
An Equivalence Between Relational Database
Dependencies and a Fragment of Propositional Logic

Y E H O S H U A S A G I V

Umversmty of llhnols at Urbana-Champatgn, Urbana, llhnois

C L A U D E D E L O B E L

Umverstty of Grenoble, Grenoble, France

D. STOTT P A R K E R , JR.

Umverstty of Cahforma, Los Angeles, Cahforma

A N D

R O N A L D F A G I N

IBM Research Laboratory, San Jose, Cahforma

ABSTRACT. It is known that there is an eqmvalence between functional dependencies m a relatmonal
database and a certain fragment of proposmonal logic Thins eqmvalence is extended to include both
functional and multivalued dependencmes. Thus, for each dependency there is a corresponding statement
m proposmonal logic. It ms then shown that a dependency (funcuonal or multivalued) is a consequence of
a set of dependencies ff and only ff the corresponding proposiuonal statement ~s a consequence of the
corresponding set of proposmonal statements. Examples are given to show that these techniques are
valuable mn provmdmg much shorter proofs of theorems about dependencies than have been obtained by
more tradmonal means It is shown that this eqmvalence cannot be extended to include either join
dependencies or embedded multmvalued dependencies.

KEY WORDS AND PHRASES. relational database, functmonal dependency, multmvalued dependency, embed-
ded multivalued dependency, join dependency, proposmUonal logmc

CR CATEGORIES: 4.33, 5 21

1. Introduction

F u n c t i o n a l d e p e n d e n c i e s , w h i c h w e r e first d e f i n e d by C o d d [8], a r e a n i m p o r t a n t

a n d w i d e l y s t ud i ed c o n c e p t in t he t h e o r y o f r e l a t i o n a l da tabases . W i t h i n t he last f ew

yea r s F a g i n [11] and , i n d e p e n d e n t l y , Z a n i o l o [26] d e f i n e d a g e n e r a l i z a t i o n o f f unc -

t i o n a l d e p e n d e n c i e s , ca l l ed m u l t i v a l u e d d e p e n d e n c i e s , w h i c h a re a lso r e c e i v i n g

Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copynght notwce and the title of the publication
and its date appear, and notice IS given that copymg is by permission of the Assoctation for Computmg
Machinery To copy otherwise, or to republish, requires a fee and/or specdic permission.
The work of the first author was partially supported by the National Science Foundauon under Grant
MCS 76-15255 and by a grant from Bell Laboratories.

Authors' addresses: Y. Sagw, Department of Computer Science, 222 Digital Computer Laboratory,
Umverslty of lllmois at Urbana-Champalgn, Urbana, IL 61801; C Delob¢l, Computer Laboratory,
Umverstty of Grenoble, BoRe Postale 53, 38041 Grenoble Cedex, Grenoble, Franc, e; D. S. Parker, Jr ,
Computer Scmence Department, School of Engineering and Apphed Science, University of California at
Los Angeles, Los Angeles, CA 90024; R Fagm, IBM Research Laboratory K52/282, 5600 Cottle Road,
San Jose, CA 95193
© 1981 ACM 0004-5411/81/0700--0435 $00.75

Journal of the Assocmtlon for Computing Machinery, Vo| 28, No 3, July 1981, 435.--453

436 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

serious study (e.g., [3-7, 14, 16-18, 25]). In this paper we show that in some ways,
dependencies (functional or multivalued) behave in precisely the same way as a
certain fragment of propositional logic. Informally, the equivalence between depend-
encies and formulas of propositional logic can be described as follows. For every
dependency a (functional or multivalued) there is a corresponding formula a in
propositional logic. Let X be a set of dependencies, and let X be the set of the
corresponding formulas. The Equivalence Theorem proved in this paper states that
o is implied by X if and only if a is implied by X. This result generalizes a theorem
of Fagin [12] in which the equivalence is demonstrated in the special case of
functional dependencies alone (see also [9] for a closely related result).

The equivalence between dependencies and propositional formulas is helpful in
the following way. Suppose we want to show that a dependency o is a consequence
of a set of dependencies Y.. So far there have been only two ways of doing this. Either
we show that a can be inferred from X using the inference rules of [5], or we prove
(using relations) that for all relations R, a holds in R if all the dependencies of X hold
in R. Now there is a third way; namely, we may try to prove that for all truth
assignments 6, the propositional formula o is true if all the propositional formulas in
E are true. In Section 6 we demonstrate that by using this equivalence, we can obtain
proofs of theorems about dependencies that are simpler and shorter than proofs
obtained conventionally. Other applications of this equivalence are discussed in
[10, 20, 22].

We prove the Equivalence Theorem in two different ways. One approach is a
semantic proof. Suppose that X is a set of functional and multivalued dependencies,
a is a single dependency (functional or multivalued), and R is a relation in which all
the dependencies of X hold and a fails. In Section 5 we show that R has two tuples
that constitute a relation in which all the dependencies of X hold, but o fails. As we
shall see, the Equivalence Theorem follows from this result.

Another approach is a syntactic proof. Here we simply show that the inference
rules for functional and multivalued dependencies are also inference rules for a
fragment of propositional logic. This approach is taken in Section 4. The syntactic
proof includes a lemma that is used in Section 6 to obtain a new characterization of
the dependency basis in terms of truth assignments. Most of the applications discussed
in Section 6 are based on this characterization.

In Section 7 we show that our equivalence cannot be extended to include either
join dependencies or embedded multivalued dependencies. In Section 8 we introduce
"Boolean dependencies," of which "degenerate multivalued dependencies" are a
special case. We demonstrate a puzzling analogy between multivalued dependencies
and degenerate multivalued dependencies.

2. Basic Definitions

2.1 THE RELATIONAL MODEL. The relational model for databases assumes that
the data are stored in tables, called relations. The columns of a table are labeled with
names, called attributes. No two columns have the same name. Each attribute has an
associated domain of values. The rows of a table, usually referred to as tuples or
records, can be viewed as mappings from the attributes to their domains. Let r be a
tuple of a relation R and A be an attribute of R. Then r(A) is the A-component of r
(i.e., the value of r for the attribute A).

In this paper we do not consider a database with several relations, but rather
concentrate on a single relation R over a fLxed set of attributes q/. Let X be a subset
of q/, and let r be a tuple ofR. The projection o f t onto X, written r[X], is a mapping

Relational Database Dependencies

A B C D

al b~ cl d~

al b2 c2 d2
al bl cl d2

al b2 c2 d~
a2 ba cl dl

a2 ba cl d2

FIGURE 1

437

from the attributes of X to their domains such that r[X](A) ffi r(A) for all A in X. We
call r[X] an X-value (in R). The projection of the relation R onto X is obtained by
projecting each tuple in R onto X and eliminating duplicate tuples.

2.2 DEPENDENCIES. Usually the data must satisfy certain constraints. Functional
[1, 8] and multivalued [5, 11, 26] dependencies are examples of such constraints. A

functional dependency (abbreviated FD) is a statement of the form X ~ Y, where
both X and Y are sets of attributes. A relation R satisfies the functional dependency
X ~ Y (or X.-~ Y holds in R) if for every pair rl, r2 of tuples of R, if rl[X] ffi r2[X],
then rl[Y] = r2[Y].

A multivalued dependency (abbreviated MVD) is a statement of the form X ~ > Y,
where X and Y are sets of attributes. Let Z be the set of all the attributes in q / tha t
are neither in X nor in Y. The multivalued dependency X)) Y holds in R if for all
rl and r2 in R, if rl[X] = r2[X], then there are r3 and r4 in R such that

(i) ra[X] = rl[X], ra[Y] = r~[Y], and ra[Z] = r2[Z];
(ii) r4[X] = rl[X], r4[Y] = r2[Y], and r4[Z] = rl[Z].

In other words, X ~ ~ Y means that the set of Y-values associated with a particular
X-value must be independent of the values of the rest of the attributes.

It is easy to show that X > ~ Y holds in R if and only if X ~ ~ Y - X holds in R
[1 l]. I f the sets X, Y, and Z form a partition of q/(i.e., every attribute of a~ is in
exactly one of X, Y, and Z), then it is convenient to write a tuple r of R as (x, y, z),
where x, y, and z denote the projections of r onto X, Y, and Z, respectively.

We use letters from the beginning of the alphabet (A, B, C, D) to denote single
attributes and letters from the end of the alphabet (. . . , X, Y, Z) to denote sets of
attributes. XY, where both X and Y are sets of attributes, denotes the union of X and
Y. Similarly, a string of attributes A1A2.. "An denotes the set {A1, A2 An}.

Example 1. Consider the relation of Figure 1. This relation is defined on the
attributes A, B, C, and D. The functional dependency B ~ C and the multivalued
dependency A ~ ~ BC hold in this relation. []

2.3 INFERENCE RULES FOR DEPENDENCIES. A problem of practical importance is
to determine when a dependency is implied by some other dependencies. Formally,
we say that a dependency o is a consequence of a set of dependencies ~ if for all
relations R, o holds in R if all the dependencies of ~ hold in R. Previous work in this
area [l, 5] shows the existence of inference rules that are instrumental in solving this
problem. These rules are sound and complete in the sense that 0 is a consequence of

if and only if o can be inferred from Z by a sequence of applications of the rules.
The rules are divided into three groups reflecting the fact that the set 2 O (o} may
contain only functional dependencies or only multivalued dependencies, or a mixture
of both. Following [5], we now give a list of these rules.

FD Rules
FD1 (Reflexivity). I f Y _C X, then X ~ Y.

438 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

FD2 (Augmentation). I f Z _ W a n d X---, Y, then X W - - , YZ.

FD3 (Transitivity). I f X - - , Y a n d Y---~ Z, then X---~ Z.

There are three additional rules that are implied by the above rules.

FD4 (Pseudotransitivity). I f X - o Y and YW--~ Z, then XW---~ Z.

FD5 (Union). IfX---~ Y a n d X--* Z, then X---~ YZ.

FD6 (Decomposition). I f X - o YZ, then X - o Y and X - o Z.

The rules of union and decomposition imply that we can always replace a set o f
functional dependencies with an equivalent set that has only functional dependencies
of the form X - - , A (i.e., the right-hand side contains a single attribute).

M V D Rules

MVD0 (Complementation). Let X, Y, and Z be sets o f attributes such that their
union is q / a n d Y n Z c X. Then X)) Y if and only if X ~) Z.

MVD1 (Reflexivity). I f Y C X, then X)) Y.

MVD2 (Augmentation). I f Z C W and X)) Y, then X W , ~ YZ.

MVD3 (Transitivity). I f X)) Y a n d Y) , Z , t h e n X)) Z - Y.

The following rules follow from the above MVD rules.

MVD4 (Pseudotransitivity). I f X) ~ Y and Y W ~ ~ Z, then X W ~ ~ Z - YW.

MVD5 (Union). I f X) ~ Y a n d X)) Z , t h e n X ~ ~ YZ.

MVD6 (Decomposition). I f X)) Y a n d X)) Z, t h e n X)) Y A Z , X)
Y - Z , a n d X ~ ~ Z - Y.

Note that the rules of transitivity, pseudotransitivity, and decomposition are more
restricted than the corresponding FD rules.

The FD rules are sufficient when there are only functional dependencies, and the
M V D rules are suffficient when there are only multivalued dependencies. When there
are both functional and multivalued dependencies, we need the FD rules, the MVD
rules, and the following rules.

F D - M V D Rules

F D - M V D 1 . I f X - - ~ Y, then X)) Y.

F D - M V D 2 . IF X)) Z and Y ~ Z ' , where Z ' C Z and Y and Z are disjoint,
then X---~ Z ' .

F D - M V D 3 . I f X)) Y a n d X Y ~ Z , t h e n X ~ Z - Y.

The last two rules are equivalent in the presence of the other rules; that is, either
one of them can be omitted.

Let ~ be a set o f functional and multivalued dependencies, and let ox, o2 or, be
dependencies (functional or multivalued). We say that ox, o2 on is a derivation
from ~ if the following is true. For all i (1 _< i _< n), either o, is in ~ U (ol o,-1)
or o, can be inferred from 2~ O {ox o,-~) by an application of one of the inference
rules. I f o~, o2 on is a derivation f rom ~, then each o, can be derived f rom ~. The
inference rules are sound if every dependency o that can be derived from ~ is also a
consequence of ~. The inference rules are complete if every dependency o that is a
consequence of ~ can also be derived f rom ~. In [5] it is proved that the inference
rules are sound and complete. This result is known as the Completeness Theorem for
functional and multivalued dependencies.

Relational Database Dependencies 439

2.4. THE DEPENDENCY BASIS AND THE CLOSURE. Let X be a set of functional and
multivalued dependencies. Given a set of attributes X, consider the following set:

f~ = (W I X) , W can be derived from 22}.

Note that the elements of this set are sets of attributes. The rules of complementation,
union, and decomposition for multivalued dependencies imply that there exists a
subset of the above set, called the dependency basis of X [5, 11], such that

(a) the sets of the dependency basis are nonempty and their union is q/;
(b) the sets of the dependency basis are pairwise disjoint; and
(c) if X)) Y can be derived from X, then Y is a union of some sets from the

dependency basis.

The dependency basis of X contains precisely the minimal nonempty elements of ~2,
that is, those nonempty elements W of f~ such that W does not contain a proper
nonempty subset W' that is also a member of ~2.

The closure of a set of attributes X, denoted by X*, is the set of all attributes
A such that X ~ A can be derived from ~. Since X) ~ A can be derived from
X---~ A, it follows that i fA ~ X*, then {A} is a set of the dependency basis of X.

3. Propositional Logic and Dependencies

In this section we show the syntactical similarity between dependencies (functional
and multivalued) and a fragment of propositional logic. We begin with a definition
of this fragment of propositional logic.

3.1 FD AND MVD FORMULAS OF PROPOSITIONAL LOGIC. Let A, B, C, D
(possibly with subscripts) be propositional variables. Each propositional variable can
be assigned either true or false. We also use the logical connectives + (or), • (and),
and =~ (imply). The formula A1.A2 An ~ B1.B2 Bm is true if and only if
all the B/s are true or some of the A~'s are false. We may simply write this formula
as A I A 2 . . . A n ~ B1B2.. "Bin, where it is understood that a string of propositional
variables (e.g., A x A 2- . . An) stands for the conj unction of these variables (i.e., A 1.A2.
. . . . An). Following the notation of the previous section, the string A1A2. • .An can

be replaced with X, where X is the set {A1, A2 An}. A set X stands for the
conjunction of all the elements it contains. Consequently, a set X is true if all its
elements are true, and it is false if some of them are false. The formula X =* Y, where
both X and Y are sets of propositional variables, is true if X is false or Y is true.

Let ~ be a set of formulas. These formulas imply other formulas, that is, formulas
that are true whenever all the formulas of ~ are true. Formally, we say that a formula
o is a logical consequence of ~ if for all truth assignments t k, the formula o is true
under ~p if all the formulas of • are true under q/.

The syntactical correspondence between the formula Aa A2 . . .An =-~ BaB2. . .Bin
and the functional dependency A~A2. • .An ~ B1 B2. • •Bm is quite apparent. We can
apply it to the inference rules for functional dependencies in order to obtain inference
rules for formulas of the form X ~ Y. For example, the rule of transitivity for
functional dependencies becomes the following rule for formulas:

If X=~ Y and Y ~ Z , then X = * Z .

Syntactical similarity alone cannot guarantee that the resulting inference rules for
formulas (of the form X ~ Y) are either sound or complete. However, it so happens
that they are both sound and complete [12].

440 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

This result can be extended to multivalued dependencies as well. We assume that
there is a fixed set of propositional variables ~ . Let X, Y, and Z be sets of
propositional variables whose union is q / a n d where Z is the complement (in q/) of
X E (Recall that X Y i s the union of X and Y.) Consider the formula X =* Y + Z. This
formula is true if either

(1) X is false, or
(2) Y is true, or
(3) Z is true.

Note that some of X, Y, and Z may be empty. An empty set (i.e., conjunction) of
propositional variables is always true.

We abbreviate X =* Y + Z by X ~. ;. Y. Now the correspondence to multivalued
dependencies becomes obvious. This correspondence indicates how to translate the
inference rules for multivalued dependencies and the mixed rules for functional and
multivalued dependencies to propositional logic. We shall show that the resulting
rules (including the translated FD rules) are sound and complete for the fragment of
propositional logic consisting of all formulas of the form X ~-~ Y and X ~. ~ Y.

Let o be a dependency, and let X be a set of dependencies. Let o and • be the
corresponding formula and set of formulas, respectively, in propositional logic. A
formula of the form X =~ Y is called an FD formula, and a formula of the form
X ~ ; Y is called an MVDformula . Note that ol, o2 or, is a derivation from
if and only if ol, o~ on is a derivation from X.

We say that an MVD formula X ~. > Yis triviali feither Y C X o r X Y = q/. Thus,
trivial MVD formulas are those that correspond to trivial multivalued dependencies
[11]. As mentioned above, an empty conjunction is always true, and therefore trivial
MVD formulas are tautologies (i.e., are true under every truth assignment).

The following proposition states a property of MVD formulas that corresponds to
a weN-known property of multivalued dependencies [11].

PROPOSITION 1. X ~ Y is true i f and only i f X ~ ~ Y - X is true.

PROOF. Obvious. []

3.2 AN EXAMPLE. Our Equivalence Theorem states that if o is the propositional
formula corresponding to the (functional or multivalued) dependency o, and similarly
for X and X, then the following two statements are equivalent:

(1) o is a consequence of X.
(2) o is a logical consequence of X.

As an illustration of the Equivalence Theorem, let the set of attributes be
{A, B, C, D), let o be the dependency A ~ B, and let • be {A ,) B, C--> B}. Then
o is the propositional formula A =* B, and X is {A =* B + CD, C ==} B) . By the
Equivalence Theorem, either (1) and (2) both hold or (1) and (2) both fail. We now
show that in this case (1) and (2) both hold.

Let R be a relation with attributes {A, B, C, D} in which the multivalued
dependency A)) B and the functional dependency C ~ B both hold. To show (1),
we must show that the functional dependency A ---, B necessarily holds in R. Let
(a, b, c, d) and (a, b', c', d ') be two tuples of R; we must show that b = b'. Since
A , ~ B holds in R, the tuples (a, b', c, d) and (a, b, c', d ') also appear in R (by
definition). Since (a, b', c', d ') and (a, b, c', d ') appear in R, and since R obeys the
functional dependency C ~ B, necessarily b = b', which was to be shown. So (1)
holds.

Relational Database Dependencies 441

We now show that (2) holds. Let ~ be a truth assignment that makes both
A ~ B + CD and C =~ B true. We must show that ~ makes A ~ B true. I f ~b makes
A false, we are through. So assume that ~ makes A true; we must show that ~ makes
B true. Since ~ makes both A and A ~ B + CD true, it makes B + CD true. I f it
makes B true, we are through. So we can assume that it makes CD true. Thus
makes C true. Since it also makes C =~ B true, it makes B true, which was to be
shown.

It is not surprising that the proofs of (1) and (2) are quite different, since they deal
with completely different universes of discourse. However, according to the Equiva-
lence Theorem, (l) and (2) are either both true or both false (in this case, they are
both true). Questions as to whether (1) holds in a particular case of interest come up
quite of ten- - for example, in database normalization, and in proofs of theorems. By
the Equivalence Theorem, to determine i f (l) holds, one can instead solve the perhaps
easier problem as to whether (2) holds in propositional logic. One can use all the
tools of propositional logic (including truth tables, theorem provers, and even
intuition) to obtain the answer. In Section 6 we give several applications where proofs
of known theorems using our techniques are simpler and shorter than traditional
proofs.

3.3 2-TuPLE RELATIONS AND TRUTH ASSIGNMENTS. Before we proceed to prove
the equivalence of dependencies and the fragment of propositional logic consisting
of FD and MVD formulas, we shall show that there is a correspondence between 2-
tuple relations (i.e., relations with only two tuples) and truth assignments. Let R be
a 2-tuple relation over the set of attributes ~/. We construct a truth assignment ~b
("the special truth assignment") for the variables of q / a s follows. A variable A is
assigned true if the two tuples of R agree in the A-column; otherwise, A is assigned
false.

LEMMA 2. Let R be a 2-tuple relation. Then a dependency o holds in R if and only
i f the formula o is true under the special truth assignment t k.

Before we prove this lemma, it is convenient to define a simple new concept and
to prove two simple lemmas about it.

If T is a 2-tuple relation and U) > V is a multivalued dependency, then we say
that U ~ , V holds actively in T if it holds in T and if the two tuples in T agree
in the U columns. Note that there are two ways that a multivalued dependency
U ~ V can hold in a 2-tuple relation T; either (1) the two tuples disagree in
some column of U (in which case U ~) V holds), or else (2) U >) V holds ac-
tively in T.

LEMMA 3. Assume that U, V, and W form a partition of the attributes (i.e., each
attribute is in exactly one of U, V, or W). Let T be a 2-tuple relation. Then the
multivalued dependency U ~ ~ V holds actively in T if and only i f

(1) the two tuples of T agree in the U columns; and
(2) either the two tuples agree in the V columns, or else they agree in the W columns.

PROOF. I f (l) and (2) hold, then dear ly U ~) Vholds actively in T. Conversely,
assume that U > > V holds actively in T. By definition, (1) holds. Write the two
tuples of Tas (u, v, w) and (u, v', w'). Since U ~ ~ Vholds in T, the tuples (u, v', w)
and (u, v, w') must also be members of T. Now if v # v' and w # w', then it is easy
to verify that the tuples (u, v, w), (u, v', w'), (u, v', w), and (u, v, w') are all distinct.
But T has only two tuples. Hence v = v' or w = w', which was to be shown. E]

442 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

The following lemma is not needed for the proof of Lemma 2, but it will be used
later.

LEMMA 4. Assume that T and T' are 2-tuple relations over the same set o f attributes,
and that whenever the two tuples o f T agree in a column, then the two tuples of T' agree
in the same column. Then each multivalued dependency that holds actively in T also
holds actively in T'.

PROOF. Assume that the multivalued dependency U ~ ~ V holds actively in T
(where U, V, and W form a partition o f the set o f attributes). The two tuples of T
agree in the U columns, and, hence, so do the two tuples of T'. By Lemma 3, the two
tuples of T either agree in the V columns or agree in the W columns. Hence, so do
the two tuples of T'. Thus, U ~) V holds actively in T', as desired. []

We can now prove Lemma 2.

PROOF OF LEMMA 2. If. Suppose that o is true under ~; we must show that o
holds in R. There are two cases to be considered.

Case 1. The formula o is an FD formula X =* Y. I f X is false, then the two tuples
of R disagree in some X column, and hence the functional dependency X ~ Y holds
in R. I f X is true, then Y is also true, and the two tuples of R must agree in all the Y-
columns. Thus the functional dependency X ~ Y holds in R.

Case 2. The formula a is an MVD formula X ~. ~. Y. I f X i s false, then obviously
the multivalued dependency X ~ ~ Y holds in R. Suppose that X is true. Let Z be
the complement of X Y (in o//). It follows that either Y is true or Z is true. Thus,
either the two columns of R agree in the Y-columns or they agree in the Z-columns.
Lemma 3 implies that in either case X > ~ Y holds in R.

Only if. The proof is similar to the " i f " portion. []

3.4 THE EQUIVALENCE THEOREM. Let o be a (functional or multivalued) depend-
ency, and let ~ be a set of dependencies. We say that o is a consequence of ~ in the
world of 2-tuple relations if for all 2-tuple relations R, the dependency o holds in R
whenever ~ (i.e., every dependency of ~) holds in R. That is, there is no "counter-
example" 2-tuple relation R for which ~ holds and o does not hold. Note that if o is
a consequence of ~, then o is a consequence of ~ in the world of 2-tuple relations,
but the converse is not obvious (although, as we shall show, it is indeed true). We
prove the following theorem.

EQUIVALENCE THEOREM. Let o be a dependency, and let ~ be a set o f dependencies.
The following are equivalent:

(a) o is a consequence of ~.
(b) o is a consequence o r e in the world o f 2-tuple relations.
(c) a is a logical consequence o f ~ .

Clearly, the major result is the equivalence of (a) and (c).
There are two ways of proving the Equivalence Theorem. The first way is to show

that the inference rules are sound and complete for FD and MVD formulas. This
proof is essentially a syntactical approach, and we present it in Section 4.

The second way is to show that if we are given a set o f dependencies Z, a single
dependency o, and a relation R such that all the dependencies of Z hold in R but o
fails in R, then we can fred a truth assignment ~ under which all the formulas in
are true and o is false. (We also have to prove the opposite direction. However, as we
shall see, it follows easily from Lemma 2.) This approach for proving the Equivalence

Relational Database Dependencies 443

Theorem is followed in Section 5. Actually, we prove more than that. Assume that
R and P are relations (over the same set o f attributes). W e say that P is a subrelation
o f R if the tuples in P are a subset o f the tuples in R. We show that i f R is a relation
in which ~ holds and o fails, then R has a 2-tuple subrelat ion P such that 1~ holds in
P and o fails.

4. The Syntactic Proof

In this section we consider F D and M V D formulas. We show that the inference rules
are complete also for this interpretation. The first step is to show that the rules are
sound, that is, i f a formula o can be derived f rom a set o f formulas ~ , then o is a
logical consequence o f 1~. The soundness o f the rules is later used to prove that the
rules are also complete.

LEMMA 5. The inference rules (interpreted as rules for formulas of propositional
logic) are sound.

PROOF. In [12] it is proved that the rules for F D formulas are sound. We now
show that the rules for M V D formulas and the mixed rules are also sound.

(1) Complementation. Let X, Y, and Z be sets o f variables such that their un ion
is o//, and Y N Z _C X. We have to prove that X ~. ~, Y and X ~. ;. Z are equivalent,
that is, for all t ruth assignments, X ~. r Y is true if and only if X ;. r. Z is true.

Let Y' = Y - X, and let Z ' -- Z - X. By Proposi t ion 1, X ~ ~ Y is equivalent to
X ~. '.. Y', and X ~. ~. Z is equivalent to X .~. ~, Z ' . But Z ' is the complement o f
XY' , and Y' is the complement of XZ ' . Therefore, both X ' ;. r. Y' and X .'. ~, Z ' are
shor thand for the same formula, namely, X =~ Y' + Z ' , and hence X ~. ;, Y and
X ~. ~. Z are equivalent.

(2) Reflexivity. I f Y _C X, then Y is true whenever X is true. Thus X ~ Y is
always true.

(3) Augmentation. Suppose that Z C_ W and X ~ Y is true. W e wish to show
that X W ~. ~. YZ i s true. I f X W i s false, we are through. So suppose X W i s true, that
is, both X a n d W a r e true. I f Yis true, so is YZ, and hence X W ~..~. Y Z i s true. I f Y
is false, then since X ~ > Y is true, the complement o f X Y is true. Hence, so is the
complement o f X W Y Z (because it is conta ined in the complement o f XY) . So once
again, X W '.. ~ Y Z is true.

(4) Transitivity. Suppose that X ;- ~. Y and Y ~. ~. Z are true. To show that
X ;. ~ Z - Y is true, we assume that X is true. I f Y is not true, then Z - Y is true
(because X and X ;- ~. Y are true, and hence all the variables that are not in Y are
true). So if Y is not true, then X ;. ~ Z - Y is true, as desired. Therefore, let us
assume that Y is true. There are two cases to be considered.

Case 1. Z is true, and hence so is Z - Y.

Case 2. The complement o f YZ is true. (This case must occur i f case 1 does not,
since Y and Y .~..~, Z are true.) But Y is true, and therefore Z - Y contains all the
variables that are false.

Thus X ;. '., Y is true in both cases.

(5) FD-MVD1. I f X ~ Y, then obviously X r..~, Y.

(6) FD-MVD2. Suppose that X '; ~ Z and Y ~ Z ' are true, where Z ' C Z, and
Y and Z are disjoint. To show that X =~, Z ' is true, we assume that X is true. I f Z is
true, then so is Z'. I f Z is false, then Y is true (since X and X ~ v Z are true, and

A~A.4 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

hence all the variables that are not in Z must be true). Therefore, Y =-~ Z ' implies
that Z ' is also true. O

Now we can use the soundness of the inference rules in the proof of the following
lemma. That is, we consider a set of formulas ~ and derive some additional formulas
by applying the inference rules. By Lemma 5, these additional formulas are logical
consequences of ~. We also consider the dependency basis and the closure of a set
of variables X. They are defined using the inference rules exactly as for dependencies
(see Section 2.4). For example, X*, the closure of X, is the set of all the variables A
such that X =* A can be derived from X.

LEMMA 6. Let ~ be a set o f F D and M V D formulas, and let X be a set o f variables.
Suppose that W is a member o f the dependency basis o f X such that W and X * are
disjoint. I f we assign false to every variable in W a n d true to all the other variables, then
all the formulas in ~ are true.

PROOF. First we show that all the MVD formulas in X are true. Let Y ~- ,~, Z be
an MVD formula in X. I f Y is false, then Y ,' ; Z is true. So suppose that under the
above truth assignment, Y is true. Since Y is true, and since every variable in W is
false, it follows that Y and W are disjoint. Let Y' be the union of all the sets from the
dependency basis of X whose intersection with Y is not empty. By the defmition of
Y', we know that Y _C Y'. Note that Y' is a union of members of the dependency
basis, not including W. Hence Y' is disjoint from W, and so Y' is true. Y' ;. ~. Z can
be derived from • by applying augmentation to Y ~. ,', Z. X ~ ;, Y ' can be derived
from X, since Y' is a union of sets from the dependency basis of X. Transitivity
implies that X ~. ;, Z - Y' can be derived from X ~. ~, Y' and Y' ;. ;, Z. Therefore
Z - Y' is a union of sets from the dependency basis of X. Since IV is a set in
the dependency basis of X, either IV C_ Z - Y' or tV and Z - Y' are disjoint. But
IV is disjoint from Y', and, therefore, either W _C Z or IV is disjoint from Z. Thus
Y ~. ~ Z must be true.

Now let Yffi=~ Z be an FD formula in X. Suppose that Yis true. We must show that
Z is true. Let Y' be defined as above. Since Y ~=, Z is in ~, it follows that Y ~. ~, Z,
and hence Y' ~ ,', Z , can be derived from X. The MVD formula X ~ ;, Z - Y '
follows from X ;. ;, Y ' and Y' ~. ,', Z by transitivity. The FD formula Y=~ Z - Y '
can be derived from X using Y ~=~ Z and decomposition, and hence X ~ Z - Y '
follows from an application of the rule FD-MVD2. Therefore Z - Y ' _C X* , and so
Z - Y ' is true. This implies that Z is true, because Y' is true. []

THEOREM 7. (COMPLETENESS THEOREM FOR FORMULAS). A formula o is a logical

consequence o f • i f and only i f e can be derived f r o m X.

PROOF. The if portion follows from Lemma 5. In order to prove the other
direction, we derive a contradiction by assuming that o is a logical consequence of

and that o cannot be derived from X.

Case 1. The formula a is an FD formula X =~ Y. Since X =~ Y cannot be derived
from X, there is a variable A in Y such that X =~ A cannot be derived from X.
Therefore A is not in X*, and there is a set Win the dependency basis of X such that
A E IV and W is disjoint from X*. Consider the truth assignment under which every
variable in W is false and all the other variables are true. Lemma 6 implies that all
the formulas in X are true, but X ~ A is false and hence it cannot be a logical
consequence of ~.

Case 2. The formula ~ is an MVD formula X ~,. ~, Y. Since X ~. ~. Y cannot be
derived from X, there is a set W in the dependency basis of X such that W f3 Y #

Relational Database Dependencies 445

O and W ~ Y (otherwise Y is a union of some sets from the dependency basis o f X).
Note that W has more than one element, and since W is in the dependency basis, it
must be disjoint from X*. Suppose that we assign false to every variable in W and
true to all the other variables. By Lemma 6, all the formulas in X are true, but
X :. > Y is false and therefore cannot be a consequence of X. []

Now we can give the syntactical proof of the Equivalence Theorem.

THEOREM 8. (EQUIVALENCE THEOREM). The following are equivalent:

(a) o is a consequence o f~ .
(b) o is a consequence of X in the world of 2-tuple relations.
(c) o is a logical consequence of ~.

PROOF. The fact that (a) implies (b) is obvious.
Next, we show that (b) implies (c) by deriving a contradiction. Suppose that o is a

consequence of ~ in the world of 2-tuple relations, and o is not a logical consequence
of X. Let ~/be a truth assignment under which all the formulas of • are true and o
is false. We construct a 2-tuple relation R as follows. One tuple of R is defined to be
1 for all attributes A. The other tuple is 1 for an attribute A if A is true under e A
otherwise it is 0. Lemma 2 implies that ~ holds in R and o fails in R. This contradicts
the assumption that o is a consequence of X in the world of 2-tuple relations.

Finally we have to show that (c) implies (a). Suppose that o is a logical consequence
of X. According to Theorem 7, o can be derived from X using the inference rules.
But these rules are sound when we interpret them as inference rules for dependencies
[5]. Therefore o is a consequence of X. []

The soundness and completeness of the inference rules for dependencies have been
proved in [5]. However, Theorem 7 and the portion of the proof o f Theorem 8
showing that (a) implies (c) provide an alternative proof of the completeness of the
inference rules for dependencies.

5. The Semantic Proof

In this section we prove a lemma showing that if R is a relation in which ~ holds and
o fails, then R contains two tuples that constitute a relation which is a counterexample
to o being a consequence of ~. The semantic proof follows from this lemma, which
is interesting in its own right as a model-theoretic result. Note that this lemma
strengthens the result of the previous section, where we showed that if o is not a
consequence of ~, then there is a 2-tuple relation in which Z holds and o fails.

LEMMA 9 (2-TUPLE SUBRELATION LEMMA). Assume that R is a relation, ~ is a set
of dependencies (functional or multivalued), and o is a single dependency. Suppose that

holds in R but o fails in R. Then R contains a 2-tuple subrelation for which ~ holds
and a fails.

PROOF. There are two cases, depending on whether a is a functional dependency
or a multivalued dependency.

Case 1. The dependency o is a functional dependency. We can assume without
loss of generality that o is a functional dependency X ~ A in which the right-hand
side contains a single attribute. Since X ~ A fails in R, there are two tuples tl and t2
of R that agree in the X columns but disagree in the A column. Consider all 2-tuple
subrelations of R in which X ~ A fails. Of all such 2-tuple subrelations of R, let T
be the one for which the maximal number of multivalued dependencies hold actively.
That is, if T ' is another 2-tuple subrelation of R for which o fails, and if k is the

446 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

number of multivalued dependencies that hold actively in T', then at least k
multivalued dependencies hold actively in T. We shall now show that all the
dependencies of ~ hold in T (which completes the proof in case l, where o is a
functional dependency).

All functional dependencies in ~ hold in T because they hold in R, and hence in
every subrelation. Let U)) V be a multivalued dependency in Z that fails in T;
we shall derive a contradiction. Assume without loss of generality that U, V, and W
form a partition of the set of attributes. The two tuples in T clearly agree in the U
columns (or else U)) V would hold in T). Write the two tuples in T as (u, v, w)
and (u, v', w'). Then v ~ v' and w ~ w' (or else U)) V would hold in T). By
assumption, X ---> A fails in T. Thus the two tuples agree in the X columns and
disagree in the A column. Since they disagree in the A column, A is in either V or W.
Assume without loss of generality that A is in V. Let T' be the 2-tuple relation
containing (u, v, w) and (u, v', w). Since U ~) Vholds in R, and since (u, v, w) and
(u, v', w') are in R, (u, v', w) is necessarily in R. So T' is a 2-tuple subrelation of R.
The two tuples of T' agree in the X columns (since the two tuples of T do) but
disagree in the A column (because v and v' disagree in the A column). Thus X ~ A
fails in T', and, unlike the situation in T, we see that U)) V holds actively in T'.
Furthermore, by Lemma 4 every multivalued del~endency that holds actively in T
also holds actively in T'. So more members of ~ hold actively in T' than in T, Since
T' is a 2-tuple subrelation of R for which X--~ A fails, this is a contradiction of the
"maximality" in the definition of T. This completes the proof of case 1.

Case 2. The dependency o is a multivalued dependency X •) Y. Assume
without loss of generality that X, Y, and Z form a partition of the set of attributes.
We say that a pair of tuples (x, y, z) and (x, y', z ') witness the failure o f X)) Yin
a given relation if they appear in that relation and if one of (x, y ' , z) or (x, y, z') does
not appear in that relation. Thus a multivalued dependency fails in a relation if and
only if the relation has a pair of tuples that witness the failure. In particular, since the
multivahied dependency X)) Y fails in R, let (x, y, z) and (x, y ' , z ') witness the
failure. Thus either (x, y ' , z) or (x, y, z ') does not appear in R. Of all 2-tuple
subrelations of R that witness the failure of X)) Y, let T be the one for which the
maximal number of multivalued dependencies in ~ hold actively. We now show that
all of ~ holds in T (which completes the proof, since X) ~ Y fails in T).

As in case l, each functional dependency in ~ holds in T. Let U)) V be a
multivalued dependency in ~ that fails in T; we shall derive a contradiction. Assume
that U, V, and W form a partition of the set of attributes. As in case 1, the two tuples
in T agree in the U columns.

Denote by P and W those columns in V and W, respectively, for which the tuples
in Tdisagree. Since U)) Vfails in T, Vand l~necessarily are both nonempty. We
rewrite (x, y, z) and (x, y ' , z ') as (u, v, w) and (u, v', w'), respectively. Let T1 be the
2-tuple relation consisting of (u, v, w) and (u, v', w), and let T2 be the 2-tuple relation
consisting of (u, v, w) and (u, v, w'). Obviously T1 and T2 are subrelations of R, since
U ; ~ V holds in R. They are 2-tuple relations since v ~ v' and w ~ w'. By Lemma
4 every multivalued dependency of ~ that holds actively in T also holds actively in
T1 and T2. Clearly U)) V holds actively in Ti and T2. If X)) Y fails either in
Tx or in T2, we have derived a contradiction to the maximality of T, and hence we
are done. So suppose that X ,) Y holds in both T1 and T2. Then X)) Y holds
actively in T1 and T2 since all of the tuples in T, T~, and T2 have the same X-value
x. It follows from Lemma 3 that the two tuples in T1 agree either in the Y columns
or in the Z columns. In the former case V C Z, since V contains all of the columns

Relational Database Dependencies 447

in which the two tuples of Ti disagree. In the latter case VP _C Y. Thus we know that
C Y or V C Z. Similarly, it follows from our knowledge of T2 that 1~ C Y or

I~" _C Z. Since either V _C Y or V _C Z, and since either 1~" C Y or ~ _C Z, there are
four possibilities:

(a) V C Yand I~C Y;
(b) V C Yand I~_CZ;
(c) P _C Z and I~" _C Y;
(d) V C Z and I~'_C Z.

Now V W are all the columns in which the two tuples of T disagree. If (a) were to
hold, then the two tuples in T would agree in the Z columns, and hence the
multivalued dependency X ~ ~ Y would hold in T (which it does not). Similarly,
(d) is impossible. So either (b) or (c) holds. We assume without loss of generality that
(b) holds. Henceff and y ' disagree exactly in the V columns, and z and z' disagree
exactly in the W columns. Under these conditions (x, y ' , z) and (u, v', w) are
identical, and so are (x, y, z') and (u, v, w'). But this is impossible, since (u, v', w) and
(u, v, w') are in R, whereas either (x, y ' , z) or (x, y, z') is not in R. []

This leads us to the semantic proof of the Equivalence Theorem.

THEOREM 10 (EQUIVALENCE THEOREM). The following are equivalent:

(a) tr is a consequence o f~;
(b) o is a consequence o r e in the world of 2-tuple relations;
(c) a is a logical consequence of ~.

PROOF. By Lemma 9, (a) and (b) are equivalent. In the proof of Theorem 8 we
showed (using Lemma 2) that (b) implies (c). Since Lemma 2 is an "if and only if"
result, we can use it in a similar way to show that (c) implies (b). []

6. Applications

One application of the Equivalence Theorem, as we saw at the end of Section 4, is
a shorter proof of the Completeness Theorem for dependencies. Other applications
are discussed in [10, 20, 22]. The application we describe in this section is a new
technique for proving properties of dependencies. We give several examples to
demonstrate that this technique provides much shorter proofs than previous methods.
Most of these applications are based on a new characterization of the dependency
basis in terms of truth assignments (Theorem 11).

In this section we use arguments that are based on truth assignments. For example,
we may assign truth values to attributes and evaluate the resulting truth values of
some dependencies. However, these arguments cannot constitute a complete formal
proof. A formal proof is obtained by translating dependencies to corresponding
formulas, proving the desired result for formulas, and finally applying the Equiva-
lence Theorem to obtain a similar result for dependencies. Since the equivalence of
dependencies and formulas is well established at this point, we shall forego doing so
and simply view truth assignments as being applied directly to dependencies. There-
fore our proofs are only an abbreviated version of the complete formal proofs.

We believe that the most important tool for applications is given by the following
theorem. 1

1 Note that from a formal pomt of view this theorem should have been stated for formulas and not for
dependenctes

448 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

THEOREM 11. Assume that Y. is a set o f dependencies. Let W a n d X be disjoint sets
o f attributes. Consider the truth assignment ~, under which every attribute in W is false
and all the other attributes are true.

(a) I f W is a set in the dependency basis o f X and is disjoint f rom X*, then all the
dependencies in ~ are true under this truth assignment.

(b) I f all the dependencies in • are true under this truth assignment, then W is
contained in one set o f the dependency basis o f X. Furthermore, W is disjoint f rom X*.

PROOF

(a) This part follows from Lemma 6.
(b) Suppose that Wis not contained in one set of the dependency basis of X. Then

there is a set V in the dependency basis of X such that V N W ~ ~ and W~ V.
Under the truth assignment ~ all the dependencies in E are true, but X ~. ~. V is
false. This is a contradiction, since X ~..~ V can be derived from ~.

The fact that Wis disjoint from X* is implied by the following observations. If W
is not disjoint from X*, then W(being in the dependency basis) must be a singleton
set. Suppose that Wis A. The attribute A is a member of X*, and therefore ~ contains
a functional dependency Y ~ Z where A is not a member of Y but A is a member
of Z (otherwise, X--, A cannot be derived from ~). But A is the only attribute which
is false, and hence Y ~ A is false. []

COROLLARY 12. Let]~ be a set o f multivalued dependencies, and let X and V be
disjoint sets o f attributes. The set V is a member of the dependency basis o f X if and
only i f

(1) i f the truth assignment ~b makes every attribute of V false and all the other attributes
true, then all the dependencies in ~ are true under ~;

(2) for every W such that W is disjoint f rom X and W is a proper superset o f V, the
truth assignment making precisely all the attributes of W false does not satisfy]~.

PROOF. When there are only multivalued dependencies X* is equal to X. The
rest follows from Theorem 11. D

We remark that Corollary 12 cannot be strengthened by further restricting W in
(2) to contain exactly one more attribute than V. In proof, suppose that the attributes
areA, B, C, D, andE. Let ~ = {ADE)) B, A C E)) B, A)) BCD}. The
dependency basis of A is {A, BCD, E}. However, if we choose V = B, then condition
(1) is true, and condition (2) is true if we add the restriction that Wcontains exactly
one more attribute than B.

Theorem 11, coupled with the general concept of truth assignments, is instrumental
in proving several properties of dependencies. We shall give short proofs for two
theorems about properties of dependencies by applying Theorem 11. These theorems
were previously proved using lengthy arguments that are based either on the method
of [5] for proving the Completeness Theorem (for dependencies) or on derivations.

The following theorem provides a useful characterization of the dependency basis.
It has been used to prove the correctness of some of the algorithms for constructing
the dependency basis for a given set of attributes X (e.g., [14]).

THEOREM 13 (BEER! [4]). Assume that ~ is a set o f multivalued dependencies and
that X, V1, V2 Vn partition the set o f attributes. Then V1, V2 Vn is the
dependency basis o f X if and only i f

(1) X)) V, is a consequence o f ~ , and

Relational Database Dependencies 449

(2) for each multivalued dependency Q ; ~ R in ~ and for each V, disjoint from Q, if
V, N R ~ ~, then V, C R.

PROOF. If. From (2), if we assign false to every attribute in V, and true to all the
other attributes, then all the dependencies in E are true. Thus, by Theorem 11, V, is
contained in a member of the dependency basis of X. From (1), V, is a union of sets
from the dependency basis of X. So V, is in the dependency basis of X.

Only if. (1) is obvious. Let ~p be a truth assignment under which every attribute
in V, is false and all the other attributes are true. By Theorem 11, all the dependencies
in ~ are true under ~p. Hence (2) follows. []

The next theorem is used in some of the algorithms (e.g., [4, 14]) for deciding
whether a dependency o is a consequence of a set of dependencies ~. Let F be a set
of functional dependencies, and let M be a set of multivalued dependencies. We
assume that all the functional dependencies in F have only one attribute on the right-
handside. L e t F = (X ~ ~ A i X---~ A is in F}.

THEOREM 14 (BEERI [4]). A multivalued dependency V ~ ~ W can be derived
from F t.J M if and only if it can be derived from r t.J M.

PROOF. lf. Trivial, since X ~ Y implies X ~ ~ Y.

Only if. Suppose that V ~ ~ W can be derived from F t.J M but not from P t.J M.
Let ~k be a truth assignment under which P U M is true and V ~ ~ W is false. We
claim that F is also true under ~p. Let X ~ A be a functional dependency in F, and
assume that X is true under ~k. If A is false, then it is the only attribute which is false
under ~p, because X ~ ~ A is true. But if only one attribute is false, then V ~ ~ W
must be true. Therefore A is true, and so is X ~ A. We may conclude that F is true
under ~p, and hence V ~ ~ W (which is false under ~k) cannot be derived from
F t.J M. This contradiction completes the proof. []

7. Nonextendibility of the Equivalence to Join Dependencies or Embedded
Multivalued Dependencies

In this section we show that the equivalence between multivalued dependencies and
MVD formulas cannot be extended to cover either join dependencies [13, 15, 21] or
embedded multivalued dependencies [11].

We first consider join dependencies. We show that there is no way to extend the
mapping between dependencies (functional and multivalued) and propositional
logic to include join dependencies and still maintain equivalence. Assume that
there is such an extension of the mapping; we shall derive a contradiction. Let X,
Y, and Z be a partition of the set of attributes, and let o be the join dependency
* {XY, XZ, YZ}, which holds for a relation R (over the attributes X Y Z) if and only
if R is the join of its projections R[XY], R[XZ], R[YZ]. (Note that this join
dependency is also a mutual dependency [19].) Let o be the alleged propositional
formula that corresponds to o. Now o is a consequence of the multivalued dependency
X ~ ~ Y. Since we assume equivalence, o is a logical consequence of the MVD
formula X =~ Y + Z. Similarly, o is a logical consequence of Y ~ X + Z. Now if X
is false, then X ~ Y + Z is true; so o is then true. I f X is true, then Y ~ X + Z is true;
so o is again true. Hence o is true under every truth assignment; that is, o is a
tautology. But o does not always hold. This is a contradiction.

We now consider embedded multivalued dependencies. An embedded multivalued

450

FIGURE 2

Y. SAGIV, C. DELOBEL, D. S. P A R K E R , JR. , A N D R. F A G I N

W X Y Z

w x y z
W X t y ' Z t

W X ~t Z

W X' y Z ~

W X y Z '

W X ' ~' Z

dependency [11] X > > Y I Z holds in a relation R over ~ (where X, Y, and Z are
subsets of q/) i f X > > Yholds in the projection of R onto X Y Z .

Let W, X, Y, and Z be a partition of the set of attributes. Probably the most natural
guess as to how to extend the mapping (between dependencies and formulas of
propositional logic) would be to have the propositional formula W ==~ X + Y
correspond to the embedded multivalued dependency W)) X[Y. However, the
propositional formulas W ~ X + Y and W =* X + Z taken together always imply
the MVD formula W ~ X + Y Z (in propositional logic). But the embedded
multivalued dependencies W)) X[Y and W ~ ~ X I Z taken together do not
imply the multivalued dependency W ~ ~ X I YZ. This is shown in the relation of
Figure 2 in which W > ~ X l Y a n d W >) X [Z h o l d , but W > ~ X l Y Z f a i l s . So
this extension of the equivalence fails.

We now show that this extension (in which the propositional formula W
X + Ycorresponds to the embedded multivalued dependency W >) X [Y) provides
us with a necessary (but, as we saw, not sufficient) condition for determining whether
a dependency o (functional, multivalued, or embedded multivalued) is a consequence
of a set ~ of dependencies (functional, multivalued, or embedded multivalued). Let
X, o be the corresponding formulas in propositional logic. We now sketch a proof
that if o is a consequence of 2, then o is a logical consequence of ~. As in Theorem
8, let (a) be the statement that o is a consequence of ~, let (b) be the statement that
o is a consequence of 2 in the world of 2-tuple relations, and let (c) be the statement
that o is a logical consequence of 2~. Unlike the situation in Theorem 8, we are
allowing not just functional and multivalued dependencies, but also embedded
multivalued dependencies. As before, (a) implies (b) and (b) implies (c), even in this
generalized context. But "(a) implies (c)" is exactly what we wanted to prove. (We
note that (c) imphes (b) even in this generalized context, but (c) does not imply (a),
as we saw by a counterexample.)

We now show that there is no way to extend the mapping between dependencies
(functional and multivalued) and propositional logic to include embedded multival-
ued dependencies and still maintain equivalence. Let W, X, Y, and Z be a partition
of the set of attributes, where none of W, X, Y, or Z is empty. Assume that there is
such an extension of the mapping; we shall derive a contradiction.

Let o be the embedded multivalued dependency W ~ , X] Y, and let o be the
alleged proposttional formula that corresponds to o. We shall prove that o must be
(equivalent to) W ==~ X + Y. A similar proof would show that the propositional
formula corresponding to the embedded multivalued dependency W > > X IZ is
W ~ X + Z. But then we run into the same contradiction as we showed earlier. So
the proof that there is no way to extend the mapping to include embedded multi-
valued dependencies is complete if we can show that o is necessarily equivalent to
W ~ X + Y, where a is the embedded multivalued dependency W ~ ~ X I Y-

Now W ~ ~ X I Yis a consequence of the multivalued dependency W ~ ~ X [YZ,
by projection [11]. Hence o is a logical consequence of the MVD formula W
X + YZ. Thus o is true if W is false or X is true. Similarly, since W ~ ~ X] Y is a

Relational Database Dependencies

A B C

a b c

a b ' c

a ' b c

a ' b c '

FIGURE 3

451

consequence of W ~ ~ X Z [Y, it follows that o is true if Y is true. So o is true if
either W is false, X is true, or Y is true. To show that o is equivalent to W =~ X + Y
(and thus complete the proof), we must show that this " i f" is an " i f and only if," that
is, that o is false under each truth assignment in which, simultaneously, W is true, X
is false, and Y is false.

Let us denote the dependencies W ~ ~ X I Y , W Y ~ ~ X l Z , and W ~ ~ X I Y Z
by o, ~1, and ~'2, respectively. It has been shown that 1"2 is a consequence of {o, ~'1}
[24, 25]. By equivalence (which we are assuming), ¢2 is a logical consequence of
{o, ~-~}. Consider a truth assignment + under which W is true, X is false, and Y is
false. Under ~ we know that ~'a is true and ~'2 is false, since ,7"1 is W Y ~ X + Z and
~'2 is W ~ X + YZ. If o were true under q/, then since cx is true under ff and ¢2 is
a logical consequence of {o, ~'i}, it would follow that 1"2 would be true under q,, a
contradiction. So a is false under ~b. This was to be shown.

8. Boolean Dependencies

It is possible to extend the equivalence between functional dependencies and FD
formulas by generalizing the notion of a functional dependency. We define a Boolean
dependency to be an arbitrary formal Boolean combination of attributes. For example,
if A, B, and C are attributes, then A + (B. ~C) is a Boolean dependency, which has
the meaning, "For every pair of tuples, either (1) the two tuples agree in column A,
or (2) the two tuples agree in column B and disagree in column C." The usual
funcuonal dependency AiA2 • • • An ~ BiB2 • • • B m is a special case which has the
meaning, "For every pair of tuples, if the tuples agree in columns A1, As An,
then the tuples agree in columns Bh B2 B~." (However, multivalued depend-
encies are not a special case of Boolean dependencies.) It is clear how to form the
corresponding propositional formula (A is replaced by A, etc.). The semantic proof
of the Equivalence Theorem for functional dependencies and FD formulas [12] goes
through with minor modifications, to give the following result.

THEOREM 15. Assume that ~ is a set o f Boolean dependencies and o is a single
Boolean dependency. Le t ~ and a be, respecnvely, the corresponding set o f propositional

f o rmu las and single propositional formula . The fo l lowing are equivalent:

(1) o is a consequence o f Z.
(2) o is a consequence o f ~ m the worm o f 2-tuple relations.

(3) o is a logical consequence o f ~ .

Let us hngle out those Boolean dependencies of the form AaA2 . . . An
B1B2 • • • B m + CaC2 • • • Cp, where each attribute is exactly one of A1, A2 An,
B1, Be Bm, Ci, C2, . . . , Cp. Let us call these degenerate mult ivalued dependencies
and use ~ instead of =-~. The degenerate multivalued dependency A1A2 . . • An
BiB2 . . . B~ + CaC2 . . . Cp holds for a relation R if and only if every pair of
tuples of R that agree in all columns of A~, A2 An agree either in each of
B~, Bz B~, or in each of Ca, C2 Cp. As the relation in Figure 3 shows, it is
possible for the degenerate multivalued dependency A ~ B + C to hold without
eRher of the functional dependencies A --~ B or A ~ C holding. We note that
degenerate multivalued dependencies are also studied in [2].

452 Y. SAGIV, C. DELOBEL, D. S. PARKER, JR., AND R. FAGIN

Let X, Y, and Z form a disjoint partition of the set o f attributes, and let R be a
relation on this set o f attributes. Consider the following statements.

(1) X---, Y o r X---, Z holds in R.
(2) X - ~ Y + Z holds in R.
(3) X 7) Y h o l d s i n R .

It is easy to show that (1) implies (2) and (2) implies (3), but (3) does not imply (2)
and (2) does not imply (1). However, our theorems give a somewhat puzzling analogy
between multivalued dependencies and degenerate multivalued dependencies.

THEOREM 16. Let ~ be a set of functional dependencies and multivalued depend-
encies, and let o be a single dependency (functional or multivalued). Let •' be the
result o f replacing each multivalued dependency in ~ by the corresponding degenerate
multivalued dependency, and similarly for o and o'. The following are equivalent:

(1) o is a consequence o f X.
(2) e' is a consequence of X'.

PROOF. By Theorems 8 and 15, both (1) and (2) are equivalent to "o is a logical
consequence of X." []

9. Historical Note

This current paper is the end product o f two earlier reports, one by Delobel and
Parker [10] and the other by Sagiv and Fagin [23]. Chronologically, Sagiv was the
first to conceive of extending the equivalence between functional dependencies and
a fragment of propositional logic to include also multivalued dependencies, but
Delobel and Parker developed the result independently and published it first.
This paper is drawn mainly f rom the subsequent, easier-to-read report by Sagiv
and Fagin.

ACKNOWLEDGMENT. The authors are grateful to J. D. Ul lman for helpful discus-
sions.

REFERENCES

1 ARMSTRONG, W W Dependency structures of database relaUonshlps Proc. IFIP 74, North-Holland,
Amsterdam, 1974, pp. 580-583

2 ARMSTRONG, W W, AND DELOBEL, C. Decomposmons and funcuonal dependencies m relations.
ACM Trans. Database Syst 5, 4 (Dec. 1980), 404--430

3 BEERI, C. On the role of data dependenoes m the construction of relauonal database schemas. Tech
Rep. No 43, Dep. of Computer Science, The Hebrew Univ of Jerusalem, Jerusalem, Israel, Jan
1979

4. BEERI, C. On the membership problem for funcuonal and mulavalued dependencies in relational
databases ACM Trans Database Syst .5, 3 (Sept 1980), 241-259.

5 BEERI, C., FAGIN, R, AND HOWARD, J H. A complete axiomauzation for functional and mult~valued
dependencLes in database relauons Proc. ACM-SIGMOD Int Conf on Management of Data,
Toronto, Ontario, Canada, Aug. 1977, pp 47-61.

6. BISKUP, J On the complementaUon rule for mulUvalued dependenoes m database relauons Acta
Inform 10, 3 (1978), 297-305.

7 BISKUP, J Inferences of multtvalued dependenoes m fixed and undetermined umverses Theoret.
Comput. Sci 10, I (Jan 1980), 93-105

8 CODD, E F A relational model for large shared data banks Commun ACM 13, 6 (June 1970), 377-
387.

9. DELOBEL, C., AND CASEY, R.G Decomposmon of a data base and the theory of Boolean switching
funcUons IBM J. Res DeF. 17, 5 (Sept 1973), 374-386 Also "Comment," IBM J. Res and Dev 21,
5 (Sept. 1977), 484-485.

Rela t ional Da tabase Dependencies 453

10. DELOBEL, C., AND PARKER, D.S. Functional and multivalued dependencies in a relational database
and the theory of Boolean switching functions Tech Rep, Univ of Grenoble, Grenoble, France,
Nov. 1978

11 FAGIN, R Multlvalued dependencies and a new normal form for relational databases. A CM Trans.
Database Syst 2, 3 (Sept 1977), 262-278

12 FAGIN, R. Funcuonal dependencies in a relational database and proposmonal logic. IBM J. Res.
Dee 21, 6 (Nov. 1977), 534-544.

13. FAGIN, R Normal forms and relational database operators. Proc ACM-SIGMOD Int. Conf. on
Management of Data, Boston, Mass, May 1979, pp. 153-160

14 HAGIHARA, K, ITO, M, TANIGUCHI, K , AND KASAMI, T Decision problems for multlvalued
dependencies m relational databases. SIAM J. Comput 8, 2 (May 1979), 247-264.

15. MAIER, D , MENDELZON, A.O., AND SAGIV, Y. Testing nnphcatlons of data dependencies. ACM
Trans Database Syst 4, 4 (Dec. 1979), 455--469

16 MAKINOUCHI, A A consideration on normal form of not-necessarily-normalized relauon in the
relational database model Proc 3rd Int Conf. on Very Large Data Bases, Tokyo, Japan, Oct. 1977,
pp. 447-453

17 MENDELZON, A.O On axtomatxztng multlvalued dependencies m relational databases. J ACM 26,
l (Jan 1979), 37---44.

18 NICOLAS, J M First order logic formahzatlon for functional, multlvalued and mutual dependencies.
Proc ACM-SIGMOD Int Conf on Management of Data, Austin, Texas, June 1978, pp. 40-46.

19 NICOLAS, J.M Mutual dependencies and some results on undecomposable relations. Proc. 4th Int
Conf on Very Large Data Bases, West Berlin, Sept 1978, pp. 360-367.

20. PARKER, n.s. , AND DELOBEL, C Algorithmic applications for a new result on multivalued depend-
encies. Proc 5th lnt Conf on Very Large Data Bases, Rio de Janelro, Brazil, Oct. 1979, pp. 67-74.

21. RISSANEN, J. Theory of relations for databases--a tutorial survey In Proc. 7th Syrup. on Mathematical
Foundations of Computer Science, Lecture Notes m Computer Science 64, Springer-Verlag, Beflm and
Heidelberg, 1978, pp. 536-551.

22 SAGIV, Y. All algorithm for mferrmg multtvalued dependencies with an application to propositional
logic. J ACM 27, 2 (April 1980), 250-262.

23 SAGIV, Y, AND FAGIN, R An equivalence between relational database dependencies and a subset
of propositional logic. Res Rep RJ2500, IBM Research Lab, San Jose, Calif., March 1979.

24 SAGIV, Y, AND WALECKA, S F Subset dependencies and a completeness result for a subclass of
embedded multivalued dependencies To appear £ .4 CM

25 TANAKA, K, KAMBAYASHI, Y., AND YAJIMA, S. Properties of embedded multivalued dependencies
m relational databases Trans. IECE Japan E62, 8 (Aug. 1979), 536-543

26 ZANIOLO, C. Analysts and design of relational schemata for database systems Tech Rep UCLA-
ENG-7669, Dep of Computer Science, Umverstty of California, Los Angeles, Calif, July 1976

RECEIVED JANUARY 1980; REVISED JANUARY 1980; ACCEPTED MAY 1980

Journal of the Assoclauon for Computing Machinery, Vo! 28, No 3. July 1981

