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1. Introduction 

F u n c t i o n a l  d e p e n d e n c i e s ,  w h i c h  w e r e  first  d e f i n e d  by  C o d d  [8], a r e  a n  i m p o r t a n t  

a n d  w i d e l y  s t ud i ed  c o n c e p t  in  t he  t h e o r y  o f  r e l a t i o n a l  da tabases .  W i t h i n  t he  last  f ew  

yea r s  F a g i n  [11] and ,  i n d e p e n d e n t l y ,  Z a n i o l o  [26] d e f i n e d  a g e n e r a l i z a t i o n  o f  f unc -  

t i o n a l  d e p e n d e n c i e s ,  ca l l ed  m u l t i v a l u e d  d e p e n d e n c i e s ,  w h i c h  a re  a lso  r e c e i v i n g  
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serious study (e.g., [3-7, 14, 16-18, 25]). In this paper we show that in some ways, 
dependencies (functional or multivalued) behave in precisely the same way as a 
certain fragment of  propositional logic. Informally, the equivalence between depend- 
encies and formulas of  propositional logic can be described as follows. For every 
dependency a (functional or multivalued) there is a corresponding formula a in 
propositional logic. Let X be a set of  dependencies, and let X be the set of  the 
corresponding formulas. The Equivalence Theorem proved in this paper states that 
o is implied by X if  and only if  a is implied by X. This result generalizes a theorem 
of  Fagin [12] in which the equivalence is demonstrated in the special case of 
functional dependencies alone (see also [9] for a closely related result). 

The equivalence between dependencies and propositional formulas is helpful in 
the following way. Suppose we want to show that a dependency o is a consequence 
of  a set of  dependencies Y.. So far there have been only two ways of  doing this. Either 
we show that a can be inferred from X using the inference rules of  [5], or we prove 
(using relations) that for all relations R, a holds in R if all the dependencies of  X hold 
in R. Now there is a third way; namely, we may try to prove that for all truth 
assignments 6, the propositional formula o is true if all the propositional formulas in 
E are true. In Section 6 we demonstrate that by using this equivalence, we can obtain 
proofs of  theorems about dependencies that are simpler and shorter than proofs 
obtained conventionally. Other applications of  this equivalence are discussed in 
[10, 20, 22]. 

We prove the Equivalence Theorem in two different ways. One approach is a 
semantic proof. Suppose that X is a set of  functional and multivalued dependencies, 
a is a single dependency (functional or multivalued), and R is a relation in which all 
the dependencies of  X hold and a fails. In Section 5 we show that R has two tuples 
that constitute a relation in which all the dependencies of  X hold, but o fails. As we 
shall see, the Equivalence Theorem follows from this result. 

Another approach is a syntactic proof. Here we simply show that the inference 
rules for functional and multivalued dependencies are also inference rules for a 
fragment of  propositional logic. This approach is taken in Section 4. The syntactic 
proof includes a lemma that is used in Section 6 to obtain a new characterization of  
the dependency basis in terms of truth assignments. Most of  the applications discussed 
in Section 6 are based on this characterization. 

In Section 7 we show that our equivalence cannot be extended to include either 
join dependencies or embedded multivalued dependencies. In Section 8 we introduce 
"Boolean dependencies," of  which "degenerate multivalued dependencies" are a 
special case. We demonstrate a puzzling analogy between multivalued dependencies 
and degenerate multivalued dependencies. 

2. Basic Definitions 

2.1 THE RELATIONAL MODEL. The relational model for databases assumes that 
the data are stored in tables, called relations. The columns of  a table are labeled with 
names, called attributes. No two columns have the same name. Each attribute has an 
associated domain of  values. The rows of  a table, usually referred to as tuples or 
records, can be viewed as mappings from the attributes to their domains. Let r be a 
tuple of  a relation R and A be an attribute of  R. Then r(A ) is the A-component of  r 
(i.e., the value of r for the attribute A). 

In this paper we do not consider a database with several relations, but rather 
concentrate on a single relation R over a fLxed set of  attributes q/. Let X be a subset 
of  q/, and let r be a tuple ofR.  The projection o f t  onto X, written r[X], is a mapping 



Relational Database Dependencies 

A B C D 

al b~ cl d~ 

al b2 c2 d2 
al bl cl d2 

al b2 c2 d~ 
a2 ba cl dl 

a2 ba cl d2 

FIGURE 1 

437 

from the attributes of  X to their domains such that r[X](A ) ffi r(A) for all A in X. We 
call r[X] an X-value (in R). The projection of  the relation R onto X is obtained by 
projecting each tuple in R onto X and eliminating duplicate tuples. 

2.2 DEPENDENCIES. Usually the data must satisfy certain constraints. Functional 
[1, 8] and multivalued [5, 11, 26] dependencies are examples of  such constraints. A 

functional dependency (abbreviated FD) is a statement of  the form X ~ Y, where 
both X and Y are sets of  attributes. A relation R satisfies the functional dependency 
X ~ Y (or X.-~ Y holds in R) if for every pair rl, r2 of  tuples of  R, if rl[X] ffi r2[X], 
then rl[ Y] = r2[ Y]. 

A multivalued dependency (abbreviated MVD) is a statement of  the form X ~ > Y, 
where X and Y are sets of  attributes. Let Z be the set of  all the attributes in q / tha t  
are neither in X nor in Y. The multivalued dependency X ) ) Y holds in R if  for all 
rl and r2 in R, if rl[X] = r2[X], then there are r3 and r4 in R such that 

(i) ra[X] = rl[X], ra[ Y] = r~[ Y], and ra[Z] = r2[Z]; 
(ii) r4[X] = rl[X], r4[Y] = r2[Y], and r4[Z] = rl[Z]. 

In other words, X ~ ~ Y means that the set of  Y-values associated with a particular 
X-value must be independent of  the values of  the rest of  the attributes. 

It is easy to show that X > ~ Y holds in R if and only if X ~ ~ Y -  X holds in R 
[ 1 l]. I f  the sets X, Y, and Z form a partition of  q/(i.e., every attribute of  a~ is in 
exactly one of  X, Y, and Z), then it is convenient to write a tuple r of  R as (x, y, z), 
where x, y, and z denote the projections of  r onto X, Y, and Z, respectively. 

We use letters from the beginning of  the alphabet (A, B, C, D . . . .  ) to denote single 
attributes and letters from the end of  the alphabet ( . . . ,  X, Y, Z)  to denote sets of  
attributes. XY, where both X and Y are sets of  attributes, denotes the union of  X and 
Y. Similarly, a string of  attributes A1A2.. "An denotes the set {A1, A2 . . . . .  An}. 

Example 1. Consider the relation of  Figure 1. This relation is defined on the 
attributes A, B, C, and D. The functional dependency B ~ C and the multivalued 
dependency A ~ ~ BC hold in this relation. [] 

2.3 INFERENCE RULES FOR DEPENDENCIES. A problem of  practical importance is 
to determine when a dependency is implied by some other dependencies. Formally, 
we say that a dependency o is a consequence of  a set of  dependencies ~ if for all 
relations R, o holds in R if all the dependencies of  ~ hold in R. Previous work in this 
area [ l, 5] shows the existence of  inference rules that are instrumental in solving this 
problem. These rules are sound and complete in the sense that 0 is a consequence of  

if and only if o can be inferred from Z by a sequence of  applications of  the rules. 
The rules are divided into three groups reflecting the fact that the set 2 O (o} may 
contain only functional dependencies or only multivalued dependencies, or a mixture 
of  both. Following [5], we now give a list of  these rules. 

FD Rules 
FD1 (Reflexivity). I f  Y _C X, then X ~ Y. 
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FD2 (Augmentation). I f Z  _ W a n d  X---, Y, then X W - - ,  YZ. 

FD3 (Transitivity). I f  X - - ,  Y a n d  Y---~ Z, then X---~ Z. 

There are three additional rules that are implied by the above rules. 

FD4 (Pseudotransitivity). I f  X - o  Y and YW--~ Z, then XW---~ Z. 

FD5 (Union). IfX---~ Y a n d  X--* Z, then X---~ YZ. 

FD6 (Decomposition). I f  X - o  YZ,  then X - o  Y and X - o  Z. 

The rules of  union and decomposition imply that we can always replace a set o f  
functional dependencies with an equivalent set that has only functional dependencies 
of  the form X - - ,  A (i.e., the right-hand side contains a single attribute). 

M V D  Rules 

MVD0 (Complementation).  Let X, Y, and Z be sets o f  attributes such that their 
union is q / a n d  Y n Z c X. Then X ) ) Y if and only if  X ~ ) Z. 

MVD1 (Reflexivity). I f  Y C X, then X ) ) Y. 

MVD2 (Augmentation). I f  Z C W and X ) ) Y, then X W  , ~ YZ.  

MVD3 (Transitivity). I f X  ) ) Y a n d Y  ) , Z ,  t h e n X  ) ) Z -  Y. 

The following rules follow from the above MVD rules. 

MVD4 (Pseudotransitivity). I f  X ) ~ Y and Y W  ~ ~ Z, then X W  ~ ~ Z -  YW. 

MVD5 (Union). I f X  ) ~ Y a n d X  ) ) Z ,  t h e n X  ~ ~ YZ. 

MVD6 (Decomposition). I f X  ) ) Y a n d X  ) ) Z, t h e n X  ) ) Y A Z ,  X ) 
Y - Z ,  a n d X  ~ ~ Z -  Y. 

Note that the rules of  transitivity, pseudotransitivity, and decomposition are more 
restricted than the corresponding FD rules. 

The FD rules are sufficient when there are only functional dependencies, and the 
M V D  rules are suffficient when there are only multivalued dependencies. When  there 
are both functional and multivalued dependencies, we need the FD rules, the MVD 
rules, and the following rules. 

F D - M V D  Rules 

F D - M V D 1 .  I f X - - ~  Y, then X ) ) Y. 

F D - M V D 2 .  IF X ) ) Z and Y ~ Z ' ,  where Z '  C Z and Y and Z are disjoint, 
then X---~ Z ' .  

F D - M V D 3 .  I f X  ) ) Y a n d X Y ~ Z ,  t h e n X ~ Z -  Y. 

The last two rules are equivalent in the presence of  the other rules; that is, either 
one of  them can be omitted. 

Let ~ be a set o f  functional and multivalued dependencies, and let ox, o2 . . . . .  or, be 
dependencies (functional or multivalued). We say that ox, o2 . . . . .  on is a derivation 
from ~ if  the following is true. For  all i (1 _< i _< n), either o, is in ~ U (ol . . . . .  o,-1) 
or o, can be inferred from 2~ O {ox . . . . .  o,-~) by an application of  one of  the inference 
rules. I f  o~, o2 . . . . .  on is a derivation f rom ~, then each o, can be derived f rom ~. The 
inference rules are sound if  every dependency o that can be derived from ~ is also a 
consequence of  ~. The inference rules are complete if  every dependency o that is a 
consequence of  ~ can also be derived f rom ~. In [5] it is proved that the inference 
rules are sound and complete. This result is known as the Completeness Theorem for 
functional and multivalued dependencies. 
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2.4. THE DEPENDENCY BASIS AND THE CLOSURE. Let X be a set of  functional and 
multivalued dependencies. Given a set of  attributes X, consider the following set: 

f~ = ( W I X ) , W can be derived from 22}. 

Note that the elements of  this set are sets of  attributes. The rules of  complementation, 
union, and decomposition for multivalued dependencies imply that there exists a 
subset of  the above set, called the dependency basis of  X [5, 11], such that 

(a) the sets of  the dependency basis are nonempty and their union is q/; 
(b) the sets of  the dependency basis are pairwise disjoint; and 
(c) if X ) ) Y can be derived from X, then Y is a union of  some sets from the 

dependency basis. 

The dependency basis of  X contains precisely the minimal nonempty elements of  ~2, 
that is, those nonempty elements W of  f~ such that W does not contain a proper 
nonempty subset W' that is also a member of  ~2. 

The closure of  a set of  attributes X, denoted by X*, is the set of  all attributes 
A such that X ~ A can be derived from ~. Since X ) ~ A can be derived from 
X---~ A, it follows that i fA ~ X*, then {A} is a set of  the dependency basis of  X. 

3. Propositional Logic and Dependencies 

In this section we show the syntactical similarity between dependencies (functional 
and multivalued) and a fragment of  propositional logic. We begin with a definition 
of  this fragment of  propositional logic. 

3.1 FD AND MVD FORMULAS OF PROPOSITIONAL LOGIC. Let A, B, C, D . . . .  
(possibly with subscripts) be propositional variables. Each propositional variable can 
be assigned either true or false. We also use the logical connectives + (or), • (and), 
and =~ (imply). The formula A1.A2 . . . . .  An ~ B1.B2 . . . . .  Bm is true if and only if 
all the B/s are true or some of  the A~'s are false. We may simply write this formula 
as A I A 2 . . . A n  ~ B1B2..  "Bin, where it is understood that a string of  propositional 
variables (e.g., A x A 2- . .  An) stands for the conj unction of  these variables (i.e., A 1.A2. 
. . . .  An). Following the notation of  the previous section, the string A1A2. • .An can 

be replaced with X, where X is the set {A1, A2 . . . . .  An}. A set X stands for the 
conjunction of  all the elements it contains. Consequently, a set X is true if all its 
elements are true, and it is false if some of  them are false. The formula X =* Y, where 
both X and Y are sets of  propositional variables, is true if X is false or Y is true. 

Let ~ be a set of  formulas. These formulas imply other formulas, that is, formulas 
that are true whenever all the formulas of  ~ are true. Formally, we say that a formula 
o is a logical consequence of  ~ if for all truth assignments t k, the formula o is true 
under ~p if  all the formulas of  • are true under q/. 

The syntactical correspondence between the formula Aa A2 . . .An  =-~ BaB2. . .Bin 
and the functional dependency A~A2. • .An ~ B1 B2. • •Bm is quite apparent. We can 
apply it to the inference rules for functional dependencies in order to obtain inference 
rules for formulas of  the form X ~ Y. For  example, the rule of  transitivity for 
functional dependencies becomes the following rule for formulas: 

If  X=~ Y and Y ~ Z ,  then X = * Z .  

Syntactical similarity alone cannot guarantee that the resulting inference rules for 
formulas (of the form X ~ Y) are either sound or complete. However, it so happens 
that they are both sound and complete [12]. 
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This result can be extended to multivalued dependencies as well. We assume that 
there is a fixed set of  propositional variables ~ .  Let X, Y, and Z be sets of 
propositional variables whose union is q / a n d  where Z is the complement (in q/) of  
X E  (Recall that X Y i s  the union of X and Y.) Consider the formula X =* Y + Z. This 
formula is true if  either 

(1) X is false, or 
(2) Y is true, or 
(3) Z is true. 

Note that some of  X, Y, and Z may be empty. An empty set (i.e., conjunction) of  
propositional variables is always true. 

We abbreviate X =* Y + Z by X ~. ;. Y. Now the correspondence to multivalued 
dependencies becomes obvious. This correspondence indicates how to translate the 
inference rules for multivalued dependencies and the mixed rules for functional and 
multivalued dependencies to propositional logic. We shall show that the resulting 
rules (including the translated FD rules) are sound and complete for the fragment of 
propositional logic consisting of  all formulas of the form X ~-~ Y and X ~. ~ Y. 

Let o be a dependency, and let X be a set of  dependencies. Let o and • be the 
corresponding formula and set of  formulas, respectively, in propositional logic. A 
formula of  the form X =~ Y is called an FD formula, and a formula of  the form 
X ~ ; Y is called an MVDformula .  Note that ol, o2 . . . . .  or, is a derivation from 
if  and only if  ol, o~ . . . . .  on is a derivation from X. 

We say that an MVD formula X ~. > Yis triviali feither Y C X o r X Y =  q/. Thus, 
trivial MVD formulas are those that correspond to trivial multivalued dependencies 
[11]. As mentioned above, an empty conjunction is always true, and therefore trivial 
MVD formulas are tautologies (i.e., are true under every truth assignment). 

The following proposition states a property of  MVD formulas that corresponds to 
a weN-known property of  multivalued dependencies [11]. 

PROPOSITION 1. X ~ Y is true i f  and only i f  X ~ ~ Y - X is true. 

PROOF. Obvious. [] 

3.2 AN EXAMPLE. Our Equivalence Theorem states that if o is the propositional 
formula corresponding to the (functional or multivalued) dependency o, and similarly 
for X and X, then the following two statements are equivalent: 

(1) o is a consequence of  X. 
(2) o is a logical consequence of  X. 

As an illustration of the Equivalence Theorem, let the set of  attributes be 
{A, B, C, D), let o be the dependency A ~ B, and let • be {A , ) B, C--> B}. Then 
o is the propositional formula A =* B, and X is {A =* B + CD, C ==} B) .  By the 
Equivalence Theorem, either (1) and (2) both hold or (1) and (2) both fail. We now 
show that in this case (1) and (2) both hold. 

Let R be a relation with attributes {A, B, C, D} in which the multivalued 
dependency A ) ) B and the functional dependency C ~ B both hold. To show (1), 
we must show that the functional dependency A ---, B necessarily holds in R. Let 
(a, b, c, d) and (a, b', c', d ')  be two tuples of R; we must show that b = b'. Since 
A , ~ B holds in R, the tuples (a, b', c, d) and (a, b, c', d ' )  also appear in R (by 
definition). Since (a, b', c', d ')  and (a, b, c', d ')  appear in R, and since R obeys the 
functional dependency C ~ B, necessarily b = b', which was to be shown. So (1) 
holds. 
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We now show that (2) holds. Let ~ be a truth assignment that makes both 
A ~ B + CD and C =~ B true. We must show that ~ makes A ~ B true. I f  ~b makes 
A false, we are through. So assume that ~ makes A true; we must show that ~ makes 
B true. Since ~ makes both A and A ~ B + CD true, it makes B + CD true. I f  it 
makes B true, we are through. So we can assume that it makes CD true. Thus 
makes C true. Since it also makes C =~ B true, it makes B true, which was to be 
shown. 

It is not surprising that the proofs of  (1) and (2) are quite different, since they deal 
with completely different universes of  discourse. However, according to the Equiva- 
lence Theorem, ( l)  and (2) are either both true or both false (in this case, they are 
both true). Questions as to whether (1) holds in a particular case of  interest come up 
quite of ten- - for  example, in database normalization, and in proofs of  theorems. By 
the Equivalence Theorem, to determine i f ( l )  holds, one can instead solve the perhaps 
easier problem as to whether (2) holds in propositional logic. One can use all the 
tools of  propositional logic (including truth tables, theorem provers, and even 
intuition) to obtain the answer. In Section 6 we give several applications where proofs 
of  known theorems using our techniques are simpler and shorter than traditional 
proofs. 

3.3 2-TuPLE RELATIONS AND TRUTH ASSIGNMENTS. Before we proceed to prove 
the equivalence of dependencies and the fragment of  propositional logic consisting 
of  FD and MVD formulas, we shall show that there is a correspondence between 2- 
tuple relations (i.e., relations with only two tuples) and truth assignments. Let R be 
a 2-tuple relation over the set of  attributes ~/. We construct a truth assignment ~b 
("the special truth assignment") for the variables of  q / a s  follows. A variable A is 
assigned true if  the two tuples of  R agree in the A-column; otherwise, A is assigned 
false. 

LEMMA 2. Let R be a 2-tuple relation. Then a dependency o holds in R if  and only 
i f  the formula o is true under the special truth assignment t k. 

Before we prove this lemma, it is convenient to define a simple new concept and 
to prove two simple lemmas about it. 

If  T is a 2-tuple relation and U ) > V is a multivalued dependency, then we say 
that U ~ , V holds actively in T if it holds in T and if the two tuples in T agree 
in the U columns. Note that there are two ways that a multivalued dependency 
U ~ V can hold in a 2-tuple relation T; either (1) the two tuples disagree in 
some column of  U (in which case U ~ ) V holds), or else (2) U > ) V holds ac- 
tively in T. 

LEMMA 3. Assume that U, V, and W form a partition of  the attributes (i.e., each 
attribute is in exactly one of  U, V, or W).  Let T be a 2-tuple relation. Then the 
multivalued dependency U ~ ~ V holds actively in T if and only i f  

(1) the two tuples of  T agree in the U columns; and 
(2) either the two tuples agree in the V columns, or else they agree in the W columns. 

PROOF. I f ( l )  and (2) hold, then dear ly  U ~ ) Vholds actively in T. Conversely, 
assume that U > > V holds actively in T. By definition, (1) holds. Write the two 
tuples of  Tas  (u, v, w) and (u, v', w'). Since U ~ ~ Vholds in T, the tuples (u, v', w) 
and (u, v, w') must also be members of  T. Now if v # v' and w # w', then it is easy 
to verify that the tuples (u, v, w), (u, v', w'), (u, v', w), and (u, v, w') are all distinct. 
But T has only two tuples. Hence v = v' or w = w', which was to be shown. E] 
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The following lemma is not needed for the proof  of  Lemma 2, but it will be used 
later. 

LEMMA 4. Assume that T and T' are 2-tuple relations over the same set o f  attributes, 
and that whenever the two tuples o f  T agree in a column, then the two tuples of  T' agree 
in the same column. Then each multivalued dependency that holds actively in T also 
holds actively in T'. 

PROOF. Assume that the multivalued dependency U ~ ~ V holds actively in T 
(where U, V, and W form a partition o f  the set o f  attributes). The two tuples of  T 
agree in the U columns, and, hence, so do the two tuples of  T'. By Lemma 3, the two 
tuples of  T either agree in the V columns or agree in the W columns. Hence, so do 
the two tuples of  T'. Thus, U ~ ) V holds actively in T', as desired. [] 

We can now prove Lemma 2. 

PROOF OF LEMMA 2. If. Suppose that o is true under ~; we must show that o 
holds in R. There are two cases to be considered. 

Case 1. The formula o is an FD formula X =* Y. I f  X is false, then the two tuples 
of  R disagree in some X column, and hence the functional dependency X ~ Y holds 
in R. I f  X is true, then Y is also true, and the two tuples of  R must agree in all the Y- 
columns. Thus the functional dependency X ~ Y holds in R. 

Case 2. The formula a is an MVD formula X ~. ~. Y. I f X i s  false, then obviously 
the multivalued dependency X ~ ~ Y holds in R. Suppose that X is true. Let Z be 
the complement of  X Y  (in o//). It follows that either Y is true or Z is true. Thus, 
either the two columns of  R agree in the Y-columns or they agree in the Z-columns. 
Lemma 3 implies that in either case X > ~ Y holds in R. 

Only if. The proof  is similar to the " i f "  portion. []  

3.4 THE EQUIVALENCE THEOREM. Let o be a (functional or multivalued) depend- 
ency, and let ~ be a set of  dependencies. We say that o is a consequence of  ~ in the 
world of  2-tuple relations if  for all 2-tuple relations R, the dependency o holds in R 
whenever ~ (i.e., every dependency of  ~)  holds in R. That  is, there is no "counter- 
example" 2-tuple relation R for which ~ holds and o does not hold. Note that if o is 
a consequence of  ~, then o is a consequence of  ~ in the world of  2-tuple relations, 
but the converse is not obvious (although, as we shall show, it is indeed true). We 
prove the following theorem. 

EQUIVALENCE THEOREM. Let o be a dependency, and let ~ be a set o f  dependencies. 
The following are equivalent: 

(a) o is a consequence of  ~. 
(b) o is a consequence o r e  in the world o f  2-tuple relations. 
(c) a is a logical consequence o f ~ .  

Clearly, the major result is the equivalence of  (a) and (c). 
There are two ways of  proving the Equivalence Theorem. The first way is to show 

that the inference rules are sound and complete for FD and MVD formulas. This 
proof  is essentially a syntactical approach, and we present it in Section 4. 

The second way is to show that if  we are given a set o f  dependencies Z, a single 
dependency o, and a relation R such that all the dependencies of  Z hold in R but o 
fails in R, then we can fred a truth assignment ~ under which all the formulas in 
are true and o is false. (We also have to prove the opposite direction. However, as we 
shall see, it follows easily from Lemma 2.) This approach for proving the Equivalence 
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Theorem is followed in Section 5. Actually, we prove more  than  that. Assume that  
R and  P are relations (over the same set o f  attributes). W e  say that  P is a subrelation 
o f  R if  the tuples in P are a subset o f  the tuples in R. We  show that  i f  R is a relation 
in which ~ holds and o fails, then R has a 2-tuple subrelat ion P such that  1~ holds in 
P and  o fails. 

4. The Syntactic Proof 

In  this section we consider F D  and M V D  formulas.  We  show that  the inference rules 
are complete  also for this interpretation. The  first step is to show that  the rules are 
sound, that  is, i f  a formula  o can be derived f rom a set o f  formulas  ~ ,  then o is a 
logical consequence o f  1~. The  soundness o f  the rules is later used to prove that  the 
rules are also complete.  

LEMMA 5. The inference rules (interpreted as rules for  formulas of  propositional 
logic) are sound. 

PROOF. In  [12] it is proved that the rules for F D  formulas  are sound. We  now 
show that  the rules for M V D  formulas  and the mixed rules are also sound. 

(1) Complementation. Let X, Y, and Z be sets o f  variables such that  their un ion  
is o//, and Y N Z _C X. We have to prove that  X ~. ~, Y and X ~. ;. Z are equivalent, 
that  is, for all t ruth assignments, X ~. r Y is true if  and only if  X ;. r. Z is true. 

Let Y' = Y -  X, and let Z '  -- Z - X. By Proposi t ion 1, X ~ ~ Y is equivalent  to 
X ~. '.. Y', and X ~. ~. Z is equivalent  to X .~. ~, Z ' .  But Z '  is the complement  o f  
XY' ,  and  Y' is the complement  of  XZ ' .  Therefore,  both  X '  ;. r. Y' and X .'. ~, Z '  are 
shor thand for the same formula,  namely,  X =~ Y' + Z ' ,  and hence  X ~. ;, Y and 
X ~. ~. Z are equivalent. 

(2) Reflexivity. I f  Y _C X, then Y is true whenever  X is true. Thus  X ~ Y is 
always true. 

(3) Augmentation. Suppose that  Z C_ W and X ~ Y is true. W e  wish to show 
that  X W  ~. ~. YZ i s  true. I f X W i s  false, we are through.  So suppose X W i s  true, that  
is, both  X a n d  W a r e  true. I f  Yis true, so is YZ, and hence X W  ~..~. Y Z i s  true. I f  Y 
is false, then since X ~ > Y is true, the complement  o f  X Y  is true. Hence,  so is the 
complement  o f  X W Y Z  (because it is conta ined in the complement  o f  XY) .  So once 
again, X W  '.. ~ Y Z  is true. 

(4) Transitivity. Suppose that  X ;- ~. Y and  Y ~. ~. Z are true. To  show that  
X ;. ~ Z - Y is true, we assume that X is true. I f  Y is not  true, then Z - Y is true 
(because X and X ;- ~. Y are true, and hence all the variables that  are not  in Y are 
true). So if  Y is not  true, then X ;. ~ Z - Y is true, as desired. Therefore,  let us 
assume that  Y is true. There  are two cases to be considered. 

Case 1. Z is true, and hence so is Z - Y. 

Case 2. The  complement  o f  YZ is true. (This case must  occur  i f  case 1 does not, 
since Y and Y .~..~, Z are true.) But Y is true, and therefore Z - Y contains all the 
variables that  are false. 

Thus  X ;. '., Y is true in both  cases. 

(5) FD-MVD1.  I f X ~  Y, then obviously X r..~, Y. 

(6) FD-MVD2.  Suppose that  X '; ~ Z and Y ~ Z '  are true, where Z '  C Z, and  
Y and  Z are disjoint. To  show that X =~, Z '  is true, we assume that  X is true. I f  Z is 
true, then so is Z'.  I f  Z is false, then Y is true (since X and  X ~ v Z are true, and  
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hence all the variables that are not in Z must be true). Therefore, Y =-~ Z '  implies 
that Z '  is also true. O 

Now we can use the soundness of  the inference rules in the proof  of  the following 
lemma. That  is, we consider a set of  formulas ~ and derive some additional formulas 
by applying the inference rules. By Lemma 5, these additional formulas are logical 
consequences of  ~. We also consider the dependency basis and the closure of  a set 
of  variables X. They are defined using the inference rules exactly as for dependencies 
(see Section 2.4). For  example, X*, the closure of  X, is the set of  all the variables A 
such that X =* A can be derived from X. 

LEMMA 6. Let  ~ be a set o f  F D  and M V D  formulas,  and let X be a set o f  variables. 
Suppose that W is a member  o f  the dependency basis o f  X such that W and X *  are 
disjoint. I f  we assign false to every variable in W a n d  true to all the other variables, then 
all the formulas  in ~ are true. 

PROOF. First we show that all the MVD formulas in X are true. Let Y ~- ,~, Z be 
an MVD formula in X. I f  Y is false, then Y ,' ; Z is true. So suppose that under the 
above truth assignment, Y is true. Since Y is true, and since every variable in W is 
false, it follows that Y and W are disjoint. Let Y'  be the union of  all the sets from the 
dependency basis of  X whose intersection with Y is not empty. By the defmition of  
Y',  we know that Y _C Y'. Note that Y'  is a union of  members of  the dependency 
basis, not including W. Hence Y'  is disjoint from W, and so Y'  is true. Y'  ;. ~. Z can 
be derived from • by applying augmentation to Y ~. ,', Z.  X ~ ;, Y '  can be derived 
from X, since Y'  is a union of  sets from the dependency basis of  X. Transitivity 
implies that X ~. ;, Z - Y' can be derived from X ~. ~, Y' and Y'  ;. ;, Z.  Therefore 
Z - Y' is a union of  sets from the dependency basis of  X. Since IV is a set in 
the dependency basis of  X, either IV C_ Z - Y' or tV and Z - Y' are disjoint. But 
IV is disjoint from Y', and, therefore, either W _C Z or IV is disjoint from Z. Thus 
Y ~. ~ Z must be true. 

Now let Yffi=~ Z be an FD formula in X. Suppose that Yis true. We must show that 
Z is true. Let Y'  be defined as above. Since Y ~=, Z is in ~,  it follows that Y ~. ~, Z, 
and hence Y'  ~ ,', Z ,  can be derived from X. The MVD formula X ~ ;, Z - Y '  
follows from X ;. ;, Y '  and Y'  ~. ,', Z by transitivity. The FD formula Y=~ Z - Y '  
can be derived from X using Y ~=~ Z and decomposition, and hence X ~ Z - Y '  
follows from an application of  the rule FD-MVD2.  Therefore Z - Y '  _C X* ,  and so 
Z - Y '  is true. This implies that Z is true, because Y'  is true. []  

THEOREM 7. (COMPLETENESS THEOREM FOR FORMULAS). A formula  o is a logical 

consequence o f  • i f  and only i f  e can be derived f r o m  X. 

PROOF. The if portion follows from Lemma 5. In order to prove the other 
direction, we derive a contradiction by assuming that o is a logical consequence of  

and that o cannot be derived from X. 

Case 1. The formula a is an FD formula X =~ Y. Since X =~ Y cannot be derived 
from X, there is a variable A in Y such that X =~ A cannot be derived from X. 
Therefore A is not in X*, and there is a set Win  the dependency basis of  X such that 
A E IV and W is disjoint from X*. Consider the truth assignment under which every 
variable in W is false and all the other variables are true. Lemma 6 implies that all 
the formulas in X are true, but X ~ A is false and hence it cannot be a logical 
consequence of  ~. 

Case 2. The formula ~ is an MVD formula X ~,. ~, Y. Since X ~. ~. Y cannot be 
derived from X, there is a set W in the dependency basis of  X such that W f3 Y # 
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O and W ~ Y (otherwise Y is a union of  some sets from the dependency basis o f  X). 
Note that W has more than one element, and since W is in the dependency basis, it 
must be disjoint from X*. Suppose that we assign false to every variable in W and 
true to all the other variables. By Lemma 6, all the formulas in X are true, but 
X :. > Y is false and therefore cannot be a consequence of  X. []  

Now we can give the syntactical proof  of  the Equivalence Theorem. 

THEOREM 8. (EQUIVALENCE THEOREM). The following are equivalent: 

(a) o is a consequence o f~ .  
(b) o is a consequence of X in the world of  2-tuple relations. 
(c) o is a logical consequence of ~. 

PROOF. The fact that (a) implies (b) is obvious. 
Next, we show that (b) implies (c) by deriving a contradiction. Suppose that o is a 

consequence of  ~ in the world of  2-tuple relations, and o is not a logical consequence 
of  X. Let ~/be a truth assignment under which all the formulas of  • are true and o 
is false. We construct a 2-tuple relation R as follows. One tuple of  R is defined to be 
1 for all attributes A. The other tuple is 1 for an attribute A if  A is true under e A 
otherwise it is 0. Lemma 2 implies that ~ holds in R and o fails in R. This contradicts 
the assumption that o is a consequence of  X in the world of  2-tuple relations. 

Finally we have to show that (c) implies (a). Suppose that o is a logical consequence 
of  X. According to Theorem 7, o can be derived from X using the inference rules. 
But these rules are sound when we interpret them as inference rules for dependencies 
[5]. Therefore o is a consequence of  X. [] 

The soundness and completeness of  the inference rules for dependencies have been 
proved in [5]. However, Theorem 7 and the portion of  the proof  o f  Theorem 8 
showing that (a) implies (c) provide an alternative proof  of  the completeness of  the 
inference rules for dependencies. 

5. The Semantic Proof 

In this section we prove a lemma showing that if R is a relation in which ~ holds and 
o fails, then R contains two tuples that constitute a relation which is a counterexample 
to o being a consequence of  ~. The semantic proof  follows from this lemma, which 
is interesting in its own right as a model-theoretic result. Note that this lemma 
strengthens the result of  the previous section, where we showed that if o is not a 
consequence of  ~, then there is a 2-tuple relation in which Z holds and o fails. 

LEMMA 9 (2-TUPLE SUBRELATION LEMMA). Assume that R is a relation, ~ is a set 
of  dependencies (functional or multivalued), and o is a single dependency. Suppose that 

holds in R but o fails in R. Then R contains a 2-tuple subrelation for  which ~ holds 
and a fails. 

PROOF. There are two cases, depending on whether a is a functional dependency 
or a multivalued dependency. 

Case 1. The dependency o is a functional dependency. We can assume without 
loss of  generality that o is a functional dependency X ~ A in which the right-hand 
side contains a single attribute. Since X ~ A fails in R, there are two tuples tl and t2 
of  R that agree in the X columns but disagree in the A column. Consider all 2-tuple 
subrelations of  R in which X ~ A fails. Of  all such 2-tuple subrelations of  R, let T 
be the one for which the maximal number  of  multivalued dependencies hold actively. 
That is, if  T '  is another 2-tuple subrelation of  R for which o fails, and if  k is the 
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number of  multivalued dependencies that hold actively in T', then at least k 
multivalued dependencies hold actively in T. We shall now show that all the 
dependencies of  ~ hold in T (which completes the proof in case l, where o is a 
functional dependency). 

All functional dependencies in ~ hold in T because they hold in R, and hence in 
every subrelation. Let U ) ) V be a multivalued dependency in Z that fails in T; 
we shall derive a contradiction. Assume without loss of  generality that U, V, and W 
form a partition of  the set of attributes. The two tuples in T clearly agree in the U 
columns (or else U ) ) V would hold in T). Write the two tuples in T as (u, v, w) 
and (u, v', w'). Then v ~ v' and w ~ w' (or else U ) ) V would hold in T). By 
assumption, X ---> A fails in T. Thus the two tuples agree in the X columns and 
disagree in the A column. Since they disagree in the A column, A is in either V or W. 
Assume without loss of  generality that A is in V. Let T'  be the 2-tuple relation 
containing (u, v, w) and (u, v', w). Since U ~ ) Vholds in R, and since (u, v, w) and 
(u, v', w') are in R, (u, v', w) is necessarily in R. So T' is a 2-tuple subrelation of  R. 
The two tuples of  T'  agree in the X columns (since the two tuples of T do) but 
disagree in the A column (because v and v' disagree in the A column). Thus X ~ A 
fails in T', and, unlike the situation in T, we see that U ) ) V holds actively in T'. 
Furthermore, by Lemma 4 every multivalued del~endency that holds actively in T 
also holds actively in T'. So more members of  ~ hold actively in T'  than in T, Since 
T' is a 2-tuple subrelation of R for which X--~ A fails, this is a contradiction of the 
"maximality" in the definition of  T. This completes the proof of  case 1. 

Case 2. The dependency o is a multivalued dependency X • ) Y. Assume 
without loss of  generality that X, Y, and Z form a partition of the set of  attributes. 
We say that a pair of  tuples (x, y, z) and (x, y', z ' )  witness the failure o f X  ) ) Yin 
a given relation if they appear in that relation and if one of  (x, y ' ,  z) or (x, y, z') does 
not appear in that relation. Thus a multivalued dependency fails in a relation if and 
only if  the relation has a pair of  tuples that witness the failure. In particular, since the 
multivahied dependency X ) ) Y fails in R, let (x, y, z) and (x, y ' ,  z ' )  witness the 
failure. Thus either (x, y ' ,  z) or (x, y, z ' )  does not appear in R. Of all 2-tuple 
subrelations of  R that witness the failure of X ) ) Y, let T be the one for which the 
maximal number of multivalued dependencies in ~ hold actively. We now show that 
all of  ~ holds in T (which completes the proof, since X ) ~ Y fails in T). 

As in case l, each functional dependency in ~ holds in T. Let U ) ) V be a 
multivalued dependency in ~ that fails in T; we shall derive a contradiction. Assume 
that U, V, and W form a partition of the set of  attributes. As in case 1, the two tuples 
in T agree in the U columns. 

Denote by P and W those columns in V and W, respectively, for which the tuples 
in Tdisagree. Since U ) ) Vfails in T, Vand l~necessarily are both nonempty. We 
rewrite (x, y, z) and (x, y ' ,  z ' )  as (u, v, w) and (u, v', w'), respectively. Let T1 be the 
2-tuple relation consisting of  (u, v, w) and (u, v', w), and let T2 be the 2-tuple relation 
consisting of  (u, v, w) and (u, v, w'). Obviously T1 and T2 are subrelations of R, since 
U ; ~ V holds in R. They are 2-tuple relations since v ~ v' and w ~ w'. By Lemma 
4 every multivalued dependency of  ~ that holds actively in T also holds actively in 
T1 and T2. Clearly U ) ) V holds actively in Ti and T2. If  X ) ) Y fails either in 
Tx or in T2, we have derived a contradiction to the maximality of T, and hence we 
are done. So suppose that X , ) Y holds in both T1 and T2. Then X ) ) Y holds 
actively in T1 and T2 since all of  the tuples in T, T~, and T2 have the same X-value 
x. It follows from Lemma 3 that the two tuples in T1 agree either in the Y columns 
or in the Z columns. In the former case V C Z, since V contains all of the columns 
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in which the two tuples of  Ti disagree. In the latter case VP _C Y. Thus we know that 
_C Y or V C Z. Similarly, it follows from our knowledge of  T2 that 1~ C_ Y or 

I~" _C Z. Since either V _C Y or V _C Z, and since either 1~" C Y or ~ _C Z, there are 
four possibilities: 

(a) V C  Yand  I~C  Y; 
(b) V C  Yand  I~_CZ; 
(c) P _C Z and I~" _C Y; 
(d) V C Z and I~'_C Z. 

Now V W  are all the columns in which the two tuples of  T disagree. If  (a) were to 
hold, then the two tuples in T would agree in the Z columns, and hence the 
multivalued dependency X ~ ~ Y would hold in T (which it does not). Similarly, 
(d) is impossible. So either (b) or (c) holds. We assume without loss of  generality that 
(b) holds. Henceff  and y '  disagree exactly in the V columns, and z and z' disagree 
exactly in the W columns. Under these conditions (x, y ' ,  z) and (u, v', w) are 
identical, and so are (x, y, z') and (u, v, w'). But this is impossible, since (u, v', w) and 
(u, v, w') are in R, whereas either (x, y ' ,  z) or (x, y, z') is not in R. [] 

This leads us to the semantic proof of  the Equivalence Theorem. 

THEOREM 10 (EQUIVALENCE THEOREM ). The following are equivalent: 

(a) tr is a consequence o f~;  
(b) o is a consequence o r e  in the world of  2-tuple relations; 
(c) a is a logical consequence of  ~. 

PROOF. By Lemma 9, (a) and (b) are equivalent. In the proof of  Theorem 8 we 
showed (using Lemma 2) that (b) implies (c). Since Lemma 2 is an "if  and only if" 
result, we can use it in a similar way to show that (c) implies (b). [] 

6. Applications 

One application of  the Equivalence Theorem, as we saw at the end of  Section 4, is 
a shorter proof of  the Completeness Theorem for dependencies. Other applications 
are discussed in [10, 20, 22]. The application we describe in this section is a new 
technique for proving properties of  dependencies. We give several examples to 
demonstrate that this technique provides much shorter proofs than previous methods. 
Most of  these applications are based on a new characterization of  the dependency 
basis in terms of  truth assignments (Theorem 11). 

In this section we use arguments that are based on truth assignments. For example, 
we may assign truth values to attributes and evaluate the resulting truth values of  
some dependencies. However, these arguments cannot constitute a complete formal 
proof. A formal proof is obtained by translating dependencies to corresponding 
formulas, proving the desired result for formulas, and finally applying the Equiva- 
lence Theorem to obtain a similar result for dependencies. Since the equivalence of  
dependencies and formulas is well established at this point, we shall forego doing so 
and simply view truth assignments as being applied directly to dependencies. There- 
fore our proofs are only an abbreviated version of the complete formal proofs. 

We believe that the most important tool for applications is given by the following 
theorem. 1 

1 Note that from a formal pomt  of  view this theorem should have been stated for formulas and not  for 
dependenctes 
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THEOREM 11. Assume that Y. is a set o f  dependencies. Let W a n d  X be disjoint sets 
o f  attributes. Consider the truth assignment ~, under which every attribute in W is false 
and all the other attributes are true. 

(a) I f  W is a set in the dependency basis o f  X and is disjoint f rom X*, then all the 
dependencies in ~ are true under this truth assignment. 

(b) I f  all the dependencies in • are true under this truth assignment, then W is 
contained in one set o f  the dependency basis o f  X. Furthermore, W is disjoint f rom X*. 

PROOF 

(a) This part follows from Lemma 6. 
(b) Suppose that Wis not contained in one set of the dependency basis of X. Then 

there is a set V in the dependency basis of X such that V N W ~ ~ and W~ V. 
Under the truth assignment ~ all the dependencies in E are true, but X ~. ~. V is 
false. This is a contradiction, since X ~..~ V can be derived from ~. 

The fact that Wis disjoint from X* is implied by the following observations. If W 
is not disjoint from X*, then W(being in the dependency basis) must be a singleton 
set. Suppose that Wis A. The attribute A is a member of X*, and therefore ~ contains 
a functional dependency Y ~ Z where A is not a member of Y but A is a member 
of Z (otherwise, X--, A cannot be derived from ~). But A is the only attribute which 
is false, and hence Y ~ A is false. [] 

COROLLARY 12. Let ]~ be a set o f  multivalued dependencies, and let X and V be 
disjoint sets o f  attributes. The set V is a member of  the dependency basis o f  X if and 
only i f  

(1) i f  the truth assignment ~b makes every attribute of V false and all the other attributes 
true, then all the dependencies in ~ are true under ~; 

(2) for  every W such that W is disjoint f rom X and W is a proper superset o f  V, the 
truth assignment making precisely all the attributes of  W false does not satisfy ]~. 

PROOF. When there are only multivalued dependencies X* is equal to X. The 
rest follows from Theorem 11. D 

We remark that Corollary 12 cannot be strengthened by further restricting W in 
(2) to contain exactly one more attribute than V. In proof, suppose that the attributes 
areA, B, C, D, andE.  Let ~ = {ADE ) ) B, A C E  ) ) B, A ) ) BCD}.  The 
dependency basis of A is {A, BCD, E}.  However, if we choose V = B, then condition 
(1) is true, and condition (2) is true if we add the restriction that Wcontains exactly 
one more attribute than B. 

Theorem 11, coupled with the general concept of truth assignments, is instrumental 
in proving several properties of dependencies. We shall give short proofs for two 
theorems about properties of dependencies by applying Theorem 11. These theorems 
were previously proved using lengthy arguments that are based either on the method 
of [5] for proving the Completeness Theorem (for dependencies) or on derivations. 

The following theorem provides a useful characterization of the dependency basis. 
It has been used to prove the correctness of some of the algorithms for constructing 
the dependency basis for a given set of attributes X (e.g., [14]). 

THEOREM 13 (BEER! [4]). Assume that ~ is a set o f  multivalued dependencies and 
that X, V1, V2 . . . . .  Vn partition the set o f  attributes. Then V1, V2 . . . . .  Vn is the 
dependency basis o f  X if and only i f  

(1) X ) ) V, is a consequence o f ~ ,  and 
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(2) for each multivalued dependency Q ; ~ R in ~ and for each V, disjoint from Q, if 
V, N R ~ ~, then V, C R. 

PROOF. If. From (2), if we assign false to every attribute in V, and true to all the 
other attributes, then all the dependencies in E are true. Thus, by Theorem 11, V, is 
contained in a member of  the dependency basis of  X. From (1), V, is a union of  sets 
from the dependency basis of  X. So V, is in the dependency basis of  X. 

Only if. (1) is obvious. Let ~p be a truth assignment under which every attribute 
in V, is false and all the other attributes are true. By Theorem 11, all the dependencies 
in ~ are true under ~p. Hence (2) follows. [] 

The next theorem is used in some of  the algorithms (e.g., [4, 14]) for deciding 
whether a dependency o is a consequence of  a set of  dependencies ~. Let F be a set 
of  functional dependencies, and let M be a set of  multivalued dependencies. We 
assume that all the functional dependencies in F have only one attribute on the right- 
handside.  L e t F = ( X  ~ ~ A i X---~ A is in F}. 

THEOREM 14 (BEERI [4]). A multivalued dependency V ~ ~ W can be derived 
from F t.J M if and only if it can be derived from r t.J M. 

PROOF. lf. Trivial, since X ~  Y implies X ~ ~ Y. 

Only if. Suppose that V ~ ~ W can be derived from F t.J M but not from P t.J M. 
Let ~k be a truth assignment under which P U M is true and V ~ ~ W is false. We 
claim that F is also true under ~p. Let X ~ A be a functional dependency in F, and 
assume that X is true under ~k. If  A is false, then it is the only attribute which is false 
under ~p, because X ~ ~ A is true. But if  only one attribute is false, then V ~ ~ W 
must be true. Therefore A is true, and so is X ~ A. We may conclude that F is true 
under ~p, and hence V ~ ~ W (which is false under ~k) cannot be derived from 
F t.J M. This contradiction completes the proof. [] 

7. Nonextendibility of the Equivalence to Join Dependencies or Embedded 
Multivalued Dependencies 

In this section we show that the equivalence between multivalued dependencies and 
MVD formulas cannot be extended to cover either join dependencies [13, 15, 21] or 
embedded multivalued dependencies [11]. 

We first consider join dependencies. We show that there is no way to extend the 
mapping between dependencies (functional and multivalued) and propositional 
logic to include join dependencies and still maintain equivalence. Assume that 
there is such an extension of  the mapping; we shall derive a contradiction. Let X, 
Y, and Z be a partition of  the set of  attributes, and let o be the join dependency 
* {XY, XZ, YZ},  which holds for a relation R (over the attributes X Y Z )  if  and only 
if R is the join of  its projections R[XY], R[XZ], R[YZ].  (Note that this join 
dependency is also a mutual dependency [19].) Let o be the alleged propositional 
formula that corresponds to o. Now o is a consequence of  the multivalued dependency 
X ~ ~ Y. Since we assume equivalence, o is a logical consequence of  the MVD 
formula X =~ Y + Z. Similarly, o is a logical consequence of  Y ~ X + Z. Now if X 
is false, then X ~ Y + Z is true; so o is then true. I f X  is true, then Y ~  X + Z is true; 
so o is again true. Hence o is true under every truth assignment; that is, o is a 
tautology. But o does not always hold. This is a contradiction. 

We now consider embedded multivalued dependencies. An embedded multivalued 
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dependency [11] X > > Y I Z holds in a relation R over ~ (where X, Y, and Z are 
subsets of  q/) i f X  > > Yholds in the projection of  R onto X Y Z .  

Let W, X, Y, and Z be a partition of  the set of  attributes. Probably the most natural 
guess as to how to extend the mapping (between dependencies and formulas of  
propositional logic) would be to have the propositional formula W ==~ X + Y 
correspond to the embedded multivalued dependency W ) ) X[ Y. However, the 
propositional formulas W ~ X + Y and W =* X + Z taken together always imply 
the MVD formula W ~ X + Y Z  (in propositional logic). But the embedded 
multivalued dependencies W ) ) X[ Y and W ~ ~ X I Z  taken together do not 
imply the multivalued dependency W ~ ~ X I YZ.  This is shown in the relation of  
Figure 2 in which W > ~ X l Y a n d  W > ) X [ Z h o l d ,  but W > ~ X l Y Z f a i l s .  So 
this extension of  the equivalence fails. 

We now show that this extension (in which the propositional formula W 
X + Ycorresponds to the embedded multivalued dependency W > ) X [ Y) provides 
us with a necessary (but, as we saw, not sufficient) condition for determining whether 
a dependency o (functional, multivalued, or embedded multivalued) is a consequence 
of  a set ~ of  dependencies (functional, multivalued, or embedded multivalued). Let 
X, o be the corresponding formulas in propositional logic. We now sketch a proof  
that if o is a consequence of  2,  then o is a logical consequence of  ~. As in Theorem 
8, let (a) be the statement that o is a consequence of  ~, let (b) be the statement that 
o is a consequence of  2 in the world of  2-tuple relations, and let (c) be the statement 
that o is a logical consequence of  2~. Unlike the situation in Theorem 8, we are 
allowing not just functional and multivalued dependencies, but also embedded 
multivalued dependencies. As before, (a) implies (b) and (b) implies (c), even in this 
generalized context. But "(a) implies (c)" is exactly what we wanted to prove. (We 
note that (c) imphes (b) even in this generalized context, but (c) does not imply (a), 
as we saw by a counterexample.) 

We now show that there is no way to extend the mapping between dependencies 
(functional and multivalued) and propositional logic to include embedded multival- 
ued dependencies and still maintain equivalence. Let W, X, Y, and Z be a partition 
of  the set of  attributes, where none of  W, X, Y, or Z is empty. Assume that there is 
such an extension of  the mapping; we shall derive a contradiction. 

Let o be the embedded multivalued dependency W ~ , X ] Y, and let o be the 
alleged proposttional formula that corresponds to o. We shall prove that o must be 
(equivalent to) W ==~ X + Y. A similar proof  would show that the propositional 
formula corresponding to the embedded multivalued dependency W > > X IZ  is 
W ~ X + Z. But then we run into the same contradiction as we showed earlier. So 
the proof  that there is no way to extend the mapping to include embedded multi- 
valued dependencies is complete if  we can show that o is necessarily equivalent to 
W ~ X + Y, where a is the embedded multivalued dependency W ~ ~ X I Y- 

Now W ~ ~ X I Yis a consequence of  the multivalued dependency W ~ ~ X [ YZ,  
by projection [11]. Hence o is a logical consequence of  the MVD formula W 
X + YZ. Thus o is true if W is false or X is true. Similarly, since W ~ ~ X ] Y is a 
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consequence of  W ~ ~ X Z  [ Y, it follows that o is true if Y is true. So o is true if 
either W is false, X is true, or Y is true. To show that o is equivalent to W =~ X + Y 
(and thus complete the proof), we must show that this " i f"  is an " i f  and only if," that 
is, that o is false under each truth assignment in which, simultaneously, W is true, X 
is false, and Y is false. 

Let us denote the dependencies W ~ ~ X I Y ,  W Y  ~ ~ X l Z ,  and W ~ ~ X I Y Z  
by o, ~1, and ~'2, respectively. It has been shown that 1"2 is a consequence of  {o, ~'1} 
[24, 25]. By equivalence (which we are assuming), ¢2 is a logical consequence of  
{o, ~-~}. Consider a truth assignment + under which W is true, X is false, and Y is 
false. Under ~ we know that ~'a is true and ~'2 is false, since ,7"1 is W Y  ~ X + Z and 
~'2 is W ~ X + YZ. If  o were true under q/, then since cx is true under ff and ¢2 is 
a logical consequence of  {o, ~'i}, it would follow that 1"2 would be true under q,, a 
contradiction. So a is false under ~b. This was to be shown. 

8. Boolean Dependencies 

It is possible to extend the equivalence between functional dependencies and FD 
formulas by generalizing the notion of  a functional dependency. We define a Boolean 
dependency to be an arbitrary formal Boolean combination of  attributes. For example, 
if  A, B, and C are attributes, then A + (B. ~C)  is a Boolean dependency, which has 
the meaning, "For  every pair of  tuples, either (1) the two tuples agree in column A, 
or (2) the two tuples agree in column B and disagree in column C." The usual 
funcuonal dependency AiA2 • • • An ~ BiB2 • • • B m  is a special case which has the 
meaning, "For  every pair of  tuples, if the tuples agree in columns A1, As  . . . . .  An, 
then the tuples agree in columns Bh B2 . . . . .  B~." (However, multivalued depend- 
encies are not a special case of  Boolean dependencies.) It is clear how to form the 
corresponding propositional formula (A is replaced by A, etc.). The semantic proof 
of  the Equivalence Theorem for functional dependencies and FD formulas [12] goes 
through with minor modifications, to give the following result. 

THEOREM 15. Assume  that ~ is a set o f  Boolean dependencies and o is a single 
Boolean dependency. Le t  ~ and a be, respecnvely, the corresponding set o f  propositional 

f o rmu las  and single propositional formula .  The fo l lowing are equivalent: 

(1) o is a consequence o f  Z.  
(2) o is a consequence o f  ~ m the worm o f  2-tuple relations. 

(3) o is a logical consequence o f  ~ .  

Let us hngle out those Boolean dependencies of  the form AaA2 . . .  An 
B1B2 • • • B m +  CaC2 • • • Cp, where each attribute is exactly one of  A1, A2 . . . . .  An, 
B1, Be . . . . .  Bm, Ci, C2, . . . ,  Cp. Let us call these degenerate mult ivalued dependencies 
and use ~ instead of  =-~. The degenerate multivalued dependency A1A2 . .  • An 
BiB2 . . .  B~ + CaC2 . . .  Cp holds for a relation R if and only if every pair of  
tuples of R that agree in all columns of  A~, A2 . . . . .  An agree either in each of  
B~, Bz . . . . .  B~, or in each of Ca, C2 . . . . .  Cp. As the relation in Figure 3 shows, it is 
possible for the degenerate multivalued dependency A ~ B + C to hold without 
eRher of  the functional dependencies A --~ B or A ~ C holding. We note that 
degenerate multivalued dependencies are also studied in [2]. 
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Let X, Y, and Z form a disjoint partition of  the set o f  attributes, and let R be a 
relation on this set o f  attributes. Consider the following statements. 

(1) X---, Y o r  X---, Z holds in R. 
(2) X - ~  Y + Z holds in R. 
(3) X 7 ) Y h o l d s i n R .  

It is easy to show that (1) implies (2) and (2) implies (3), but (3) does not imply (2) 
and (2) does not imply (1). However,  our  theorems give a somewhat  puzzling analogy 
between multivalued dependencies and degenerate multivalued dependencies. 

THEOREM 16. Let ~ be a set of  functional dependencies and multivalued depend- 
encies, and let o be a single dependency (functional or multivalued). Let •' be the 
result o f  replacing each multivalued dependency in ~ by the corresponding degenerate 
multivalued dependency, and similarly for  o and o'. The following are equivalent: 

(1) o is a consequence o f  X. 
(2) e'  is a consequence of  X'. 

PROOF. By Theorems 8 and 15, both (1) and (2) are equivalent to "o  is a logical 
consequence of  X." [] 

9. Historical Note 

This current paper  is the end product o f  two earlier reports, one by Delobel and 
Parker [10] and the other by Sagiv and Fagin [23]. Chronologically, Sagiv was the 
first to conceive of  extending the equivalence between functional dependencies and 
a fragment  of  propositional logic to include also multivalued dependencies, but 
Delobel and Parker developed the result independently and published it first. 
This paper  is drawn mainly f rom the subsequent, easier-to-read report by Sagiv 
and Fagin. 
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