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Abstract. Certain first-order sentences, called "dependencies," about relations in a database are defined 
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1. Introduction 

Certain sentences about relations are of special practical and/or theoretical interest 
for relational databases. For historical reasons, such sentences are usually called 
dependencies. The first dependency introduced and studied was the functional de- 
pendency, or FD, due to Codd [14]. As an example, consider the relation in Figure 1, 
with three columns: EMP (which represents employees), DEPT (which represents 
departments), and MGR (which represents managers). The relation in Figure 1 obeys 
the FD DEPT --, MGR, which is read "DEPT determines MGR." This means that 
whenever two tuples (that is, rows) agree in the DEPT column, then they necessarily 
agree also in the MGR column. The relation in Figure 2 does not obey this FD, 
since, for example, the fast and fourth tuples agree in the DEPT column but not in 
the MGR column. FDs (and some of the other dependencies we discuss) are of 
interest in database normalization. For example, assume that the database obeys the 
FD DEPT - ,  MGR as a constraint (i.e., that it is decreed to be always the case that 
two employees in the same department necessarily have the same manager). Then it 
might be better to store the data not in one relation, as in Figure 1, but rather 
in two relations, as in Figure 3: one relation that relates employees to departments, 
and one relation that relates departments to managers. For more information, 
see [141 or [24]. 

An extended abstract of this paper appeared in the Proceedmgs of the 1980 ACM SIGACT Symposium 
on the Theory of Computing, Los Angeles, Calif. [23]. 
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More generally, Codd defined FDs A1 . - .  An ---> B, where each o f  A 1 , . . . ,  A,~, B 
are names of  columns of a relation. (We assume that no two distinct columns of  the 
same relation have the same name.) This FD holds for a relation R if  every pair of  
tuples of  R that agree in each of  the columns A1 . . . . .  A,, also agree in the B column. 
It is easy to see [39] that FDs can be represented as sentences in first-order logic. 
Assume, for example, that we are dealing with a 4-ary relation, where the first, 
second, third, and fourth columns are called, respectively, A, B, C, and D. Then the 
FD AB --~ C is represented by the sentence 

(Vabclc2dld2)((Pabcldl A Pabc2dO ~ (cl = c2)). (I.1) 

Here (Vabc~c2dld2) is shorthand for VaVbVclVc~VdlVd2; that is, each variable is 
universally quantified. Unlike Nicolas [39], we have used individual variables 
rather than tuple variables. Incidentally, we think of  P in (1.1) as a relation symbol, 
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which should not be confused with an instance (that is, a relation) R, for which (1.1) 
can hold. 

The next dependency to be introduced was the multivalued dependency [21], or 
MVD. For the purposes of this paper it is convenient simply to discuss a single 
example rather than to give the general del~mition. Assume that we are dealing with 
ternary relations, where we refer to the three columns as A, B, and C. The MVD 
A --*--~ B is said to hold for such a relation if the following sentence is true (where 
P plays the role of the ternary relation): 

(Vabx~clc2)((Pablcl A Pab2c2)=* Pabac2. (1.2) 

In relational terminology the above sentence says that the ternary relation is the join 
of its projections onto AB and AC. The projection of a ternary relation R onto AB is 
{(a, b):3cRabc}. The join of Ra and R2, where R1 is a relation whose column names 
are A and B, and where R2 is a relation whose column names are A and C, is 
{(a, b, c):Rl(a, b) and R2(a, c)}. 

Embedded dependencies were introduced [21] as dependencies that hold in a 
projection of a relation (although, as we shall see, they are now defined a little more 
generally). For example, assume that we are dealing with 4-ary relations, where we 
call the four columnsABCD. We say that such a 4-ary relation R obeys the embedded 
MVD (or EMVD) A ---~--* B[C if the projection of R onto ABC obeys the MVD 
A --~--~ B. Thus the EMVD A --*---> B I C can be written 

(Yabab2clc2dld2)((Pablcldl A Pab2c2d2) ~ 3d3Pabxc2d3). (1.3) 

In the last few years a number of generalizations of these dependencies have 
appeared: Nicolas' mutual dependencies [39], which say that a relation is the join of 
three of its projections; Mendelzon and Maier's generalized mutual dependencies 
[38]; Rissanen's [44] and Aho et al.'s [1] join dependencies, which generalize further 
to an arbitrary number of projections; Paradaens" transitive dependencies [41], which 
generalize both FDs and MVDs; Ginsburg and Zaiddan's implied dependencies [28], 
which generalize FDs; Sagiv and Walecka's subset dependencies [47], which generalize 
embedded MVDs; Sadri and Ullman's template dependencies [46], which generalize 
embedded join dependencies; and Parker and Parsaye-Ghomi's generalized transitive 
dependencies [43], which generalize transitive dependencies. We remark that the last 
three kinds of dependencies mentioned were introduced to deal with the issue of a 
complete axiomatization: subset dependencies were introduced to show the dif- 
ficulty of completely axiomatizing embedded multivalued dependencies, while 
template dependencies and generalized transitive dependencies were introduced to 
provide a class of dependencies that include join dependencies and can be completely 
axiomatized. 

The purpose of this paper is to help bring order to the chaos by presenting certain 
mathematical properties shared by all of these dependencies. The "right" definition 
of "dependency" might be those sentences that have certain properties (including, 
possibly, "faithfulness" and "domain independence," which are among the concepts 
discussed in this paper, and possibly also including the property that these sentences 
are true about empty relations). Each dependency of one of the types listed above is 
equivalent to a i'mite set of our implicational (or embedded implicational) depend- 
encies, which we define soon. We note that Yannakakis and Papadimitriou [59] have, 
independently of the author, dei'med "algebraic dependencies," which, on the surface, 
look very different from our embedded implicational dependencies. Somewhat 
surprisingly, the class of algebraic dependencies and the class of embedded implica- 
tional dependencies tum out to be identical [59]. This is evidence for the naturalness 
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of  the class. Yannakakis and Papadimitriou present a complete axiomatization. Beeri 
and Vardi [10] have defined tuple-generating dependencies and equality-generating 
dependencies, which, when they are restricted to be typed, together comprise our 
embedded implicational dependencies. (Beeri and Vardi have defined both typed 
and untyped versions; the typed version they call many-sorted.) Paradaens and 
Janssens [42] have defined general dependencies, which are implicational (but not 
embedded implicational) dependencies. Also, Grant and Jacobs [29] have defined 
generalized dependency constraints, which are untyped and interrelational versions of  
our implicational dependencies. 

We begin with a few preliminary concepts. Let P be a relation symbol that 
represents the relation of  interest. (When we deal with interrelational constraints, 
which we shall do later, then we shall, of course, need several relation symbols. For 
now we assume that we are dealing with only a single relation at a time.) We assume 
that we are given a set of  individual variables (which represent entries in a relation). 
Assume that P represents a d-ary relation. Then the atomic formulas are those that 
are either of  the form Pz~ . . .  zd (where the z,'s are individual variables) or else of  
the form x = y (where x and y are individual variables). We call atomic formulas 
Pza . . .  Zd relational formulas, and atomic formulas x = y equalities. A negation- 
atomic formula is the negation of  an atomic formula. 

Formulas (which can involve Boolean connectives and quantifiers) and sentences 
(formulas with no free variables) are defined as usual (see any standard textbook in 
logic, e.g., [20] or [49].) We sometimes abbreviate Yxl . . .  Vxn~, where each x, 
is universally quantified, by (Vxa . . .  x~)4,. Similarly, we sometimes abbreviate 
3yl . . .  3yrCk, where each y~ is existentially quantified, by (3yl - . -  yr)~. 

A formula is said to be typed if there are d disjoint classes, or types, of  variables 
(where d is the arity, or degree, of relation symbol P and we say that a variable in the 
ith class is of type i), such that (a) if the relational formula Pzl . . .  Zd appears in the 
formula, then zt is of type i (1 _ i _< d), and (b) if the equality x = y appears in the 
formula, then x and y have the same type. 

In a typed formula no individual variable can represent an entry in two distinct 
columns. Thus, if Pxy appears in a typed formula (where x and y are individual 
variables), then Pzx cannot also appear, since if it did, then x would represent an 
entry in both the first and second colunms. 

An implicational dependency (or ID), is a typed sentence of  the form 

(Vxx . . .  Xm)((A1 A . . .  A An) =~ B), (1.4) 

where each At is a relational formula, B is atomic (either a relational formula or an 
equality), and each of  the individual variables xx . . . .  , Xm that appear in at least one 
of A~ . . . . .  An or B is universally quantified. We assume also that each variable (each 
of  the xj's) appears in at least one of  the A,'s. In particular, n _~ 1, that is, there is at 
least one At. We also make similar assumptions when we define embedded implica- 
tional dependencies, so that, in particular, each implicational and embedded impli- 
cational dependency automatically holds for an "empty" relation with no tuples. 
Furthermore, our assumptions guarantee that we can tell if an implicational (or 
embedded implicational) dependency holds for a relation by simply considering the 
collection of  tuples of  the relation and ignoring the underlying "domains" (defined 
later) of attributes. We call this latter property domain independence. It is possible to 
define domain independence not only for sentences, but also for formulas. This class 
of  domain-independent formulas is equivalent to Kuhns'  [36] class of  definite 
formulas. Unfortunately, the class of  domain-independent formulas (and of  domain- 
independent sentences) is not re.cursive [19, 55]. For this reason, various authors have 
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defined syntactically defined subclasses of  domain-independent formulas. These 
include Codd's range-separable formulas [15], Nicolas' range-restricted formulas 
[40], Cooper's permissible formulas [16], UUman's safe formulas [54], and Demo- 
lombe's evaluable formulas [17]. Since each of  these classes is syntactically defined, 
each is recursive, unlike the full class of  domain-independent formulas. Each of  these 
classes is a proper subset of  the class of  domain-independent formulas, since each of  
these classes is recursive, while the class of  all domain-independent formulas is not. 
Demolombe and Nicolas [18] show that each of  Ullman's safe formulas is a domain- 
independent formula, and, conversely, that for each domain-independent formula 
there is an equivalent safe formula. 

In line with dependency tradition, we may refer to IDs as full dependencies and 
EIDs that are not IDs as strictly embedded (or strictly partial) dependencies. There 
are two kinds of IDs, depending on whether the right-hand side of  the implication is 
a relational formula or an equality. IDs in which the right-hand side is a relational 
formula are precisely the full template dependencies of  Sadri and Ollman [46], and 
the full tuple-generating dependencies of Beeri and Vardi [10]. We may refer to these 
full tuple-generating dependencies as full TGDs, or FTGDs. IDs in which the right- 
hand side is an equality are Beeri and Vardi's equality-generating dependencies, or 
EGDs [10]. (In a preliminary version [23] of  this paper we called EGDs extended 
functional dependencies, or XFDs). 

Note that the FD (1.1) and the MVD (1.2) are each an ID (where the FD is an 
EGD and the MVD is an FTGD). We note that there is a possible confusion in 
treating an FD both in the usual manner (as a sentence written in the form AB --> C) 
and also as a sentence written in the form (1.1). For example, the FD AB ---> C, when 
referring to a 4-ary relation, is written as in (1.1), whereas the FD AB ---> C, when 
referring to a 3-ary relation, is written as 

(Vabclc2)((Pabcl A Pabc2) =* (ca -- c2)). (1.5) 

If  we speak about an FD as being written in the usual AB ---> C notation, then we can 
speak (as we sham in Section 6) about the same FD AB --* C holding in a relation 
and its projection, whereas this would not make sense if  we think in the latter terms 
(since (1.1) and (1.5) are certainly not the same syntactically). In the usual AB---> C 
notation, the role of  attributes is emphasized and the arity of  the relations is not, 
whereas in the notation of  (1.1), the reverse is true. We hope that this double manner 
of  thinking about FDs does not cause confusion. 

Following Slagle and Koniver [51], let us cam an unquantified formula of  the form 

( ( a ,  A . . .  A a , )  =* B), 0 . 6 )  

where n _> 1 (i.e., where there is at least one A,), an implication. A Horn clause [32] 
is the disjunction of atomic and negation-atomic formulas, where at most one is 
atomic. The implication (1.6) is equivalent to the Horn clause 

('~AI V " "  V ~A.  V B), 

which has exactly one atomic formula and at least one negation-atomic formula. 
An embedded implicational dependency (or ELL)) is a typed sentence of  the form 

(Vx~ . . .  x,,)((a~ A . . .  A A , )  ~ (3y~ - - -  y , ) (B~ A . . .  A Bs)), (1.7) 

where each Ai is a relational formula and each B, is atomic (either a relational 
formula or an equality). We assume also that each of  the xj's appears in at least one 
of  the A,'s and that n _> 1, that is, that there is at least one A,. We assume that r _> 0 
(if r = 0, then there are no existential quantifiers) and that s >_ 1 0.e., there must be 
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at least one B,). Because of all these assumptions, each EID is obeyed by an empty 
relation with no tuples. Note that each ID is an EID (in which there are no existential 
quantifiers). 

Remark. We could modify our definition of  IDs so that, like EIDs, they can have 
more than one atomic formula on the right-hand side of the implication. That is, by 
analogy with (1.7) we could allow IDs to be of form 

(Vx, . . .  xm)((A, A . . .  A An) ~ (B, A . . .  A Bs)). (1.8) 

However, we do not do so, since (1.8) is equivalent to the set o f s  IDs 

O / x ,  . - .  x , , , ) ( (a ,  A . . .  A A, , )  ~ B,)  

for i -- 1 , . . . ,  s, and we are interested in what can be said with sets of  delmndencies, 
not just with single dependencies. The analogous equivalence does not hold for 
EIDs (1.7). 

There are many open questions about embedded dependencies. For example, it is 
not even known whether the decision problem for EMVDs is decidable, that is, 
whether, given a set ~ of  EMVDs and a single EMVD o, it is the case that ~ logically 
implies o [46]. (However, we note that Vardi [57] and Gurevich and Lewis [31] have 
proven the undecidability of the decision problem for the more general class of  
template dependencies.) The existence of  an Armstrong relation in the presence of  
EMVDs (which we shall prove) is itself a new result, for which the old proof 
techniques seem to be inadequate. 

Sadri and Ullman's template dependency (or TD) is a special case of  an EID in 
which there is only one atomic formula on the right-hand side of  the implication and 
in which this atomic formula is a relational formula (i.e., s -- 1 in (1.7), and also B, 
in (1.7) is a relational formula). We note that Fagin et al. [26] develop a number of  
techniques, counterexamples, and results about TDs. 

In Section 2 we introduce the concept of  "faithfulness" (with respect to direct 
product) and show that IDs and EIDs are faithful, whereas slight variations are not 
necessarily faithful. In Section 3 we discuss "Armstrong relations," which were 
known to exist in certain special cases (such as when the only sentences of  interest 
were functional, multivalued, and join dependencies). We show that Armstrong 
relations exist even in the presence of  EIDs. This is perhaps the most interesting 
result technically in this paper. In Section 4 we discuss finite Armstrong relations. 
An existence theorem and a counterexample to an extension of  the theorem are 
presented. In Section 5 we present some more counterexamples about the existence 
of  Armstrong relations. In Section 6 we discuss projections of  classes of  relations. 
Although Ginsburg and Zaiddan [28] showed that projections of  FD classes are not 
necessarily FD classes, it turns out that projections of  FD classes (and, even more, of  
ID classes) are ID classes. In Section 7 we discuss certain extensions of  our results 
(that, in particular, allow some interrelational and nontyped dependencies). 

2. Faithfulness with Respect to Direct Product 

In this section we define the direct product operator, and we introduce a concept of  
faithfulness (with respect to direct product). A sentence is faithful when it holds for 
each member of  a nonempty family of  nonempty relations if  and only if  it holds for 
their direct product. We show that our class of  EIDs (embedded implicational 
dependencies) is faithful. Furthermore, we show that under slight modifications of  
our definition of  EID, we can obtain a sentence that is not faithful. 

Let U be a finite set of distinct symbols, called attributes (or column names). A 
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FIGURE 4 
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domain mapping is a mapping that associates to each attribute A in U a set dom(A), 
called the domain of A. In the spirit of  Armstrong [2] and of  Aho et al. [1], we define 
a tuple to be a function that maps each attribute A into a member of  dom(A). We call 
the value associated with the attribute A the A entry of  the tuple. I f  the attributes are, 
say, A, B, and C, then for notational convenience we sometimes write (a, b, c) to 
represent the tuple, where the A entry is a, etc. A d-ary relation is a domain mapping 
(over d attributes), along with a set of  tuples (involving the same attributes). We say 
that the arity of  the relation is d. This detrmition of  a relation, which is slightly 
different from the usual definition in that it explicitly considers the role of  domains, 
is usually necessary in the presence of quantifiers. Thus, to decide whether a sentence 
holds for a given relation, the domains tell us over what set of  x's a "Vx" ranges. For 
example, the first relation in Figure 4 obeys the sentence VxPx, and the second does 
not, even though both relations have the same set o f  tuples. EIDs have been defined 
in such a way that it is possible to determine whether they hold for a given relation 
by considering only the tuples, and not the underlying domains (this property we 
have called domain independence). 

Our definition of "relation" is in the spirit of  Tarski's definition [53] of  "model," 
in that domains are explictly considered. Our definition is analogous to considering 
a graph as a set of  nodes, along with a set of  edges, whereas the usual definition (of 
a relation as simply a set of  tuples) is analogous to considering a graph as simply a 
set of edges. 

We say that a relation is empty if  its set of  tuples is the empty set. This is not the 
same as saying that one or more of  the domains is empty. In fact, it is traditional to 
require that none of  the domains be empty in any relation, including an empty 
relation. 

Let (R, :i ~ I)  be a (finite or infinite) family of  relations, each with the same set 
U of  attributes. (Note: Throughout this paper we assume for convenience that 
whenever we speak of  a family (R,: i  E I) ,  we always mean a nonempty family, 
i.e., we assume that the index set I is nonempty.) We now detrme the direct product 
®(R, :i E I) .  The direct product has the same set U of  attributes as does each of  the 
R,'s. In particular, the direct product maps a family of  d-ary relations into a d-ary 
relation (with the same arity d as each of  the R,'s). For notational convenience let us 
assume that U contains precisely three attributes ABC. (It is obvious how to generalize 
the definition from this special case.) Let us denote the domain dom(A) in R, by D,, 
for each i. Note that we make no restrictions on these domains, such as that the A 
domains of  distinct relations be the same or distinct, or that the domains be finite or 
infinite. The domain dora(A) in the direct product is delrmed to be the Cartesian 
product × (D, :i E I) .  A similar statement holds for dora(B) and dom(C). The tuple 
((a, : i  E I), (bi:i E I), (c,:i  E I))  is a tuple of  the direct product if and only if  
(a,, bi, c,) is a tuple of R,, for every i. For example, the direct product of  the first two 
relations in Figure 5 is the third relation in Figure 5. It is sometimes convenient to 
refer to R, as the ith component of ®(Ri:i E I) and to a, as the ith component of 
(a , : iEl) .  
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dora {A) = {(a I ,a2>,(a I ,a~>,(a~ I,a2),(a' 1,a~)} 
dom (B) = {(b 1,b2),(b 1,b~t) } 
dora (C) = {(C I.c2).(C~,c2) } 

We have made no restrictions in our defmitions as to whether a relation must be 
finite (i.e., have a finite number of  tuples) or may be infinite. In particular, it is easy 
to see that the direct product of  an infinite family of  relations, each o f  which contains - 
at least two tuples, is not only infinite but even uncountable. At various points in this 
paper we explicitly focus our attention onfinite relations. 

We sometimes write ®(Rt,  R~) as RI ® R2; similarly, we may write ®(Rt  . . . . .  Rt) 
as R1 ® . . .  ®Rz. 

We clef'me a database (which is, intuitively, a labeled collection o f  relations) in 
Section 7. We also clef'me the direct product of  databases, which is simply the direct 
product taken relationwise. Until Section 7 we mainly discuss single relations, rather 
than databases. 

Let o be a sentence of  first-order logic. For  now we assume, in order to simplify 
our clef'tuitions, that o is unirelational (not interrelational), that is, that it is a sentence 
about a relation and not about a multirelation database. We say that e is faithful 
(with respect to direct products) if  whenever (R, :i ~ I )  is a family o f  nonempty 
relations, then o holds for ®(R,:  i ~ I )  ff and only if o holds for every R,. 

The main theorem of  this section is as follows. 

THEOarM 2.1. Every EID (and thus every ID) is faithful. 

Before we prove Theorem 2.1 it is helpful to introduce some more concepts, to 
give a few examples, and to state some other results. 

We say that a sentence o is upward faithful (with respect to direct products) if 
whenever (R,: i ~ I )  is a family of  nonempty relations such that o holds for every R,, 
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then o holds for ®(R,:i  ~ I). We say that a sentence o is downward faithful (with 
respect to direct products) if whenever (R, :i ~ I) is a family of  nonempty relations 
such that o holds for ®(R~:i E I), then a holds for every R~. Clearly, a is faithful if 
and only if it is both upward and downward faithful. We remark that it is not 
necessary to assume that the components R, are nonempty in the definition of upward 
faithful, but the assumption is important to us in the downward faithful case. We 
return to this point at the end of this section. 

Example 2.2. The "degenerate MVD" [3, 48], 

(Vxyly2zlz2)((exylzl A exy2z2) =~ ((yl = yz) V (zl -- z2))) (2. I) 

is not upward faithful (although it is downward faithful, by Theorem 2.5 below). 
Thus, relations R1 and R2 in Figure 5 (where bl # b ~, etc.) both obey this sentence, 
but the direct product RI ® R2 does not (as we see by looking at the first and fourth 
tuples in the direct product). This sentence differs from an ID in that the right-hand 
side of the implication is not an atomic formula, but the disjunction of atomic 
formulas. [] 

This example brings up a few comments about the role of domains. In Figure 5 we 
have noted the domains of each of the attributes, although for this sentence (and, in 
addition, for all EIDs) it is possible to determine the truth of the sentence for a 
particular relation by considering only the tuples in the relation and ignoring the 
underlying domains. The domains are explicitly noted because we make use of  this 
example later in a context where the role of  the domains will be important (it is 
important in our later example that only one of the two possible A values appears in 
relation R0. 

We also note that for convenience we have allowed some of the domains (such as 
dora(B) in R 0 to contain only one element. One-element domains are sometimes 
considered undesirable (see [24]); however, in none of our examples with one-element 
domains is this feature in any way essential; it is simply convenient. 

Example 2.3. The sentence 

(Vxyz)((Pxy A eyz) =~ exz) 

is not downward faithful (although it is upward faithful, by Theorem 2.4 below). 
Thus R~ ® R2 in Figure 6 obeys this sentence, although R~ does not. This sentence 
says that the relation is transitive. It differs from an ID in that it is not typed. [] 

In this example we have not bothered to note explicitly the underlying domains, 
since in this case the domains are not needed to determine truth or falsity of the 
given sentence for the given relations. 

Horn's motivation [32] for introducing Horn clauses is the following theorem. 
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THEOREM 2.4 [32; 49, pp. 94-95]. Let  o be a sentence o f  the f o r m  

Qlx l  . . .  Qmxm(M~ /x . . .  A Ms), 

where each Q, is a quantifier (V or 3)  and each M,  is a Horn clause. Then o is upward 

faithful. 

Theorem 2.4 does not require that o be typed or that it not be interrelational. We 
make use of this fact in Section 7. 

As we shall see, every EID is equivalent to a sentence of the kind mentioned in 
Theorem 2.4; thus it follows from Theorem 2.4 that if o is an EID, then a is upward 
faithful, which proves part of  Theorem 2.1. As we shall see, it is not true that if  o is 
as in Theorem 2.4, then o is necessarily downward faithful. 

After giving a few definitions, we state two theorems that give sufficient conditions 
for a sentence to be downward faithful. We present the proofs of these theorems later 
in this section. 

The class of quantifier-free formulas  is defined as usual (see [20] or [49]). The class 
o f  positive quantifier-free formulas  is the smallest class such that (a) it contains all 
atomic formulas, and (b) if  it contains ~1 and ~2, then it also contains ~1 A ~ and 
@ I V ~ .  

THEOREM 2.5. Let  o be a universal sentence, that is, a sentence of the f o r m  
(Vxl  . . .  xm)¢, where d# is a quantifier-free formula .  Assume  fur ther  that e is typed and 
unirelational. Then e is downward faithful. 

THEOREM 2.6. Let  e be a sentence o f  the f o r m  

(VXl . . .  xm)(~, ~ ( ~ y l  . . .  y~)O,  

where ¢ is a quantifier-free formula  and T is a positive quantifier-free formula .  Assume  
fur ther  that a is typed and unirelational. Then e is downward faithful.  

Remark.  In the theorem, instead of  assuming that o is typed and unirelational, it 
is possible to make the weaker assumption that the left-hand side ¢ is typed and 
unirelational. We come back to this point in Section 7. 

We now show that Theorem 2.1 follows from Theorems 2.4-2.6. 

PROOF OF THEOREM 2.1. We must show that each EID is faithful. We first show 
that they are upward faithful. 

Let o be 

O~Xl ' ' .  xm)((A1 A . . .  A An) ==~ (3yl - . -  yr)(Bl  A - . .  A B,)), (2.2) 

where each A,  and B, is atomic. Then o is equivalent to the sentence 

(Vx ,  . . .  xm)(ay~ . . .  yr)((Ax A . . .  A A , )  =* (Bt A . . .  A S,)),  (2.3) 

Sentence (2.3) is equivalent to the sentence 

(Vxa . . .  x,,,)(=:lya . . .  y,.)(M, A . . .  A Ms), (2.4) 

where M ,  is 

A 1 A  . . . A A ,  ~ B, 

for each i. Thus, by Theorem 2.4, we know that o is upward faithful. 
So, EIDs are upward faithful. Also, each EID is a aentence of the kind described 

in Theorem 2.6, so each EID is downward faithful. Thus EIDs are faithful, which 
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was to be shown. We note that the fact that IDs are downward faithful follows from 
either Theorem 2.5 or Theorem 2.6. [] 

Yannakakis and Papadimitriou [59] give an elegant proof of Theorem 2.1, by first 
showing that embedded implicational dependencies are equivalent to their algebraic 
dependencies (which are built out of projections and joins), and then showing that 
the direct product commutes with projections and joins. For details, see [59]. 

In Examples 2.2 and 2.3 we demonstrated some sentences that are only "slightly 
different" from implicational dependencies but that are not faithful. We now give 
some more examples. 

Example 2.7. The sentence 

(Vxyly2)((exyl A Qxy2) ==~ (yl = )'2)) 

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus the 
first database of Figure 7 (containing R1 and $1) violates this sentence, although the 
direct product database (at the bottom of Figure 7) obeys it. As in Example 2.3, we 
have not bothered to note explicitly the underlying domains, since in this case the 
domains are not needed to determine truth or falsity of the given sentence for the 
given databases. This sentence differs from an ID in that it is "interrelationaI." 
(Technically, we have not yet defined the direct product when each member of the 
direct product is a "database" consisting of several relations. We simply take direct 
products relationwise.) I-1 

Example 2.8. The sentence 

(Vyly2):lx((Pxyl A Pxy'2) =* (yl = .p2)) 

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus, 
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dom (A) = {al,a~} 
dom (e) = {bl,b~l} 

dom (A) : { (a I ,a2),(a 1,a~), 

dora (B) = {(b 1,b2),(b ~,b~)} 

consider the relations in Figure 8. In this case it is important for us to consider 
explicitly the domains of the attributes. In Figure 8, relation R1 does not obey the 
sentence, whereas the direct product R1 ® R2 does. (The reason that the direct 
product does is, intuitively, that when yl is (b~, b2) and y~ is (bl, b2), then we can 
take x to be (a~, a[), which is in dora(A) in the direct product, although it does not 
appear in the A column of R1 ® R2.) This sentence differs from an ID in that it is not 
universally quantified but instead is a "v=r' sentence. Note, incidentally, that EIDs 
(1.7) are special V3 sentences that are faithful. [] 

Example 2.9. The sentence 

3x(Vyly2)((PXyl A Pxy2) ~ (y~ = y2)) 

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus 
relation R1 in Figure 8 does not obey this sentence, although the direct product 
R1 ® R2 does (where, intuitively, x is taken to be (al, a~)). This sentence differs from 
an ID in that it is not universally quantified but instead is a "3V" sentence. [] 

Example 2.10. What about existential sentences? Let us first consider sentences 

(3x  . . .  Xm)((A  A . . .  A A,,) B ) ,  

which are just like IDs except that the variables are existentially rather than 
universally quantified. It is not hard to see that these sentences are all tautologies 
and so, of course, are faithful. However, there are existential sentences that are not 
faithful. For example, the sentence 

(:lxlx2x3) ~exlx2x3 (2.5) 

is not downward faithful (although it is upward faithful, by Theorem 2.4). Thus 
relation R1 in Figure 9 violates this sentence, although the direct product R1 ® R2 
obeys it. [] 

Example 2.11. As our final counterexample we exhibit a sentence that is neither 
upward nor downward faithful. Our sentence is taken to be the conjunction of the 
sentence (2.1) in Example 2.2 and the sentence (2.5) in Example 2.10. This new 
sentence is not upward faithful, since the relations R~ and R2 in Figure 5 both obey 
it, whereas their direct product does not. The sentence is not downward faithful, 
since the relation R~ in Figure 9 does not obey it, whereas the direct product R1 ® R2 
in Figure 9 does. 17 
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Before we prove Theorems 2.5 and 2.6, we establish a few conventions. I f  p is a 
member of  t h e j t h  domain of  a relation R and x is a variable of  type j ,  then we say 
that p is substitutable for x (with respect to R). If  ~ is a quantifier-free formula and 
z], . . . ,  zk is a fixed ordering of  a collection of  variables, where the set of  variables 
appearing in ~ is a subset (possibly proper) of  {z] . . . . .  zk}, then it is sometimes 
convenient for us to write ~ as ~(z] . . . . .  zk). Further, f i r ]  . . . . .  rk are elements, where 
r, is substitutable for z, for each i, then we may write ~(r] . . . . .  rk) to mean the result 
of  substituting r, for z,, for each i. 

PROOF OF THEOREM 2.5. Let o be the universal sentence (Vxl . . .  xm)¢, where 
is a quantifier-free formula. Assume further that o is typed and unirelational. We 

now show that o is downward faithful. Assume that o holds for ® ( R , : i  ~ I ) ,  where 
each R, is nonempty. We must show that a holds for each R,. Assume not; by 
relabeling, ff necessary, assume that RI is an R, for which o fails. Thus there are 
ql . . . . .  qm such that -wp(ql . . . .  , qm) holds for R1. Let us denote ® ( R , : i  ~ I )  by R. 

By assumption, each R, is nonempty. Let us select a tuple ti from R, for each i 
except i ffi 1. Let t i j  be t h e j t h  member of  the tuple t,; thus t, equals (t,,1 . . . . .  t,,d), 
where d is the arity of  each of  the R{s. Let q~ . . . . .  qm be as above. We now def'me 
new points Q] . . . . .  Qm, each of  which is in some domain o f  R. Assume that x,, the 
variable in o that corresponds to q,, is of  type/7. Define Q, by letting its k th  
component be q,, i f k  = 1, and tk,p otherwise. So, Q, is a member o f t h e p t h  domain 
of  the direct product. We now show, by induction on the structure of  quantifier-free 
formulas, that for every quantifier-free formula ~(x~, . . . ,  xm), 

~(Q~ . . . . .  Qm) holds for R iff ~(q]  . . . . .  qm) holds for R~. (2.6) 

We first show (2.6) in the case where ~ is atomic. 

Case 1. ~ is an equality x -- y. Since the only variables that can appear in ~ are 
x l  . . . . .  Xm, let us assume that ~ is the formula x, = xj. To  show (2.6), we must show 
that 

Q, = Qj holds for R iff  q, = qj holds for R]. (2.7) 

Now x, and xj are of  the same type; let us say that they are of  type p. I f  k # 1, then 
the k th  components of  Q~ and of  Qj are the same, namely tk,~,. Hence Q, and Q: are 
the same if  and only if their first components (the k th  component  for k = 1) are the 
same. But the first component of  Q, is q ,  and the first component  of  Qj is qj. Thus 
(2.7) holds. 
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Case 2. ~ is a relational formula Pz~ . . .  Zd. Since the only variables that can 
appear in ~ are x~ . . . . .  Xm, let US assume that ~ is the formula Px,,  . . .  x~ .  To show 
(2.6), we must show that 

(Q,, . . . . .  Q,d) is a tuple of  R iff (q,~ . . . . .  q'd) is a tuple of  Rx. (2.8) 

Now x,o is of  type p, and so the kth component of  Q,~ is q,~, i f k  ffi 1, and tk.o 
otherwise. By definition of  the direct product, (Q,, . . . .  , Q~a) is a tuple of  R if and 
only if 

(q,~ . . . . .  q,a) is a tuple of  Ra, 
(t2a . . . . .  t2,a) is a tuple of  R2, 
(ta,1 . . . . .  t3,d) is a tuple of  lb .  

(2.9) 

Now, the second, third . . . .  statements in (2.9) hold by definition of  the tuples t, -- 
(&t . . . . .  t,,a). Thus (2.9) holds if and only if the first statement in (2.9) holds. Thus 
(2.8) holds, which was to be shown. 

We have shown that (2.6) holds ff ~ is atomic. It is straightforward to verify that 
if (2.6) holds when ~ is ~ and when ~ is ~2, then it holds when ~ is ~1 A ~2, when 
is ~ V ~P2, and when ~p is -a~t. For example, let us demonstrate the "~l V ~,~" case. 
Then ~ V ~2 holds for the direct product if and only if either ~h or ~2 holds for the 
direct product, which, by the induction assumption, happens if and only ff either ~b~ 
or ~ holds for R~, which happens if and only if ~1 V ~,z holds for R1. 

We have now proved (2.6) whenever ~p is quantifier-free. But by assumption, 
'~(q~ . . . . .  qm) holds for R~. So, by (2.6) we know that ~ ( Q 1  . . . . .  Qm) holds for R. 
But this contradicts our assumption that (Yx~ . . .  X m ~  holds for R. O 

PROOF OF THEOgE~t 2.6. Let o be the sentence 

(Vx~ . . .  x,,)(,/, = ,  (3y~ . . .  y , ) ' r ) ,  (2.1o) 

where ,k is a quantifier-free formula and y is a positive quantifier-free formula. 
Assume further that o is typed and unirelational. We now show that a is downward 
faithful. As in the previous proof, let us denote ® ( R , : i  E I~  by R. 

Assume that a holds for R, where each R, is nonempty. We must show that a holds 
for each R,. Assume not; as before, by relabeling if necessary, assume that o fails for 
R~. Thus there are q~ . . . . .  qm such that ~k(q~ . . . . .  qm) holds for R~ and there are no 
points Sl . . . . .  Sr, for which 

y(q~ . . . . .  qm, s, . . . . .  Sr) (2 .1 l )  

holds for R1. 
By assumption, each R, is nonempty. Let us select a tuple t, from R, for each i 

except i ffi 1. Let t,,~ be the j t h  member of  the tuple t,; thus t, equals (t,a, . . . ,  ti,a), 
where d is the arity of  each of  the R?s. Let ql . . . . .  qr~ be as above. As in the proof of  
Theorem 2.3, we now define new points Q ~ , . . . ,  Qm, each of  which is in some domain 
of  R. Assume that x,, the variable in o that corresponds to q,, is of  type p. Define Q, 
by letting its kth component be q,, i l k  ffi 1, and tk,p otherwise. So, Q, is a member of  
the p th  domain of  the direct product. 

By the same proof as that given in the proof of  Theorem 2.5 (except using ~k instead 
of  "-~,), it follows that q~(Q~ . . . . .  Qm) holds for R. By assumption, sentence (2.10) is 
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true about R. If we write y as y(xl  . . . . .  Xm, y~ . . . . .  y,), then it follows that there are 
S1, . . . ,  S, such that 

y(Q~, . . . ,  Q,, S1 . . . . .  S,) (2.12) 

holds for R. Denote the first component (i.e., the component corresponding to R1) of 
S, by s, (1 _< i < r). We already know that the first component of Q, is q, (1 _ i _ r). 
We now show that for each positive, quantifier-free formula ~, 

~(ql . . . . .  q,, Sl . . . . .  s,) holds for R1 
if ~(Q1 . . . . .  Q,, $1 , . . . ,  S,) holds for R. (2.13) 

Notice that (2.13) is an "if" statement, not an "if and only if." 
The proof of (2.13) is by induction on positive, quantifier-free formulas. First we 

show (2.13) in case ~ is an equality. If Q, = Sj, then the first component of Q,, 
namely q,, must equal the first component of Sj, namely sj. We have shown that if 
Q, = Sj, then q, = sj. Similarly, if Qi -~ Q1, then q, -- qj, and ff Si --- Sj, then s, -- sj. 
We just proved (2.13) in case ~ is an equality. Also, (2.13) holds if ~ is a relational 
formula (of the form PZl . . .  Zd), by the definition of the direct product. We have 
shown that (2.13) holds i f~  is atomic. Finally, it is easy to verify that if (2.13) holds 
when ~b is ~, and when ~ is ~z, then it holds when h& is ~ A ~2 and when ~ is 
~ V ~ .  Thus (2.13) holds for each positive, quantifier-free formula ~. In particular, 
(2.13) holds when ~ is y. So, since (2.12) holds for R, it follows from (2.13) that (2.11) 
holds for R~. This is a contradiction. [] 

We close this section with some comments relating upward and downward 
faithfulness to concepts defined earlier in the literature. The following two definitions 
are standard (see, e.g., [13]). A sentence o is preserved under direct products if 
whenever (R,:i E I )  is a family of relations such that o holds for every R,, then o 
holds for ®(R,:i  E I) .  A sentence o is preserved under direct factors ff whenever 
(R,:i ~ I )  is a family of relations such that o holds for ®(Ri:i  E I ) ,  then o holds for 
every R,. We can easily verify that a sentence is upward faithful with respect to direct 
products if and only if it preserves direct products. This is because the only difference 
in the definitions of  upward faithfulness and of  being preserved under direct products 
involves whether or not the component relations are allowed to be empty, and 
because the direct product of relations, one of which is empty, is also empty. Horn 
stated his theorem (Theorem 2.4 above) in terms of preservation under direct product. 

However, there is an important difference between downward faithfulness and 
being preserved under direct factors. Thus the restriction in the definition of  
downward faithfulness that we consider only nonempty relations is actually impor- 
tant. To see this, we first show that if a sentence o is preserved under direct factors 
and is true about the empty relation, then o is a tautology. For, if not, assume that 
o is preserved under direct factors, is true about the empty relation, and is not a 
tautology. Let R1 be the empty relation, and let R2 be a relation for which 0 fails. We 
know that o holds for R1 ® Rz, since R1 ® R2 is the empty relation. Since 0 is 
preserved under direct factors, it follows that 0 holds for/~e. This is a contradiction. 
Now let 0 be a nontautologous EID. Since 0 holds for the empty relation, it follows 
from what we just showed that 0 is not preserved under direct factors. However, 0 is 
downward faithful. So being preserved under direct factors and being downward 
faithful are not equivalent. Keisler [35] gave a complicated characterization of 
sentences that are preserved under direct factors. His class and our class of  EIDs 
have in common only tautologies. 
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3. Armstrong Relations 

In this section we show that a theorem due to Armstrong about FDs generalizes to 
EIDs. Further, we demonstrate a general equivalence that is useful in our context 
and also, we believe, in other contexts. 

Let E be a set of  sentences, and let a be a single sentence. When we say that E 
logically implies o or that o is a logical consequence of ~, we mean that whenever 
every sentence in Y~ holds for a relation R, then o also holds for R. That is, there is 
no "counterexample relation" or "witness" R such that every sentence in ~ holds for 
R but o fails in R. We write ~ ~ o to mean that E logically implies o, and we 
write Y~ g= o to mean that ~ does not logically imply o. I f  1" is a set of sentences, 
then we may write ~ ~ F to mean that ~ ~ "t for every ~, in F. For example, 
(A --~ B, B-- .  C} ~ A --. C. 

Let 2; be a set of FDs, and let Y~* be the set of  all FDs that are logical consequences 
of ~. For each FD o not in E*, we know (by definition o f ~ )  that there is a relation 
Re (a witness) such that Ro obeys E but not o. It follows from Armstrong's results [2] 
that there is a relation (a global witness) that can simultaneously serve the role of  all 
of  the Ro's. That is, Armstrong showed that there is a relation that obeys ~* and no 
other FDs. We call such a relation an Armstrong relation for ~. Actually, Armstrong 
did not explicitly state or prove the existence of what we call an Armstrong relation. 
Instead, he proved a result that implies both the completeness of  a certain set of  
axioms about FDs (see [22]) and the existence of  an Armstrong relation. 

Let us consider an example. Let Y~ be the set (EMP --, DEPT, DEPT --* MGR) ,  
containing two FDs. Then Z* contains the FDs in Z, along with, for example, the 
FD EMP ~ MGR. It is easy to verify (by considering all possible FDs involving 
only EMP, DEPT, and MGR) that the relation (call it R)  in Figure 10 is an 
Armstrong relation for Y,, that is, that it obeys every FD in Y,* and no others. At this 
point the reader is encouraged to examine relation R in Figure 10 before reading 
further. 

The striking feature that the reader probably noticed almost immediately is that 
(in relation R) Gauss is the manager of  two distinct departments (Math and Physics). 
Thus R does not obey the FD M G R  ~ DEPT. This is as it should be, since R is an 
Armstrong relation for {EMP ~ DEPT, DEPT ~ MGR) ,  while the FD M G R  
DEPT is not a logical consequence of  these dependencies. We explain in the next 
two paragraphs why we asked the reader to discover for himseff that Gauss is the 
manager of  two departments. 

We note an interesting "practical" application for Armstrong relations. Silva and 
Melkanoff [50] have developed a database design aid in which the database designer 
inputs a set of FDs and MVDs. The design aid then presents him with art Armstrong 
relation, that is, a "sample relation" that obeys just those dependencies that are 
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logical consequences of those that he has inputted. (As we discuss soon, Armstrong 
relations exist in the presence of FDs and MVDs, and this is the case in which Silva 
and Melkanoff were interested.) Let us say, for example, that the designer gives as 
input the set {EMP - ,  DEPT, DEPT - ,  MGR} of FDs. The database design aid 
would then present the designer with an Armstrong relation, such as relation R in 
Figure 10, for this set of dependencies. The designer would then inspect the sample 
relation and might observe, for example, "Here's a manager, namely Gauss, who 
manages two distinct departments. Therefore, the dependencies that I inputted must 
not have implied that no manager can manage two distinct departments. Since I 
want this to be a constraint for my database, I'd better input the FD MGR --* 
DEPT." 

In this example the designer did not have to think explicitly about the dependency 
MGR - ,  DEPT and whether or not it was a consequence of the dependencies that 
he input; rather, by seeing the Armstrong relation and thinking about what it said, 
he simply noticed that the FD MGR ---, DEPT failed. Thus Silva and Melkanoff's 
approach is a partial solution, in the spirit of Query-by-Example [60], to the problem 
of helping a designer think of  what dependencies should be included. 

Unfortunately, it turns out [6] that the time complexity of fmding an Armstrong 
relation, given a set of functional dependencies, is precisely exponential in the 
number of attributes. That is, there exists an exponential-time algorithm, and 
furthermore there is an example in which the time simply to write down the 
Armstrong relation is exponential. 

In ordinary first-order logic (where arbitrary first-order sentences, and not just our 
dependencies, are allowed) there can be no Armstrong relations. For example, let 
be the empty set O. Assume that R is a relation that obeys just X* (i.e., just the 
tautologies) and no other first-order sentences. Let o be an arbitrary first-order 
sentence such that neither o nor n o  is a tautology. Clearly, R must obey one of o or 
-~o; thus R obeys a nontautology. This is a contradiction. Thus there is a witness for 
o (a relation that shows that o is not a tautology) and a witness for -'1o (a relation that 
shows that --lo is not a tautology), but there is no global witness (a relation that 
simultaneously shows that o is not a tautology and -lo is not a tautology). 

It is common to speak of  a relation obeying an "accidental" dependency, that is, 
a dependency that is not a logical consequence of the collection of "specified" 
dependencies. Thus each specified dependency is supposed to hold "for all time," 
that is, for every "snapshot" (instance) of  the database, whereas an accidental 
dependency is one that happens to hold in some snapshot of the database but may 
fail in other snapshots. An Armstrong relation is precisely one that obeys every 
specified dependency and no accidental dependency. 

Beeri et al. [7] generalized Armstrong's result to allow not just FDs but also MVDs. 
That is, they showed that if ~ is a set of FDs and MVDs and X* is the set of all FDs 
and MVDs that are logical consequences of  X, then there is a relation (an "Armstrong 
relation for "~.") that obeys the FDs and MVDs in ~* and no other FDs or MVDs. 
The proof was subtly incorrect in that it neglected the case of MVDs (and FDs) for 
which the left-hand side is the empty set. Beeri [4] generalized the result to allow 
FDs, MVDs, and JDs (join dependencies). His proof was rather long, and his 
technique does not generalize to allow embedded MVDs. We generalize to allow 
EIDs (which includes all of  the above, including embedded MVDs) and even more. 

We state our next theorem rather generally, since it has applications in various 
fields and not just in database theory. In our general setting we assume that there is 
a class of  models (which, in our case of immediate interest, is the class of  nonempty 
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relations), a class of  sentences, and a relationship HOLDS between these.two classes, 
which tells when a given sentence holds for a given model. Thus, if  a is a sentence 
and R is a model, then HOLDS(o, R)  means that o "holds for" R or that R "obeys" 
o. We then define ~ and 52* in the natural way. Thus, if  52 is a set o f  sentences and 
o is a single sentence, then 52 ~ o means that every model that obeys ~ also obeys 
o; we say then that o is a logical consequence of  52. We say that a set 52 o f  sentences 
is consistent i f  52 has a model, that is, if  there is a model that simultaneously obeys 
every sentence in 52. 

TnEOV.EM 3.1. Let ~e be a set of sentences. The following properties of ~ are 
equivalent. 

(a) Existence of a faithful operator. There is an operator ~ that maps nonempty 
families of models into models, such that if o is a sentence in Aa and (Ri:i ~ I )  is a 
nonemptyfamily of models, then o holds for ~)(R,:i E I )  if and only i f  o holds for 
each R,. 

(b) Existence of Armstrong models. Whenever 52 is a consistent subset of Sa and 52* 
is the set of sentences in 6ethat are logical consequences of  52, then there is a model 
(an "Armstrong model") that obeys 52* and no other sentences in A(. 

(c) Splitting of disjunctions. Whenever 52 is a subset of A a and {oi:i E I )  is a 
nonempty subset of ~,, then 52 ~ ~/ {o~: i ~ I )  if and only if there is some i in I such 
that 52 ~ o,. 

Note. Earlier we made the assumption that whenever we speak of  a family 
(R,:i E I ) ,  we always mean a nonemptyfamily (i.e., that the index set I is nonempty). 
In Theorem 3.1(a) we have made this assumption explicit, since this assumption 
needs to be dealt with explicitly in the proof  of  Theorem 3.1. 

In Theorem 3.1(c) above, when we say 52 ~ V{o, : i  E I ) ,  we mean that every 
model that obeys 52 necessarily obeys some o,; thus we can think of  V{oi: i  E I}  as 
a big disjunction. I f  the index set I is infinite, then this disjunction is infinite. 

We prove Theorem 3.1 at the end of  this section. We first make some comments. 
Parts (a)-(c) of  Theorem 3. l certainly need not hold in general. For  example, let 

a "model" be a binary relation, and let 6 a be the set of  all first-order sentences about 
binary relations. We showed earlier that Theorem 3.1 (b) fails, that is, that there can 
be no binary relation that obeys precisely the tautologies (about binary relations). 
Similarly, we now show directly that (c) fails. Let 52 be 0 ,  the empty set, and let o be 
a sentence such that neither o nor its negation is a tautology. Then 52 ~ (o V "~o), but 
52 g= o and 52 g= "-1o. So, (c) fails. Of  course, (a) fails also, since (a)-(c) are equivalent. 
When 6 a is a set of  sentences for which (a)-(c) of  Theorem 3.1 hold, then we say that 
6eenjoys Armstrong models. (If  the models are relations, then of  course we may say 
that 6Penjoys Armstrong relations.) In Section 5 we present other examples of  sets ~9 ~ 
that do not enjoy Armstrong models. 

Remark. In the remainder of this paper, whenever we make statements about 
collections of EIDs, we assume that all EIDs mentioned contain the same relation 
symbol, with the same arity. 

Parts (b) and (c) of  Theorem 3.1 deal with consistent subsets 52 of  ~.  We note that 
in our case of  primary interest, in which 6 a is the set of  EIDs, every subset ~ of  6 e is 
consistent, since a one-tuple relation obeys every EID. (We cannot take the empty 
relation to show consistency, since our definition of  "model" in this case is the class 
of  nonempty relations.) 
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Before we can apply Theorem 3.1 to our case of primary interest (where S" is the 
set of  EIDs and ~ is ®), we must do a little bit of  fussing, because of  the minor 
bother that empty relations have been neglected. I f  X is a set of  EIDs and o is a 
single EID, then by X ~nonempty O, We mean that every nonempty relation that obeys 

necessarily obeys o. 

LEMMA 3.2. Let I~, be a set of  EIDs and o a single El l ) .  Then ~, ~o,,~,,p~y o if and 
only i f  X ~ o. 

PROOF. Clearly, if  Y~ ~ o, then X ~aonempty O. Conversely, assume that X ~nonempty 
o, but ~ ~ o. Since ~ g= o, there is a relation R that obeys X but not o. The relation 
R must be empty, since by assumption ~ ~nonompty O. Thus the empty relation R 
violates the EID o. But EIDs have been defined in such a way that they are true 
about empty relations. This is a contradiction. [] 

COROLLARY 3.3. Let ~, be a set of  EIDs, and let ~* be the set of  EIDs that are 
logical consequences of ~,. Then there is a relation that obeys ~* and no other EIDs, 
that is, there is an Armstrong relation for ~. 

PROOF. In Theorem 3.1, let ~ be the set of  all EIDs (about d-ary relations), let 
a "modal" be a nonempty d-ary relation, and let ~ be the direct product ®. Theorem 
2.1 says that Theorem 3. l(a) then holds. So, by Theorem 3.1, we know that (b) holds. 
That is, we know that there is a relation that obeys precisely those EIDs o such that 
~" ~"nonempty O. SO, by Lemma 3.2, there is a relation that obeys precisely those EIDs 
o such that ~ ~ o. This was to be shown. [] 

Note that the Armstrong relation of  Corollary 3.3 is not unique. For, it is easy to 
verify that the direct product of Armstrong relations for X is also an Armstrong 
relation for X. If  R has k tuples, then R ® R has k 2 tuples; hence, if  R has more than 
one tuple, then R ® R is not isomorphic to R (since it has more tuples). So, R and 
R ® R are nonisomorphic Armstrong relations for ~. Beer  et al. [6] have various 
results about the size of minimal Armstrong relations in the presence of  FDs. 

COROLLARY 3.4. Let ~, be a set of  EIDs, and let ol, 02 . . . .  each be EIDs. Then 
~, ~ (ol V 02 V . . . )  if  and only if  there is some i such that ~, ~ o,. 

PROOF. It is obvious that i f  there is some i such that ~. ~ o,, then ~ ~ (ol V 02 
V . ' . ) .  Conversely, assume that X ~ O1 V o2 V . . - ) .  All the more so, we know that 

~nonempty (O1 V a2 V . . - ) .  In Theorem 3.1 let o ~° be the set of  all EIDs (about d-ary 
relations), let a "model" be a nonempty d-ary relation, and let • be the direct product 
®. Theorem 2.1 says that Theorem 3.1(a) then holds. So, by Theorem 3.1, we know 
that (c) holds. Hence, since X ~ . . . .  pry (o2 V o2 V . . . ) ,  we know that there is some 
i such that ~ ~-nonempty O,. So, by Lemma 3.2, we know that 2 ~ o ,  This was to be 
shown. [] 

The reason for our interest in "faithfulness with respect to direct product" is not 
because of anything inherent about the direct product as such, but rather that the 
direct product is an operator ~ that fulfills Theorem 3. l(a) for a natural class ~ o f  
sentences. Furthermore, it is nice that the direct product is fairly simple conceptually 
and that it is often fairly easy to verify in practice whether or not a given sentence is 
faithful with respect to direct product. 

Theorem 3.1 might well be useful in a number of  contexts. Brooks [11] has noted 
an application of Theorem 3.1 in which a "model" is a set of  test data about a 
computer program and a "sentence" is a characterization of  the computations done 
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by a program. Brooks is interested in obtaining what he calls a "generic model," 
which is a collection of test data with no unneeded relationships. Since his environ- 
ment obeys Theorem 3.1(c), it obeys (b) also, which guarantees generic models. A 
famous example in logic where Theorem 3. l(b) is well known occurs when the set 
5¢of sentences is the set of all equations over a given set of  function symbols. Then 
the free algebra with countably many generators [30] is an Armstrong model. 
Interestingly enough, in this case the operator ~ in Theorem 3.1 (a) again turns out 
to be the direct product. Another interesting operator that can sometimes be used to 
play the role of ~) in Theorem 3.1(a) is the disjoint union. The disjoint union of  a 
collection of relations (all with the same attributes) is obtained by first replacing each 
relation by an isomorphic copy in such a way that no entry in one relation equals 
any entry in any of  the other relations; then a new relation is formed by taking the 
union of  all of the tuples in all of  the relations. I f  a "sentence" is an FD in which the 
left-hand side is nonempty or an MVD in which the left-hand side is nonempty, a 
"model" is a relation (with the appropriate attributes), and • is disjoint union, then 
Theorem 3.1(a) holds. This, in fact, was the proof technique used by Beeri et al. [7] 
to show the existence of Armstrong relations in the presence of  FDs and MVDs 
(although they neglected to "patch" the proof to deal with FDs and MVDs in which 
the left-hand side is empty). 

We are now ready to prove Theorem 3.1. 

PROOF OF THEOREM 3.1 

(a) ==0 (b). Assume Theorem 3.1(a); we shall prove (b). Let Y. be consistent, and 
let BAD be the set of all sentences in 5" that are not logical consequences of  X. There 
are two cases, depending on whether or not BAD is empty. 

Case 1. BAD is empty. So, Y.* = ~. By assumption, 52 is consistent, that is, ]g has 
a model R. Clearly R itself is the desired "Armstrong model," which obeys 52. and 
no other sentences in 5Q(since there are no other sentences in 50). 

Case 2. BAD is nonempty. For each o in BAD we know (by definition of  logical 
consequence) that there is a model Ro that obeys Y, but not o. Define R to be 
(~(Ro: o E BAD). We now show that R obeys 52* and no other sentence in 5(. 

For each sentence ~- in X, we know by construction that every Ro obeys ~'. By 
property (a) it follows that R also obeys ,. So, R obeys Y,, and hence X*. Now we 
must show that if o is a sentence not in 7~*, then R does not obey o. Now o is a 
sentence in BAD. By the definition of  Ro we know that Ro does not obey o. By (a) it 
follows that R does not obey o. This was to be shown. 

(b) ~ (c). Assume Theorem 3.1(b); we shah prove (c). It is obvious that if there 
is some i such that X ~ o,, then X ~ V {o, :i ~ I}. Conversely, assume that • 
V(o , : i  E I ) ,  where I is a nonempty index set. IfY~ is inconsistent, then let i be an 
arbitrary member of I. Since 52 is inconsistent, it logically implies everything, and in 
particular, Y. ~ o,. So we may assume that Y~ is consistent. Let R be the model 
guaranteed by (b) that obeys X* and obeys no other sentence in 5(. Since R obeys 
X, and since Ig ~ V {o,: i E I ) ,  it follows that there is some i such that R obeys as. So, 
by definition of R, we know that o, is in X*. This was to be shown. 

(c) =* (b). Assume Theorem 3.1(c); we shall prove (b). Assume that (b) is false. 
Then there is a consistent subset Y. of  5 ~ such that no model that obeys Y. is an 
Armstrong model for ]g*, that is, such that each model M that obeys 2g also obeys a 
sentence om not in ]g*. Let I be the set of all models of Y.; by the consistency of  5~, we 
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know that I is nonempty. By the definition of  the sentences oM, we know that Y. 
V ( o M : M  E I}. By (c) we know that for some M, necessarily 52 ~ o~. Thus o~ is in 
52". This is a contradiction. 

(b) =* (a). Assume Theorem 3.1(b); we shall prove (a). We now de- 
fme ~(R,:i  E I) ,  where I is a nonempty index set and each Ri is a model. For  
each R, define T, to be the set of  all sentences of  6 a that hold for R,. Let Z equal 
A{Z:i~/}. 

We first show that ~ is consistent. Since I is nonempty, take i in I. Clearly, 
Y. C T,. So, since R, obeys T~, R, also obeys 52. Thus ~ is consistent. 

We now show that 52 = 5 2 * .  The inclusion Y. _ 52* always holds, so we must show 
that 52" _ 52. That  is, we must show that if  ¢ is a sentence of  6 a such that 52 ~ ~-, then 
¢ is in 52. Assume that 2] ~ ¢. Fix i in L Now ~ C T,, and 52 ~ ~'. It follows that 
T, ~ ¢. Since 7", is the set of  all sentences of  6 a obeyed by R~, and since T, ~ ~-, it 
follows that R, obeys ~', and so ¢ is in I",. We have shown that if Y~ ~ ~-, then ~- is in 
T, for every i in I. Hence ¢ is in 52, which was to be shown. 

We have shown that ~ is consistent and 52 = 52*. So, by Theorem 3. l(b) we know 
that there is a model R that obeys ~2 and no other sentences in ~.  Let us defme 
~(R, : i  E I)  to be R. To prove (a), we must show that i f o  is an arbitrary sentence of  

then o holds for R if  and only if o holds for each R,. Assume first that o holds for 
R; we must show that o holds for each R,. Since o holds for R, we know (by definition 
of  R) that o is in O{T,: i  E I}. Thus, for every i we know that o is in 7",. Hence o 
holds for R,, which was to be shown. Conversely, assume that o holds for every R,. 
Then o is in T, for every i, and so o is in ~ (by definition of  ~). So, by defmition of  
R, we know that o holds for R. [] 

We close this section by noting that the existence of  Armstrong relations is a 
property of  collections of  sentences and not of  single sentences. Thus there can be no 
theorem that says something like, "Armstrong relations can only exist in the context 
of  EIDs." As a dramatic example, let ~- be a totally arbitrary sentence, and let 6 a be 
the singleton set {'r}. It is easy to verify that Theorem 3.1(c) then holds. Thus 
enjoys Armstrong models (i.e., conditions (a)-(c) of  Theorem 3.1 hold). 

It is easy to see that if  ~ enjoys Armstrong models and 65 C_ 6Pl, then 6e2 also 
enjoys Armstrong models. It is an interesting problem to consider classes ~a that 
enjoy Armstrong models. Note that the collection of  such classes :T is not closed 
under finite union. For, we just noted that every singleton set ~e enjoys Armstrong 
models. So, if  the collection of  classes S~that enjoy Armstrong models were closed 
under finite union, then every finite set 6 a of  sentences would enjoy Armstrong 
models. However, in Section 5 we exhibit several finite sets 6e of  sentences that do 
not enjoy Armstrong models. 

4. Finite Armstrong Relations 

In the previous section we were not explicitly concerned with whether or not the 
relations we were dealing with are finite (i.e., have a finite number  of  tuples). In 
particular, as we noted, our construction of  taking a direct product of  a possibly 
rot'mite collection of  relations can lead to an infinite relation, even though every 
component of  the direct product is a finite relation. In this section we deal specifically 
with the existence of finite Armstrong relations. 

If52 is a set of  sentences about a d-ary relation and o is a single such sentence, then 
we say that ~ ~fm o if every finite d-ary relation that obeys 52 also obeys o. It has 
been shown [26] that there is a set of  four EIDs 52 and a single EID o such that 
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Z ~ o, but for which Z I~ o. In fact, the EIDs in that example are all TDs (template 
dependencies). We also note that Vardi [57] and Gurevich and Lewis [31] have 
shown that both the decision problem and the finite decision problem for TDs are 
undecidable. That is, they have shown that the problems of  deciding whether ~ ~ o 
and whether Z ~fm a are each undecidable. 

We have the following result, which is the analog of Corollary 3.3, but where we 
are only interested infinite relations. 

THEOREM 4.1. Let Aebe a finite set o f  EIDs. Let Y~ be a subset o f  ~, and l e t ~  
be those members o of  ~O'for which Y. ~:~ o. Then there is a finite relation that obeys 
Y ~  and no other member of  ~. 

PaOOF. The proof is almost the same as that of  Corollary 3.3, except that we 
restrict our attention to finite relations. The key point is that the direct product of  a 
fmite number of  fmite relations is a finite relation. [] 

Let 50 be the set of all FDs, MVDs, EMVDs, JDs, and EJDs (embedded join 
dependencies) over a given set of attributes. Then S# is a finite set of  dependencies. 
This is an important special case of  Theorem 4.1. 

Example 4.2. We now show that Theorem 4.1 would be false if  we were to drop 
the restriction that A: be t'mite. Let R be a binary relation with attributes A and B, let 
a be a member of  dom(A), and let b be a member of  dom(B). I f t  is a tuple (x , y )  of 
R, we may write t[A] = x and t[B] = y. We say that R has a k-tuplepath from a to 
b if there are tuples tl . . . . .  tk of  R such that 

a = tl[A], 
t,[B]=t,+x[B] if  i is odd and l___ i<k ,  
t,[A] = h+l[A] if  i is even and 2 --< i < k, 

b = tk[B]. 

For example, R has a 5-tuple path from a to b if there are elements xl . . . . .  x4 such 
that the following five tuples appear in R: 

(a, Xl), 
(X2, X1), 
(x2, x3), 
(x,, x3), 
(x4, b). 

Let ~-, (i -- 1, 3, 5 . . . .  ) be the EID that says, "Whenever there is an q + 2)-tuple path 
from a to b, then there is an i-tuple path from a to b." For example, ~'3 is 

(VabXlX2X3X4)((Paxl A PX2Xl A Px~,x3 A Px4x3 A Px4b) 
=* (3yayz)(eaya A Pyzy~ A P.,v,zb)). 

Yannakakis [58] introduced the EIDs ~', to show that there are an infinite number of 
nonequivalent EIDs. We now make use of these EIDs to show that Theorem 4. I is 
false if the assumption that 5ais f'mite is dropped. Let Z be the empty set ~. Assume 
that there is a finite Armstrong relation for O, that is, there is a t'mite relation 
R that obeys only trivial EIDs. (An EID o is said to be trivial, or tautologous, if 

~ o.) Since R is f'mite, it has a finite number k of  tuples. But then R clearly obeys 
the nontrivial EID ~k. This is a contradiction. [] 

We note that Fagin et al. [26] have strengthened the result of  Example 4.2 by using 
only TDs. In particular, they show that there is a set Z of  two TDs such that there is 
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no finite relation that obeys precisely those TDs o for which ~ ~ ,  o. Also, Vardi 
[56] has shown that there is an EID ~- such that the set of EIDs o where 9 ~r,n o is not 
recursive. This result implies that there is no finite Armstrong relation for % since we 
could test whether or not t" ~ o by simply checking whether or not the t'mite 
Armstrong relation obeys o. 

We close this section with a few miscellaneous comments about Armstrong 
relations. The construction of the previous section can generate an Armstrong relation 
that is not only infinite, but even uncountable, since, as we noted earlier, the direct 
product of a countably infinite number of  relations, each of which has at least two 
tuples, contains uncountably many tuples. However, the Lowenheim-Skolem Theo- 
rem [20, p. 141] implies that there is then an Armstrong relation with a countable 
number of tuples. Of course, in this section we have been interested in Armstrong 
relations with a finite number of tuples. 

The reader might be concerned that the Armstrong relations we have created have 
strange entries, such as (Smith, Jones, Thomas) in the EMP column of the direct 
product of three relations. However, one can systematically replace each occurrence 
of (Smith, Jones, Thomas) everywhere it occurs by a single unique name, such as 
Anderson, with a new unique name for each triple. The new relation is then 
isomorphic to the earlier relation, since we have simply renamed the entries. Thus 
the new relation is still an Armstrong relation. This renaming would be desirable, for 
example, in the application of Silva and Melkanoff [50], described earlier. The alert 
reader may have noticed that in this renaming process, we have tacitly assumed that 
there are as many distinct names as we want. Consideration of bounded domains 
immediately leads to combinatorial problems (see [24] and [34] for examples of such 
problems). 

We note that Fagin et al. [26] present a necessary and sufficient condition for the 
existence of  f'mite Armstrong relations in the presence of  TDs. Their necessary and 
sufficient condition is given in terms of the implication structure of TDs. 

Finally, we remark that our direct product construction of an Armstrong relation 
is especially valuable when we desire to produce a finite Armstrong relation in the 
presence of embedded dependencies. For, in the presence of  embedded dependencies, 
chase-type procedures for constructing relations tend to produce an infinite relation. 
(Grant and Jacobs [29] describe such a chase-type procedure, which they describe in 
terms of deductions. For a discussion, see [25].) 

5. More Armstrong Relation Counterexamples 

In this section we present three amusing counterexamples about Armstrong relations. 
In each case we exhibit a set ~ of sentences and single sentences ol and 02, such that 

~ (ol V o2), but such that Y. P~ oi and Z P~ o2. Thus, if &"is a set of sentences that 
includes ~ and each of ol and 02 (and if a "model" is a relation of the appropriate 
arity), then Theorem 3. l(c) fails. In particular, by the proof of  Theorem 3.1, it follows 
that there is no Armstrong relation for Y. (with respect to sentences Y'). Thus ,9 °does 
not enjoy Armstrong relations. 

Example 5.1. Let oo be the sentence (which is not an EID) that says that the 
relation has at most two tuples. Thus (assuming that we are dealing with binary 
relations), the sentence oo is 

(Vxlylx2y~ay~)((PXlyl A Px2y2 A Px~y3) 
=~ (((Xl = x2) A ( y l  = y2)) V ((xl = x3) A ( y l  = y3)) V ((X2 = x3) A (y2  = y3)))). 
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We note that a0 is equivalent to (the conjunction of) a set of  eight sentences, each of  
the form 

(Vxxylx2y2xay3)((PXlyl A Px2y2 A Px3ya) =* (B1 V B2.V B3)), 

where each B, is an equality. Note that these sentences "start out" looking like IDs 
(1.4) but have a disjunction of  atomic formulas, rather than a single atomic formula, 
on the right-hand side of the implication. 

Let ~ be {a0}, ol be the FD A ---> B, and 02 be the FD B ---> A. We now show that 
~ (01 V 0.2). Let R be a relation obeying ~. Thus R has at most two tuples. We 

must show that R obeys either 0.1 or 02. If  R has zero or one tuple, then R obeys both 
0.1 and 02. So assume that R has exactly two tuples tl and t2. There are two eases, 
depending on whether tl[A ] ffi tz[A ] or tl[A ] ~ t2[A ]. I f  tl[A ] = t2[A], then 0.2 holds. 
I f  tl[A ] ~ t2[A], then Ol holds. So, either ol or o2 holds, which was to be shown. 

We have shown that ~ ~ (ol V 0.2). However, it is easy to verify that ~ I~ ol and 
~ ~ 0.2. [] 

Example 5.2. Let 01 be the sentence (which is not an EID) that says that the 
relation is nonempty. Thus (assuming that we are dealing with binary relations) the 
sentence Ol is (3xy)Pxy. Note that 0.1 is of  the form (1.7) of  an EID, except that 
n ffi 0 (i.e., the left-hand side is empty). 

Let ~ be O, the empty set, and let oz be the FD A ~ B. 
Then ~ ~ (ol V 02); for, if S is a nonempty relation, then it obeys m, and if  S is an 

empty relation, then it obeys 02. However, Z ~ 0.1 and ~ ~ 0.2. [] 

Example 5.3. This example is due to Statman [52]. We show that if  we deal with 
sentences that look like IDs, except that they are not typed, then there is not 
necessarily an Armstrong relation. 

Let 00, Ol, and o2 be the following three sentences respectively (where the first two 
are not typed): 

(Vxoyoxlylzly2z~)((Pxoxoyo A Pxlylzl A Pxly2z2) ~=~ (yl = y2)), 
(Vxoyo)(Pxoxoyo ~ Pxoxoxo), 
(Vxlylzxy2zz)((Pxlylzl A Pxly2z9 ~ (yl ffi y2)). 

Let ~ be {0o}. It is easy to verify that ~ ~ ol and ~ ~ o~. However, we now show 
that ~ ~ (ol V o2). Assume not. Let R be a relation that obeys a0 but violates 0.1 and 
02. Since ol fails, there are a0 and b0 such that Raoaobo holds. Since 0.2 fails, there are 
al, bl, cl, b2, and c2 such that RalblCl holds, Ra~b2c2 holds, and ba ~ b2. But then oo 
fails, a contradiction. [] 

6. Projections of Classes of Relations 

We assume throughout this section that we are dealing only with fmite relations. 
Thus, in this section, whenever we say "relation," we mean "finite relation." We call 
the collection of all relations with attributes U that obey a given set of  FDs an FD 
class. (Ginsburg and Zaiddan [28] define a closely related notion, called a functional 
dependency family, which is like an FD class except that they also fix the domains of  
the attributes. We do not fix domains, by analogy with the usual definition of  such 
classes, e.g., elementary classes [20], in logic.) Ginsburg and Zaiddan show that a 
projection of  an FD class is not necessarily an FD class. Thus, later in this section we 
exhibit a set X of FDs that all deal with 5-ary relations with attributes ABCDE, 
where the following happens. Let ~ be the class of  all 5-ary relations that obey X, 



976 RONALD FAGIN 

and let g" be the class of  all relations that are projections of  members of  ~ onto 
ABCD. Then there is no set E' of FDs such that ~-is precisely the class of all relations 
with attributes ABCD that obey E'. 

However, we can show that there is a set ~' of  EGDs (about 4-ary relations) such 
that 9"is precisely the class of  all relations that obey E'. (Recall that an EGD, or 
equality-generating dependency, is an ID for which the right-hand side is an 
equality.) Thus, although 9"is not an FD class, it is an EGD class, that is, 9"is the 
collection of all relations that obey a given set ~ '  of EGDs. In fact, the following 
theorem holds (we present the proof later in this section). 

THEOREM 6.1. Every projection of  an EGD class is an EGD class. 

Let X, ~ ,  and 37-be as above. Consider the following natural scenario. In some 
application, X is the set of constraints that each instance R (with attributes ABCDE) 
must obey, and so ~ is the collection of  possible instances that the relation can 
assume. Thus the possible instances are precisely those relations that obey the set X 
of FDs. Assume that Jones is a user who has a "view" of  the database in which he 
sees only the first four columns ABCD of the relation R (Jones might, e.g., be shielded 
from seeing the E column of the relation, for privacy or security reasons). Thus the 
possible instances for his view are precisely the relations in ~. Then the set of 
constraints for Jones' view is given not by a set of FDs, but by a set of EGDs. 

It follows immediately from Theorem 6.1 that every projection of an FD class is 
an EGD class. Ginsburg and Zaiddan [28] define a class of dependencies called 
implied dependencies, which are special cases of  EGDs and show that every projection 
of an FD class is an implied dependency class. 

Recall that an FTGD (full tuple-generating dependency) is an ID in which the 
right-hand side is a relational formula. We have the following results (which we 
prove soon). 

THEOREM 6.2. Every projection of an FTGD class is an FTGD class. 

THEOREM 6.3. Every projection of  an ID class is an ID class. 

Thus EGD classes, FTGD classes, and ID classes obey a natural closure property 
that FD classes do not. As we saw, by considering FD classes and their projections 
one is "forced" into considering more general dependencies, such as IDs. Apparently, 
Sadri [45] obtained Theorems 6.1-6.3 independently. We note that Hull [33] showed 
that the join of  ID classes is an ID class. Thus the collection of ID classes is closed 
under projection and join. 

Hull [33] has given an example of an FD class with a projection 9"such that 9"is 
an ID class given by an infinite set of  IDs, but such that :~ris not equivalent to an ID 
class given by any lrmite set of  IDs. It is an interesting open problem to characterize 
those cases where the projection 9-would be given by afinite set of IDs. Another 
open problem is whether or not the projection of an EID class is necessarily an EID 
class. 

Let R be a fixed relation. In the spirit of Ginsburg and Zaiddan [28], we def'me the 
FD class generated by R to be the smallest FD class that contains R. It is easy to see 
that this class is simply those relations (with attributes the same as those of R) that 
obey X, where X is the set of all FDs obeyed by R. A natural question is whether 
every FD class has a generator. The answer [28] is yes: if the FD class #~ consists of 
all relations with attributes U that obey X, then let R be an Armstrong relation (with 
attributes U) for X*; it is easy to see that R is a generator for the class ~ .  Similarly, 
we can define generators for EID classes and obtain the result that every EID class 
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0 0 0 0 

0 1 1 0 

1 1 0 1 
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has a generator (by once again taking an Armstrong relation). Thus a natural 
interpretation for Armstrong relations is as class generators. 

Before we present our promised example of  an FD class whose projection is not 
an FD class, we prove a simple lemma, which was first shown by Ginsburg and 
Zaiddan [28]. 

LEMMA 6.4. Let ~ be the class of all relations (with attributes U) that obey the set 
of FDs (over U). Let V be a subset of U, and let 5-be the class of allprojections onto 

V of members o f~ .  I f  J-is an FD class, then 5ris the class of all relations over V that 
obey ~', where ~' is the set of FDs over V that are logical consequences of ~. 

Note. See the comments after (1.5) in the introduction. 

PROOF. Assume that :~-is an FD class, say, the class of  all relations over V that 
obey 17. We must show that F is equivalent to Z', that is, that each logically implies 
the other. 

17 ~ X': Assume not. Then there is a relation T that obeys r but not some o in 
~'. By assumption, T is in f ,  and so there is a relation R in ~ such that T is a 
projection of R. Since Tviolates the FD o, and since Tis a projection of R, necessarily 
R violates o. But R obeys X (since R is in ~) ,  and so R obeys Y/(because X ~ Z'). 
Thus R obeys o. This is a contradiction. 

~ '  ~ 17: It is certainly sufficient to show that r _ x ' .  Take 1, in r .  To show that 
-/is in X', we must show (by definition of  X') that X ~ -/. Assume thatX I~ 3'. Then 
there is a relation R in ~ that violates y. Let T be the projection of  R onto V. Then 
T violates y. This is a contradiction, since T is in J .  [] 

Example 6.5. We now present our example of  an FD class with a projection that 
is not an FD class. Let Y. be the set {B ~ E, D ---> E, CE ---> A} of FDs over ABCDE, 
and let ~ be the class of all relations over ABCDE that obey ~. Let ~rbe the class of  
all projections o f ~  onto ABCD. We now show that :~" is not an FD class. Assume 
that it were. Then, by Lemma 6.4, J i s  the class of all relations over ABCD that obey 
E', where E' is the set of all FDs over ABCD that are logical consequences of  X. Note 
that X' contains some nontrivial FDs; an example is the FD BC --> A (the FD 
BC ---> A is in ~ '  because of the FDs B ~ E and CE---> A in ~). Let T be the relation 
in Figure 11. We now show that (i) T obeys E', and (ii) T is not in ~ .  This is a 
contradiction. [] 

T obeys ~': We shall show that the relation consisting of  each pair of  tuples from 
T obeys Z'. We begin with the first two tuples of Figure 11. It is easy to verify (by 
using, say, the FD membership algorithm of Beeri and Bernstein [5]) that if  Y C 
{A, B, C, D} and AD ----> Y is an FD in Y/, then AD ---> Y is a trivial FD, that is, that 
Y _c (,4, D}. Since the first two tuples in Figure 11 agree precisely on AD, it follows 
that the relation consisting of  the first two tuples in Figure 11 obeys ~'. Similarly, the 
relation consisting of the first and third tuples and the relation consisting of  the 
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second and third tuples obey Y.'. It follows that the whole relation (relation T) of  
Figure 11 obeys X'. 

T is not theprojection o f  any relation in ~:  Assume that T were the projection of  
a relation R in ~ .  Then R would consist of  at least three tuples tl, t2, and t3, such that 
the projection t l [ABCD]  equal the ith tuple in Figure 11 (i -- 1, 2, 3). Because of  the 
FD D ---> E in ~, it follows that tl[E] = t2[E]. Because of the FD B ---) E in ~, it 
follows that t2[E] = ta[E]. Thus tl[E] = t3[E]. But then, because of  the FD 
CE --> .4, it follows that t~[A ] = t3[A ]. But this is false. 

We have shown that J,, the set of  projections onto A B C D  of members o f ~ ,  is not 
an FD class. What went wrong here is that every member of  J-obeys the E G D  T that 
says, " I f  there are three tuples such that the first and second tuples agree in the 
A D  columns, the first and third agree in the C column, and the second and third 
agree in the B column, then the first and third agree in the ,4 column." Formally, 
this EGD is 

(Vaobocodoalblcldl)((Paobocodo A PaoblCldo A PalblcodO =* (ao = al)). (6.1) 

Then, for every 5-ary relation that obeys ~, its projection onto the first 4 columns 
obeys ~-. Relation T in Figure 11 does not obey ~" and so is not the projection of  a 
member of  ~ .  This concludes this example. [] 

PROOF OF THEOm~MS 6.1-6.3. We first prove Theorem 6.3, and then we indicate 
how to modify the proof to prove Theorems 6.1 and 6.2. Let ~ be an ID class, say, 
the class of  all relations (with attributes U) that obey the set ~ of  IDs. Let V be a 
subset of U, J - the  class of  all projections onto V of  members of  ~ ,  and ~ '  the set of  
all IDs (over relations with attributes V) that hold for every member of  J.. The proof 
is complete if  we show that ~ i s  the class of  all relations (with attributes V) that obey 
~', since this would show that J i s  an ID class. Certainly, every relation in : -obeys 
~' ,  by the definition of  ~'.  So, we need only show that each relation that obeys ~ '  is 
in ~.. Let T be a relation that obeys ~.'. We must show that T ~ J,, that is, that there 
is a relation R (with attributes U) that obeys Z and such that T is the projection of  
R onto V. Create a tableau with columns U and with as many rows as there are 
tuples in T. Order the tuples of  T, let the ith row of  the tableau look exactly like the 
ith tuple of  T (when we restrict our attention to V), and let new, distinct variables 
appear in each of  the other entries. Thus, if  A is an attribute in V, then the A entry 
for the ith row of  the tableau equals the A entry for the ith tuple of  T, and if  A is an 
attribute not in V, then the A entry for the ith row of  the tableau is a new, distinct 
variable. Now apply the chase procedure (using ~) to the tableau [8, 37, 46] (actually, 
we are doing a slight generalization of  the chase, since ~ may be infinite). The 
important point is that the chase procedure terminates with a finite tableau, since the 
dependencies in ~ are full, and so no new symbols are added during the chase. Let 
us treat the final tableau as a relation, which we call R. The chase procedure 
guarantees that R obeys ~. Let us denote the projection of  R onto V by T'; we must 
show that T = T'. 

T' _ T: Let t be a tuple of  T'. We must show that t is in T. Let us denote the 
tuples of T by t~ . . . . .  tk. Since every dependency in ~ is full, it follows easily that 
every entry of  t is an entry of some t,. Let us denote by a the FTGD (over relations 
with attributes V) that tells us that i f  t~ . . . .  , tk are tuples, then so is t (~ is constructed 
in a similar manner to how the EGD (6.1) above was constructed). Then a holds for 
every relation in ~.  Thus a is in ~'. So, T obeys a, and so t is in T. This was to be 
shown. 
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T ___ T': The only way that this could fail would be if the chase procedure were 
to force two entries of T that were not originally equal to be equal. It is not hard to 
see that this means that ~ '  contains an EGD that tells us that if  h . . . . .  tk are tuples, 
then, say, t,[A] = b[A]. (As above, t~ . . . . .  tk are of  tuples of  T. )But  then T itself 
would have obeyed this EGD (since T obeys ~'). So, the chase procedure cannot 
force two entries of T that were not originally equal to be equal. 

This concludes the proof of  Theorem 6.3. We now indicate how to modify the 
proof to prove Theorems 6.1 and 6.2. Let us consider first Theorem 6.1. The proof 
is identical to the proof of  Theorem 6.3, except in the portion of  the proof in which 
we show that T' C T. If  T' ~ T, then this would be caused by an EGD in ~ that 
forced two entries of the tableau to be equal (in the case of  Theorem 6.1, ~ contains 
only EGDs and no FTGDs). But then there would be a corresponding EGD in Y.', 
that forces the same entries to be equal. Finally, the proof of  Theorem 6.2 is the same 
as the proof of Theorem 6.3, except that the inclusion T _ T' is automatic (because 
Y. contains only FTGDs, and no EGDs). [] 

7. lnterrelational and Nontyped Dependencies 

In this section we discuss a generalization of EIDs, in which the assumption that the 
sentences are typed and unirelational is weakened. However, faithfulness is main- 
tained. Our enlarged class of sentences includes the important inclusion dependencies 
[12, 24], which can say, for example, that every manager is an employee. The models 
of interest are no longer simply relations, but instead databases, consisting of a 
number of relations. It turns out that Armstrong databases need not exist in our new 
context, but that something almost as strong takes place. 

Since in this section we deal with databases, rather than with single relations, we 
need some more conventions. 

We assume that we are given a fixed t'mite set of relation symbols (usually called 
relation names in practice), and a positive integer, called the arity, associated with 
each relation symbol. A database is a mapping that associates a relation (of the 
proper arity) with each relation symbol. When it can cause no confusion, we may 
speak of the collection of relations themselves as the database. We can write first- 
order sentences about databases, just as we earlier wrote first-order sentences about 
single relations. For example, assume that PROF and STAFF are among the relation 
names. Assume that we wish to write a sentence tr that says that the first column of  
the instance of PROF is a subset (not necessarily proper) of  the second column of  the 
instance of STAFF. This sentence might represent the fact that, say, every profes- 
sional employee is an employee on the staff. Assume that, say, PROF is binary and 
STAFF is ternary. Such a sentence o is 

(V ax )(PR OF ax ~ (3yz)ST AFF yaz). (7.1) 

An extended embedded implicational dependency (or XEID) is a sentence of  the 
form 

(Vxl . . .  xm)((A1 A . . .  A An) ~ (3yl . . .  yr)(B~ A . . .  A B~)), (7.2) 

where each A, is a relational formula and each B, is atomic (either a relational 
formula or an equality). As in the case of  EIDs, we assume also that each of  the xSs 
appears in at least one of the A,'s, and that n _> l, that is, that there is at least one A,. 
So far, everything that we have said holds for both EIDs and XEIDs. For EIDs we 
made the further assumption that the sentence is typed and unirelational. For XEIDs 
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we make the weaker assumption that the left-hand side A1/~ . . .  /~ An is typed and 
unirelational. For example, sentence (7.1) is an XEID that is not an EID. 

Surely, from a practical point of view, the most important example of an interre- 
lational dependency (and of a nontyped dependency) is the inclusion dependency [ 12, 
24], or IND, of which (7.1) is a special case. It says, intuitively, that the entries in the 
A column of a relation are a subset of the B entries in the same or another relation. 
For example, it might say that every manager is an employee. More generally, an 
IND can say that the projection onto a given m columns in one relation is a subset 
of the projection onto a given m columns in the same or another relation. If P is 
3-ary and Q is 4-ary, then the IND that says that the entries in the first two columns 
of P (in that order) are a subset of the entries in the fourth and second columns of Q 
(in that order) can be written 

(Vabx)(Pabx =* (3yz)Qybza). 

We now define direct product and faithfulness for databases. 
As in Example 2.7 of Section 2, the direct product is simply def'med relationwise. 

Thus, if Q is one of the relation names, then the Q relation of the direct product is 
simply the direct product (under our usual definition) of the Q relations of the 
components of the direct product. 

A database is relationwise nonempty if every relation in the database is nonempty. 
We say that a sentence o is upward faithful (with respect to direct products) if 
whenever (D,:i E I) is a family of relationwise nonempty databases such that a 
holds for every D,, then e holds for ®(D,:i E I). We say that a sentence a is 
downward faithful (with respect to direct products) if whenever (D, :i E I) is a family 
of relationwise nonempty databases such that a holds for ®(D, :i E 1), then o holds 
for every D,. Clearly, a is faithful if and only if it is both upward and downward 
faithful. 

By a trivial modification to the proof of Theorem 2.6 we can obtain a proof of the 
foUowing theorem. 

THEOREM 7.1. Let e be a sentence of the form 

(VXl  **°  Xm)(~ ==0 ( 3 y l  " ' °  yr)~), 

where ~ is a quantifier-free formula and y is a positive quantifier-free formula. Assume 
further that ~, is typed and unirelationaL Then e is downward faithfuL 

Note that the only difference between the statements of Theorems 2.6 and 7.1 is 
that in Theorem 2.6 we assume that a is typed and unirelational, whereas in Theorem 
7.1 we make the weaker assumption that the left-hand side ¢ is typed and unirela- 
tional. 

THEORESi 7.2. Every XEID is faithfuL 

PROOF. By the transformation at the beginning of the proof of Theorem 2.1, we 
can transform every XEID into a sentence of the form mentioned in Horn's Theorem 
(Theorem 2.4). Thus, by Horn's Theorem, every XEID is upward faithful. By 
Theorem 7.1, every XEID is downward faithful. Thus every XEID is faithful, which 
was to be shown. [] 

Note that XEIDs, like EIDs, have the property that they are domain independent. 
This means that if two databases have the same tuples in corresponding relations, 
but possibly distinct domains of attributes, then the two databases agree on XEIDs. 
That is, given an XEID a, either both databases obey o or both disobey o. Also, 



Horn Clauses and Database Dependencies 981 

XEIDs, like EIDs, have the property that they are automatically true about empty 
databases (databases with no tuples). 

Let Z be a set of sentences and a a single sentence. We say that o is a logical 
consequence (with respect to relationwise nonempty databases) o f ~  if every relationwise 
nonempty database that obeys Z also obeys a. 

THEOREM 7.3. Let ~ be a set of  XEIDs, and let~*r~mpty be the set of  XEIDs that 
are logical consequences (with respect to relationwise nonempty databases) of  ~. Then 
there is a database that obeys ~'*o,~mpty and no other XEIDs. 

PROOF. In Theorem 3.1, let ~ be the set of all XEIDs, let a "model" be a 
relationwise nonempty database, and let • be the direct product ~ .  Theorem 7.2 says 
that Theorem 3.1(a) then holds. So, by Theorem 3.1, we know that (b) holds. This is 
exactly what was to be shown. [] 

We now show that Theorem 7.3 would be false if we were to substitute "logical 
consequence" for "logical consequence (with respect to relationwise nonempty 
database)." Thus, Theorem 7.3 shows the existence of "Armstrong-like" databases in 
the presence of XEIDs: Armstrong-like, rather than Armstrong, because we are using 
"logical consequence (with respect to relationwise nonempty databases)" rather than 
simply "logical consequence." Our next example (Example 7.4) shows that although 
there is an Armstrong-like database in the presence of XEIDs (Theorem 7.3), there 
is not necessarily an Armstrong database. 

Example 7.4. Let P and Q refer to unary relations. Let 01 be the XEID 
(Vx)(Px ~ Qx), and let o2 be the XEID Vx(Qx ~=~ :lypy). Let ~ be the empty set 
O. We now show that ~ ~ (01 V 02). Let D be a database (with P and Q among the 
relation names). If the P relation of D is empty, then ol holds for D. If the P relation 
of D is nonempty, then o2 holds for D. Thus Z ~ (ol V 02). However, ~ I/= ol and 

~ 02. So, there is no Armstrong database for Z, since each daiabase D obeys either 
01 or 02, neither of which is in Z*. [] 

The reason that Theorem 7.3 holds as it stands but fails if we were to substitute 
"logical consequence" for "logical consequence (with respect to relationwise non- 
empty databases)" is that the analog of Lemma 3.2 fails. Thus, in Example 7.4 the 
XEID 02 is not a logical consequence of ~, but it is a logical consequence (with 
respect to relationwise nonempty databases) of Z. 

However, we now show that if we restrict our attention to XEIDs that are 
unirelational, then there are Armstrong databases. Like EIDs, unirelational XEIDs 
deal with only one relation; however, unlike EIDs, they need not be typed (only the 
left-hand side needs to be typed). 

THEOREM 7.5. Let ~ be a set of  unirelational XEIDs, and let Y~* be the set of  
unirelational XEIDs that are logical consequences of ~. Then there is a database that 
obeys ~* and no other unirelational XEIDs. 

PROOF. Define ZR to be those XEIDs in 2 that contain the relation symbol R. If 
0 is a unirelational XEID that contains the relation symbol R, then it is easy to see 
that Z ~ o if and only if ~,~ ~ 0. It follows easily that an Armstrong database for 
can be obtained by taking the collection of individual Armstrong relations, one for 
each R. We conclude the proof by showing that ~R has an Armstrong relation, that 
is, that there is a relation that obeys precisely those unirelational XEIDs involving R 
that are logical consequences of  ZR. This follows from Theorem 7.2, just as Corollary 
3.3 followed from Theorem 2.1. [] 
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Fagin and Vardi [27] show that if we restrict our attention to INDs and FDs, then 
there are not  necessarily Armstrong databases. However, they show that if we restrict 
our attention to INDs and to "standard" FDs (FDs for which the left-hand side is 
nonempty), then there are necessarily Armstrong databases. 

We say that a database is f i n i t e  i f  each of its relations is finite. We note that an 
analogous theorem to Theorem 4.1 (which deals with the existence of finite Armstrong 
relations) holds about the existence of finite Armstrong-like databases. Earlier we 
mentioned that an interesting special case of Theorem 4.1 occurs when the only 
dependencies of interest are FDs, MVDs, EMVDs, JDs, and EJDs; similarly, an 
interesting special case of this analogous theorem occurs when the only dependencies 
of interest are those just mentioned, along with INDs involving attributes for the 
relations in the database. A similar comment applies, in the case of unirelational 
XEIDs, for the existence of finite Armstrong databases. Also, a similar comment 
applies for Fagin and Vardi's result [27], mentioned above, about finite Armstrong 
databases in the presence of INDs and standard FDs. 

We close this section by noting that the class of XEIDs is closed under conjunction. 
That is, the conjunction of two XEIDs (and hence, by induction, the conjunction of 
any finite number of XEIDs) is equivalent to an XEID. The proof is identical to 
Beeri and Vardi's proof [9] that the class of EIDs is closed under conjunction. Thus, 
assume that o and o '  are XEIDs; we shall show that the sentence o A o' is equivalent 
to an XEID I-. Let o be the XEID 

(Vx~ . . .  xm)(¢ = ,  (3y~  . . .  y , ) ~ ) ,  

and let e' be the XEID 

(Vx ' l  . . .  x~,)(d?' =* (:ly'l  . . .  y ' r ) ~ ' ) .  

Assume further that no variable appears both in o and in o'. Let ~- be the XEID 

(Vxx . . .  xmx'~ . . .  x~ , ) ( (O  A ~')  =* ( 3 y l  . . .  yry'~ . . .  y '~,)(~ A ~b')). 

We claim that the conjunction e A d is equivalent to ,. It is very easy to see that 
(a A o ~) ~ ~-. The proof of the opposite direction (that ~- ~ o and • ~ d)  depends in 
a rather subtle way on the fact that the left-hand sides ¢ and ~b' are each typed and 
unirelational. This proof is an amusing exercise for the curious reader. 

8. S u m m a r y  

We have introduced implicational and embedded implicational depencencies, in an 
attempt to fmd a natural class of"dependencies" for relations in a relational database. 
We have shown that these dependencies are all faithful with respect to direct product, 
although slight variations are not necessarily faithful. The existence of Armstrong 
relations in the presence of these dependencies follows from the faithfulness property. 
We have shown, in fact, that the existence of Armstrong relations is equivalent to 
faithfulness with respect to s o m e  operator. We have shown that it is possible for 
infinite Armstrong relations to exist without finite Armstrong relations existing, and 
we have given conditions that guarantee the existence of  finite Armstrong relations. 

We have shown that the projection of an implicational dependency class is again 
an implicational dependency class (although the projection of a functional depend- 
ency class is not necessarily a functional dependency class). 

Finally, we have introduced e x t e n d e d  embedded implicational dependencies, 
which, unlike ordinary embedded implicational dependencies, may be interrelational 
and nontyped. This class includes the inclusion dependency, which says, for example, 
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that every manager is an employee. We have shown the existence of  an Armstrong- 
like database in the presence of extended embedded implicational dependencies. 
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