . . . .  n) the existing relation schemes are 
decomposed according to the dependency basis of If.,. An ordering as in (2) above is 
called a p-ordering. For example, any ordering of  the keys by nondecreasing cardi- 
nality is a p-ordering, Lien [26] shows that if M is a conflict-free set of MVDs, then 
all p-orderings produce the same decomposition. We shall show that this decompo- 
sition has a join dependency which is equivalent to M. 

LEMMA 8.7. Let M be a conflict-free set of MVDs and G(M) its graph. For any 
p-ordering, Lien's algorithm produces a database scheme R which consists of  the 
maximal cliques of G(M). Moreover, M is equivalent to the join dependency t~R. 
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FIGURE 9 

PROOF. We can consider the application of Lien's algorithm as the construction 
of a decomposition tree T with the nodes labeled by sets of attributes, where the root 
is labeled with the set U of all the attributes and the leaves are labeled with the 
schemes of R. Every internal node v is labeled with a set Rv which at some stage 
(when v was a leaf) was decomposed by the MVDs of a key into subsets of Re that 
label the sons of v. We shall identify a node of T with its label. 

We begin by showing that (1) every clique of G(M)  is contained in some leaf of T, 
and (2) every leaf of T is a clique of G(M).  

(1) From the construction of G(M),  no key can split a clique of G(M).  The 
conclusion follows then, by an easy induction, from the fact that every clique of 
G ( M )  is contained in the root U. 

(2) Suppose that a leaf S of T contains two attributes A and B that are not adjacent 
in G(M).  Let Ks be a minimal key of M that splits A and B. Let Wbe the lowest 
(smallest) ancestor of S that contains K,. Since Ks splits A and B (two elements 
of S), it follows that the ancestor of S that was a leaf at this stage (just before the 
MVDs with key K, were applied) did not contain K,. Therefore, Wis an ancestor 
of S that was decomposed by some key Kj, with j < i. W is in fact a proper 
ancestor of S (i.e., W #  S), since Ks _ Wbut K, ~ S (because S is a leaf). Let W1 
be the son of W in the path to S, and let W2 be the son that contains Ks; see 
Figure 9. (Some son of W contains K,, since M does not split its keys.) We have 
Ks _ W, W2 and K, (~ W1. Let DEP(K,) = {VI . . . . .  Irk, X1 . . . . .  Xn, 
ZaYI . . .  Ym) and DEP(Kj) -- { V~ . . . . .  Vk, Y~ . . . .  , Ym, ZbX~ . "  X,,) with 
ZaK, = ZbKj. Since j < i, it follows that K, - Kj # 0 (from the p-ordering), and 
so hq N Zb # ~. By construction, W2 is the interse'ction of Wwith KjT, where 
T is a member of the dependency basis of Kj. Since W2 contains Ks and 
K, fq Zb # O, this member of the dependency basis is ZbX1 . . .  Xn. Therefore 
W2 = W N (K~ZbX~ . . .  Xn). Thus S C. W~ C_ KjVI . . .  VkY1 . . .  ym. 
Since K, splits A and B, it follows that at least one of A or B, say A, must 
belong to some Vt and B ~ Vt. (This is because from the fact that W1 _ 
KjVt . . .  VkY~ . . .  Ym, it follows that the only sets of DEP(K,) that can contain 
members of W~ are the Vt's and one other, namely, Z. Y~ . . -  Ym.) From conflict- 
freedom, M implies the MVD K, N Kj -->---> Vt, and therefore, from Lemma 8.4, 
there is a key Ks contained in Ks A ~ such that Ks --->--) Vt, and thus this MVD 
splits A and B. Since K, ~ Kj, it follows that Ks is a proper subset of K~. This 
contradicts the minimality of Ks. 

From (1) and (2) it follows that every maximal clique of G(M)  is a set in R, the 
database scheme produced by the algorithm. Since as Lien showed [28], the algorithm 
produces nonredundant database schemes, it follows from (2) that R is precisely the 
set of maximal cliques of G(M). Therefore, the graph G(R) equals G(M),  and the set 
of MVDs implied by the join dependency tmR is equal to the set N of MVDs 
generated by the hypergraph R, which is equal to the set of MVDs generated by the 
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graph G(M). By Theorem 7.1 we know that t~R ~ N, and from Lemma 7.4 we have 
N ~ M. So by transitivity, t~R ~ M. From 'the correctness of the algorithm, 
M ~ t~R. Thus M is equivalent to the join dependency t~R. [:] 

We shall now prove a converse to Lemma 8.7 and thereby establish the equivalence 
of  condition (6) in Theorem 3.4 to the rest of  the conditions. It is already known [17] 
that the set of  MVDs implied by an acyclic join dependency t~R has a cover of  size 
polynomial in the size (number of  sets) of  R. We shall construct a linear conflict-free 
c o v e r .  

THEOREM 8.8. Let R be an acyclic hypergraph, where ~/~ is the set t3R of  nodes. 
The join dependency t~R is equivalent to a conflict-free set M of multivalued depend- 
encies with I g l  -< min(IRI - l ,  I X I  - 1). 

Note. By I s I we mean the number of members of  set S. 

PROOV. The join dependency of  a hypergraph and the join dependency of its 
reduction are logically equivalent [7]. It follows easily that we can therefore assume 
without loss of  generality that R is a reduced acyclic hypergraph. 

We now show that since R is reduced and acyclic, it follows that [ R I -< I -Arl • One 
way of  seeing this is by using Theorem 3.4(3) and Theorem 3.2. Since R is reduced 
and acyclic, it consists precisely of the maximal cliques of  a chordal graph. A chordal 
graph has at most [ d¢'[ maximal cliques [18], and therefore [R[ _< [ ~/'1. Another way 
of  proving this inequality is by defming a mapping h: ~---> R, where h(A) is the 
unique set of  R that contains A, when A is eliminated in the application of  Graham's 
algorithm to R. It is not hard to show then that h is onto; that is, for every Rj in R 
there is an A such that h(A) = Rj. 

Let T be a join tree for R. Let (Rj, Rk) be an edge of  T labeled by the set S = 
R~ N Rk. Deletion of  the edge breaks T into two subtrees T' and T". Let .A/", M/" be 
the unions of  the nodes in these two subtrees, respectively. We correspond to the 
edge (R~, Rk) the multivalued dependency S--->---> X - S. Note that the other MVD 
S--->---> .At" -- S can be derived from S--->---> ~ '  - S. It follows easily from Theorem 
7.1 that t~R implies every such MVD, since Tis  a join tree and S = ~ '  N .At". 

Let M be the set of  MVDs that correspond to the edges of  T. Since Tis  a tree with 
I R I  nodes ,  w e  have I M I  -- I R I  - 1 (see, e.g., [101). W e  noted above that t~R ~ M. 
It remains to show that (1) M ~ t~R, and (2) M is conflict free. 

(1) M implies t~R. The proof is by induction on I R I. The basis ([ R I -- l )  is trivial. 
For the induction step, suppose that the result holds for I R[ ___ n - 1, and let R = 
{R1 . . . . .  Rn} be an acyclic reduced hypergraph with n hyperedges. Let T be a join 
tree for R, and let M be the corresponding set of MVDs. 

Let R, be a leaf of  T, let Rj be the node adjacent to it in the join tree, and let S -- 
R, N Rj. Let JV' be the union of  all nodes of  T but R,. From the definition of  a join 
tree we have R, rl .A ~' = R, n R~ -- S. Let T' be the tree obtained from T by deleting 
R,; T' is a join tree for R' = R - (R,}, and R' is a reduced, acyclic hypergraph. 

Let X---~---> Y be the MVD in M that corresponds to an edge of  T other than the 
edge (R,, Rj). The MVD that corresponds to the same edge in T' is X---~---> 
Y N JV'. The MVD X-->---, Y (with universe ~/') implies [15] the embedded MVD 
X --->---> Y rl Jv '  with universe ~4/"; in other words, if a relation r over the set 
of  attributes ./V satisfies X --->--> Y, then its projection on ~4/" satisfies X ---->---, 
YA ~V'. 

Let r now be a relation over .A ~ that satisfies the set M of  multivalued dependencies. 
The projection r '  of  r on ~r, satisfies the set M '  of  multivalued dependencies that 
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correspond to the edges of T'. From the induction hypothesis, r '  satisfies the join 
dependency t~R'; that is, r' is equal to the join of its projections on the sets Rk in R 
with k # i. Since Rk _C aV', we have r'[Rk] = r[Rk] for every such Rk. From the 
MVD of M that corresponds to the edge (R,, Rj), we conclude that r satisfies the 
MVD S ---~---> R~ - S, that is, r = r[R~] ~ r'. Therefore, r = r[R1] ~ . . .  ~ r[Rn], and 
r satisfies the join dependency t~R. 

(2) M is conflict free. Since every key of  M is contained in a hyperedge of  R (a 
node of  T), it is easy to see that M does not split keys, and therefore M satisfies 
condition (1) of  conflict-freedom by Lemma 8.1. Since M is equivalent to t~R, it has 
the intersection property (by Theorem 7.5) and therefore satisfies also condition (2) 
of  conflict-freedom. [] 

The following theorem relates conflict-freedom and acyclicity. 

THEOREM 8.9. A set ~ of  multivalued dependencies has a conflict-free cover if  and 
only if Y2 is equivalent to an acyclic join dependency. 

PROOF. (~) :  From Theorem 8.8 an acyclic join dependency is equivalent to a 
conflict-free set M of  MVDs. Therefore, M is a conflict-free cover of  X. 

(~) :  From Lemma 8.7, since X has a conflict-free cover M, it follows that ~ is 
equivalent to a join dependency. By Theorem 3.4, this join dependency must be 
acyclic. [] 

Note that the word "cover" is necessary in Theorem 8.9, since a set ~ of  MVDs 
that is not conflict free may have a conflict-free cover M and therefore be equivalent 
to an acyclic join dependency. Also, there are cyclic join dependencies t~R such that 
the set of  MVDs implied by ~aR has a conflict-free cover. As a simple example, the 
empty set is a cover for the set of MVDs implied by the cyclic join dependency 
 (AB, Bc, Ac}. 

COROLLARY 8.10. A set M of  multivalued dependencies is conflict free if and 
only if 
(1) M does not split its keys, and 
(2) M satisfies any one of  the (equivalent) conditions of  Theorem 7.5. 

Pt~ooF. The first condition is the same as condition (1) of  Definition A. If  M is 
a conflict-free set of  MVDs, then by Theorem 8.9 we know that M is equivalent 
to an (acyclic) join dependency. Thus M satisfies condition (1) of  Theorem 7.5. 
So, if M is a conflict-free set of  MVDs, then it satisfies conditions (1) and (2) of 
Corollary 8.10. 

Conversely, assume that M satisfies conditions (1) and (2) of  Corollary 8.10. Then 
M satisfies condition (1) of Definition A. Furthermore, M has the intersection 
property (this is condition (6) of Theorem 7.5). It is easy to see that the intersection 
property implies condition (2) of Definition A. [] 
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