
Horn Clauses and Database Dependencies

R O N A L D F A G I N

IBM Research Laboratory, San Jose, California

Abstract. Certain first-order sentences, called "dependencies," about relations in a database are defined
and studied. These dependencies seem to include all prewously defined dependencies as special cases A
new concept is mtroduced, called "faithfulness (with respect to direct product)," which enables powerful
results to be proved about the existence of "Armstrong relations" in the presence of these new dependencies.
(An Armstrong relaUon is a relation that obeys precisely those dependencies that are the logical
consequences of a given set of dependencies.) Results are also obtained about characterizing the class of
projections of those relations that obey a given set of dependencies.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Language]: Mathematical
Logic; H 2.1 [Database Management]: Logical Deslgn--seheraa and subschema

General Terms: Design, Languages, Theory

Addittonal Key Words and Phrases" Armstrong relation, Armstrong database, database dependencies,
Horn clause, relational database, faithfulness

1. Introduction

Certain sentences about relations are of special practical and/or theoretical interest
for relational databases. For historical reasons, such sentences are usually called
dependencies. The first dependency introduced and studied was the functional de-
pendency, or FD, due to Codd [14]. As an example, consider the relation in Figure 1,
with three columns: EMP (which represents employees), DEPT (which represents
departments), and MGR (which represents managers). The relation in Figure 1 obeys
the FD DEPT --, MGR, which is read "DEPT determines MGR." This means that
whenever two tuples (that is, rows) agree in the DEPT column, then they necessarily
agree also in the MGR column. The relation in Figure 2 does not obey this FD,
since, for example, the fast and fourth tuples agree in the DEPT column but not in
the MGR column. FDs (and some of the other dependencies we discuss) are of
interest in database normalization. For example, assume that the database obeys the
FD DEPT - , MGR as a constraint (i.e., that it is decreed to be always the case that
two employees in the same department necessarily have the same manager). Then it
might be better to store the data not in one relation, as in Figure 1, but rather
in two relations, as in Figure 3: one relation that relates employees to departments,
and one relation that relates departments to managers. For more information,
see [141 or [24].

An extended abstract of this paper appeared in the Proceedmgs of the 1980 ACM SIGACT Symposium
on the Theory of Computing, Los Angeles, Calif. [23].

Author's address: IBM Research Laboratory K51/BMI, 5600 Cottle Road, San Jose, CA 95193.

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publicauon
and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and,/or specific permission.
© 1982 ACM 0004-5411/82/1000-0952 $00.75

Journal of the Asmcuttton for Computing Maohmcry, VoL 29, No. 4, October 1982, pp 952-985

Horn Clauses and Database Dependencies 953

EMP DEPT MGR

Hdbert

Pythagoras

Turmg

Math

Math

Computer Sctence

Gauss

Gauss

yon Neumann

FIC;OR~ 1

FIGURE 2

EMP DEPT MGR

HiIbert

Pythagoras

Turmg

Cauchy

Math

Math

Computer Science

Math

Gauss

Gauss

yon Neumann

Euler

[:MP DEPT

HiIbert

Pythagoras

Turmg

Math

Math

Computer Science

DEPT MGR

Math

Computer Science

Gauss

von Neumann

FIGURE 3

More generally, Codd defined FDs A1 . - . An ---> B, where each o f A 1 , . . . , A,~, B
are names of columns of a relation. (We assume that no two distinct columns of the
same relation have the same name.) This FD holds for a relation R if every pair of
tuples of R that agree in each of the columns A1 A,, also agree in the B column.
It is easy to see [39] that FDs can be represented as sentences in first-order logic.
Assume, for example, that we are dealing with a 4-ary relation, where the first,
second, third, and fourth columns are called, respectively, A, B, C, and D. Then the
FD AB --~ C is represented by the sentence

(Vabclc2dld2)((Pabcldl A Pabc2dO ~ (cl = c2)). (I.1)

Here (Vabc~c2dld2) is shorthand for VaVbVclVc~VdlVd2; that is, each variable is
universally quantified. Unlike Nicolas [39], we have used individual variables
rather than tuple variables. Incidentally, we think of P in (1.1) as a relation symbol,

954 RONALD FAGIN

which should not be confused with an instance (that is, a relation) R, for which (1.1)
can hold.

The next dependency to be introduced was the multivalued dependency [21], or
MVD. For the purposes of this paper it is convenient simply to discuss a single
example rather than to give the general del~mition. Assume that we are dealing with
ternary relations, where we refer to the three columns as A, B, and C. The MVD
A --*--~ B is said to hold for such a relation if the following sentence is true (where
P plays the role of the ternary relation):

(Vabx~clc2)((Pablcl A Pab2c2)=* Pabac2. (1.2)

In relational terminology the above sentence says that the ternary relation is the join
of its projections onto AB and AC. The projection of a ternary relation R onto AB is
{(a, b):3cRabc}. The join of Ra and R2, where R1 is a relation whose column names
are A and B, and where R2 is a relation whose column names are A and C, is
{(a, b, c):Rl(a, b) and R2(a, c)}.

Embedded dependencies were introduced [21] as dependencies that hold in a
projection of a relation (although, as we shall see, they are now defined a little more
generally). For example, assume that we are dealing with 4-ary relations, where we
call the four columnsABCD. We say that such a 4-ary relation R obeys the embedded
MVD (or EMVD) A ---~--* B[C if the projection of R onto ABC obeys the MVD
A --~--~ B. Thus the EMVD A --*---> B I C can be written

(Yabab2clc2dld2)((Pablcldl A Pab2c2d2) ~ 3d3Pabxc2d3). (1.3)

In the last few years a number of generalizations of these dependencies have
appeared: Nicolas' mutual dependencies [39], which say that a relation is the join of
three of its projections; Mendelzon and Maier's generalized mutual dependencies
[38]; Rissanen's [44] and Aho et al.'s [1] join dependencies, which generalize further
to an arbitrary number of projections; Paradaens" transitive dependencies [41], which
generalize both FDs and MVDs; Ginsburg and Zaiddan's implied dependencies [28],
which generalize FDs; Sagiv and Walecka's subset dependencies [47], which generalize
embedded MVDs; Sadri and Ullman's template dependencies [46], which generalize
embedded join dependencies; and Parker and Parsaye-Ghomi's generalized transitive
dependencies [43], which generalize transitive dependencies. We remark that the last
three kinds of dependencies mentioned were introduced to deal with the issue of a
complete axiomatization: subset dependencies were introduced to show the dif-
ficulty of completely axiomatizing embedded multivalued dependencies, while
template dependencies and generalized transitive dependencies were introduced to
provide a class of dependencies that include join dependencies and can be completely
axiomatized.

The purpose of this paper is to help bring order to the chaos by presenting certain
mathematical properties shared by all of these dependencies. The "right" definition
of "dependency" might be those sentences that have certain properties (including,
possibly, "faithfulness" and "domain independence," which are among the concepts
discussed in this paper, and possibly also including the property that these sentences
are true about empty relations). Each dependency of one of the types listed above is
equivalent to a i'mite set of our implicational (or embedded implicational) depend-
encies, which we define soon. We note that Yannakakis and Papadimitriou [59] have,
independently of the author, dei'med "algebraic dependencies," which, on the surface,
look very different from our embedded implicational dependencies. Somewhat
surprisingly, the class of algebraic dependencies and the class of embedded implica-
tional dependencies tum out to be identical [59]. This is evidence for the naturalness

Horn Clauses and Database Dependencies 955

of the class. Yannakakis and Papadimitriou present a complete axiomatization. Beeri
and Vardi [10] have defined tuple-generating dependencies and equality-generating
dependencies, which, when they are restricted to be typed, together comprise our
embedded implicational dependencies. (Beeri and Vardi have defined both typed
and untyped versions; the typed version they call many-sorted.) Paradaens and
Janssens [42] have defined general dependencies, which are implicational (but not
embedded implicational) dependencies. Also, Grant and Jacobs [29] have defined
generalized dependency constraints, which are untyped and interrelational versions of
our implicational dependencies.

We begin with a few preliminary concepts. Let P be a relation symbol that
represents the relation of interest. (When we deal with interrelational constraints,
which we shall do later, then we shall, of course, need several relation symbols. For
now we assume that we are dealing with only a single relation at a time.) We assume
that we are given a set of individual variables (which represent entries in a relation).
Assume that P represents a d-ary relation. Then the atomic formulas are those that
are either of the form Pz~ . . . zd (where the z,'s are individual variables) or else of
the form x = y (where x and y are individual variables). We call atomic formulas
Pza . . . Zd relational formulas, and atomic formulas x = y equalities. A negation-
atomic formula is the negation of an atomic formula.

Formulas (which can involve Boolean connectives and quantifiers) and sentences
(formulas with no free variables) are defined as usual (see any standard textbook in
logic, e.g., [20] or [49].) We sometimes abbreviate Yxl . . . Vxn~, where each x,
is universally quantified, by (Vxa . . . x~)4,. Similarly, we sometimes abbreviate
3yl . . . 3yrCk, where each y~ is existentially quantified, by (3yl - . - yr)~.

A formula is said to be typed if there are d disjoint classes, or types, of variables
(where d is the arity, or degree, of relation symbol P and we say that a variable in the
ith class is of type i), such that (a) if the relational formula Pzl . . . Zd appears in the
formula, then zt is of type i (1 _ i _< d), and (b) if the equality x = y appears in the
formula, then x and y have the same type.

In a typed formula no individual variable can represent an entry in two distinct
columns. Thus, if Pxy appears in a typed formula (where x and y are individual
variables), then Pzx cannot also appear, since if it did, then x would represent an
entry in both the first and second colunms.

An implicational dependency (or ID), is a typed sentence of the form

(Vxx . . . Xm)((A1 A . . . A An) =~ B), (1.4)

where each At is a relational formula, B is atomic (either a relational formula or an
equality), and each of the individual variables xx , Xm that appear in at least one
of A~ An or B is universally quantified. We assume also that each variable (each
of the xj's) appears in at least one of the A,'s. In particular, n _~ 1, that is, there is at
least one At. We also make similar assumptions when we define embedded implica-
tional dependencies, so that, in particular, each implicational and embedded impli-
cational dependency automatically holds for an "empty" relation with no tuples.
Furthermore, our assumptions guarantee that we can tell if an implicational (or
embedded implicational) dependency holds for a relation by simply considering the
collection of tuples of the relation and ignoring the underlying "domains" (defined
later) of attributes. We call this latter property domain independence. It is possible to
define domain independence not only for sentences, but also for formulas. This class
of domain-independent formulas is equivalent to Kuhns' [36] class of definite
formulas. Unfortunately, the class of domain-independent formulas (and of domain-
independent sentences) is not re.cursive [19, 55]. For this reason, various authors have

956 RONALD FAGIN

defined syntactically defined subclasses of domain-independent formulas. These
include Codd's range-separable formulas [15], Nicolas' range-restricted formulas
[40], Cooper's permissible formulas [16], UUman's safe formulas [54], and Demo-
lombe's evaluable formulas [17]. Since each of these classes is syntactically defined,
each is recursive, unlike the full class of domain-independent formulas. Each of these
classes is a proper subset of the class of domain-independent formulas, since each of
these classes is recursive, while the class of all domain-independent formulas is not.
Demolombe and Nicolas [18] show that each of Ullman's safe formulas is a domain-
independent formula, and, conversely, that for each domain-independent formula
there is an equivalent safe formula.

In line with dependency tradition, we may refer to IDs as full dependencies and
EIDs that are not IDs as strictly embedded (or strictly partial) dependencies. There
are two kinds of IDs, depending on whether the right-hand side of the implication is
a relational formula or an equality. IDs in which the right-hand side is a relational
formula are precisely the full template dependencies of Sadri and Ollman [46], and
the full tuple-generating dependencies of Beeri and Vardi [10]. We may refer to these
full tuple-generating dependencies as full TGDs, or FTGDs. IDs in which the right-
hand side is an equality are Beeri and Vardi's equality-generating dependencies, or
EGDs [10]. (In a preliminary version [23] of this paper we called EGDs extended
functional dependencies, or XFDs).

Note that the FD (1.1) and the MVD (1.2) are each an ID (where the FD is an
EGD and the MVD is an FTGD). We note that there is a possible confusion in
treating an FD both in the usual manner (as a sentence written in the form AB --> C)
and also as a sentence written in the form (1.1). For example, the FD AB ---> C, when
referring to a 4-ary relation, is written as in (1.1), whereas the FD AB ---> C, when
referring to a 3-ary relation, is written as

(Vabclc2)((Pabcl A Pabc2) =* (ca -- c2)). (1.5)

If we speak about an FD as being written in the usual AB ---> C notation, then we can
speak (as we sham in Section 6) about the same FD AB --* C holding in a relation
and its projection, whereas this would not make sense if we think in the latter terms
(since (1.1) and (1.5) are certainly not the same syntactically). In the usual AB---> C
notation, the role of attributes is emphasized and the arity of the relations is not,
whereas in the notation of (1.1), the reverse is true. We hope that this double manner
of thinking about FDs does not cause confusion.

Following Slagle and Koniver [51], let us cam an unquantified formula of the form

((a , A . . . A a ,) =* B), 0 . 6)

where n _> 1 (i.e., where there is at least one A,), an implication. A Horn clause [32]
is the disjunction of atomic and negation-atomic formulas, where at most one is
atomic. The implication (1.6) is equivalent to the Horn clause

('~AI V " " V ~A. V B),

which has exactly one atomic formula and at least one negation-atomic formula.
An embedded implicational dependency (or ELL)) is a typed sentence of the form

(Vx~ . . . x,,)((a~ A . . . A A ,) ~ (3y~ - - - y ,) (B~ A . . . A Bs)), (1.7)

where each Ai is a relational formula and each B, is atomic (either a relational
formula or an equality). We assume also that each of the xj's appears in at least one
of the A,'s and that n _> 1, that is, that there is at least one A,. We assume that r _> 0
(if r = 0, then there are no existential quantifiers) and that s >_ 1 0.e., there must be

Horn Clauses and Database Dependencies 957

at least one B,). Because of all these assumptions, each EID is obeyed by an empty
relation with no tuples. Note that each ID is an EID (in which there are no existential
quantifiers).

Remark. We could modify our definition of IDs so that, like EIDs, they can have
more than one atomic formula on the right-hand side of the implication. That is, by
analogy with (1.7) we could allow IDs to be of form

(Vx, . . . xm)((A, A . . . A An) ~ (B, A . . . A Bs)). (1.8)

However, we do not do so, since (1.8) is equivalent to the set o f s IDs

O / x , . - . x , , ,) ((a , A . . . A A, ,) ~ B,)

for i -- 1 , . . . , s, and we are interested in what can be said with sets of delmndencies,
not just with single dependencies. The analogous equivalence does not hold for
EIDs (1.7).

There are many open questions about embedded dependencies. For example, it is
not even known whether the decision problem for EMVDs is decidable, that is,
whether, given a set ~ of EMVDs and a single EMVD o, it is the case that ~ logically
implies o [46]. (However, we note that Vardi [57] and Gurevich and Lewis [31] have
proven the undecidability of the decision problem for the more general class of
template dependencies.) The existence of an Armstrong relation in the presence of
EMVDs (which we shall prove) is itself a new result, for which the old proof
techniques seem to be inadequate.

Sadri and Ullman's template dependency (or TD) is a special case of an EID in
which there is only one atomic formula on the right-hand side of the implication and
in which this atomic formula is a relational formula (i.e., s -- 1 in (1.7), and also B,
in (1.7) is a relational formula). We note that Fagin et al. [26] develop a number of
techniques, counterexamples, and results about TDs.

In Section 2 we introduce the concept of "faithfulness" (with respect to direct
product) and show that IDs and EIDs are faithful, whereas slight variations are not
necessarily faithful. In Section 3 we discuss "Armstrong relations," which were
known to exist in certain special cases (such as when the only sentences of interest
were functional, multivalued, and join dependencies). We show that Armstrong
relations exist even in the presence of EIDs. This is perhaps the most interesting
result technically in this paper. In Section 4 we discuss finite Armstrong relations.
An existence theorem and a counterexample to an extension of the theorem are
presented. In Section 5 we present some more counterexamples about the existence
of Armstrong relations. In Section 6 we discuss projections of classes of relations.
Although Ginsburg and Zaiddan [28] showed that projections of FD classes are not
necessarily FD classes, it turns out that projections of FD classes (and, even more, of
ID classes) are ID classes. In Section 7 we discuss certain extensions of our results
(that, in particular, allow some interrelational and nontyped dependencies).

2. Faithfulness with Respect to Direct Product

In this section we define the direct product operator, and we introduce a concept of
faithfulness (with respect to direct product). A sentence is faithful when it holds for
each member of a nonempty family of nonempty relations if and only if it holds for
their direct product. We show that our class of EIDs (embedded implicational
dependencies) is faithful. Furthermore, we show that under slight modifications of
our definition of EID, we can obtain a sentence that is not faithful.

Let U be a finite set of distinct symbols, called attributes (or column names). A

958 RONALD FAGIN

FIGURE 4

dora (A) = {0 ,1} dora (A) = {0,1,2}

domain mapping is a mapping that associates to each attribute A in U a set dom(A),
called the domain of A. In the spirit of Armstrong [2] and of Aho et al. [1], we define
a tuple to be a function that maps each attribute A into a member of dom(A). We call
the value associated with the attribute A the A entry of the tuple. I f the attributes are,
say, A, B, and C, then for notational convenience we sometimes write (a, b, c) to
represent the tuple, where the A entry is a, etc. A d-ary relation is a domain mapping
(over d attributes), along with a set of tuples (involving the same attributes). We say
that the arity of the relation is d. This detrmition of a relation, which is slightly
different from the usual definition in that it explicitly considers the role of domains,
is usually necessary in the presence of quantifiers. Thus, to decide whether a sentence
holds for a given relation, the domains tell us over what set of x's a "Vx" ranges. For
example, the first relation in Figure 4 obeys the sentence VxPx, and the second does
not, even though both relations have the same set o f tuples. EIDs have been defined
in such a way that it is possible to determine whether they hold for a given relation
by considering only the tuples, and not the underlying domains (this property we
have called domain independence).

Our definition of "relation" is in the spirit of Tarski's definition [53] of "model,"
in that domains are explictly considered. Our definition is analogous to considering
a graph as a set of nodes, along with a set of edges, whereas the usual definition (of
a relation as simply a set of tuples) is analogous to considering a graph as simply a
set of edges.

We say that a relation is empty if its set of tuples is the empty set. This is not the
same as saying that one or more of the domains is empty. In fact, it is traditional to
require that none of the domains be empty in any relation, including an empty
relation.

Let (R, :i ~ I) be a (finite or infinite) family of relations, each with the same set
U of attributes. (Note: Throughout this paper we assume for convenience that
whenever we speak of a family (R,: i E I) , we always mean a nonempty family,
i.e., we assume that the index set I is nonempty.) We now detrme the direct product
®(R, :i E I) . The direct product has the same set U of attributes as does each of the
R,'s. In particular, the direct product maps a family of d-ary relations into a d-ary
relation (with the same arity d as each of the R,'s). For notational convenience let us
assume that U contains precisely three attributes ABC. (It is obvious how to generalize
the definition from this special case.) Let us denote the domain dom(A) in R, by D,,
for each i. Note that we make no restrictions on these domains, such as that the A
domains of distinct relations be the same or distinct, or that the domains be finite or
infinite. The domain dora(A) in the direct product is delrmed to be the Cartesian
product × (D, :i E I) . A similar statement holds for dora(B) and dom(C). The tuple
((a, : i E I), (bi:i E I), (c,:i E I)) is a tuple of the direct product if and only if
(a,, bi, c,) is a tuple of R,, for every i. For example, the direct product of the first two
relations in Figure 5 is the third relation in Figure 5. It is sometimes convenient to
refer to R, as the ith component of ®(Ri:i E I) and to a, as the ith component of
(a , : iEl) .

Horn Clauses and Database Dependencies

R 1 R 2

A B C A B C

a 1 b 1 c 1 a 2 b 2 c2

a 1 b 1 c~ a 2 b~ c 2

dora (A) = { al,a~l}
dom (B) = { bl}
do~ (C) -- { %,c'i}

dom (A) = { a2,a~}
dora (B) = { b2,b~}
dora (C) = {c2}

R I C R

A

(a 1 ,a2)

(a 1 ,a 2)

(a 1 ,a 2>

(a 1 .a 2)

B

(b 1 ,b 2)

(b 1 ,b~)

(b 1 ,b2)

(b 1 .b~)

C

(C 1 ,C 2)

(c 1 ,c 2)
(c~ ,c2)

FIGURE 5

959

dora {A) = {(a I ,a2>,(a I ,a~>,(a~ I,a2),(a' 1,a~)}
dom (B) = {(b 1,b2),(b 1,b~t) }
dora (C) = {(C I.c2).(C~,c2) }

We have made no restrictions in our defmitions as to whether a relation must be
finite (i.e., have a finite number of tuples) or may be infinite. In particular, it is easy
to see that the direct product of an infinite family of relations, each o f which contains -
at least two tuples, is not only infinite but even uncountable. At various points in this
paper we explicitly focus our attention onfinite relations.

We sometimes write ®(Rt, R~) as RI ® R2; similarly, we may write ®(Rt Rt)
as R1 ® . . . ®Rz.

We clef'me a database (which is, intuitively, a labeled collection o f relations) in
Section 7. We also clef'me the direct product of databases, which is simply the direct
product taken relationwise. Until Section 7 we mainly discuss single relations, rather
than databases.

Let o be a sentence of first-order logic. For now we assume, in order to simplify
our clef'tuitions, that o is unirelational (not interrelational), that is, that it is a sentence
about a relation and not about a multirelation database. We say that e is faithful
(with respect to direct products) if whenever (R, :i ~ I) is a family o f nonempty
relations, then o holds for ®(R,: i ~ I) ff and only if o holds for every R,.

The main theorem of this section is as follows.

THEOarM 2.1. Every EID (and thus every ID) is faithful.

Before we prove Theorem 2.1 it is helpful to introduce some more concepts, to
give a few examples, and to state some other results.

We say that a sentence o is upward faithful (with respect to direct products) if
whenever (R,: i ~ I) is a family of nonempty relations such that o holds for every R,,

960

FIGUI~ 6

R

A

a I

bl

B

b I

c I

R 2

A B

a 2 b 2

RONALD FAGIN

R I ® R 2

A B

(a I,a2:' (b I,b2>
(b I,a2::' (c 1,b 2)

then o holds for ®(R,:i ~ I). We say that a sentence o is downward faithful (with
respect to direct products) if whenever (R, :i ~ I) is a family of nonempty relations
such that o holds for ®(R~:i E I), then a holds for every R~. Clearly, a is faithful if
and only if it is both upward and downward faithful. We remark that it is not
necessary to assume that the components R, are nonempty in the definition of upward
faithful, but the assumption is important to us in the downward faithful case. We
return to this point at the end of this section.

Example 2.2. The "degenerate MVD" [3, 48],

(Vxyly2zlz2)((exylzl A exy2z2) =~ ((yl = yz) V (zl -- z2))) (2. I)

is not upward faithful (although it is downward faithful, by Theorem 2.5 below).
Thus, relations R1 and R2 in Figure 5 (where bl # b ~, etc.) both obey this sentence,
but the direct product RI ® R2 does not (as we see by looking at the first and fourth
tuples in the direct product). This sentence differs from an ID in that the right-hand
side of the implication is not an atomic formula, but the disjunction of atomic
formulas. []

This example brings up a few comments about the role of domains. In Figure 5 we
have noted the domains of each of the attributes, although for this sentence (and, in
addition, for all EIDs) it is possible to determine the truth of the sentence for a
particular relation by considering only the tuples in the relation and ignoring the
underlying domains. The domains are explicitly noted because we make use of this
example later in a context where the role of the domains will be important (it is
important in our later example that only one of the two possible A values appears in
relation R0.

We also note that for convenience we have allowed some of the domains (such as
dora(B) in R 0 to contain only one element. One-element domains are sometimes
considered undesirable (see [24]); however, in none of our examples with one-element
domains is this feature in any way essential; it is simply convenient.

Example 2.3. The sentence

(Vxyz)((Pxy A eyz) =~ exz)

is not downward faithful (although it is upward faithful, by Theorem 2.4 below).
Thus R~ ® R2 in Figure 6 obeys this sentence, although R~ does not. This sentence
says that the relation is transitive. It differs from an ID in that it is not typed. []

In this example we have not bothered to note explicitly the underlying domains,
since in this case the domains are not needed to determine truth or falsity of the
given sentence for the given relations.

Horn's motivation [32] for introducing Horn clauses is the following theorem.

Horn Clauses and Database Dependencies 961

THEOREM 2.4 [32; 49, pp. 94-95]. Let o be a sentence o f the f o r m

Qlx l . . . Qmxm(M~ /x . . . A Ms),

where each Q, is a quantifier (V or 3) and each M, is a Horn clause. Then o is upward

faithful.

Theorem 2.4 does not require that o be typed or that it not be interrelational. We
make use of this fact in Section 7.

As we shall see, every EID is equivalent to a sentence of the kind mentioned in
Theorem 2.4; thus it follows from Theorem 2.4 that if o is an EID, then a is upward
faithful, which proves part of Theorem 2.1. As we shall see, it is not true that if o is
as in Theorem 2.4, then o is necessarily downward faithful.

After giving a few definitions, we state two theorems that give sufficient conditions
for a sentence to be downward faithful. We present the proofs of these theorems later
in this section.

The class of quantifier-free formulas is defined as usual (see [20] or [49]). The class
o f positive quantifier-free formulas is the smallest class such that (a) it contains all
atomic formulas, and (b) if it contains ~1 and ~2, then it also contains ~1 A ~ and
@ I V ~ .

THEOREM 2.5. Let o be a universal sentence, that is, a sentence of the f o r m
(Vxl . . . xm)¢, where d# is a quantifier-free formula . Assume fur ther that e is typed and
unirelational. Then e is downward faithful.

THEOREM 2.6. Let e be a sentence o f the f o r m

(VXl . . . xm)(~, ~ (~ y l . . . y~)O,

where ¢ is a quantifier-free formula and T is a positive quantifier-free formula . Assume
fur ther that a is typed and unirelational. Then e is downward faithful.

Remark. In the theorem, instead of assuming that o is typed and unirelational, it
is possible to make the weaker assumption that the left-hand side ¢ is typed and
unirelational. We come back to this point in Section 7.

We now show that Theorem 2.1 follows from Theorems 2.4-2.6.

PROOF OF THEOREM 2.1. We must show that each EID is faithful. We first show
that they are upward faithful.

Let o be

O~Xl ' ' . xm)((A1 A . . . A An) ==~ (3yl - . - yr)(Bl A - . . A B,)), (2.2)

where each A, and B, is atomic. Then o is equivalent to the sentence

(Vx , . . . xm)(ay~ . . . yr)((Ax A . . . A A ,) =* (Bt A . . . A S,)), (2.3)

Sentence (2.3) is equivalent to the sentence

(Vxa . . . x,,,)(=:lya . . . y,.)(M, A . . . A Ms), (2.4)

where M , is

A 1 A . . . A A , ~ B,

for each i. Thus, by Theorem 2.4, we know that o is upward faithful.
So, EIDs are upward faithful. Also, each EID is a aentence of the kind described

in Theorem 2.6, so each EID is downward faithful. Thus EIDs are faithful, which

962 RONALD FAG-IN

R 1 $1

a 1 b 1 a 1 b~

FIGURE 7

R 2 $2

A B C D

a 2 b 2 a 2 b' 2

R 1 ® R 2

A B

(a 1 ,a 2) <b 1 ,b 2)

S 1 ® S 2

A B

<al.a ~) (b~,b~)

was to be shown. We note that the fact that IDs are downward faithful follows from
either Theorem 2.5 or Theorem 2.6. []

Yannakakis and Papadimitriou [59] give an elegant proof of Theorem 2.1, by first
showing that embedded implicational dependencies are equivalent to their algebraic
dependencies (which are built out of projections and joins), and then showing that
the direct product commutes with projections and joins. For details, see [59].

In Examples 2.2 and 2.3 we demonstrated some sentences that are only "slightly
different" from implicational dependencies but that are not faithful. We now give
some more examples.

Example 2.7. The sentence

(Vxyly2)((exyl A Qxy2) ==~ (yl =)'2))

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus the
first database of Figure 7 (containing R1 and $1) violates this sentence, although the
direct product database (at the bottom of Figure 7) obeys it. As in Example 2.3, we
have not bothered to note explicitly the underlying domains, since in this case the
domains are not needed to determine truth or falsity of the given sentence for the
given databases. This sentence differs from an ID in that it is "interrelationaI."
(Technically, we have not yet defined the direct product when each member of the
direct product is a "database" consisting of several relations. We simply take direct
products relationwise.) I-1

Example 2.8. The sentence

(Vyly2):lx((Pxyl A Pxy'2) =* (yl = .p2))

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus,

Horn Clauses and Database Dependencies

R

A

a 1

a 1

R 2

A B

a 2 b 2

dom (A) = {a2,a~}
dom (B) = {b2}

A

(a 1 ,a 2)

(a~ ,a 2)

(a 1 ,a 2)

(a~ ,a 2)

® R 2

B

(b 1 ,b 2)

(b I ,b 2)

(b i ,b 2)

(b~ ,b 2)

963

FIGURE 8

dom (A) = {al,a~}
dom (e) = {bl,b~l}

dom (A) : { (a I ,a2),(a 1,a~),

dora (B) = {(b 1,b2),(b ~,b~)}

consider the relations in Figure 8. In this case it is important for us to consider
explicitly the domains of the attributes. In Figure 8, relation R1 does not obey the
sentence, whereas the direct product R1 ® R2 does. (The reason that the direct
product does is, intuitively, that when yl is (b~, b2) and y~ is (bl, b2), then we can
take x to be (a~, a[), which is in dora(A) in the direct product, although it does not
appear in the A column of R1 ® R2.) This sentence differs from an ID in that it is not
universally quantified but instead is a "v=r' sentence. Note, incidentally, that EIDs
(1.7) are special V3 sentences that are faithful. []

Example 2.9. The sentence

3x(Vyly2)((PXyl A Pxy2) ~ (y~ = y2))

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus
relation R1 in Figure 8 does not obey this sentence, although the direct product
R1 ® R2 does (where, intuitively, x is taken to be (al, a~)). This sentence differs from
an ID in that it is not universally quantified but instead is a "3V" sentence. []

Example 2.10. What about existential sentences? Let us first consider sentences

(3x . . . Xm)((A A . . . A A,,) B) ,

which are just like IDs except that the variables are existentially rather than
universally quantified. It is not hard to see that these sentences are all tautologies
and so, of course, are faithful. However, there are existential sentences that are not
faithful. For example, the sentence

(:lxlx2x3) ~exlx2x3 (2.5)

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus
relation R1 in Figure 9 violates this sentence, although the direct product R1 ® R2
obeys it. []

Example 2.11. As our final counterexample we exhibit a sentence that is neither
upward nor downward faithful. Our sentence is taken to be the conjunction of the
sentence (2.1) in Example 2.2 and the sentence (2.5) in Example 2.10. This new
sentence is not upward faithful, since the relations R~ and R2 in Figure 5 both obey
it, whereas their direct product does not. The sentence is not downward faithful,
since the relation R~ in Figure 9 does not obey it, whereas the direct product R1 ® R2
in Figure 9 does. 17

964

R1 R 2

a: I b 1 c 1

RONALD FAGIN

81 ® R 2

A B C

(a 1,a2~' <b 1,b 2) (c 1,c 2)
(a~ I,a 2) (b 1,b 2) (c 1,c 2)

dora (A) ; {al,a~/ dora (A)= {a2,a~/ dora (A)= { (al,a2>,(al,a~),
dom (B) = {bt} dom (B) = {b2} (a~,a2),(a~,a~;, }
dom (C) = {cl} dom (C) = {c2} dom (B) = {<b 1,b2) }

dora (C) = {(cl,c2) }

FIGURE 9

Before we prove Theorems 2.5 and 2.6, we establish a few conventions. I f p is a
member of t h e j t h domain of a relation R and x is a variable of type j , then we say
that p is substitutable for x (with respect to R). If ~ is a quantifier-free formula and
z], . . . , zk is a fixed ordering of a collection of variables, where the set of variables
appearing in ~ is a subset (possibly proper) of {z] zk}, then it is sometimes
convenient for us to write ~ as ~(z] zk). Further, f i r] rk are elements, where
r, is substitutable for z, for each i, then we may write ~(r] rk) to mean the result
of substituting r, for z,, for each i.

PROOF OF THEOREM 2.5. Let o be the universal sentence (Vxl . . . xm)¢, where
is a quantifier-free formula. Assume further that o is typed and unirelational. We

now show that o is downward faithful. Assume that o holds for ® (R , : i ~ I) , where
each R, is nonempty. We must show that a holds for each R,. Assume not; by
relabeling, ff necessary, assume that RI is an R, for which o fails. Thus there are
ql qm such that -wp(ql , qm) holds for R1. Let us denote ® (R , : i ~ I) by R.

By assumption, each R, is nonempty. Let us select a tuple ti from R, for each i
except i ffi 1. Let t i j be t h e j t h member of the tuple t,; thus t, equals (t,,1 t,,d),
where d is the arity of each of the R{s. Let q~ qm be as above. We now def'me
new points Q] Qm, each of which is in some domain o f R. Assume that x,, the
variable in o that corresponds to q,, is of type/7. Define Q, by letting its k th
component be q,, i f k = 1, and tk,p otherwise. So, Q, is a member o f t h e p t h domain
of the direct product. We now show, by induction on the structure of quantifier-free
formulas, that for every quantifier-free formula ~(x~, . . . , xm),

~(Q~ Qm) holds for R iff ~(q] qm) holds for R~. (2.6)

We first show (2.6) in the case where ~ is atomic.

Case 1. ~ is an equality x -- y. Since the only variables that can appear in ~ are
x l Xm, let us assume that ~ is the formula x, = xj. To show (2.6), we must show
that

Q, = Qj holds for R iff q, = qj holds for R]. (2.7)

Now x, and xj are of the same type; let us say that they are of type p. I f k # 1, then
the k th components of Q~ and of Qj are the same, namely tk,~,. Hence Q, and Q: are
the same if and only if their first components (the k th component for k = 1) are the
same. But the first component of Q, is q , and the first component of Qj is qj. Thus
(2.7) holds.

Horn Clauses and Database Dependencies 965

Case 2. ~ is a relational formula Pz~ . . . Zd. Since the only variables that can
appear in ~ are x~ Xm, let US assume that ~ is the formula Px,, . . . x~ . To show
(2.6), we must show that

(Q,, Q,d) is a tuple of R iff (q,~ q'd) is a tuple of Rx. (2.8)

Now x,o is of type p, and so the kth component of Q,~ is q,~, i f k ffi 1, and tk.o
otherwise. By definition of the direct product, (Q,, , Q~a) is a tuple of R if and
only if

(q,~ q,a) is a tuple of Ra,
(t2a t2,a) is a tuple of R2,
(ta,1 t3,d) is a tuple of lb .

(2.9)

Now, the second, third statements in (2.9) hold by definition of the tuples t, --
(&t t,,a). Thus (2.9) holds if and only if the first statement in (2.9) holds. Thus
(2.8) holds, which was to be shown.

We have shown that (2.6) holds ff ~ is atomic. It is straightforward to verify that
if (2.6) holds when ~ is ~ and when ~ is ~2, then it holds when ~ is ~1 A ~2, when
is ~ V ~P2, and when ~p is -a~t. For example, let us demonstrate the "~l V ~,~" case.
Then ~ V ~2 holds for the direct product if and only if either ~h or ~2 holds for the
direct product, which, by the induction assumption, happens if and only ff either ~b~
or ~ holds for R~, which happens if and only if ~1 V ~,z holds for R1.

We have now proved (2.6) whenever ~p is quantifier-free. But by assumption,
'~(q~ qm) holds for R~. So, by (2.6) we know that ~ (Q 1 Qm) holds for R.
But this contradicts our assumption that (Yx~ . . . X m ~ holds for R. O

PROOF OF THEOgE~t 2.6. Let o be the sentence

(Vx~ . . . x,,)(,/, = , (3y~ . . . y ,) ' r) , (2.1o)

where ,k is a quantifier-free formula and y is a positive quantifier-free formula.
Assume further that o is typed and unirelational. We now show that a is downward
faithful. As in the previous proof, let us denote ® (R , : i E I~ by R.

Assume that a holds for R, where each R, is nonempty. We must show that a holds
for each R,. Assume not; as before, by relabeling if necessary, assume that o fails for
R~. Thus there are q~ qm such that ~k(q~ qm) holds for R~ and there are no
points Sl Sr, for which

y(q~ qm, s, Sr) (2 .1 l)

holds for R1.
By assumption, each R, is nonempty. Let us select a tuple t, from R, for each i

except i ffi 1. Let t,,~ be the j t h member of the tuple t,; thus t, equals (t,a, . . . , ti,a),
where d is the arity of each of the R?s. Let ql qr~ be as above. As in the proof of
Theorem 2.3, we now define new points Q ~ , . . . , Qm, each of which is in some domain
of R. Assume that x,, the variable in o that corresponds to q,, is of type p. Define Q,
by letting its kth component be q,, i l k ffi 1, and tk,p otherwise. So, Q, is a member of
the p th domain of the direct product.

By the same proof as that given in the proof of Theorem 2.5 (except using ~k instead
of "-~,), it follows that q~(Q~ Qm) holds for R. By assumption, sentence (2.10) is

966 RONALD FAGIN

true about R. If we write y as y(xl Xm, y~ y,), then it follows that there are
S1, . . . , S, such that

y(Q~, . . . , Q,, S1 S,) (2.12)

holds for R. Denote the first component (i.e., the component corresponding to R1) of
S, by s, (1 _< i < r). We already know that the first component of Q, is q, (1 _ i _ r).
We now show that for each positive, quantifier-free formula ~,

~(ql q,, Sl s,) holds for R1
if ~(Q1 Q,, $1 , . . . , S,) holds for R. (2.13)

Notice that (2.13) is an "if" statement, not an "if and only if."
The proof of (2.13) is by induction on positive, quantifier-free formulas. First we

show (2.13) in case ~ is an equality. If Q, = Sj, then the first component of Q,,
namely q,, must equal the first component of Sj, namely sj. We have shown that if
Q, = Sj, then q, = sj. Similarly, if Qi -~ Q1, then q, -- qj, and ff Si --- Sj, then s, -- sj.
We just proved (2.13) in case ~ is an equality. Also, (2.13) holds if ~ is a relational
formula (of the form PZl . . . Zd), by the definition of the direct product. We have
shown that (2.13) holds i f~ is atomic. Finally, it is easy to verify that if (2.13) holds
when ~b is ~, and when ~ is ~z, then it holds when h& is ~ A ~2 and when ~ is
~ V ~ . Thus (2.13) holds for each positive, quantifier-free formula ~. In particular,
(2.13) holds when ~ is y. So, since (2.12) holds for R, it follows from (2.13) that (2.11)
holds for R~. This is a contradiction. []

We close this section with some comments relating upward and downward
faithfulness to concepts defined earlier in the literature. The following two definitions
are standard (see, e.g., [13]). A sentence o is preserved under direct products if
whenever (R,:i E I) is a family of relations such that o holds for every R,, then o
holds for ®(R,:i E I) . A sentence o is preserved under direct factors ff whenever
(R,:i ~ I) is a family of relations such that o holds for ®(Ri:i E I) , then o holds for
every R,. We can easily verify that a sentence is upward faithful with respect to direct
products if and only if it preserves direct products. This is because the only difference
in the definitions of upward faithfulness and of being preserved under direct products
involves whether or not the component relations are allowed to be empty, and
because the direct product of relations, one of which is empty, is also empty. Horn
stated his theorem (Theorem 2.4 above) in terms of preservation under direct product.

However, there is an important difference between downward faithfulness and
being preserved under direct factors. Thus the restriction in the definition of
downward faithfulness that we consider only nonempty relations is actually impor-
tant. To see this, we first show that if a sentence o is preserved under direct factors
and is true about the empty relation, then o is a tautology. For, if not, assume that
o is preserved under direct factors, is true about the empty relation, and is not a
tautology. Let R1 be the empty relation, and let R2 be a relation for which 0 fails. We
know that o holds for R1 ® Rz, since R1 ® R2 is the empty relation. Since 0 is
preserved under direct factors, it follows that 0 holds for/~e. This is a contradiction.
Now let 0 be a nontautologous EID. Since 0 holds for the empty relation, it follows
from what we just showed that 0 is not preserved under direct factors. However, 0 is
downward faithful. So being preserved under direct factors and being downward
faithful are not equivalent. Keisler [35] gave a complicated characterization of
sentences that are preserved under direct factors. His class and our class of EIDs
have in common only tautologies.

Horn Clauses and Database Dependencies 967

EMP DEPT MGR

Hdbert

Pythagoras

Turmg

Emstem

Math

Math

Computer Scmnce

Physms

Gauss

Gauss

yon Neumann

Gauss

Fm~.n~,~ 10

3. Armstrong Relations

In this section we show that a theorem due to Armstrong about FDs generalizes to
EIDs. Further, we demonstrate a general equivalence that is useful in our context
and also, we believe, in other contexts.

Let E be a set of sentences, and let a be a single sentence. When we say that E
logically implies o or that o is a logical consequence of ~, we mean that whenever
every sentence in Y~ holds for a relation R, then o also holds for R. That is, there is
no "counterexample relation" or "witness" R such that every sentence in ~ holds for
R but o fails in R. We write ~ ~ o to mean that E logically implies o, and we
write Y~ g= o to mean that ~ does not logically imply o. I f 1" is a set of sentences,
then we may write ~ ~ F to mean that ~ ~ "t for every ~, in F. For example,
(A --~ B, B-- . C} ~ A --. C.

Let 2; be a set of FDs, and let Y~* be the set of all FDs that are logical consequences
of ~. For each FD o not in E*, we know (by definition o f ~) that there is a relation
Re (a witness) such that Ro obeys E but not o. It follows from Armstrong's results [2]
that there is a relation (a global witness) that can simultaneously serve the role of all
of the Ro's. That is, Armstrong showed that there is a relation that obeys ~* and no
other FDs. We call such a relation an Armstrong relation for ~. Actually, Armstrong
did not explicitly state or prove the existence of what we call an Armstrong relation.
Instead, he proved a result that implies both the completeness of a certain set of
axioms about FDs (see [22]) and the existence of an Armstrong relation.

Let us consider an example. Let Y~ be the set (EMP --, DEPT, DEPT --* MGR) ,
containing two FDs. Then Z* contains the FDs in Z, along with, for example, the
FD EMP ~ MGR. It is easy to verify (by considering all possible FDs involving
only EMP, DEPT, and MGR) that the relation (call it R) in Figure 10 is an
Armstrong relation for Y,, that is, that it obeys every FD in Y,* and no others. At this
point the reader is encouraged to examine relation R in Figure 10 before reading
further.

The striking feature that the reader probably noticed almost immediately is that
(in relation R) Gauss is the manager of two distinct departments (Math and Physics).
Thus R does not obey the FD M G R ~ DEPT. This is as it should be, since R is an
Armstrong relation for {EMP ~ DEPT, DEPT ~ MGR) , while the FD M G R
DEPT is not a logical consequence of these dependencies. We explain in the next
two paragraphs why we asked the reader to discover for himseff that Gauss is the
manager of two departments.

We note an interesting "practical" application for Armstrong relations. Silva and
Melkanoff [50] have developed a database design aid in which the database designer
inputs a set of FDs and MVDs. The design aid then presents him with art Armstrong
relation, that is, a "sample relation" that obeys just those dependencies that are

968 RONALD FAGIN

logical consequences of those that he has inputted. (As we discuss soon, Armstrong
relations exist in the presence of FDs and MVDs, and this is the case in which Silva
and Melkanoff were interested.) Let us say, for example, that the designer gives as
input the set {EMP - , DEPT, DEPT - , MGR} of FDs. The database design aid
would then present the designer with an Armstrong relation, such as relation R in
Figure 10, for this set of dependencies. The designer would then inspect the sample
relation and might observe, for example, "Here's a manager, namely Gauss, who
manages two distinct departments. Therefore, the dependencies that I inputted must
not have implied that no manager can manage two distinct departments. Since I
want this to be a constraint for my database, I'd better input the FD MGR --*
DEPT."

In this example the designer did not have to think explicitly about the dependency
MGR - , DEPT and whether or not it was a consequence of the dependencies that
he input; rather, by seeing the Armstrong relation and thinking about what it said,
he simply noticed that the FD MGR ---, DEPT failed. Thus Silva and Melkanoff's
approach is a partial solution, in the spirit of Query-by-Example [60], to the problem
of helping a designer think of what dependencies should be included.

Unfortunately, it turns out [6] that the time complexity of fmding an Armstrong
relation, given a set of functional dependencies, is precisely exponential in the
number of attributes. That is, there exists an exponential-time algorithm, and
furthermore there is an example in which the time simply to write down the
Armstrong relation is exponential.

In ordinary first-order logic (where arbitrary first-order sentences, and not just our
dependencies, are allowed) there can be no Armstrong relations. For example, let
be the empty set O. Assume that R is a relation that obeys just X* (i.e., just the
tautologies) and no other first-order sentences. Let o be an arbitrary first-order
sentence such that neither o nor n o is a tautology. Clearly, R must obey one of o or
-~o; thus R obeys a nontautology. This is a contradiction. Thus there is a witness for
o (a relation that shows that o is not a tautology) and a witness for -'1o (a relation that
shows that --lo is not a tautology), but there is no global witness (a relation that
simultaneously shows that o is not a tautology and -lo is not a tautology).

It is common to speak of a relation obeying an "accidental" dependency, that is,
a dependency that is not a logical consequence of the collection of "specified"
dependencies. Thus each specified dependency is supposed to hold "for all time,"
that is, for every "snapshot" (instance) of the database, whereas an accidental
dependency is one that happens to hold in some snapshot of the database but may
fail in other snapshots. An Armstrong relation is precisely one that obeys every
specified dependency and no accidental dependency.

Beeri et al. [7] generalized Armstrong's result to allow not just FDs but also MVDs.
That is, they showed that if ~ is a set of FDs and MVDs and X* is the set of all FDs
and MVDs that are logical consequences of X, then there is a relation (an "Armstrong
relation for "~.") that obeys the FDs and MVDs in ~* and no other FDs or MVDs.
The proof was subtly incorrect in that it neglected the case of MVDs (and FDs) for
which the left-hand side is the empty set. Beeri [4] generalized the result to allow
FDs, MVDs, and JDs (join dependencies). His proof was rather long, and his
technique does not generalize to allow embedded MVDs. We generalize to allow
EIDs (which includes all of the above, including embedded MVDs) and even more.

We state our next theorem rather generally, since it has applications in various
fields and not just in database theory. In our general setting we assume that there is
a class of models (which, in our case of immediate interest, is the class of nonempty

Horn Clauses and Database Dependencies 969

relations), a class of sentences, and a relationship HOLDS between these.two classes,
which tells when a given sentence holds for a given model. Thus, if a is a sentence
and R is a model, then HOLDS(o, R) means that o "holds for" R or that R "obeys"
o. We then define ~ and 52* in the natural way. Thus, if 52 is a set o f sentences and
o is a single sentence, then 52 ~ o means that every model that obeys ~ also obeys
o; we say then that o is a logical consequence of 52. We say that a set 52 o f sentences
is consistent i f 52 has a model, that is, if there is a model that simultaneously obeys
every sentence in 52.

TnEOV.EM 3.1. Let ~e be a set of sentences. The following properties of ~ are
equivalent.

(a) Existence of a faithful operator. There is an operator ~ that maps nonempty
families of models into models, such that if o is a sentence in Aa and (Ri:i ~ I) is a
nonemptyfamily of models, then o holds for ~)(R,:i E I) if and only i f o holds for
each R,.

(b) Existence of Armstrong models. Whenever 52 is a consistent subset of Sa and 52*
is the set of sentences in 6ethat are logical consequences of 52, then there is a model
(an "Armstrong model") that obeys 52* and no other sentences in A(.

(c) Splitting of disjunctions. Whenever 52 is a subset of A a and {oi:i E I) is a
nonempty subset of ~,, then 52 ~ ~/ {o~: i ~ I) if and only if there is some i in I such
that 52 ~ o,.

Note. Earlier we made the assumption that whenever we speak of a family
(R,:i E I) , we always mean a nonemptyfamily (i.e., that the index set I is nonempty).
In Theorem 3.1(a) we have made this assumption explicit, since this assumption
needs to be dealt with explicitly in the proof of Theorem 3.1.

In Theorem 3.1(c) above, when we say 52 ~ V{o, : i E I) , we mean that every
model that obeys 52 necessarily obeys some o,; thus we can think of V{oi: i E I} as
a big disjunction. I f the index set I is infinite, then this disjunction is infinite.

We prove Theorem 3.1 at the end of this section. We first make some comments.
Parts (a)-(c) of Theorem 3. l certainly need not hold in general. For example, let

a "model" be a binary relation, and let 6 a be the set of all first-order sentences about
binary relations. We showed earlier that Theorem 3.1 (b) fails, that is, that there can
be no binary relation that obeys precisely the tautologies (about binary relations).
Similarly, we now show directly that (c) fails. Let 52 be 0 , the empty set, and let o be
a sentence such that neither o nor its negation is a tautology. Then 52 ~ (o V "~o), but
52 g= o and 52 g= "-1o. So, (c) fails. Of course, (a) fails also, since (a)-(c) are equivalent.
When 6 a is a set of sentences for which (a)-(c) of Theorem 3.1 hold, then we say that
6eenjoys Armstrong models. (If the models are relations, then of course we may say
that 6Penjoys Armstrong relations.) In Section 5 we present other examples of sets ~9 ~
that do not enjoy Armstrong models.

Remark. In the remainder of this paper, whenever we make statements about
collections of EIDs, we assume that all EIDs mentioned contain the same relation
symbol, with the same arity.

Parts (b) and (c) of Theorem 3.1 deal with consistent subsets 52 of ~. We note that
in our case of primary interest, in which 6 a is the set of EIDs, every subset ~ of 6 e is
consistent, since a one-tuple relation obeys every EID. (We cannot take the empty
relation to show consistency, since our definition of "model" in this case is the class
of nonempty relations.)

970 RONALD FAGIN

Before we can apply Theorem 3.1 to our case of primary interest (where S" is the
set of EIDs and ~ is ®), we must do a little bit of fussing, because of the minor
bother that empty relations have been neglected. I f X is a set of EIDs and o is a
single EID, then by X ~nonempty O, We mean that every nonempty relation that obeys

necessarily obeys o.

LEMMA 3.2. Let I~, be a set of EIDs and o a single El l) . Then ~, ~o,,~,,p~y o if and
only i f X ~ o.

PROOF. Clearly, if Y~ ~ o, then X ~aonempty O. Conversely, assume that X ~nonempty
o, but ~ ~ o. Since ~ g= o, there is a relation R that obeys X but not o. The relation
R must be empty, since by assumption ~ ~nonompty O. Thus the empty relation R
violates the EID o. But EIDs have been defined in such a way that they are true
about empty relations. This is a contradiction. []

COROLLARY 3.3. Let ~, be a set of EIDs, and let ~* be the set of EIDs that are
logical consequences of ~,. Then there is a relation that obeys ~* and no other EIDs,
that is, there is an Armstrong relation for ~.

PROOF. In Theorem 3.1, let ~ be the set of all EIDs (about d-ary relations), let
a "modal" be a nonempty d-ary relation, and let ~ be the direct product ®. Theorem
2.1 says that Theorem 3. l(a) then holds. So, by Theorem 3.1, we know that (b) holds.
That is, we know that there is a relation that obeys precisely those EIDs o such that
~" ~"nonempty O. SO, by Lemma 3.2, there is a relation that obeys precisely those EIDs
o such that ~ ~ o. This was to be shown. []

Note that the Armstrong relation of Corollary 3.3 is not unique. For, it is easy to
verify that the direct product of Armstrong relations for X is also an Armstrong
relation for X. If R has k tuples, then R ® R has k 2 tuples; hence, if R has more than
one tuple, then R ® R is not isomorphic to R (since it has more tuples). So, R and
R ® R are nonisomorphic Armstrong relations for ~. Beer et al. [6] have various
results about the size of minimal Armstrong relations in the presence of FDs.

COROLLARY 3.4. Let ~, be a set of EIDs, and let ol, 02 each be EIDs. Then
~, ~ (ol V 02 V . . .) if and only if there is some i such that ~, ~ o,.

PROOF. It is obvious that i f there is some i such that ~. ~ o,, then ~ ~ (ol V 02
V . ' .) . Conversely, assume that X ~ O1 V o2 V . . -) . All the more so, we know that

~nonempty (O1 V a2 V . . -) . In Theorem 3.1 let o ~° be the set of all EIDs (about d-ary
relations), let a "model" be a nonempty d-ary relation, and let • be the direct product
®. Theorem 2.1 says that Theorem 3.1(a) then holds. So, by Theorem 3.1, we know
that (c) holds. Hence, since X ~ pry (o2 V o2 V . . .) , we know that there is some
i such that ~ ~-nonempty O,. So, by Lemma 3.2, we know that 2 ~ o , This was to be
shown. []

The reason for our interest in "faithfulness with respect to direct product" is not
because of anything inherent about the direct product as such, but rather that the
direct product is an operator ~ that fulfills Theorem 3. l(a) for a natural class ~ o f
sentences. Furthermore, it is nice that the direct product is fairly simple conceptually
and that it is often fairly easy to verify in practice whether or not a given sentence is
faithful with respect to direct product.

Theorem 3.1 might well be useful in a number of contexts. Brooks [11] has noted
an application of Theorem 3.1 in which a "model" is a set of test data about a
computer program and a "sentence" is a characterization of the computations done

Horn Clauses and Database Dependencies 971

by a program. Brooks is interested in obtaining what he calls a "generic model,"
which is a collection of test data with no unneeded relationships. Since his environ-
ment obeys Theorem 3.1(c), it obeys (b) also, which guarantees generic models. A
famous example in logic where Theorem 3. l(b) is well known occurs when the set
5¢of sentences is the set of all equations over a given set of function symbols. Then
the free algebra with countably many generators [30] is an Armstrong model.
Interestingly enough, in this case the operator ~ in Theorem 3.1 (a) again turns out
to be the direct product. Another interesting operator that can sometimes be used to
play the role of ~) in Theorem 3.1(a) is the disjoint union. The disjoint union of a
collection of relations (all with the same attributes) is obtained by first replacing each
relation by an isomorphic copy in such a way that no entry in one relation equals
any entry in any of the other relations; then a new relation is formed by taking the
union of all of the tuples in all of the relations. I f a "sentence" is an FD in which the
left-hand side is nonempty or an MVD in which the left-hand side is nonempty, a
"model" is a relation (with the appropriate attributes), and • is disjoint union, then
Theorem 3.1(a) holds. This, in fact, was the proof technique used by Beeri et al. [7]
to show the existence of Armstrong relations in the presence of FDs and MVDs
(although they neglected to "patch" the proof to deal with FDs and MVDs in which
the left-hand side is empty).

We are now ready to prove Theorem 3.1.

PROOF OF THEOREM 3.1

(a) ==0 (b). Assume Theorem 3.1(a); we shall prove (b). Let Y. be consistent, and
let BAD be the set of all sentences in 5" that are not logical consequences of X. There
are two cases, depending on whether or not BAD is empty.

Case 1. BAD is empty. So, Y.* = ~. By assumption, 52 is consistent, that is,]g has
a model R. Clearly R itself is the desired "Armstrong model," which obeys 52. and
no other sentences in 5Q(since there are no other sentences in 50).

Case 2. BAD is nonempty. For each o in BAD we know (by definition of logical
consequence) that there is a model Ro that obeys Y, but not o. Define R to be
(~(Ro: o E BAD). We now show that R obeys 52* and no other sentence in 5(.

For each sentence ~- in X, we know by construction that every Ro obeys ~'. By
property (a) it follows that R also obeys ,. So, R obeys Y,, and hence X*. Now we
must show that if o is a sentence not in 7~*, then R does not obey o. Now o is a
sentence in BAD. By the definition of Ro we know that Ro does not obey o. By (a) it
follows that R does not obey o. This was to be shown.

(b) ~ (c). Assume Theorem 3.1(b); we shah prove (c). It is obvious that if there
is some i such that X ~ o,, then X ~ V {o, :i ~ I}. Conversely, assume that •
V(o , : i E I) , where I is a nonempty index set. IfY~ is inconsistent, then let i be an
arbitrary member of I. Since 52 is inconsistent, it logically implies everything, and in
particular, Y. ~ o,. So we may assume that Y~ is consistent. Let R be the model
guaranteed by (b) that obeys X* and obeys no other sentence in 5(. Since R obeys
X, and since Ig ~ V {o,: i E I) , it follows that there is some i such that R obeys as. So,
by definition of R, we know that o, is in X*. This was to be shown.

(c) =* (b). Assume Theorem 3.1(c); we shall prove (b). Assume that (b) is false.
Then there is a consistent subset Y. of 5 ~ such that no model that obeys Y. is an
Armstrong model for]g*, that is, such that each model M that obeys 2g also obeys a
sentence om not in]g*. Let I be the set of all models of Y.; by the consistency of 5~, we

972 RONALD FAGIN

know that I is nonempty. By the definition of the sentences oM, we know that Y.
V (o M : M E I}. By (c) we know that for some M, necessarily 52 ~ o~. Thus o~ is in
52". This is a contradiction.

(b) =* (a). Assume Theorem 3.1(b); we shall prove (a). We now de-
fme ~(R,:i E I) , where I is a nonempty index set and each Ri is a model. For
each R, define T, to be the set of all sentences of 6 a that hold for R,. Let Z equal
A{Z:i~/}.

We first show that ~ is consistent. Since I is nonempty, take i in I. Clearly,
Y. C T,. So, since R, obeys T~, R, also obeys 52. Thus ~ is consistent.

We now show that 52 = 5 2 * . The inclusion Y. _ 52* always holds, so we must show
that 52" _ 52. That is, we must show that if ¢ is a sentence of 6 a such that 52 ~ ~-, then
¢ is in 52. Assume that 2] ~ ¢. Fix i in L Now ~ C T,, and 52 ~ ~'. It follows that
T, ~ ¢. Since 7", is the set of all sentences of 6 a obeyed by R~, and since T, ~ ~-, it
follows that R, obeys ~', and so ¢ is in I",. We have shown that if Y~ ~ ~-, then ~- is in
T, for every i in I. Hence ¢ is in 52, which was to be shown.

We have shown that ~ is consistent and 52 = 52*. So, by Theorem 3. l(b) we know
that there is a model R that obeys ~2 and no other sentences in ~. Let us defme
~(R, : i E I) to be R. To prove (a), we must show that i f o is an arbitrary sentence of

then o holds for R if and only if o holds for each R,. Assume first that o holds for
R; we must show that o holds for each R,. Since o holds for R, we know (by definition
of R) that o is in O{T,: i E I}. Thus, for every i we know that o is in 7",. Hence o
holds for R,, which was to be shown. Conversely, assume that o holds for every R,.
Then o is in T, for every i, and so o is in ~ (by definition of ~). So, by defmition of
R, we know that o holds for R. []

We close this section by noting that the existence of Armstrong relations is a
property of collections of sentences and not of single sentences. Thus there can be no
theorem that says something like, "Armstrong relations can only exist in the context
of EIDs." As a dramatic example, let ~- be a totally arbitrary sentence, and let 6 a be
the singleton set {'r}. It is easy to verify that Theorem 3.1(c) then holds. Thus
enjoys Armstrong models (i.e., conditions (a)-(c) of Theorem 3.1 hold).

It is easy to see that if ~ enjoys Armstrong models and 65 C_ 6Pl, then 6e2 also
enjoys Armstrong models. It is an interesting problem to consider classes ~a that
enjoy Armstrong models. Note that the collection of such classes :T is not closed
under finite union. For, we just noted that every singleton set ~e enjoys Armstrong
models. So, if the collection of classes S~that enjoy Armstrong models were closed
under finite union, then every finite set 6 a of sentences would enjoy Armstrong
models. However, in Section 5 we exhibit several finite sets 6e of sentences that do
not enjoy Armstrong models.

4. Finite Armstrong Relations

In the previous section we were not explicitly concerned with whether or not the
relations we were dealing with are finite (i.e., have a finite number of tuples). In
particular, as we noted, our construction of taking a direct product of a possibly
rot'mite collection of relations can lead to an infinite relation, even though every
component of the direct product is a finite relation. In this section we deal specifically
with the existence of finite Armstrong relations.

If52 is a set of sentences about a d-ary relation and o is a single such sentence, then
we say that ~ ~fm o if every finite d-ary relation that obeys 52 also obeys o. It has
been shown [26] that there is a set of four EIDs 52 and a single EID o such that

Horn Clauses and Database Dependencies 973

Z ~ o, but for which Z I~ o. In fact, the EIDs in that example are all TDs (template
dependencies). We also note that Vardi [57] and Gurevich and Lewis [31] have
shown that both the decision problem and the finite decision problem for TDs are
undecidable. That is, they have shown that the problems of deciding whether ~ ~ o
and whether Z ~fm a are each undecidable.

We have the following result, which is the analog of Corollary 3.3, but where we
are only interested infinite relations.

THEOREM 4.1. Let Aebe a finite set o f EIDs. Let Y~ be a subset o f ~, and l e t ~
be those members o of ~O'for which Y. ~:~ o. Then there is a finite relation that obeys
Y ~ and no other member of ~.

PaOOF. The proof is almost the same as that of Corollary 3.3, except that we
restrict our attention to finite relations. The key point is that the direct product of a
fmite number of fmite relations is a finite relation. []

Let 50 be the set of all FDs, MVDs, EMVDs, JDs, and EJDs (embedded join
dependencies) over a given set of attributes. Then S# is a finite set of dependencies.
This is an important special case of Theorem 4.1.

Example 4.2. We now show that Theorem 4.1 would be false if we were to drop
the restriction that A: be t'mite. Let R be a binary relation with attributes A and B, let
a be a member of dom(A), and let b be a member of dom(B). I f t is a tuple (x , y) of
R, we may write t[A] = x and t[B] = y. We say that R has a k-tuplepath from a to
b if there are tuples tl tk of R such that

a = tl[A],
t,[B]=t,+x[B] if i is odd and l___ i<k ,
t,[A] = h+l[A] if i is even and 2 --< i < k,

b = tk[B].

For example, R has a 5-tuple path from a to b if there are elements xl x4 such
that the following five tuples appear in R:

(a, Xl),
(X2, X1),
(x2, x3),
(x,, x3),
(x4, b).

Let ~-, (i -- 1, 3, 5) be the EID that says, "Whenever there is an q + 2)-tuple path
from a to b, then there is an i-tuple path from a to b." For example, ~'3 is

(VabXlX2X3X4)((Paxl A PX2Xl A Px~,x3 A Px4x3 A Px4b)
=* (3yayz)(eaya A Pyzy~ A P.,v,zb)).

Yannakakis [58] introduced the EIDs ~', to show that there are an infinite number of
nonequivalent EIDs. We now make use of these EIDs to show that Theorem 4. I is
false if the assumption that 5ais f'mite is dropped. Let Z be the empty set ~. Assume
that there is a finite Armstrong relation for O, that is, there is a t'mite relation
R that obeys only trivial EIDs. (An EID o is said to be trivial, or tautologous, if

~ o.) Since R is f'mite, it has a finite number k of tuples. But then R clearly obeys
the nontrivial EID ~k. This is a contradiction. []

We note that Fagin et al. [26] have strengthened the result of Example 4.2 by using
only TDs. In particular, they show that there is a set Z of two TDs such that there is

974 RONALD FAGIN

no finite relation that obeys precisely those TDs o for which ~ ~ , o. Also, Vardi
[56] has shown that there is an EID ~- such that the set of EIDs o where 9 ~r,n o is not
recursive. This result implies that there is no finite Armstrong relation for % since we
could test whether or not t" ~ o by simply checking whether or not the t'mite
Armstrong relation obeys o.

We close this section with a few miscellaneous comments about Armstrong
relations. The construction of the previous section can generate an Armstrong relation
that is not only infinite, but even uncountable, since, as we noted earlier, the direct
product of a countably infinite number of relations, each of which has at least two
tuples, contains uncountably many tuples. However, the Lowenheim-Skolem Theo-
rem [20, p. 141] implies that there is then an Armstrong relation with a countable
number of tuples. Of course, in this section we have been interested in Armstrong
relations with a finite number of tuples.

The reader might be concerned that the Armstrong relations we have created have
strange entries, such as (Smith, Jones, Thomas) in the EMP column of the direct
product of three relations. However, one can systematically replace each occurrence
of (Smith, Jones, Thomas) everywhere it occurs by a single unique name, such as
Anderson, with a new unique name for each triple. The new relation is then
isomorphic to the earlier relation, since we have simply renamed the entries. Thus
the new relation is still an Armstrong relation. This renaming would be desirable, for
example, in the application of Silva and Melkanoff [50], described earlier. The alert
reader may have noticed that in this renaming process, we have tacitly assumed that
there are as many distinct names as we want. Consideration of bounded domains
immediately leads to combinatorial problems (see [24] and [34] for examples of such
problems).

We note that Fagin et al. [26] present a necessary and sufficient condition for the
existence of f'mite Armstrong relations in the presence of TDs. Their necessary and
sufficient condition is given in terms of the implication structure of TDs.

Finally, we remark that our direct product construction of an Armstrong relation
is especially valuable when we desire to produce a finite Armstrong relation in the
presence of embedded dependencies. For, in the presence of embedded dependencies,
chase-type procedures for constructing relations tend to produce an infinite relation.
(Grant and Jacobs [29] describe such a chase-type procedure, which they describe in
terms of deductions. For a discussion, see [25].)

5. More Armstrong Relation Counterexamples

In this section we present three amusing counterexamples about Armstrong relations.
In each case we exhibit a set ~ of sentences and single sentences ol and 02, such that

~ (ol V o2), but such that Y. P~ oi and Z P~ o2. Thus, if &"is a set of sentences that
includes ~ and each of ol and 02 (and if a "model" is a relation of the appropriate
arity), then Theorem 3. l(c) fails. In particular, by the proof of Theorem 3.1, it follows
that there is no Armstrong relation for Y. (with respect to sentences Y'). Thus ,9 °does
not enjoy Armstrong relations.

Example 5.1. Let oo be the sentence (which is not an EID) that says that the
relation has at most two tuples. Thus (assuming that we are dealing with binary
relations), the sentence oo is

(Vxlylx2y~ay~)((PXlyl A Px2y2 A Px~y3)
=~ (((Xl = x2) A (y l = y2)) V ((xl = x3) A (y l = y3)) V ((X2 = x3) A (y2 = y3)))).

Horn Clauses and Database Dependencies 975

We note that a0 is equivalent to (the conjunction of) a set of eight sentences, each of
the form

(Vxxylx2y2xay3)((PXlyl A Px2y2 A Px3ya) =* (B1 V B2.V B3)),

where each B, is an equality. Note that these sentences "start out" looking like IDs
(1.4) but have a disjunction of atomic formulas, rather than a single atomic formula,
on the right-hand side of the implication.

Let ~ be {a0}, ol be the FD A ---> B, and 02 be the FD B ---> A. We now show that
~ (01 V 0.2). Let R be a relation obeying ~. Thus R has at most two tuples. We

must show that R obeys either 0.1 or 02. If R has zero or one tuple, then R obeys both
0.1 and 02. So assume that R has exactly two tuples tl and t2. There are two eases,
depending on whether tl[A] ffi tz[A] or tl[A] ~ t2[A]. I f tl[A] = t2[A], then 0.2 holds.
I f tl[A] ~ t2[A], then Ol holds. So, either ol or o2 holds, which was to be shown.

We have shown that ~ ~ (ol V 0.2). However, it is easy to verify that ~ I~ ol and
~ ~ 0.2. []

Example 5.2. Let 01 be the sentence (which is not an EID) that says that the
relation is nonempty. Thus (assuming that we are dealing with binary relations) the
sentence Ol is (3xy)Pxy. Note that 0.1 is of the form (1.7) of an EID, except that
n ffi 0 (i.e., the left-hand side is empty).

Let ~ be O, the empty set, and let oz be the FD A ~ B.
Then ~ ~ (ol V 02); for, if S is a nonempty relation, then it obeys m, and if S is an

empty relation, then it obeys 02. However, Z ~ 0.1 and ~ ~ 0.2. []

Example 5.3. This example is due to Statman [52]. We show that if we deal with
sentences that look like IDs, except that they are not typed, then there is not
necessarily an Armstrong relation.

Let 00, Ol, and o2 be the following three sentences respectively (where the first two
are not typed):

(Vxoyoxlylzly2z~)((Pxoxoyo A Pxlylzl A Pxly2z2) ~=~ (yl = y2)),
(Vxoyo)(Pxoxoyo ~ Pxoxoxo),
(Vxlylzxy2zz)((Pxlylzl A Pxly2z9 ~ (yl ffi y2)).

Let ~ be {0o}. It is easy to verify that ~ ~ ol and ~ ~ o~. However, we now show
that ~ ~ (ol V o2). Assume not. Let R be a relation that obeys a0 but violates 0.1 and
02. Since ol fails, there are a0 and b0 such that Raoaobo holds. Since 0.2 fails, there are
al, bl, cl, b2, and c2 such that RalblCl holds, Ra~b2c2 holds, and ba ~ b2. But then oo
fails, a contradiction. []

6. Projections of Classes of Relations

We assume throughout this section that we are dealing only with fmite relations.
Thus, in this section, whenever we say "relation," we mean "finite relation." We call
the collection of all relations with attributes U that obey a given set of FDs an FD
class. (Ginsburg and Zaiddan [28] define a closely related notion, called a functional
dependency family, which is like an FD class except that they also fix the domains of
the attributes. We do not fix domains, by analogy with the usual definition of such
classes, e.g., elementary classes [20], in logic.) Ginsburg and Zaiddan show that a
projection of an FD class is not necessarily an FD class. Thus, later in this section we
exhibit a set X of FDs that all deal with 5-ary relations with attributes ABCDE,
where the following happens. Let ~ be the class of all 5-ary relations that obey X,

976 RONALD FAGIN

and let g" be the class of all relations that are projections of members of ~ onto
ABCD. Then there is no set E' of FDs such that ~-is precisely the class of all relations
with attributes ABCD that obey E'.

However, we can show that there is a set ~' of EGDs (about 4-ary relations) such
that 9"is precisely the class of all relations that obey E'. (Recall that an EGD, or
equality-generating dependency, is an ID for which the right-hand side is an
equality.) Thus, although 9"is not an FD class, it is an EGD class, that is, 9"is the
collection of all relations that obey a given set ~ ' of EGDs. In fact, the following
theorem holds (we present the proof later in this section).

THEOREM 6.1. Every projection of an EGD class is an EGD class.

Let X, ~ , and 37-be as above. Consider the following natural scenario. In some
application, X is the set of constraints that each instance R (with attributes ABCDE)
must obey, and so ~ is the collection of possible instances that the relation can
assume. Thus the possible instances are precisely those relations that obey the set X
of FDs. Assume that Jones is a user who has a "view" of the database in which he
sees only the first four columns ABCD of the relation R (Jones might, e.g., be shielded
from seeing the E column of the relation, for privacy or security reasons). Thus the
possible instances for his view are precisely the relations in ~. Then the set of
constraints for Jones' view is given not by a set of FDs, but by a set of EGDs.

It follows immediately from Theorem 6.1 that every projection of an FD class is
an EGD class. Ginsburg and Zaiddan [28] define a class of dependencies called
implied dependencies, which are special cases of EGDs and show that every projection
of an FD class is an implied dependency class.

Recall that an FTGD (full tuple-generating dependency) is an ID in which the
right-hand side is a relational formula. We have the following results (which we
prove soon).

THEOREM 6.2. Every projection of an FTGD class is an FTGD class.

THEOREM 6.3. Every projection of an ID class is an ID class.

Thus EGD classes, FTGD classes, and ID classes obey a natural closure property
that FD classes do not. As we saw, by considering FD classes and their projections
one is "forced" into considering more general dependencies, such as IDs. Apparently,
Sadri [45] obtained Theorems 6.1-6.3 independently. We note that Hull [33] showed
that the join of ID classes is an ID class. Thus the collection of ID classes is closed
under projection and join.

Hull [33] has given an example of an FD class with a projection 9"such that 9"is
an ID class given by an infinite set of IDs, but such that :~ris not equivalent to an ID
class given by any lrmite set of IDs. It is an interesting open problem to characterize
those cases where the projection 9-would be given by afinite set of IDs. Another
open problem is whether or not the projection of an EID class is necessarily an EID
class.

Let R be a fixed relation. In the spirit of Ginsburg and Zaiddan [28], we def'me the
FD class generated by R to be the smallest FD class that contains R. It is easy to see
that this class is simply those relations (with attributes the same as those of R) that
obey X, where X is the set of all FDs obeyed by R. A natural question is whether
every FD class has a generator. The answer [28] is yes: if the FD class #~ consists of
all relations with attributes U that obey X, then let R be an Armstrong relation (with
attributes U) for X*; it is easy to see that R is a generator for the class ~ . Similarly,
we can define generators for EID classes and obtain the result that every EID class

Horn Clauses and Database Dependencies

A B C D

0 0 0 0

0 1 1 0

1 1 0 1

FtGtrt~ l I

977

has a generator (by once again taking an Armstrong relation). Thus a natural
interpretation for Armstrong relations is as class generators.

Before we present our promised example of an FD class whose projection is not
an FD class, we prove a simple lemma, which was first shown by Ginsburg and
Zaiddan [28].

LEMMA 6.4. Let ~ be the class of all relations (with attributes U) that obey the set
of FDs (over U). Let V be a subset of U, and let 5-be the class of allprojections onto

V of members o f~ . I f J-is an FD class, then 5ris the class of all relations over V that
obey ~', where ~' is the set of FDs over V that are logical consequences of ~.

Note. See the comments after (1.5) in the introduction.

PROOF. Assume that :~-is an FD class, say, the class of all relations over V that
obey 17. We must show that F is equivalent to Z', that is, that each logically implies
the other.

17 ~ X': Assume not. Then there is a relation T that obeys r but not some o in
~'. By assumption, T is in f , and so there is a relation R in ~ such that T is a
projection of R. Since Tviolates the FD o, and since Tis a projection of R, necessarily
R violates o. But R obeys X (since R is in ~) , and so R obeys Y/(because X ~ Z').
Thus R obeys o. This is a contradiction.

~ ' ~ 17: It is certainly sufficient to show that r _ x ' . Take 1, in r . To show that
-/is in X', we must show (by definition of X') that X ~ -/. Assume thatX I~ 3'. Then
there is a relation R in ~ that violates y. Let T be the projection of R onto V. Then
T violates y. This is a contradiction, since T is in J . []

Example 6.5. We now present our example of an FD class with a projection that
is not an FD class. Let Y. be the set {B ~ E, D ---> E, CE ---> A} of FDs over ABCDE,
and let ~ be the class of all relations over ABCDE that obey ~. Let ~rbe the class of
all projections o f ~ onto ABCD. We now show that :~" is not an FD class. Assume
that it were. Then, by Lemma 6.4, J i s the class of all relations over ABCD that obey
E', where E' is the set of all FDs over ABCD that are logical consequences of X. Note
that X' contains some nontrivial FDs; an example is the FD BC --> A (the FD
BC ---> A is in ~ ' because of the FDs B ~ E and CE---> A in ~). Let T be the relation
in Figure 11. We now show that (i) T obeys E', and (ii) T is not in ~ . This is a
contradiction. []

T obeys ~': We shall show that the relation consisting of each pair of tuples from
T obeys Z'. We begin with the first two tuples of Figure 11. It is easy to verify (by
using, say, the FD membership algorithm of Beeri and Bernstein [5]) that if Y C
{A, B, C, D} and AD ----> Y is an FD in Y/, then AD ---> Y is a trivial FD, that is, that
Y _c (,4, D}. Since the first two tuples in Figure 11 agree precisely on AD, it follows
that the relation consisting of the first two tuples in Figure 11 obeys ~'. Similarly, the
relation consisting of the first and third tuples and the relation consisting of the

978 RONALD FAGIN

second and third tuples obey Y.'. It follows that the whole relation (relation T) of
Figure 11 obeys X'.

T is not theprojection o f any relation in ~: Assume that T were the projection of
a relation R in ~ . Then R would consist of at least three tuples tl, t2, and t3, such that
the projection t l [ABCD] equal the ith tuple in Figure 11 (i -- 1, 2, 3). Because of the
FD D ---> E in ~, it follows that tl[E] = t2[E]. Because of the FD B ---) E in ~, it
follows that t2[E] = ta[E]. Thus tl[E] = t3[E]. But then, because of the FD
CE --> .4, it follows that t~[A] = t3[A]. But this is false.

We have shown that J,, the set of projections onto A B C D of members o f ~ , is not
an FD class. What went wrong here is that every member of J-obeys the E G D T that
says, " I f there are three tuples such that the first and second tuples agree in the
A D columns, the first and third agree in the C column, and the second and third
agree in the B column, then the first and third agree in the ,4 column." Formally,
this EGD is

(Vaobocodoalblcldl)((Paobocodo A PaoblCldo A PalblcodO =* (ao = al)). (6.1)

Then, for every 5-ary relation that obeys ~, its projection onto the first 4 columns
obeys ~-. Relation T in Figure 11 does not obey ~" and so is not the projection of a
member of ~ . This concludes this example. []

PROOF OF THEOm~MS 6.1-6.3. We first prove Theorem 6.3, and then we indicate
how to modify the proof to prove Theorems 6.1 and 6.2. Let ~ be an ID class, say,
the class of all relations (with attributes U) that obey the set ~ of IDs. Let V be a
subset of U, J - the class of all projections onto V of members of ~ , and ~ ' the set of
all IDs (over relations with attributes V) that hold for every member of J.. The proof
is complete if we show that ~ i s the class of all relations (with attributes V) that obey
~', since this would show that J i s an ID class. Certainly, every relation in : -obeys
~' , by the definition of ~'. So, we need only show that each relation that obeys ~ ' is
in ~.. Let T be a relation that obeys ~.'. We must show that T ~ J,, that is, that there
is a relation R (with attributes U) that obeys Z and such that T is the projection of
R onto V. Create a tableau with columns U and with as many rows as there are
tuples in T. Order the tuples of T, let the ith row of the tableau look exactly like the
ith tuple of T (when we restrict our attention to V), and let new, distinct variables
appear in each of the other entries. Thus, if A is an attribute in V, then the A entry
for the ith row of the tableau equals the A entry for the ith tuple of T, and if A is an
attribute not in V, then the A entry for the ith row of the tableau is a new, distinct
variable. Now apply the chase procedure (using ~) to the tableau [8, 37, 46] (actually,
we are doing a slight generalization of the chase, since ~ may be infinite). The
important point is that the chase procedure terminates with a finite tableau, since the
dependencies in ~ are full, and so no new symbols are added during the chase. Let
us treat the final tableau as a relation, which we call R. The chase procedure
guarantees that R obeys ~. Let us denote the projection of R onto V by T'; we must
show that T = T'.

T' _ T: Let t be a tuple of T'. We must show that t is in T. Let us denote the
tuples of T by t~ tk. Since every dependency in ~ is full, it follows easily that
every entry of t is an entry of some t,. Let us denote by a the FTGD (over relations
with attributes V) that tells us that i f t~ , tk are tuples, then so is t (~ is constructed
in a similar manner to how the EGD (6.1) above was constructed). Then a holds for
every relation in ~. Thus a is in ~'. So, T obeys a, and so t is in T. This was to be
shown.

Horn Clauses and Database Dependencies 979

T ___ T': The only way that this could fail would be if the chase procedure were
to force two entries of T that were not originally equal to be equal. It is not hard to
see that this means that ~ ' contains an EGD that tells us that if h tk are tuples,
then, say, t,[A] = b[A]. (As above, t~ tk are of tuples of T.)But then T itself
would have obeyed this EGD (since T obeys ~'). So, the chase procedure cannot
force two entries of T that were not originally equal to be equal.

This concludes the proof of Theorem 6.3. We now indicate how to modify the
proof to prove Theorems 6.1 and 6.2. Let us consider first Theorem 6.1. The proof
is identical to the proof of Theorem 6.3, except in the portion of the proof in which
we show that T' C T. If T' ~ T, then this would be caused by an EGD in ~ that
forced two entries of the tableau to be equal (in the case of Theorem 6.1, ~ contains
only EGDs and no FTGDs). But then there would be a corresponding EGD in Y.',
that forces the same entries to be equal. Finally, the proof of Theorem 6.2 is the same
as the proof of Theorem 6.3, except that the inclusion T _ T' is automatic (because
Y. contains only FTGDs, and no EGDs). []

7. lnterrelational and Nontyped Dependencies

In this section we discuss a generalization of EIDs, in which the assumption that the
sentences are typed and unirelational is weakened. However, faithfulness is main-
tained. Our enlarged class of sentences includes the important inclusion dependencies
[12, 24], which can say, for example, that every manager is an employee. The models
of interest are no longer simply relations, but instead databases, consisting of a
number of relations. It turns out that Armstrong databases need not exist in our new
context, but that something almost as strong takes place.

Since in this section we deal with databases, rather than with single relations, we
need some more conventions.

We assume that we are given a fixed t'mite set of relation symbols (usually called
relation names in practice), and a positive integer, called the arity, associated with
each relation symbol. A database is a mapping that associates a relation (of the
proper arity) with each relation symbol. When it can cause no confusion, we may
speak of the collection of relations themselves as the database. We can write first-
order sentences about databases, just as we earlier wrote first-order sentences about
single relations. For example, assume that PROF and STAFF are among the relation
names. Assume that we wish to write a sentence tr that says that the first column of
the instance of PROF is a subset (not necessarily proper) of the second column of the
instance of STAFF. This sentence might represent the fact that, say, every profes-
sional employee is an employee on the staff. Assume that, say, PROF is binary and
STAFF is ternary. Such a sentence o is

(V ax)(PR OF ax ~ (3yz)ST AFF yaz). (7.1)

An extended embedded implicational dependency (or XEID) is a sentence of the
form

(Vxl . . . xm)((A1 A . . . A An) ~ (3yl . . . yr)(B~ A . . . A B~)), (7.2)

where each A, is a relational formula and each B, is atomic (either a relational
formula or an equality). As in the case of EIDs, we assume also that each of the xSs
appears in at least one of the A,'s, and that n _> l, that is, that there is at least one A,.
So far, everything that we have said holds for both EIDs and XEIDs. For EIDs we
made the further assumption that the sentence is typed and unirelational. For XEIDs

9 8 0 RONALD FAGIN

we make the weaker assumption that the left-hand side A1/~ . . . /~ An is typed and
unirelational. For example, sentence (7.1) is an XEID that is not an EID.

Surely, from a practical point of view, the most important example of an interre-
lational dependency (and of a nontyped dependency) is the inclusion dependency [12,
24], or IND, of which (7.1) is a special case. It says, intuitively, that the entries in the
A column of a relation are a subset of the B entries in the same or another relation.
For example, it might say that every manager is an employee. More generally, an
IND can say that the projection onto a given m columns in one relation is a subset
of the projection onto a given m columns in the same or another relation. If P is
3-ary and Q is 4-ary, then the IND that says that the entries in the first two columns
of P (in that order) are a subset of the entries in the fourth and second columns of Q
(in that order) can be written

(Vabx)(Pabx =* (3yz)Qybza).

We now define direct product and faithfulness for databases.
As in Example 2.7 of Section 2, the direct product is simply def'med relationwise.

Thus, if Q is one of the relation names, then the Q relation of the direct product is
simply the direct product (under our usual definition) of the Q relations of the
components of the direct product.

A database is relationwise nonempty if every relation in the database is nonempty.
We say that a sentence o is upward faithful (with respect to direct products) if
whenever (D,:i E I) is a family of relationwise nonempty databases such that a
holds for every D,, then e holds for ®(D,:i E I). We say that a sentence a is
downward faithful (with respect to direct products) if whenever (D, :i E I) is a family
of relationwise nonempty databases such that a holds for ®(D, :i E 1), then o holds
for every D,. Clearly, a is faithful if and only if it is both upward and downward
faithful.

By a trivial modification to the proof of Theorem 2.6 we can obtain a proof of the
foUowing theorem.

THEOREM 7.1. Let e be a sentence of the form

(VXl **° Xm)(~ ==0 (3 y l " ' ° yr)~),

where ~ is a quantifier-free formula and y is a positive quantifier-free formula. Assume
further that ~, is typed and unirelationaL Then e is downward faithfuL

Note that the only difference between the statements of Theorems 2.6 and 7.1 is
that in Theorem 2.6 we assume that a is typed and unirelational, whereas in Theorem
7.1 we make the weaker assumption that the left-hand side ¢ is typed and unirela-
tional.

THEORESi 7.2. Every XEID is faithfuL

PROOF. By the transformation at the beginning of the proof of Theorem 2.1, we
can transform every XEID into a sentence of the form mentioned in Horn's Theorem
(Theorem 2.4). Thus, by Horn's Theorem, every XEID is upward faithful. By
Theorem 7.1, every XEID is downward faithful. Thus every XEID is faithful, which
was to be shown. []

Note that XEIDs, like EIDs, have the property that they are domain independent.
This means that if two databases have the same tuples in corresponding relations,
but possibly distinct domains of attributes, then the two databases agree on XEIDs.
That is, given an XEID a, either both databases obey o or both disobey o. Also,

Horn Clauses and Database Dependencies 981

XEIDs, like EIDs, have the property that they are automatically true about empty
databases (databases with no tuples).

Let Z be a set of sentences and a a single sentence. We say that o is a logical
consequence (with respect to relationwise nonempty databases) o f ~ if every relationwise
nonempty database that obeys Z also obeys a.

THEOREM 7.3. Let ~ be a set of XEIDs, and let~*r~mpty be the set of XEIDs that
are logical consequences (with respect to relationwise nonempty databases) of ~. Then
there is a database that obeys ~'*o,~mpty and no other XEIDs.

PROOF. In Theorem 3.1, let ~ be the set of all XEIDs, let a "model" be a
relationwise nonempty database, and let • be the direct product ~ . Theorem 7.2 says
that Theorem 3.1(a) then holds. So, by Theorem 3.1, we know that (b) holds. This is
exactly what was to be shown. []

We now show that Theorem 7.3 would be false if we were to substitute "logical
consequence" for "logical consequence (with respect to relationwise nonempty
database)." Thus, Theorem 7.3 shows the existence of "Armstrong-like" databases in
the presence of XEIDs: Armstrong-like, rather than Armstrong, because we are using
"logical consequence (with respect to relationwise nonempty databases)" rather than
simply "logical consequence." Our next example (Example 7.4) shows that although
there is an Armstrong-like database in the presence of XEIDs (Theorem 7.3), there
is not necessarily an Armstrong database.

Example 7.4. Let P and Q refer to unary relations. Let 01 be the XEID
(Vx)(Px ~ Qx), and let o2 be the XEID Vx(Qx ~=~ :lypy). Let ~ be the empty set
O. We now show that ~ ~ (01 V 02). Let D be a database (with P and Q among the
relation names). If the P relation of D is empty, then ol holds for D. If the P relation
of D is nonempty, then o2 holds for D. Thus Z ~ (ol V 02). However, ~ I/= ol and

~ 02. So, there is no Armstrong database for Z, since each daiabase D obeys either
01 or 02, neither of which is in Z*. []

The reason that Theorem 7.3 holds as it stands but fails if we were to substitute
"logical consequence" for "logical consequence (with respect to relationwise non-
empty databases)" is that the analog of Lemma 3.2 fails. Thus, in Example 7.4 the
XEID 02 is not a logical consequence of ~, but it is a logical consequence (with
respect to relationwise nonempty databases) of Z.

However, we now show that if we restrict our attention to XEIDs that are
unirelational, then there are Armstrong databases. Like EIDs, unirelational XEIDs
deal with only one relation; however, unlike EIDs, they need not be typed (only the
left-hand side needs to be typed).

THEOREM 7.5. Let ~ be a set of unirelational XEIDs, and let Y~* be the set of
unirelational XEIDs that are logical consequences of ~. Then there is a database that
obeys ~* and no other unirelational XEIDs.

PROOF. Define ZR to be those XEIDs in 2 that contain the relation symbol R. If
0 is a unirelational XEID that contains the relation symbol R, then it is easy to see
that Z ~ o if and only if ~,~ ~ 0. It follows easily that an Armstrong database for
can be obtained by taking the collection of individual Armstrong relations, one for
each R. We conclude the proof by showing that ~R has an Armstrong relation, that
is, that there is a relation that obeys precisely those unirelational XEIDs involving R
that are logical consequences of ZR. This follows from Theorem 7.2, just as Corollary
3.3 followed from Theorem 2.1. []

982 RONALD FAGIN

Fagin and Vardi [27] show that if we restrict our attention to INDs and FDs, then
there are not necessarily Armstrong databases. However, they show that if we restrict
our attention to INDs and to "standard" FDs (FDs for which the left-hand side is
nonempty), then there are necessarily Armstrong databases.

We say that a database is f i n i t e i f each of its relations is finite. We note that an
analogous theorem to Theorem 4.1 (which deals with the existence of finite Armstrong
relations) holds about the existence of finite Armstrong-like databases. Earlier we
mentioned that an interesting special case of Theorem 4.1 occurs when the only
dependencies of interest are FDs, MVDs, EMVDs, JDs, and EJDs; similarly, an
interesting special case of this analogous theorem occurs when the only dependencies
of interest are those just mentioned, along with INDs involving attributes for the
relations in the database. A similar comment applies, in the case of unirelational
XEIDs, for the existence of finite Armstrong databases. Also, a similar comment
applies for Fagin and Vardi's result [27], mentioned above, about finite Armstrong
databases in the presence of INDs and standard FDs.

We close this section by noting that the class of XEIDs is closed under conjunction.
That is, the conjunction of two XEIDs (and hence, by induction, the conjunction of
any finite number of XEIDs) is equivalent to an XEID. The proof is identical to
Beeri and Vardi's proof [9] that the class of EIDs is closed under conjunction. Thus,
assume that o and o ' are XEIDs; we shall show that the sentence o A o' is equivalent
to an XEID I-. Let o be the XEID

(Vx~ . . . xm)(¢ = , (3y~ . . . y ,) ~) ,

and let e' be the XEID

(Vx ' l . . . x~,)(d?' =* (:ly'l . . . y ' r) ~ ') .

Assume further that no variable appears both in o and in o'. Let ~- be the XEID

(Vxx . . . xmx'~ . . . x~ ,) ((O A ~') =* (3 y l . . . yry'~ . . . y '~,)(~ A ~b')).

We claim that the conjunction e A d is equivalent to ,. It is very easy to see that
(a A o ~) ~ ~-. The proof of the opposite direction (that ~- ~ o and • ~ d) depends in
a rather subtle way on the fact that the left-hand sides ¢ and ~b' are each typed and
unirelational. This proof is an amusing exercise for the curious reader.

8. S u m m a r y

We have introduced implicational and embedded implicational depencencies, in an
attempt to fmd a natural class of"dependencies" for relations in a relational database.
We have shown that these dependencies are all faithful with respect to direct product,
although slight variations are not necessarily faithful. The existence of Armstrong
relations in the presence of these dependencies follows from the faithfulness property.
We have shown, in fact, that the existence of Armstrong relations is equivalent to
faithfulness with respect to s o m e operator. We have shown that it is possible for
infinite Armstrong relations to exist without finite Armstrong relations existing, and
we have given conditions that guarantee the existence of finite Armstrong relations.

We have shown that the projection of an implicational dependency class is again
an implicational dependency class (although the projection of a functional depend-
ency class is not necessarily a functional dependency class).

Finally, we have introduced e x t e n d e d embedded implicational dependencies,
which, unlike ordinary embedded implicational dependencies, may be interrelational
and nontyped. This class includes the inclusion dependency, which says, for example,

Horn Clauses and Database Dependencies 983

that every manager is an employee. We have shown the existence of an Armstrong-
like database in the presence of extended embedded implicational dependencies.

ACKNOWLEDGMENTS. The author is grateful to M. Brooks, S. Ginsburg, S. Givant,
R. Hull, R. McKenzie, H. R. Strong, J. D. Ullman, M. Y. Vardi, and R. L. Vaught
for helpful comments.

REFERENCES

l AHO, A.V., BEERI, C., AND ULt.MAN, J.D. The theory of joins m relational databases. ,4CM Trans.
Database Syst. 4, 3 (Sept. 1979), 297-314.

2. ARMSXRONG, W.W Dependency structures of database relationships. Proc. IFIP 74. North Holland,
Amsterdam, 1974, pp. 580-583.

3. ARMSTRONG, W.W., AND DELOBEL, C. Decompositions and functional dependencies in relations.
ACM Trans. Database Syst 5, 4 (Dec. 1980), 404-430.

4. BEV.RI, C. Personal communication, 1979.
5. B~RI, C, AND BERNSTEIN, P.A. Computational problems related to the design of normal form

relational schemas ACM Trans. Database Syst. 4, I (Mar. 1979), 30-59.
6. BEERI, C., DOWD, M., FAOIN, R., AND STAT~N, R On the structure of Armstrong relations for

functional dependencies. To appear m J. ACM.
7. BEERI, C, FAOIN, R., AND HOWARD, J.H. A complete ax~omatization for functional and multivalued

dependencies in database relaUons. Proc. Int. ACM-SIGMOD Conf. on Management of Data,
Toronto, Ont., Can., 1977, pp. 17-61.

8. BEERI, C., AND VARDI, M.Y. A proof procedure for data dependencies. Tech. Rep., Hebrew Univ.
of Jerusalem, Jerusalem, Israel, Aug. 1980.

9 BEERI, C., AND VARDI, M.Y. Formal systems for tuple and equality-generating dependencies. Tech.
Rep, Hebrew Umv. of Jerusalem, Jerusalem, Israel, Apr. 1981

10. BEERI, C., AND VARDI, M.Y. The unplication problem for data dependencies. In Proc. 8th Int. Conf.
on Autamata, Languages, and Programming, Lecture Notes m Computer Science 115, Springer-Verlag,
New York, 1981, pp. 73-85

11. BROOKS, M. Determining correctness by testing. Ph.D Dissertation, Stanford Univ., Stanford, Calif.,
1980.

12. CASANOVA, M A., FAGIN, R., AND PAPADIMITRIOU, C Inclusion dependencies and their interaction
with functional dependencies. Proc. ist ACM SIGACT-SIGMOD Conf. on Principles of Database
Systems, Los Angeles, Calif., 1982, pp. 171-176.

13. CHANG, C C., AND KEISLER, H.J Model Theory. North Holland, Amsterdam, 1973.
14. CODD, E.F. Further normahzation of the database relational model. In Data Base Systems, Courant

Computer Science Symposia 6, R Rustin, Ed., Prenuce Hall, Englewood Cliffs, NJ. , 1971, pp. 33-64.
15. CODD, E.F. Relational completeness of data base sub-languages. In Data Base Systems, Courant

Computer Science Symposmm, R. Rustm, Ed, Prentice Hall, Englewood Cliffs, N.J. 1971,
pp. 65-98

16. COOPER, E.C. On the expressive power of query languages. Tech. Rep. TR-14-80, Center for
Research in Computing Technology, Harvard Umv., Cambridge, Mass., 1980.

17. DeMoLO~e, R. A syntactical characterization of a subset of definite and safe formulas. Tech. Rep.,
ONERA-CERT, Toulouse, France, Sept. 1981.

18. DEMOLOMBE, R., AND NICOLAS, J.'M. On the characterization of "valid" formulas for database
querying. Tech. Rep., ONERA-CERT, Toulouse, France, Sept. 1981.

19. DI PAOLi, R. The recursive unsolvabllity of the decision problem for the class of definite formulas
J ACM 16, 2 (Apr. 1969), 324-327.

20. ENDERTON, H.B. A Mathematical Introduction to Logic. Academic Press, New York, 1972.
21 FAGIN, R. Multivalued dependencies and a new normal form for relational databases. ACM Trans.

Database Syst 2, 3 (Sept. 1977), 262-278.
22. FAOIN, R. FuncUonal dependencies in a relational database and propositional logic. IBM J. Res.

Devel. 21, 6 (Nov. 1977), 534-544.
23 FAOIN, R. Horn clauses and database dependencies. Proc. 12th Ann. ACM Syrup. on Theory of

Computing, Los Angeles, Calif, 1980, pp. 123-134 (extended abstract)
24 FAGIN, R. A normal form for relational databases that is based on domains and keys. A C M Trans.

Database Syst. 6, 3 (Sept 1981), 387-415
25. FAGIN, R Armstrong databases. Proc. 7th IBM Syrup. on Mathematical Foundations of Computer

Science, Kanagawa, Japan, May 1982.

984 RONALD FAGIN

26. FAGIN, R., MAIER, D., ULLMAN, J.D., AND YANNAKAKIS, M. Tools for template dependencles. To
appear in SlAM J. Comput.

27. FAGIN, R., AND VARDI, M.Y. Armstrong databases for functional and inclusion dependencies. Res.
Rep. R J3500, IBM Research Laboratory, San Jose, Calif., June 1982.

28. GINSaURO, S., AND Z^IDDAN, S.M. Properties of functional-dependency families. J. ACM 29, 3 (July
1982), 678--698.

29. GRAWr, J., AND JACOes, B.E. On the family of generalized dependency constraints. J. ACM 29, 4
(Oct. 1982), 986-997.

30. GR~TZER, G. UniversalAlgebra, 2nd ed. Springer-Vedag, New York, 1979.
31. GuKEvIcx, Y., ^Nr) LEwis, H.R. The inference problem for template dependencies. Proc. 1st ACM

SIGACT-SIGMOD Syrup. on the Principles of Database Systems, Los Angeles, Cahf., 1982,
pp. 221-229.

32. HORN, A. On sentences which are true of direct unions of algebras Jr. Symbolic Log:c 16 (1951),
14--21.

33. HULL, R. Implicauonal dependency and finite specdication. Tech. Rep., Univ. of Southern Califor-
ma, Los Angeles, Calif., 1981.

34. KANvJ.J_xrds, P.C. Onthecomputationalcomplexityofcardinalityconstraintsinrelationaldatabases.
Inf. Proc. Left. II, 2 (Oct. 1980), 98-101.

35. KEtslmR, H.J. Some applications of infinitely long formulas. ,I. Symbolic Logic 30, 3 (Sept. 1965),
339-349.

36. KUH~S, J.L. Answering questions by computer: A logical study. Tech. Rep RM-5428-PR, Rand
Corp., Santa Monica, Calif., Dec. 1967.

37. MAILER, D., MENDELZON, A., AND SAGIV, Y. Testing implications of data dependencies. A CM Trans.
Database Syst. 4, 4 (Dec. 1979), 455--469.

38. M~NDeLZON, A.O., AND MAmR, D. Generalized mutual dependencies and the decomposmon of
database relations. Proc. 5th Int. Conf. on Very Large Data Bases, Rio de Jane~ro, Brazil, 1979,
pp. 75-82.

39. NICOLAS, J.-M. First-order logic formalization for functional, multivalued, and mutual dependencies.
Proc. ACM SIGMOD Int Conf. on Management of Data, Austin, Texas, 1978, pp. 40-46.

40. NICOLAS, $.-M. Logic for improving integrity checking in relational databases. To appear in Acta
inf.

41. PAtADAENS, J. Transitive dependencies in a database scheme. Tech Rep R387, MBLE, Brussels,
Belgium, 1979.

42. PARADAENS J., AND JANSSENS, D. Decomposttions of relations: a comprehensive approach. In
Advances m Data Base Theory, Vol. 1, H. GaUaire, J. Mmker, and J-M. Nicolas, Eds., Plenum
Publishing, New York, 1981.

43. PARK~, D.S., AND PARSAY~-GHo)a], K. Inference involving embedded multtvalued dependencies
and transitive dependencies Proc. Int. ACM-SIGMOD Conf on Management of Data, Los Angeles,
Calif., 1980, pp. 52-57.

44. Riss^t,~N, J. Theory of relations for databases---A tutorial survey. Proc. 7th Syrup. on Mathematical
Foundations of Computer Science, Lecture Notes m Computer Science 64, J. Winkowski, Ed., Springer-
Verlag, New York, pp. 537-551.

45. SADRI, F. Personal communication.
46. SADRI, F, AND ULLMAN, J.D. Template dependencies: A large class of dependencies in relational

databases and its complete axiomatization. ,I. ACM 29, 2 (Apr. 1982), 363-372.
47. S^olV, Y., AND WALECr~, S.F. Subset dependencies and a completeness result for a subclass of

embedded multivalued dependencies. ,I. ACM 29, 1 (Jan. 1982), 103-117.
48. SAGIV, Y., DELOBEL, C., PARKER, D.S. JR., AND FAGIN, R. An equivalence between relational

database dependencies and a fragment of propositional logic. ,I. ACM 28, 3 (July 1981), 435-453.
49. SHOENVlELD, J.R. Mathematical Logic. Addison-Wesley, Reading, Mass., 1967.
50. SILVA, A.M., AND M~LKXNOFF, M.A. A method for helping discover the dependencies of a relation.

In Advances in Data Base Theory, Vol. 1, H. Gallaire, J. Minker, and J.-M. Nicolas, Eds., Plenum
Publishing, New York, 1981.

51. SLAGLe, J.R., AND KONIV~R, D. Finding resolution proofs using duplicate goals m AND/OR trees.
Inf. ScL 4 (1971), 313-342.

52. STATMAN, R. Private commumcation.
53. TARSKI, A. Contributions to the theory of Models I. Neded. Akad. Wetensch. Proc. Ser..4 57 (1954),

572-588 (Indag. Math., vol 16).
54 UI.Ltt~, J.D. Principles of Database Systems. Computer Science Press, Woodland Hills, Calif., 1980.
55. VARDI, M.Y. The decision problem for database dependencies. Inf. Proc. Left. 12, 5 (Oct 1981),

251-254.

Horn Clauses and Database Dependencies 985

56. VA~OI, M.Y. Private commumcaUon
57 VARDI, M.Y. The tmplication and t'mite unplicatlon problems for typed template dependencies.

Proc 1st ACM SIGACT-SIGMOD Conf. on Principles of Database Systems, Los Angeles, Calif,
1982, pp. 230--238.

58. YANNAKArdS, M. Private communication.
59. YANNAr.XrOS, M., AND PAeADIMITRXOU, C. Algebraic dependencies. Proe. 21st IEEE Syrup. on

Foundations of Computer Science, Syracuse, N.Y., 1980, pp. 328-332. To appear m ,/. Comp.
Syst. Sci

60. ZLOOF, M.M. Query-by-example. Proc. 1975 AFIPS NCC, Vol. 44 AFIPS Press, Arlington, Va.,
1975, pp 431--438.

RECEIVED MARCH 1980; REVISED DECEMBER 1980; ACCEPTED JUNE 1981

Journal of the Assocmtton for Computing Machinery, 'Vo| 29,19.o 4, October 1982

